

Product Guide 2025

The company

Giordano Riello, founder of Aermec, assisted by his son Alessandro and daughter Raffaella, has solidly associated the Company name with precise values:

Respect for the environment

By using new eco-friendly refrigerants as well as innovative installations using water as the carrier fluid.

Noise pollution control

With low-noise emission products, which undergo scrupulous testing before being put on the market.

Energy saving

The great challenge of the Third Millennium, with the development of combined heating and air conditioning systems where appliances are used only as and when necessary.

Health care

With special filters that hold back the smallest suspension particles, the Cold Plasma Generator system that guarantees effective air purification (making for a healthier environment), and the new photocatalytic device, this air purification system is ideal for places where the highest degree of hygiene is required.

History

1961

Giordano Riello sets up Riello Condizionatori, initially producing for contractors only. The story begins.

1963

The Aermec brand is born and marks all future company products designed and manufactured on site. The brand name gains a stronghold as a major product name in Italy and throughout Europe.

1970

Aermec can already supply fresh and warm air. Aermec presents the first dual section conditioner: the first "split-system". Fancoil production starts.

1973

Aermec receives European Award Gold Mercury.

1980

The Eighties sees the development of water chillers and air handling units.

1990

The Nineties mark the definitive consolidation of the company on the market. The Aermec brand is associated with advanced technology and high quality design.

1998

The name makes the company. From 1 January Aermec becomes the company name as well as product brand.

2002

Design and technology: Aermec launched Omnia a new generation of fancoils, designed for domestic applications. OMNIA is the result of co operation with a worldwide prestigious designer.

2003

Aermec UK was acquired.

2004

The international market ask for number and Aermec answer. Giordano Riello make the producing system more technogical.

2008

Aermec responds with more and more efficient units to the world challenge of energy saving with a special attention for our environment.

2011

Aermec turns 50. The company has developed and enlarged, always willing to understand and anticipate the needs of the market. Promoter of "integrated design" between designer and architect.

2012

Aermec Polska was acquired.

2015

The news Europe's largest test facility for air conditioning applications was inaugurated.

2017

Aermec receives Innovation Award from the US Organizations ASHRAE, AHRI and AHR. Aermec receives "Prime Company" certificate for the economic strength and commercial reliability from the Dun & Bradstreet. Aermec Deutschland was acquired.

2018

Aermec awards first prize in "RAC Cooling Industry Award 2018" in London by an Internationally qualified Jury.

2019

Aermec receives the prizes: "NATIONAL ACR & HEAT PUMPS AWARDS 2019" in the category of Data Centre Rooftop Chiller installation, "H&V News Awards 2019" attributed by a HVAC technical jury the United Kingdom.

2020

For the second year in a row, Aermec receives the prize ACR NEWS AWARDS for Data Centers category in the UK.

2021

Aermec turns 60.

Aermec's 60th anniversary coincides with the Covid 19 pandemic.

The company opens a vaccination hub available not only to its own employees but to the entire population of the area.

2022

Aermec breaks through the barrier of 300 million turnover. The Raffaello Riello Research and Training Centre was inaugurated on 12 May.

2023

Founder Giordano Riello leaves us on May 14.

2024

The Spanish companies Airlan and Airlan Industrial were acquired. The holding company Aermec North America that controls Aermec USA and Aermec Canada for the distribution of products in the North American continent was established.

LOGO INDEX:

CERTIFICATIONS:

CE marking

REFRIGERANT:

R290 refrigerant

R32 refrigerant

R1234ze refrigerant

R134a refrigerant

R410A refrigerant

XP10 refrigerant

OPERATIONAL TYPES:

Evaporating unit

Cooling and heating

Cooling only

DHW

Condensing unit

Free-Cooling

Heating only

Multipurpose

For four pipes plants

For three pipes plants

For two pipes plants

INSTALLATION TYPES:

Cassette installation

Ceiling installation

Ducted installation

Floor installation

Wall installation

Air indoor unit

Air outdoor unit

Water indoor unit

KINDS OF EXCHANGERS:

Heat recovery

Plate exchanger

Pump kit

Shell and tube exchanger

Water tank

KINDS OF COMPRESSORS:

Centrifugal compressor

Inverter centrifugal compressor

Rotary compressor

Inverter rotary compressor

Scroll compressor

Inverter scroll compressor

Twin screw compressor

Inverter twin screw compressor

KINDS OF FANS:

Axial fan

Inverter axial fan

Centrifugal fan

Inverter centrifugal fan

EC fan

Inverter EC fan

Plug fan

Inverter plug fan

EXTRA:

Inverter device

Compatible with ModBus protocol

Cold Plasma device

Touch control

Compatible with VMF system (Variable Multi Flow)

Aermec is one of the companies belonging to Giordano Riello International Group and takes part to Eurovent programme for NCD series

Aermec takes part to EUROVENT Programmes: FCH - FCHP for fan coil series. Aermec is involved in EUROVENT Programme: LCP for chiller range. The products involved appear on the website www.eurovent-certification.com

INDEX

With cabinet; universal installation		FAN COILS		Air flow rate (m3/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Page
FCZI			nstallation				
FCZ-D		FCZ	On/Off	110-1300	0,65-7,62	1,45-17,02	12
FCZ-D		FCZI	Inverter	140-1140	0,89-8,60	2,02-17,10	25
FCZ-D			On/Off	140-720			34
FCZ-H		FCZI-D	Inverter	140-720			39
FCZI-H		FCZ-H					
Mathematical Process Mathematical Process			Inverter				
Omnia UL Omnia UL Omnia Radiant On/Off Only operation of Notification	new						
Omnia ULI Inverter 110-460 6,69-2,79 0,76-5,94 61 Omomia Radiant On/Off oinverter with radiant panel 190-460 1,42-2,83 2,89-5,94 65 New Omia ULSI.B Inverter 46-427 0,37-3,00 0,35-5,73 70 FCY On/Off 148-1050 0,93-5,80 1,05-12,09 74 FCY On/Off 123-799 0,80-4,70 0,90-10,15 85 FCZ P-PO On/Off 110-1300 0,65-7,62 1,45-17,02 95 FCZIP Inverter 140-1140 0,89-8,60 2,02-17,10 111 Omnia ULP On/Off 80-460 0,53-2,79 0,76-5,94 123 Omnia ULSI.P Inverter 46-427 0,37-3,00 0,35-5,73 130 Without cabinet; duct installation with high static pressure 46-427 0,37-3,00 0,35-5,73 130 Without cabinet; duct installation with high static pressure 21-66Pa 161-775 0,98-5,27 0,90-10,95 14 VED 030-340 On/Off with st							
Momia Radiant On/Off o inverter with radiant panel 190-460 1,42-2,83 2,89-5,94 65 momodomia ULSI_B Inverter 46-427 0,37-3,00 0,35-5,73 70 Without cabinet; concealed installation with low static pressure FCY On/Off 148-1050 0,93-5,80 1,05-12,09 74 FCYP PO On/Off 110-130 0,65-7,62 1,45-17,02 95 FCZI P Inverter 140-1140 0,89-8,60 2,02-17,10 111 Omnia ULP Inverter 110-400 0,69-2,79 0,52-5,94 127 new Omnia ULP Inverter 46-427 0,37-3,00 0,35-5,73 130 without cabinety duct installation with high static pressure Without cabinety duct installation with high static pressure 46-427 0,37-3,00 0,35-5,73 130 new VED 0301-3401 Inverter with static pressure 21-66Pa 161-775 0,99-5,26 0,90-10,95 14 VED 303-341 Inverter with static pressure 24-75Pa 750-2358 4,5-16,10 5,00-31,71 <		Omnia ULI					
mew Minist ULSI_B Inverter 46-427 0,37-3,00 0,35-5,73 70 FCY On/Off 148-1050 0,93-5,80 1,05-12,09 74 FCYI Inverter 123-799 0,80-4,70 0,90-10,15 85 FCZI P On/Off 110-1300 0,65-7,62 1,45-17,02 95 FCZI P Inverter 140-1140 0,89-8,60 0,22-17,10 111 Omnia ULI P On/Off 80-460 0,53-2,79 0,52-5,94 123 new Omnia ULI P Inverter 110-460 0,69-2,79 0,72-5,94 127 new Omnia ULI P Inverter 46-427 0,37-3,00 0,35-5,73 130 new Mitotuc tabinet; duct installation 161-775 0,97-5,26 0,90-10,95 144 VED 030-340 On/Off with static pressure 21-66Pa 161-775 0,97-5,26 0,90-10,95 144 VED 330-7411 Inverter with static pressure 21-66Pa 161-775 0,97-1281 1,57							
Without cabinet; concealed installation with low static pressure F.CY	new		·				
FCY	iic.	_		10 127	0,57 5,00	0,55 5,75	70
FCYI			The state of the s	1/18_1050	0.03-5.80	1.05-12.00	7/
FCZ P - PO							
FCZI P							
Omnia UL P Omnia ULI P Inverter 0,52-5,94 123 New Omnia ULI P Omnia ULI P Inverter 10-460 0,69-2,79 0,76-5,94 127 Without cabinet; duct installation with high static pressure VED 030-340 0n/Off with static pressure 21-66Pa 161-775 0,97-5,26 0,90-10,95 134 VED 030-3401 Inverter with static pressure 21-66Pa 161-775 0,98-5,27 0,90-10,95 140 VED 430-741 On/Off with static pressure 24-75Pa 750-2358 4,54-16,10 5,20-31,71 146 VED 5301-7411 Inverter with static pressure 23-69Pa 1060-2358 6,05-16,08 6,70-31,71 152 VDCA-D Fan coil unit for ducted installations 200-3200 0,79-12,81 1,57-16,67 158 VDCB-D Fan coil unit for ducted installations 200-3200 0,53-14,32 1,04-18,63 165 MZC Plenum with motor-driven dampers for channelling fan coils - - - - 173 VEC-I <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
Omnia ULI P Inverter 110-460 0,69-2,79 0,76-5,94 127 Momia ULSI P Inverter 46-427 0,37-3,00 0,35-5,73 130 Without cabinet; duct installation with high static pressure WED 030-340 On/Off with static pressure 21-66Pa 161-775 0,98-5,27 0,90-10,95 140 VED 030-3401 Inverter with static pressure 21-66Pa 161-775 0,98-5,27 0,90-10,95 140 VED 430-741 On/Off with static pressure 24-75Pa 750-2358 4,54-16,10 5,20-31,71 146 VED 5301-7411 Inverter with static pressure 23-69Pa 1060-2358 6,05-16,08 6,70-31,71 152 VDCA-D Fan coil unit for ducted installations 260-2800 0,79-12,81 1,57-16,67 158 VDCB-D Fan coil unit for ducted installations 200-3200 0,53-14,32 1,04-18,63 165 MZC Plenum with motor-driven dampers for channelling fan coils - - - 173 Cassette; ceiling installation 200-3200 0,53-14,32 0,95-9,18 177 VEC-I							
new Omnia ULSI_P Inverter 46-427 0,37-3,00 0,35-5,73 130 Without cabinet; duct installation with high static pressure WED 030-340 On/Off with static pressure 21-66Pa 161-775 0,98-5,27 0,90-10,95 140 VED 0301-3401 Inverter with static pressure 21-66Pa 161-775 0,98-5,27 0,90-10,95 140 VED 430-741 On/Off with static pressure 24-75Pa 750-2358 4,54-16,10 5,20-31,71 146 VED 5301-7411 Inverter with static pressure 32-69Pa 1060-2358 6,05-16,08 6,70-31,71 152 VDCA-D Fan coil unit for ducted installations 260-2800 0,79-12,81 1,57-16,67 158 MZC Plenum with motor-driven dampers for channelling fan coils 200-3200 0,53-14,32 1,04-18,63 165 MZC Plenum with motor-driven dampers for channelling fan coils 300-613 0,80-4,28 0,95-9,18 177 VEC-I Inverter with coanda effect 130-613 0,80-4,28 0,95-9,18 181 FCLI On/Off 300-1750 1,14-10,83 1,74-							
Without cabinet; duct installation with high static pressure VED 030-340 On/Off with static pressure 21-66Pa 161-775 0,97-5,26 0,90-10,95 134 VED 0301-3401 Inverter with static pressure 21-66Pa 161-775 0,98-5,27 0,90-10,95 140 VED 430-741 On/Off with static pressure 24-75Pa 750-2358 4,54-16,10 5,20-31,71 152 VED 5301-7411 Inverter with static pressure 32-69Pa 1060-2558 6,05-16,08 6,70-31,71 152 VDCA-D Fan coil unit for ducted installations 260-2800 0,79-12,81 1,57-16,67 158 VDCB-D Fan coil unit for ducted installations 200-3200 0,53-14,32 1,04-18,63 165 MZC Plenum with motor-driven dampers for channelling fan coils - - - 173 Cassette; ceiling installation VEC-1 Inverter with coanda effect 130-613 0,80-4,28 0,95-9,18 177 VEC-1 Inverter with coanda effect 130-613 0,80-4,28 0,95-9,18 181 FCL On/Off 300-1750 1							
VED 030-340 On/Off with static pressure 21-66Pa 161-775 0,97-5,26 0,90-10,95 134 VED 0301-3401 Inverter with static pressure 21-66Pa 161-775 0,98-5,27 0,90-10,95 140 VED 430-741 On/Off with static pressure 24-75Pa 750-2358 4,54-16,10 5,00-31,71 152 VED 5301-7411 Inverter with static pressure 32-69Pa 1060-2358 6,05-16,08 6,70-31,71 152 VDCA-D Fan coil unit for ducted installations 260-2800 0,79-12,81 1,57-16,67 158 VDCB-D Fan coil unit for ducted installations 200-3200 0,53-14,32 1,04-18,63 165 MZC Plenum with motor-driven dampers for channelling fan coils - - 173 Cassette; ceiling installation VEC On/Off with coanda effect 130-613 0,80-4,28 0,95-9,18 177 VEC-1 Inverter with coanda effect 130-613 0,80-4,28 0,95-9,18 181 FCL On/Off 300-1750 1,14-10,83 1,74-21,75 185 FCLI Inverter	new	_		40-427	0,37-3,00	0,35-5,/3	130
VED 030I-340I Inverter with static pressure 21-66Pa 161-775 0,98-5,27 0,90-10,95 140 VED 430-741 On/Off with static pressure 24-75Pa 750-2358 4,54-16,10 5,20-31,71 146 VED 530I-741I Inverter with static pressure 32-69Pa 1060-2358 6,05-16,08 6,70-31,71 152 VDCA-D Fan coil unit for ducted installations 260-2800 0,79-12,81 1,57-16,67 158 VDCB-D Fan coil unit for ducted installations 200-3200 0,53-14,32 1,04-18,63 165 MZC Plenum with motor-driven dampers for channelling fan coils - - - 173 Cassette; ceiling installation VEC On/Off with coanda effect 130-613 0,80-4,28 0,95-9,18 177 VEC-I Inverter with coanda effect 130-613 0,80-4,28 0,95-9,18 181 FCLI Inverter with coanda effect 130-613 0,80-4,28 0,95-9,18 181 FCLI On/Off 300-1750 1,14-10,83 1,74-21,75 185 FCLI Inverter <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
VED 430-741 On/Off with static pressure 24-75Pa 750-2358 4,54-16,10 5,20-31,71 146 VED 530l-741I Inverter with static pressure 32-69Pa 1060-2358 6,05-16,08 6,70-31,71 152 VDCA-D Fan coil unit for ducted installations 260-2800 0,79-12,81 1,57-16,67 158 VDCB-D Fan coil unit for ducted installations 200-3200 0,53-14,32 1,04-18,63 165 MZC Plenum with motor-driven dampers for channelling fan coils - - - 173 Cassette; ceiling installation VEC On/Off with coanda effect 130-613 0,80-4,28 0,95-9,18 177 VEC-I Inverter with coanda effect 130-613 0,80-4,28 0,95-9,18 181 FCL On/Off 300-1750 1,14-10,83 1,74-21,75 185 FCLI Inverter 300-1750 1,15-10,87 1,10-21,75 192 Wall installation ECW On/Off 280-1082 1,37-7,00 1,42-14,00 199 FCW I Inverter 1,22-14			·			.,	
VED 530I-741I Inverter with static pressure 32-69Pa 1060-2358 6,05-16,08 6,70-31,71 152 VDCA-D Fan coil unit for ducted installations 260-2800 0,79-12,81 1,57-16,67 158 VDCB-D Fan coil unit for ducted installations 200-3200 0,53-14,32 1,04-18,63 165 MZC Plenum with motor-driven dampers for channelling fan coils - - - - 173 Cassette; ceiling installation VEC On/Off with coanda effect 130-613 0,80-4,28 0,95-9,18 177 VEC-I Inverter with coanda effect 130-613 0,80-4,28 0,95-9,18 181 FCL On/Off 300-1750 1,14-10,83 1,74-21,75 185 FCLI Inverter 300-1750 1,15-10,87 1,10-21,75 192 Wall installation FCW On/Off 280-1082 1,37-7,00 1,42-14,00 199 FCW I Inverter 280-1082 1,37-7,00 1,42-14,00 203 Ventilcassaforma Template for recessed installation of			•				
VDCA-D Fan coil unit for ducted installations 260-2800 0,79-12,81 1,57-16,67 158 VDCB-D Fan coil unit for ducted installations 200-3200 0,53-14,32 1,04-18,63 165 MZC Plenum with motor-driven dampers for channelling fan coils - - - 173 Cassette; ceiling installation VEC On/Off with coanda effect 130-613 0,80-4,28 0,95-9,18 177 VEC-1 Inverter with coanda effect 130-613 0,80-4,28 0,95-9,18 181 FCL On/Off 300-1750 1,14-10,83 1,74-21,75 185 FCLI Inverter 300-1750 1,15-10,87 1,10-21,75 192 Wall installation FCW On/Off 280-1082 1,37-7,00 1,42-14,00 199 FCW I Inverter 280-1082 1,37-7,00 1,42-14,00 209 Ventilcassaforma Template for recessed installation of fancoils in the wall - - - 206 Control panels Range of control panels for f			•				
VDCB-D Fan coil unit for ducted installations 200-3200 0,53-14,32 1,04-18,63 165 MZC Plenum with motor-driven dampers for channelling fan coils - - - - 173 Cassette; ceiling installation VEC On/Off with coanda effect 130-613 0,80-4,28 0,95-9,18 177 VEC-I Inverter with coanda effect 130-613 0,80-4,28 0,95-9,18 181 FCL On/Off 300-1750 1,14-10,83 1,74-21,75 185 FCLI Inverter 300-1750 1,15-10,87 1,10-21,75 192 Wall installation FCW On/Off 280-1082 1,37-7,00 1,42-14,00 199 FCW I Inverter 280-1082 1,37-7,00 1,42-14,00 199 Ventilcassaforma Template for recessed installation of fancoils in the wall - - - 206 Control panels Range of control panels for fan coils - - - 209 VMF Variable Multi Flow system for plant management			·				
MZC Plenum with motor-driven dampers for channelling fan coils - - - 173 Cassette; ceiling installation VEC On/Off with coanda effect 130-613 0,80-4,28 0,95-9,18 177 VEC-I Inverter with coanda effect 130-613 0,80-4,28 0,95-9,18 181 FCL On/Off 300-1750 1,14-10,83 1,74-21,75 185 FCLI Inverter 300-1750 1,15-10,87 1,10-21,75 192 Wall installation FCW On/Off 280-1082 1,37-7,00 1,42-14,00 199 FCW I Inverter 280-1082 1,37-7,00 1,42-14,00 203 Ventilcassaforma Template for recessed installation of fancoils in the wall - - - 206 Control panels Range of control panels for fan coils - - - 209 VMF Variable Multi Flow system for plant management - - - 213 HEAT RECOVERY UNITS Air flow rate (kW) Cool. Cap. (kW) Well (kW)<							
Cassette; ceiling installation VEC On/Off with coanda effect 130-613 0,80-4,28 0,95-9,18 177 VEC-I Inverter with coanda effect 130-613 0,80-4,28 0,95-9,18 181 FCL On/Off 300-1750 1,14-10,83 1,74-21,75 185 FCLI Inverter 300-1750 1,15-10,87 1,10-21,75 192 Wall installation FCW On/Off 280-1082 1,37-7,00 1,42-14,00 199 FCW I Inverter 280-1082 1,37-7,00 1,42-14,00 293 Ventilcassaforma Template for recessed installation of fancoils in the wall - - - 206 Control panels Range of control panels for fan coils - - - 209 VMF Variable Multi Flow system for plant management - - - 213 HEAT RECOVERY UNITS Air flow rate (kW) Cool, Cap. (kW) Page (kW) Page (kW) RPS Counter-current flow heat recovery unit with inverter motor				200-3200	0,53-14,32	1,04-18,63	
VEC On/Off with coanda effect 130-613 0,80-4,28 0,95-9,18 177 VEC-I Inverter with coanda effect 130-613 0,80-4,28 0,95-9,18 181 FCL On/Off 300-1750 1,14-10,83 1,74-21,75 185 FCLI Inverter 300-1750 1,15-10,87 1,10-21,75 192 Wall installation FCW On/Off 280-1082 1,37-7,00 1,42-14,00 199 FCW I Inverter 280-1082 1,37-7,00 1,42-14,00 293 Ventilcassaforma Template for recessed installation of fancoils in the wall - - - 206 Control panels Range of control panels for fan coils - - - 209 VMF Variable Multi Flow system for plant management - - - 213 HEAT RECOVERY UNITS Air flow rate (m3/h) Cool. Cap. (kW) Heat. Cap. (kW) Page (kW) RPS Counter-current flow heat recovery unit with inverter motor 800 - - 224 </th <th></th> <th></th> <th></th> <th>-</th> <th>-</th> <th>-</th> <th>173</th>				-	-	-	173
VEC-I Inverter with coanda effect 130-613 0,80-4,28 0,95-9,18 181 FCL On/Off 300-1750 1,14-10,83 1,74-21,75 185 FCLI Inverter 300-1750 1,15-10,87 1,10-21,75 192 Wall installation FCW On/Off 280-1082 1,37-7,00 1,42-14,00 199 FCW I Inverter 280-1082 1,37-7,00 1,42-14,00 203 Ventilcassaforma Template for recessed installation of fancoils in the wall - - - 206 Control panels Range of control panels for fan coils - - - 209 VMF Variable Multi Flow system for plant management - - - 213 HEAT RECOVERY UNITS Air flow rate (m3/h) Cool. Cap. (kW) Heat. Cap. (kW) Page RPS Counter-current flow heat recovery unit with inverter motor 800 - - 224 REPURO With cross-flow exchanger 100-650 - - 229		Cassette; ceiling installat					
FCL On/Off 300-1750 1,14-10,83 1,74-21,75 185 FCLI Inverter 300-1750 1,15-10,87 1,10-21,75 192 Wall installation FCW On/Off 280-1082 1,37-7,00 1,42-14,00 199 FCW I Inverter 280-1082 1,37-7,00 1,42-14,00 203 Ventilcassaforma Control panels for recessed installation of fancoils in the wall - - - 206 Control panels Range of control panels for fan coils - - - - 209 VMF Variable Multi Flow system for plant management - - - - 213 HEAT RECOVERY UNITS Air flow rate (kW) Cool. Cap. (kW) Page (kW) Page (kW) RPS Counter-current flow heat recovery unit with inverter motor 800 - - 224 REPURO With cross-flow exchanger 100-650 - - 229 TRS Heat recovery unit with enthalpy exchanger 250-1300 - -		VEC	On/Off with coanda effect	130-613	0,80-4,28	0,95-9,18	177
FCLI Inverter 300-1750 1,15-10,87 1,10-21,75 192 Wall installation FCW On/Off 280-1082 1,37-7,00 1,42-14,00 199 FCW I Inverter 280-1082 1,37-7,00 1,42-14,00 203 Ventilcassaforma Template for recessed installation of fancoils in the wall - - - 206 Control panels Range of control panels for fan coils - - - 209 VMF Variable Multi Flow system for plant management - - - 213 HEAT RECOVERY UNITS Air flow rate (m3/h) Cool. Cap. (kW) Heat. Cap. (kW) Page RPS Counter-current flow heat recovery unit with inverter motor 800 - - 224 REPURO With cross-flow exchanger 100-650 - - 229 TRS Heat recovery unit with enthalpy exchanger 250-1300 - - 235		VEC-I	Inverter with coanda effect	130-613	0,80-4,28	0,95-9,18	181
Wall installation FCW On/Off FCW I Inverter 280-1082 1,37-7,00 1,42-14,00 199 FCW I Inverter 280-1082 1,37-7,00 1,42-14,00 203 Ventilcassaforma Template for recessed installation of fancoils in the wall 206 Control panels Range of control panels for fan coils 209 VMF Variable Multi Flow system for plant management 213 HEAT RECOVERY UNITS RPS Counter-current flow heat recovery unit with inverter motor REPURO With cross-flow exchanger 100-650 229 TRS Heat recovery unit with enthalpy exchanger 250-1300 235		FCL	On/Off	300-1750	1,14-10,83	1,74-21,75	185
FCWOn/Off280-10821,37-7,001,42-14,00199FCW IInverter280-10821,37-7,001,42-14,00203VentilcassaformaTemplate for recessed installation of fancoils in the wall206Control panelsRange of control panels for fan coils209VMFVariable Multi Flow system for plant management213HEAT RECOVERY UNITSAir flow rate (m3/h)Cool. Cap. (kW)Heat. Cap. (kW)PageRPSCounter-current flow heat recovery unit with inverter motor800224REPUROWith cross-flow exchanger100-650229TRSHeat recovery unit with enthalpy exchanger250-1300235		FCLI	Inverter	300-1750	1,15-10,87	1,10-21,75	192
FCW IInverter280-10821,37-7,001,42-14,00203Ventilcassaforma Control panels VMFTemplate for recessed installation of fancoils in the wall Range of control panels for fan coils Variable Multi Flow system for plant management206Air flow rate (m3/h)Cool. Cap. (kW)Heat. Cap. (kW)PageRPS REPURO TRSCounter-current flow heat recovery unit with inverter motor With cross-flow exchanger TRS800 100-650 100-650 100-650 100-650 100-650 100-650 100-650-224 100-650 100-650 100-650 100-650		Wall installation					
VentilcassaformaTemplate for recessed installation of fancoils in the wall206Control panelsRange of control panels for fan coils209VMFVariable Multi Flow system for plant management213HEAT RECOVERY UNITSAir flow rate (m3/h) (kW) (kW)Cool. Cap. (kW)Heat. Cap. (kW)Page (kW)RPSCounter-current flow heat recovery unit with inverter motor REPURO800224REPUROWith cross-flow exchanger100-650229TRSHeat recovery unit with enthalpy exchanger250-1300235		FCW	On/Off	280-1082	1,37-7,00	1,42-14,00	199
Control panels VMFRange of control panels for fan coils209VMFVariable Multi Flow system for plant management213HEAT RECOVERY UNITSAir flow rate (m3/h)Cool. Cap. (kW)Heat. Cap. (kW)PageRPSCounter-current flow heat recovery unit with inverter motor800224REPUROWith cross-flow exchanger100-650229TRSHeat recovery unit with enthalpy exchanger250-1300235		FCW I	Inverter	280-1082	1,37-7,00	1,42-14,00	203
Control panels VMFRange of control panels for fan coils209VMFVariable Multi Flow system for plant management213HEAT RECOVERY UNITSAir flow rate (m3/h)Cool. Cap. (kW)Heat. Cap. (kW)PageRPSCounter-current flow heat recovery unit with inverter motor800224REPUROWith cross-flow exchanger100-650229TRSHeat recovery unit with enthalpy exchanger250-1300235		Ventilcassaforma	Template for recessed installation of fancoils in the wall	-	-	-	206
VMFVariable Multi Flow system for plant management213HEAT RECOVERY UNITSAir flow rate (m³/h)Cool. Cap. (kW)Heat. Cap. (kW)PageRPSCounter-current flow heat recovery unit with inverter motor800224REPUROWith cross-flow exchanger100-650229TRSHeat recovery unit with enthalpy exchanger250-1300235			·	-	_	-	
HEAT RECOVERY UNITS RPS Counter-current flow heat recovery unit with inverter motor REPURO With cross-flow exchanger TRS Heat recovery unit with enthalpy exchanger (m3/h) (kW) (kW) 224 2250 229 229 235				-	-	-	
REPUROWith cross-flow exchanger100-650229TRSHeat recovery unit with enthalpy exchanger250-1300235		HEAT RECOVER	Y UNITS				Page
REPUROWith cross-flow exchanger100-650229TRSHeat recovery unit with enthalpy exchanger250-1300235		RPS	Counter-current flow heat recovery unit with inverter motor	800	-	-	224
TRS Heat recovery unit with enthalpy exchanger 250-1300 235		REPURO	· · · · · · · · · · · · · · · · · · ·	100-650	-	-	229
					-	-	
KPLI Counter-current flow heat recovery unit with inverter motor 200-3900 237		RPLI	Counter-current flow heat recovery unit with inverter motor	200-3900	_	-	237
RTD Thermodynamic recovery unit with integrated heat pump 1100-3200 242			· ·		_	_	
RPF High performance heat recovery unit with cross-current recuperator 790-4250 246					_	_	
URX-CF With cross-flow exchanger and refrigerant circuit 750-3300 250					_	_	
URHE-CF High efficiency version with cross-flow exchanger and refrigerant circuit 1000-3300 - 254					_	_	
ERSR High-efficiency heat recovery with rotary recovery unit 1000-30000 258					-	-	

			Air flow rate	Cool Can	Heat. Cap.	
	AIR HANDLING	UNITS	(m3/h)	(kW)	(kW)	Page
	Compact air handling un					
	TVS	Air flow rate 800÷5200 m ³ /h	800-5200	4,40-27,80	10,50-66,40	264
	TVH	Air flow rate 800÷5200 m³/h	800-5200	4,70-29,30	11,60-73,90	273
	TS	Air flow rate 810÷4225 m³/h	810-4225	4,39-24,93	8,89-52,44	282
	TA	Air flow rate 800÷5000 m³/h	800-5000	4,2-39,6	3,9-72,8	286
	TN	Air flow rate 3000÷23000 m ³ /h	3000-23000	12,6-127,8	14,7-277,3	291
	Modular air handling uni	its				
	NCD	Air handling units	1134-79475	-	-	298
	SPL 025-130	For wellness areas	4000-13000	-	-	301
	SPL 160-250	For wellness areas	16000-25000	-	-	305
	Packaged ROOF-TOP uni					
new	RTG 060X-125X	For medium crowding applications	-	57,7-128,1	58,1-124,6	308
	RTX N1-N8	For medium crowding applications	-	12,70-49,95	13,50-50,79	314
	RTX 09-16	For medium crowding applications	-	50-135	49-141	319
	RTX 17-23	For medium crowding applications	-	151-307	152-310	325
	RTY 01-10	For high crowding applications	-	30,2-133,6	29,3-137,9	330
			Air flow rate	Cool. Cap.	Heat. Cap.	
	AIR / WATER CH	IILLERS AND HEAT PUMPS	(m3/h)	(kW)	(kW)	Page
	Units with scroll compres	ssors				
	ANKI 020-080	Reversible heat pumps inverter	-	5,8-24,8	6,1-20,8	336
	HMI	Reversible air/water heat pump	-	3,0-14,5	4,0-15,5	342
new	HMI 180T-220T	Reversible air/water heat pump	-	17,5-21,0	18,0-22,0	349
	BHP	Air/Water split type reversible heat pump	-	3,2-11,5	4,0-16,0	354
	HMG	Reversible air/water heat pump	-	32-60	35-65	367
	HMG_P		-	33-60	36-65	307
	ANLI	Reversible heat pumps inverter	-	29,0-42,3	31,4-33,3	375
	ANK 020-150	Reversible air/water heat pump optimised for use in heating mode	-	6,8-39,8	8,0-35,3	381
new	SHW	Heat pump water heater	-	-	-	388
	MIC	Air-water chiller	-	3	-	391
	ANL 021-202	Air-water chiller	-	5,7-43,3	-	396
	ANL 021H-203H	Reversible air/water heat pump	-	5,7-49,1	6,2-43,3	402
	NRK 0090-0150	Reversible air/water heat pump optimised for use in heating mode	-	18,4-31,0	20,8-34,4	410
	NRK 0200-0700	Reversible air/water heat pump optimised for use in heating mode	-	35,5-148,0	42,3-175,0	414
	NRV 0550	Air-water chiller	-	108,3	-	420
new	PRM 0504	Air-cooled reversible modular heat pump	-	95,6	101,7	425
new	PRG-0282H-0654H	Reversible air/water heat pump	-	49-143	51-143	432
	NRB 0282-0754 NRB 0282H-0754H	Air-water chiller Reversible air/water heat pump	-	56-202 52-261	- 57-193	441 451
	NRG 0282-0804	Air-water chiller	_	55,8-224,6	J/-13J	459
	NRG 0282H-0804H	Reversible air/water heat pump	_	52,5-212,0	56,6-214,4	468
	NRGI 151-602	Air-water chiller		31,0-132,2	-	476
	NRGI 151H-602H	Reversible air/water heat pump	_	28,9-123,7	31,6-133,9	481
	NRL 0280-0350	Air-water chiller	_	56,0-82,0	-	487
	NRL 0280H-0350H	Reversible air/water heat pump	_	51,0-76,0	58,0-86,0	492
	NRG 0800-3600	Air-water chiller	-	225,7-725,0	-	497
	NRG 0800H-3600H	Reversible air/water heat pump	-	194,9-962,3	209,6-991,9	506
	NRB 0800-2406	Air-water chiller (plate heat exchanger)	-	216,9-716,9	-	515
	NRB 0800-2406 Q	Air-water chiller (shell and tube heat exchanger)	-		-	524
	NRB 0800H-2406H	Reversible air/water heat pump (plate heat exchanger)	-	196,4-647,7	209,8-683,9	533
	NRB 0800W-2406W	Reversible air/water heat pump (shell and tube heat exchanger)	-	196,4-647,7	209,8-683,9	542
	CL 025-200	Air-water chiller with Plug Fan	-	5,8-41,0	-	550
	CL 025H-200H	Reversible air/water heat pump with Plug Fan	-	6,5-50,9	7,7-44,8	555
	NLC 0280-1250	Air-water chiller with Plug Fan	-	53-322	-	561
	NLC 0280H-1250H	Reversible air/water heat pump with Plug Fan	-	53-322	55-342	568
	Units with screw compre	ssors				
	NSM 1402-9603	Air-water chiller	-	302-2100	-	573
	NSMI 1251-6102	Chiller with Inverter screw compressors	-	285,6-1342,6	-	587
	NSH	Reversible air/water heat pump	-	251-731	281-786	591
	NSG	Air-water chiller (with R1234ze)	-	228-1580	-	597
	Units with centrifugal co					
	TBA 1300-4325	Air-water chiller	-	328-1404	-	609
	TBG 1230-4310	Air-water chiller	-	200-1165	-	614

	AIR / WATER CH	ILLERS WITH FREECOOLING	Air flow rate (m3/h)	(kW)	Heat. Cap. (kW)	Pa
	Units with scroll compres	ssors				
	NRG 0282-0754 F	Air-water chiller with free-cooling	-	58-190	-	62
	NRG 0800-2400-F	Air-water chiller with free-cooling	-	224-717	-	62
	NRG 0800-2400-B	Air-water chiller with free-cooling glycol free	-	224-717	-	63
	NRB 0800-2406 F	Air-water chiller with free-cooling	-	211-680	-	64
	NRB 0800-2406 B	Air-water chiller with free-cooling glycol free		211-680	-	64
	NRV 0550 F	Air-water chiller with free-cooling	-	99,9-105,4	-	65
	Units with screw compre	ssors				
	NSM 1402-9603 F	Air-water chiller with free-cooling	-	306-2028	-	66
	NSM 1402-9603 B	Air-water chiller with free-cooling glycol free	-	305,8-2028,1	-	67
	NSM-HWT-1402-9603-F	Air-water chiller with free-cooling	-	306-2001	-	68
	NSM-HWT-1402-9603-B	Air-water chiller with free-cooling glycol free	-	306-1991	-	69
	NSMI 1251-6102 F	Air-water chiller with free-cooling and Inverter screw compressors	-	286-1280	-	70
	TBA 1300-3350 F	Air-water chiller with free-cooling	-	317,2-1223,6	-	70
	TBG 1230-4310 F	Air-water chiller with free-cooling	-	238-1110	-	71
			Air flow rate	Cool. Cap.	Heat. Cap.	D.
		R CHILLERS AND HEAT PUMPS	(m3/h)	(kW)	(kW)	Pa
	Units with scroll compres				0 2 44 7	
	VENICE-H	Reversible water-cooled heat pump, gas side	-	6,9-,9,7	8,3-11,7	72
	WRL 026H-161H	Reversible water-cooled heat pump, gas side	-	6,0-40,0	8,0-48,0	72
	WRL 026-161	Water cooled heat pump reversible water side	-	6,6-44,2	7,5-48,0	73
	WRL 180H-650H	Reversible water-cooled heat pump, gas side	-	44,9-157,4	53,0-183,3	73
	WRL 180-650	Water cooled heat pump reversible water side	-	49,0-174,0	55,0-192,0	74
	WRK	Reversible water-cooled heat pump, gas side	-	38,9-165,9	48,5-207,7	74
	WWB 0300-0900	Water-water heat pumps only	-	-	56,7-265,9	75
lew	WWBG	Water-water heat pumps only	-	-	77,2-,138,2	75
	WWM	Water cooled heat pump reversible water side	-	96	110	76
	NXW 0503-1654	Water cooled heat pump reversible water side	-	111-511	127-582	76
	NXW 0503H - 1654H	Reversible water-cooled heat pump, gas side	-	106-477	125-565	77
lew	NGW-0500-2600	Water cooled heat pump reversible water side	-	116,3-790,2	131,3-904,6	77
ew	NGW-0350H-2600H	Reversible water-cooled heat pump, gas side	-	107,0-746,4	126,3-879,3	78
	Units with screw compre					
	WS 0601-2802	Water cooled heat pump reversible water side	-	147-700	164-778	79
	HWS 0601 - 2802	Water cooled heat pump reversible water side	-	147-369	165-778	79
	HWSG	Water cooled heat pump reversible water side	-	110-396	122-595	79
	WSH	Reversible water-cooled heat pump, gas side	-	165,8-269,7	183,3-300,3	80
	WFGI	Water cooled heat pump reversible water side	-	217-1765	243-1960	80
	WFGN	Water cooled heat pump reversible water side	-	136-1727	153-1921	81
	WFI	Water cooled heat pump reversible water side	-	291-2406	326-2664	82
	WFN	Water cooled heat pump reversible water side	-	182-2349	205-2610	83
	Units with centrifugal co	•				
	WMX	Water/water chiller (with R134a)	-	280,1-324,2	-	84
	WMG	Water/water chiller (with R1234ze)	-	282,3-312,4		84
	WTX	Water/water chiller	-	222,9-1958,4		84
	WTG	Water/water chiller (with R1234ze)	-	246,6-1959,4	-	85
	MILITI DUDDAG	·=	Air flow rate		Heat. Cap.	Pa
	MULTI-PURPOS		(m3/h)	(kW)	(kW)	
	NRP 0200-0750	Air-water multipurpose (plate heat exchanger)	-	43-185	46-205	85
	NRP 0804-2406	Air-water multipurpose (plate heat exchanger)	-	207-639	208-662	86
	NPG 0800-3600	Air-water multipurpose (plate heat exchanger)	-	206,5-657,8	212,0-670,8	87
	CPS	Multifunction unit with multiple temperature level capability	-	164-491	176-505	88
	NXP 0500-1650	Water-water multipurpose (plate heat exchanger)	-	108-502	122-549	88

	PRECISION AIR	CONDITIONING	Air flow rate (m3/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Page
	P 10-932	Direct expansion (air or water cooled); chilled water	-	7-160	-	896
	G 070-1342	Direct expansion (air or water cooled); chilled water	-	50-222	-	901
	R 20-361	Direct expansion (air or water cooled); chilled water	-	10-37	-	905
	ROOM AIR CON	IDITIONERS	Air flow rate (m3/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Page
	Monobloc		(1113/11)	(KAV)	(ICVV)	
	FK	Monobloc window	_	2,7-3,6	_	912
	CMP (COMPACT)	Monobloc without outdoor unit	_	2,35	2,36	915
ew	PST	Portable air conditioner		3,5	2,30	918
ew	Monosplit	Fortable all Colluttories	-	3,3	2,9	910
	SPG	Manasalit		2562	2065	921
	SGE	Monosplit	-	2,5-6,2	2,8-6,5	921
	SCG_1	Monosplit	-	2,8-5,9	2,9-6,0	
		Monosplit	-	7,2-12,5	7,9-14,5	930
	CKG	Monosplit	-	2,7-6,6	2,9-6,8	934
	LPG	Monosplit	-	3,5-16,0	4,0-17,0	940
	MVAS	Monosplit high head duct	-	22,4-28,0	24,0-30,0	949
	Multisplit					
	MPG	Multisplit	-	4,1-12,1	4,4-13,0	952
	MGE	Multisplit		4,1-7,9	4,4-8,2	969
ew	MGEHW	Multisplit	-	7,91	8,21	979
			Air flow rate	Cool. Cap.	Heat. Cap.	
	VRF SYSTEM		(m3/h)	(kW)	(kW)	Page
ew	VRF SYSTEM MVBM-MVAS-MVBHR	Direct expansion variable refrigerant flow system VRF	(m3/h)	(kW) 12,1-246,0	(kW) 14,0-276,0	994
ew	MVBM - MVAS - MVBHR	Direct expansion variable refrigerant flow system VRF ARY PRODUCTS	(m3/h) - Air flow rate (m3/h)	12,1-246,0		
ew	MVBM - MVAS - MVBHR	ARY PRODUCTS	- Air flow rate	12,1-246,0 Cool. Cap.	14,0-276,0 Heat. Cap.	994
ew	MVBM-MVAS-MVBHR COMPLEMENT	ARY PRODUCTS	- Air flow rate (m3/h)	12,1-246,0 Cool. Cap.	14,0-276,0 Heat. Cap.	994
ew	MVBM-MVAS-MVBHR COMPLEMENT DHW Systems and solar k	ARY PRODUCTS	- Air flow rate (m3/h)	12,1-246,0 Cool. Cap.	14,0-276,0 Heat. Cap.	994 Page
ew	COMPLEMENT DHW Systems and solar ki GSA - KSA - CXS	ARY PRODUCTS	- Air flow rate (m3⁄h)	12,1-246,0 Cool. Cap.	14,0-276,0 Heat. Cap.	994 Page
ew	COMPLEMENT DHW Systems and solar kings A - KSA - CXS Thermal Buffers tank	ARY PRODUCTS its DHW systems, solar kits with high efficiency panels and vacuum solar manifolds	- Air flow rate (m3⁄h)	12,1-246,0 Cool. Cap.	14,0-276,0 Heat. Cap.	994 Page
ew	COMPLEMENT DHW Systems and solar kings A - KSA - CXS Thermal Buffers tank SAF	ARY PRODUCTS its DHW systems, solar kits with high efficiency panels and vacuum solar manifolds Thermal Buffer tank kit with instantaneous Domestic Hot Water production	- Air flow rate (m3⁄h)	12,1-246,0 Cool. Cap.	14,0-276,0 Heat. Cap.	994 Page 1022 1026
ew	COMPLEMENT DHW Systems and solar ki GSA - KSA - CXS Thermal Buffers tank SAF SAP	ARY PRODUCTS its DHW systems, solar kits with high efficiency panels and vacuum solar manifolds Thermal Buffer tank kit with instantaneous Domestic Hot Water production	- Air flow rate (m3⁄h)	12,1-246,0 Cool. Cap.	14,0-276,0 Heat. Cap.	994 Page 1022 1026
ew	COMPLEMENT DHW Systems and solar ki GSA - KSA - CXS Thermal Buffers tank SAF SAP Plug&Play hydronic kit WST	ARY PRODUCTS its DHW systems, solar kits with high efficiency panels and vacuum solar manifolds Thermal Buffer tank kit with instantaneous Domestic Hot Water production Buffer tank with capacity from 75 to 3500 litres	- Air flow rate (m3⁄h)	12,1-246,0 Cool. Cap. (kW)	14,0-276,0 Heat. Cap.	994 Page 1022 1026 1028
ew	COMPLEMENT DHW Systems and solar ki GSA - KSA - CXS Thermal Buffers tank SAF SAP Plug&Play hydronic kit	ARY PRODUCTS its DHW systems, solar kits with high efficiency panels and vacuum solar manifolds Thermal Buffer tank kit with instantaneous Domestic Hot Water production Buffer tank with capacity from 75 to 3500 litres	- Air flow rate (m3⁄h)	12,1-246,0 Cool. Cap. (kW)	14,0-276,0 Heat. Cap.	994 Page 1022 1026 1028
ew	MVBM-MVAS-MVBHR COMPLEMENT DHW Systems and solar ki GSA-KSA-CXS Thermal Buffers tank SAF SAP Plug&Play hydronic kit WST Cooling towers	ARY PRODUCTS its DHW systems, solar kits with high efficiency panels and vacuum solar manifolds Thermal Buffer tank kit with instantaneous Domestic Hot Water production Buffer tank with capacity from 75 to 3500 litres Hydronic kit plug & play Cooling towers	- Air flow rate (m3⁄h)	12,1-246,0 Cool. Cap. (kW)	14,0-276,0 Heat. Cap.	994 Page 1022 1026 1028 1031
	COMPLEMENT DHW Systems and solar ki GSA - KSA - CXS Thermal Buffers tank SAF SAP Plug&Play hydronic kit WST Cooling towers TRA Remote condensers - Dry	ARY PRODUCTS its DHW systems, solar kits with high efficiency panels and vacuum solar manifolds Thermal Buffer tank kit with instantaneous Domestic Hot Water production Buffer tank with capacity from 75 to 3500 litres Hydronic kit plug & play Cooling towers coolers	- Air flow rate (m3⁄h)	12,1-246,0 Cool. Cap. (kW) 80-1500	14,0-276,0 Heat. Cap.	994 Page 1022 1026 1028 1031 1034
	COMPLEMENT DHW Systems and solar ki GSA - KSA - CXS Thermal Buffers tank SAF SAP Plug&Play hydronic kit WST Cooling towers TRA	ARY PRODUCTS its DHW systems, solar kits with high efficiency panels and vacuum solar manifolds Thermal Buffer tank kit with instantaneous Domestic Hot Water production Buffer tank with capacity from 75 to 3500 litres Hydronic kit plug & play Cooling towers coolers Cooler	- Air flow rate (m3⁄h)	12,1-246,0 Cool. Cap. (kW)	14,0-276,0 Heat. Cap.	994 Page 1022 1026 1028 1031
	COMPLEMENT DHW Systems and solar ki GSA - KSA - CXS Thermal Buffers tank SAF SAP Plug&Play hydronic kit WST Cooling towers TRA Remote condensers - Dry Remote condensers - Dry Water cooled condensing	ARY PRODUCTS its DHW systems, solar kits with high efficiency panels and vacuum solar manifolds Thermal Buffer tank kit with instantaneous Domestic Hot Water production Buffer tank with capacity from 75 to 3500 litres Hydronic kit plug & play Cooling towers coolers Cooler unit	- Air flow rate (m3⁄h)	12,1-246,0 Cool. Cap. (kW) 80-1500 - 8-2200	14,0-276,0 Heat. Cap. (kW)	994 Page 1022 1026 1028 1031 1034
	MVBM-MVAS-MVBHR COMPLEMENT DHW Systems and solar ki GSA - KSA - CXS Thermal Buffers tank SAF SAP Plug&Play hydronic kit WST Cooling towers TRA Remote condensers - Dry Remote condensers - Dry Water cooled condensing FW-R	ARY PRODUCTS its DHW systems, solar kits with high efficiency panels and vacuum solar manifolds Thermal Buffer tank kit with instantaneous Domestic Hot Water production Buffer tank with capacity from 75 to 3500 litres Hydronic kit plug & play Cooling towers coolers Cooler unit Water-cooled air conditioner	- Air flow rate (m3⁄h)	12,1-246,0 Cool. Cap. (kW) 80-1500 - 8-2200 2,9-4,0	14,0-276,0 Heat. Cap.	994 Page 1022 1026 1028 1031 1034 1037
	MVBM-MVAS-MVBHR COMPLEMENT DHW Systems and solar ki GSA - KSA - CXS Thermal Buffers tank SAF SAP Plug&Play hydronic kit WST Cooling towers TRA Remote condensers - Dry Remote condensers - Dry Water cooled condensing FW-R CWX-CWXM	ARY PRODUCTS its DHW systems, solar kits with high efficiency panels and vacuum solar manifolds Thermal Buffer tank kit with instantaneous Domestic Hot Water production Buffer tank with capacity from 75 to 3500 litres Hydronic kit plug & play Cooling towers coolers Cooler unit	- Air flow rate (m3⁄h)	12,1-246,0 Cool. Cap. (kW) 80-1500 - 8-2200	14,0-276,0 Heat. Cap. (kW) 4,3-5,2	994 Page 1022 1026 1028 1031 1034
	COMPLEMENT DHW Systems and solar ki GSA - KSA - CXS Thermal Buffers tank SAF SAP Plug&Play hydronic kit WST Cooling towers TRA Remote condensers - Dry Remote condensers - Dry Water cooled condensing FW-R CWX-CWXM Dehumidifier	ARY PRODUCTS its DHW systems, solar kits with high efficiency panels and vacuum solar manifolds Thermal Buffer tank kit with instantaneous Domestic Hot Water production Buffer tank with capacity from 75 to 3500 litres Hydronic kit plug & play Cooling towers coolers Unit Water-cooled air conditioner Water motocondensing unit	- Air flow rate (m3⁄h)	12,1-246,0 Cool. Cap. (kW) 80-1500 - 8-2200 2,9-4,0	14,0-276,0 Heat. Cap. (kW) 4,3-5,2	994 Page 1022 1026 1028 1031 1034 1037 1043 1045
ew	MVBM-MVAS-MVBHR COMPLEMENT DHW Systems and solar ki GSA - KSA - CXS Thermal Buffers tank SAF SAP Plug&Play hydronic kit WST Cooling towers TRA Remote condensers - Dry Remote condensers - Dry Water cooled condensing FW-R CWX-CWXM	ARY PRODUCTS its DHW systems, solar kits with high efficiency panels and vacuum solar manifolds Thermal Buffer tank kit with instantaneous Domestic Hot Water production Buffer tank with capacity from 75 to 3500 litres Hydronic kit plug & play Cooling towers coolers Cooler unit Water-cooled air conditioner	- Air flow rate (m3⁄h)	12,1-246,0 Cool. Cap. (kW) 80-1500 - 8-2200 2,9-4,0	14,0-276,0 Heat. Cap. (kW) 4,3-5,2	994 Page 1022 1026 1028 1031 1034 1037

BIM

Building Information Modeling

3D digital information system

- · Easy and intuitive downloading
- RFA (Autodesk Revit Family File) format

DESCRIPTION

Aermec BIM models contain information that is useful in the MEP plant design phase. BIM technology offers multiple advantages such as: greater efficiency and productivity, fewer errors, lower costs, greater interoperability, maximum sharing of information, more timely and consistent control of units, overcoming the inefficiencies and inaccuracies of the design method that traditionally characterises conventional professional practices, allowing for full integration between the design and execution phases.

Search and download HVAC products for heating, ventilation and air conditioning. Browse the library of BIM families to select the products to be used in your project.

FEATURES

Aermec BIM models contain the following information:

- Performance in heating and cooling mode data
- Energy data
- Electrical data
- Sound data
- Features of the hydraulic connections
- Construction features
- Dimensional data

COMPATIBILITY

Aermec BIM models are downloadable in rfa (Autodesk Revit Family File) format and on request also in .ifc interchange format to ensure maximum compatibility with all BIM software.

MODELS AVAILABLE

- Fan coils
- Recovery units
- Air treatment units
- Air-to-water chillers and heat pumps
- Freecooling air/water chillers
- Water-to-water chillers and heat pumps
- Multipurpose
- Rooftop

By scanning the QR code below you can access the AERMEC download area where you can select and download the desired unit:

FAN COILS

In this area of climate control, Aermec is real leader:

a major company in Italy and one of the top in Europe.

A leading position gained through long-standing experience that has gained ground year after year. Special attention to detail, quality materials state-of-the-art technology ensure optimal performance with virtually imperceptible noise levels, especially at low speed;

attention paid to dimensions and overall size, comparable to those of standard radiators, to enable installation in all residential and commercial environments:

exclusive design, anticipating trends and in harmony with interior design requirements;

new electronic control panel to enable automatic operation and achieve the most user-friendly climatisers to date. Aermec fancoils boast all these features and more.

	FAN COILS		Air flow rate (m3/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Page
	With cabinet; universa	al installation				
	FCZ	On/Off	110-1300	0,65-7,62	1,45-17,02	12
	FCZI	Inverter	140-1140	0,89-8,60	2,02-17,10	25
	FCZ-D	On/Off	140-720	0,89-4,25	2,02-8,50	34
	FCZI-D	Inverter	140-720	0,89-4,25	2,02-8,50	39
	FCZ-H	On/Off	140-1140	0,89-8,60	2,02-17,10	44
	FCZI-H	Inverter	140-1140	0,89-8,60	2,02-17,10	50
new	FCZ-ASW	On/Off	110-1300	0,65-7,62	1,45-17,02	56
	Omnia UL	On/Off	80-460	0,53-2,79	1,06-5,94	57
	Omnia ULI	Inverter	110-460	0,69-2,79	0,76-5,94	61
	Omnia Radiant	On/Off o inverter with radiant panel	190-460	1,42-2,83	2,89-5,94	65
new	Omnia ULSI_B	Inverter	46-427	0,37-3,00	0,35-5,73	70
	Without cabinet; conc	ealed installation with low static pressure				
	FCY	On/Off	148-1050	0,93-5,80	1,05-12,09	74
	FCYI	Inverter	123-799	0,80-4,70	0,90-10,15	85
	FCZ P - PO	On/Off	110-1300	0,65-7,62	1,45-17,02	95
	FCZI P	Inverter	140-1140	0,89-8,60	2,02-17,10	111
	Omnia UL P	On/Off	80-460	0,53-2,79	0,52-5,94	123
	Omnia ULI P	Inverter	110-460	0,69-2,79	0,76-5,94	127
new	Omnia ULSI_P	Inverter	46-427	0,37-3,00	0,35-5,73	130
	Without cabinet; duct	installation with high static pressure				
	VED 030-340	On/Off with static pressure 21-66Pa	161-775	0,97-5,26	0,90-10,95	134
	VED 030I-340I	Inverter with static pressure 21-66Pa	161-775	0,98-5,27	0,90-10,95	140
	VED 430-741	On/Off with static pressure 24-75Pa	750-2358	4,54-16,10	5,20-31,71	146
	VED 530I-741I	Inverter with static pressure 32-69Pa	1060-2358	6,05-16,08	6,70-31,71	152
	VDCA-D	Fan coil unit for ducted installations	260-2800	0,79-12,81	1,57-16,67	158
	VDCB-D	Fan coil unit for ducted installations	200-3200	0,53-14,32	1,04-18,63	165
	MZC	Plenum with motor-driven dampers for channelling fan coils				173
	Cassette; ceiling instal	llation				
	VEC	On/Off with coanda effect	130-613	0,80-4,28	0,95-9,18	177
	VEC-I	Inverter with coanda effect	130-613	0,80-4,28	0,95-9,18	181
	FCL	On/Off	300-1750	1,14-10,83	1,74-21,75	185
	FCLI	Inverter	300-1750	1,15-10,87	1,10-21,75	192
	Wall installation					
	FCW	On/Off	280-1082	1,37-7,00	1,42-14,00	199
	FCWI	Inverter	280-1082	1,37-7,00	1,42-14,00	203
	Ventilcassaforma	Template for recessed installation of fancoils in the wall				206
	Control panels	Range of control panels for fan coils				209
	VMF	Variable Multi Flow system for plant management				213

FCZ

- Very quiet
- Touch controller mounted on-board. allows remote control with smart devices

Fan coil for universal and floor installation

Cooling capacity 0,65 ÷ 7,62 kW Heating capacity 1,45 ÷ 17,02 kW

DESCRIPTION

fan coil can be installed in any 2/4 pipe system and operates with any heat generator even at low temperatures, and thanks to varied versions and settings, it is easy to pick the ideal solution for any need.

FEATURES

Case

Metallic micro-perforated cabinet with rustproofing polyester paint RAL 9003. Head with plastic air distribution grille RAL 7047.

Depending on the version, the distribution grille may be adjustable.

Ventilation group

Consisting of double suction centrifugal fans that are particularly silent, statically and dynamically balanced, and directly coupled with the motor

The motor is wired for single phase and has three speeds, with capacitor. The motor is fitted on sealed for life bearings and is secured on anti-vibration and self-lubricating mountings.

Extractable shrouds for easy, effective cleaning

Finned pack heat exchanger

With copper pipes and aluminium louvers, the standard or oversized heat exchanger and the possible secondary heat exchanger have female gas water connections on the left side and the manifolds have air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Reversibility of the water connections during installation only for units with a standard or boosted main heat exchanger, or standard with BV accessory. Not reversible in all other configurations. In any case, units with the coil water connections on the right are available at the time of ordering.

Condensate drip

Provided standard in plastic and fixed to the interior structure; with external condensate discharge.

Air filter

Air filter class Coarse 25% for all versions easy to pull out and clean.

In the APC version, air purification is guaranteed by the Cold Plasma purifier.

The purifier is able to reduce pollutants, decomposing their molecules using electrical charges, causing the water molecules in the air to split into positive and negative ions. These ions neutralise the molecules in the gaseous pollutants, obtaining products normally present in clean air. The device is able to eliminate 90% of the bacteria. The result is clean, ionized air, free of foul odours.

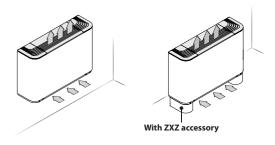
VERSIONS

A High, with fixed air distribution grille and built-in command

ACT High, with air distribution grille and electronic thermostat

AF High, without built-in command but with front intake

APC High, with air distribution grille, electronic thermostat and Cold Plasma purifier


AS High, with air distribution grille without built-in command

U Universal, with adjustable air distribution grille but without built-in thermostat

UA Universal, with fixed air distribution grille but without built-in thermostat

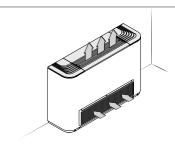
UF Universal, with adjustable air distribution grille but without built-in thermostat and with front intake grille

Versions with fixed grille (high cabinet)

FCZ_A

With built-in selector.

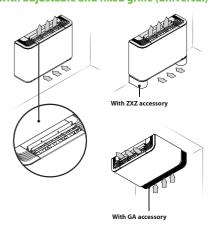
FCZ_AS


- Compatibility with VMF system.
- Without installed switch

FCZ_ACT

With electronic thermostat for 2-pipe systems only.

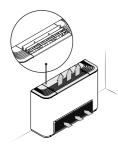
FCZ_APC


- With electronic thermostat for 2-pipe systems only.
- Cold Plasma purifier

FCZ_AF

- Without installed switch
- Compatibility with VMF system.
- Front intake grille.

Versions with adjustable and fixed grille (universal)



FCZ_U

- Compatibility with VMF system.
- Without installed switch
- Distribution grille with adjustable louvers. Sizes 1, 2 and 3 have a single grille, whereas sizes 4, 5, 6, 7, 8, 9 and 10 have three grilles fully independent of each other. When all the fins have closed, the unit switches off.
- Vertical and horizontal installation for 2-pipe and 4-pipe systems.

FCZ_UA

- Compatibility with VMF system.
- Without installed switch
- Air distribution grille with fixed louvers.
- Vertical and horizontal installation for 2-pipe and 4-pipe systems.

FCZ_UF

- Compatibility with VMF system.
- Without installed switch
- Air delivery grille with adjustable louvers.
- Front intake grille.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

-		TO SEEECTING THE COSSIDEE CONFIGURATIONS
Fie	ld	Description
1,2	,3	FCZ
4		Size 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
5		main heat exchanger
	0	Standard
	5	Oversized
6		Secondary heat exchanger
	0	Without exchanger
	1	Standard
	2	Oversized
7		Version
		Only vertical installation.
	Α	High, with fixed air distribution grille and built-in command
	ACT	High, with air distribution grille and electronic thermostat
	AF	High, without built-in command but with front intake
	APC	High, with air distribution grille, electronic thermostat and Cold Plasma purifier
	AS	Free standing without installed switch
		Vertical and horizontal installation.
	U	Universal, with adjustable air distribution grille but without built-in thermostat
	UA	Universal, with fixed air distribution grille but without built-in thermostat
	UF	Universal, with adjustable air distribution grille but without built-in thermostat and with front intake grille

SIZE AVAILABLE FOR VERSION

Size		100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
Versions produced	(by size)																				
Varsians available	A,AS,U,UA	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•	•	•
Versions available	ACT,APC	•	-	-	•		-	-	•	•	-	-	•		-	-			-	-	
(by size)	AF,UF	•	-	-	•	•	-	-	•	•	-	-	•	•	-	-	•	•	-	-	•
Size		600	601	602	650	700	701	702	750	800	801	802	850	900	901	950	1000	1001			
Versions produced	(by size)																				
V!! - - - -	A,AS,U,UA	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			
Versions available	ACT,APC		-	-	•	•	-	-	•		-	-	•	•	-	•	•	-			
(by size)	AF,UF	-	-	-	-	-	-	-	-	-	-	-	-		-	•	•	-			

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. **DSKT:** Thermostat with an easy-to-read light display that provides clear information on room temperature, programming settings and more. Thanks to the ergonomic ring nut switch, adjusting the desired temperature is very easy. The knob allows precise and immediate adjustments, offering a classic but highly effective control mode. Not only functional, but also aesthetically pleasing. Our thermostat features a modern, compact design that fits perfectly in any environment, adding a touch of style to your home or office.

PX2Z: On-board electromechanical switch.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW3: Water probe (L=2.5~m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

T-TOUCH: Touch control on board the machine, for controlling fan coils with asynchronous motors. In 2-pipe systems, it can control standard fan coils or those equipped with an electric heater, with air purifying devices or with FCZ-D twin delivery (Dualjet). In 4-pipe systems, only standard fan coils.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualiet).

TXB: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

WMT16: Electronic thermostat with thermostated ventilation.

WMT16CV: Electronic thermostat with continuous ventilation.

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF system

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, D124 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, D124 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, D124CP, is also available as a separate accessory in our catalog.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E22: User interface on the machine, to be combined with the VMF-E19 and VMF-E19I accessory.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L=2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Water valves

VCZ_X: 3-way valve kit for single-coil fan coil, RH connections, (VCZ_X4R) or LH (VCZ_X4L) for 4-pipe systems. With totally separate "heating" and "cooling" circuits. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings. X4L version for fan coils

with LH connections, and X4R for fan coils with RH connections. $230V\sim50$ Hz power supply.

VCZ: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCF44 - 45 - for secondary heat exchanger: The 3-way motorised valve kit for the secondary coil heat only. The kit consists of a valve with its insulating shell, actuator and relevant water fittings; it is suitable to be installed on the fan coils with right and left water connections.

VCZD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components.

The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

(Heating only) additional coil

BV: Hot water heat exchanger with 1 row.

RX: Armoured electric coil with safety thermostat.

Installation accessories

 $\mbox{\bf PCZ:}$ Metal panel for the unit rear closing. SPCZ brackets are necessary to fix floor standing fan coils.

GA: Lower intake grille for encapsulated fan coils. Can also be used in wall-mounted or floor installations, the FIKIT accessory is needed only in the case of floor installation.

FIKIT: Structural bracket in floor installation.

DSCZ4: Condensate drainage device.

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing. **AMP:** Wall mounting kit

ACCESSORIES COMPATIBILITY

Control panels

Model	Ver	100	101	102	150	200	201	202	250
ER503IR (1)	AF,UF	•			•	•			•
EKOUSIK (1)	AS,U,UA	•	•	•	•	•	•	•	•
SKT	AS	•	•	•	•	•	•	•	•
X2Z	AF,UF	•			•	•			•
AZZ	AS,U	•	•	•	•		•	•	•
A.F. (2)	AF,UF	•			•	•			•
A5 (2)	AS,U,UA	•	•	•	•	•	•	•	•
IT3 (3)	AS,U,UA	•	•	•	•	•	•	•	•
IT5 (4)	AS,U,UA	•	•	•	•	•	•	•	•
W2 (2)	AF,AS,UF	•			•	•			•
W3 (2)	U,UA	•	•	•	•	•	•	•	
WE (2)	AF,UF				•	•			
W5 (2)	AS,U,UA	•	•	•	•	•	•	•	
T011511 (5)	AF,UF				•	•			
TOUCH (5)	AS,U		•	•	•	•	•	•	
((4)	AF,UF	•			•	•			•
X (6)	AS,U,UA		•	•	•	•		•	
	AF,UF	•			•	•			
XB (5)	AS,U,UA	•	•	•	•	•	•	•	•
	AF,UF	•			•	•			•
/MT10 (6)	AS,U,UA	•	•	•	•	•	•	•	•
/MT16 (6)	AF,AS,U,UA,UF	•			•	•			•
	AF,UF	•			•	•			•
/MT16CV (6)	AS,U	•	•	•	•	•	•	•	•
lodel	Ver	300	301	302	350	400	401	402	450
ER503IR (1)	AF,UF	•			•	•			•
						•			
	AS,U,UA	•	•	•	•		•	•	•
	AS	•	•	•	•	•	•	•	•
SKT	AS AF,UF	•	•	•	•	•	•	•	•
SKT	AS AF,UF AS,U	•			•	•			•
SKT K2Z	AS AF,UF AS,U AF,UF	•			•	•			•
SKT X2Z A5 (2)	AS AF,UF AS,U AF,UF AS,U,UA	•	•			•			•
5KT (2Z A5 (2) T3 (3)	AS AF,UF AS,U AF,UF AS,U,UA AS,U,UA		•	•					
5KT (2Z A5 (2) T3 (3)	AS AF,UF AS,U AF,UF AS,U,UA AS,U,UA AS,U,UA		•						
5KT 72Z 55 (2) 73 (3) 75 (4)	AS AF,UF AS,U AF,UF AS,U,UA AS,U,UA AS,U,UA AS,U,UA								
A5 (2) T3 (3) T5 (4)	AS AF,UF AS,U AF,UF AS,U,UA AS,U,UA AS,U,UA AS,U,UA U,UA U,		•	•					
A5 (2) T3 (3) T5 (4) N3 (2)	AS AF,UF AS,U AF,UF AS,U,UA AS,U,UA AS,U,UA AS,U,UA AF,AS,UF U,UA AF,UF								
T5 (4) N3 (2)	AS AF,UF AS,U AF,UF AS,U,UA AS,U,UA AS,U,UA AF,AS,UF U,UA AF,UF AS,U,UA								
5 (2) 13 (3) 15 (4) V3 (2)	AS AF,UF AS,U AF,UF AS,U,UA AS,U,UA AS,U,UA AF,AS,UF U,UA AF,UF AS,U,UA								
TS (2) TS (3) TS (4) NS (2)	AS AF,UF AS,U AF,UF AS,U,UA AS,U,UA AS,U,UA AF,AS,UF U,UA AF,UF AS,U,UA AF,UF AS,U,UA								
55 (2) 13 (3) 15 (4) V3 (2) V5 (2) TOUCH (5)	AS AF,UF AS,U AF,UF AS,U,UA AS,U,UA AS,U,UA AF,AS,UF U,UA AF,UF AS,U,UA AF,UF AS,U,UA								
55 (2) 13 (3) 15 (4) V3 (2) V5 (2) TOUCH (5)	AS AF,UF AS,U AF,UF AS,U,UA AS,U,UA AS,U,UA AF,AS,UF U,UA AF,UF AS,U,UA AF,UF AS,U,UA								
CKT C2Z T3 (3) T5 (4) N3 (2) TOUCH (5)	AS AF,UF AS,U AF,UF AS,U,UA AS,U,UA AF,AS,UF U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF								
15 (2) 13 (3) 15 (4) 17 (4) 18 (2) 17 (2) 18 (3) 19 (4) 19 (2) 19 (2) 19 (3)	AS AF,UF AS,U AF,UF AS,U,UA AS,U,UA AS,U,UA AF,AS,UF U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA								
SKT (2Z AS (2) T3 (3) T5 (4) N3 (2) T0 UCH (5) ((6) (B (5)	AS AF,UF AS,U AF,UF AS,U,UA AS,U,UA AS,U,UA AF,AS,UF U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA								
CKT C2Z T3 (3) T5 (4) N3 (2) TOUCH (5) (6)	AS AF,UF AS,U AF,UF AS,U,UA AS,U,UA AS,U,UA AF,AS,UF U,UA AF,UF AS,U,UA								
EKT 22Z 25 (2) 13 (3) 15 (4) 17 (4) 18 (2) 17 (10 (6) 18 (5) 18 (6)	AS AF,UF AS,U AF,UF AS,U,UA AS,U,UA AS,U,UA AF,AS,UF U,UA AF,UF AS,U,UA AF,UF AS,U,UA								
SKT K2Z	AS AF,UF AS,U AF,UF AS,U,UA AS,U,UA AS,U,UA AF,AS,UF U,UA AF,UF AS,U,UA								

Model	Ver	500	501	502	550	600	601	602	650
AER503IR (1)	AF,UF	•			•				
	AS,U,UA	•	•	•	•	•	•	•	•
SKT	AS AF,UF	•	•	•	•	•	•	•	•
(2Z	AF,UF AS,U	•	•	•	•	•	•	•	•
	AF,UF	•	<u> </u>	•	•	•	•	<u> </u>	· ·
A5 (2)	AS,U,UA	•	•	•	•	•	•		•
T3 (3)	AS,U,UA	•	•	•	•	•	•	•	•
T5 (4)	AS,U,UA	•	•	•			•	•	•
	AF,UF	•			•				,
W3 (2)	AS	•			•	•	•	•	•
	U,UA	•	•	•	•	•	•	•	•
N5 (2)	AF,UF	•			•				
113 (2)	AS,U,UA	•	•	•	•	•	•	•	•
TOUCH (5)	AF,UF	•			•				
	AS,U	•	•	•	•	•	•	•	•
((6)	AF,UF	•			•				
	AS,U,UA AF,UF	•	•	•	•	•	•	•	•
(B (5)	AF,UF AS,U,UA	•	•		•				
	AF,UF	•	•	•	•	•	•	•	•
MT10 (6)	AS,U,UA	· ·	•	•	•	•	•	•	•
	AF,UF	•	•	· ·	•	-		-	-
/MT16 (6)	AS,U,UA	•			•	•			•
DITA (CLL)	AF,UF	•			•				
/MT16CV (6)	AS,U	•		•	•	•	•	•	•
odel	Ver	700	701	702	750	800	801	802	850
ER503IR (1)	AS,U,UA	•	•	•	•	•	•	•	•
SKT	AS	•	•	•	•	•	•	•	
(27	AS,U	•	•	•	•	•	•	•	•
N5 (2)	AS,U,UA	•	•	•	•		•	•	•
T3 (3)	AS,U,UA	•	•	•	•			•	
T5 (4)	AS,U,UA	•	•	•	•	•	•	•	•
W3 (2)	AS,U,UA	•	•	•	•	•	•	•	•
W5 (2)	AS,U,UA	•	•	•	•	•	•	•	•
TOUCH (5)	AS,U	•	•	•	•	•	•	•	•
X (6)	AS,U,UA	•	•	•	•	•	•	•	•
XB (5)	AS,U,UA	•	•	•	•	•	•	•	•
VMT10 (6)	AS,U,UA	•	•	•	•	•	•	•	•
VMT16 (6)	AS,U,UA	•			•	•			•
/MT16CV (6)	AS,U		•	•		•	•	•	•
odel	Ver	900		901	9:	50	1000		1001
ER503IR (1)	AF,UF					•	•		
	AS,U,UA AS	•		•		•	•		•
SKT	AF,UF	•		•		•	•		•
(2Z	AF,UF AS,U	•		•		•	•		
	AF,UF	•		· ·		<u>. </u>	•		-
15 (2)	AS,U,UA	•		•		•	•		•
To (a)	AF,UF						•		
T3 (3)	AS,U,UA	•		•		•	•		
TE (4)	AF,UF						•		
T5 (4)	AS,U,UA	•		•		•	•		•
	AF,UF					•	•		
V3 (2)	AS	•		•		•	•		
	U,UA	•		•		•	•		•
V5 (2)	AF,UF					•	•		
\-/	AS,U,UA	•		•		•	•		•
TOUCH (5)	AF,UF	•				•	•		
(~)	AS,U	•		•		•	•		•
(6)	AF,UF						•		
•	AS,U,UA	•		•		•	•		•
KB (5)	AF,UF	•				•	•		
	AS,U,UA	•		•		•	•		•
MT10 (6)	AF,UF AS,U,UA	•				•	•		
	AS,U,UA AF,AS,U,UA,UF	•		•		•			•
MT16 (6)	Ar,AS,U,UA,UF	•				•	•		

Model	Ver	900	901	950	1000	1001
WMT16CV (6)	AF,UF	•		•	•	
WMI IOCV (b)	AS,U	•	•	•	•	•

VMF system

For more information about VMF system, refer to the dedicated documentation.

VMF system

Model	Ver	100	101	102	150	200	201	202	250	300	301
DI24	AF,AS,U,UA,UF	•				•			•	•	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	AF,UF				•	•					
VMF-E19 (1)	AS,U,UA	•	•	•	•		•	•	•	•	
	AF,UF	•				•					
VMF-E2Z	AS,U,UA	•	•				•			•	•
	AF,UF	•			•	•			•	•	<u> </u>
VMF-E3											
	U,UA	•	•	•	•	•	•	•	•	•	•
VMF-E4DX	AF,UF	•			•	•			•	•	
	AS,U,UA	•	•	•	•	•	•	•	•	•	•
VMF-E4X	AF,UF	•			•	•			•	•	
VIVII	AS,U,UA	•	•	•	•	•	•	•	•	•	•
VMF ID	AF,UF	•								•	
VMF-IR	U,UA	•	•			•	•			•	•
	AF,UF										
VMF-SW	AS,U	•	•	•	•	•	•	•			•
	AF,UF	•				•			•		
VMF-SW1	AS,U		•			•			•	•	•
	AF,UF	•	•	•	•		•	•	<u>:</u>		•
VMHI		•			•	•	-	-		•	
	AS,U,UA	•		•	•		•	•	•	•	•
Model	Ver	302	350	400	401	402	450	500	501	502	550
DI24	AF,AS,U,UA,UF		•	•			•	•			•
	AF,UF										
VMF-E19 (1)	AS,U,UA	•	•	•		•	•		•	•	
	AF,UF						•	•			
VMF-E2Z	AS,U,UA									•	•
	AF,UF	•			•	•			•	•	
VMF-E3			•	•			•	•			•
	U,UA	•	•	•	•	•	•	•	•	•	•
VMF-E4DX	AF,UF		•	•			•	•			•
	AS,U,UA	•	•	•	•	•	•	•	•	•	•
VMF-E4X	AF,UF		•	•			•	•			•
VIVII	AS,U,UA	•	•	•	•	•	•	•	•	•	•
VALE ID	AF,UF							•			•
VMF-IR	U,UA	•	•	•	•	•	•	•	•		•
	AF,UF										
VMF-SW	AS,U					•				•	
	AF,UF			•			•				•
VMF-SW1	AS,U	•	•		•		•	•		•	•
	AF,UF			•	•	· ·	<u>:</u>	:	.	•	
VMHI			•								•
	AS,U,UA	•	•	•	•	•	•	•	•	•	•
Model	Ver	600	601	602	650	700	701	702	750	800	801
DI24	AF,AS,U,UA,UF	•			•	•			•	•	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	AS,UA		•	•	•	•	•				
VMF-E19 (1)	Ü			•							
	AS,UA	•					•			•	
VMF-E2Z	U		•				•	•			
	AF,UF	•	•	•		•	•	· ·	•	•	•
VMF-E3											
	U,UA	•	•	•	•	•	•	•	•	•	•
VMF-E4DX	AS,UA	•	•	•	•	•	•	•	•	•	•
	U		•	•			•	•			•
VMF-E4X	AS,UA	•	•	•	•	•	•	•	•	•	•
*### "LT/\	U		•	•			•	•			•
VMF ID	AF,UF	•		-		•		-		•	-
VMF-IR	U,UA	•		•	•	•	•	•	•		•
	AS					•					
VMF-SW	U										•
	AS	•	•	•	•	•	•	•	•	•	•
VMF-SW1	U	•	· ·		•	•			•	•	•
	U		•	•			•	•			•

⁽¹⁾ Wall-mount installation.
(2) Probe for AERSO3IR-TX thermostats, if fitted.
(3) Cards for AERSO3IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere.
(4) Probe for AERSO3IR-TX thermostats, if fitted.
(5) Installation on the fan coil.
(6) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

Model	Ver	600	601	602	650	700	701	702	750	800	801
/A4111	AS,UA	•		•		•	•		•	•	
/MHI	U		•	•			•	•			•
Model	Ver	802	85	0	900	901	1	950	1000		1001
DI24	AF,AS,U,UA,UF		•		•			•	•		
	AF,UF							•			
/MF-E19 (1)	AS,UA	•	•		•			•	•		•
	U	•			•			•	•		•
	AF,UF					-		•			
VMF-E2Z	AS,UA	•	•		•	•		•	•		•
	U	•			•			•	•		•
	AF		•		•			•			
VMF-E3	U,UA	•	•		•	•		•	•		•
	UF		•		•			•	•		
	AF,UF							•			
VMF-E4DX	AS,UA	•	•		•			•	•		•
	U	•			•	•		•			•
	AF,UF							•			
VMF-E4X	AS,UA	•	•		•			•	•		•
	U	•			•			•	•		•
	AF		•		•			•			
/MF-IR	U,UA	•	•		•			•	•		•
	UF		•		•			•	•		
	AF,UF							•			
/MF-SW	AS	•	•		•	•		•	•		•
	U	•			•			•	•		•
	AF,UF							•			
/MF-SW1	AS	•	•		•	•		•	•		•
	U	•			•	•		•	•		•
	AF,UF							•			
/MHI	AS,UA	•				•		•	•		•
	U	•				•		•			•

⁽¹⁾ Also the accessory VMF-SIT3V is mandatory if the unit exceeds 0.7 Amperes.

Water valves

3 way	valve	kit
-------	-------	-----

	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450
Main sail	VCZ41	VCZ41	VCZ41	VCZ41	VCZ41	VCZ41	VCZ41	VCZ41	VCZ42							
Main coil	VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4224							
Cocondonycoil		VCF44	VCF44			VCF44	VCF44			VCF44	VCF44			VCF44	VCF44	
Secondary coil	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-
Additional coil "BV"	VCF44				VCF44				VCF44				VCF44			
Additional Coll DV	VCF4424		-	-	VCF4424			-	VCF4424		-	-	VCF4424		_	_
	500	501	502	550	600	601	602	650	700	701	702	750	800	801	802	850
Main coil	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42
Maii Coii	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224
Secondary coil		VCF44	VCF44			VCF44	VCF44			VCF44	VCF44			VCF44	VCF44	
Secondary con	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-
Additional coil "BV"	VCF44				VCF44				VCF44				VCF44			
Additional Con By	VCF4424				VCF4424				VCF4424				VCF4424			
	900	901	950	1000	1001											
Main coil	VCZ43	VCZ43	VCZ43	VCZ43	VCZ43											
main con	VCZ4324	VCZ4324	VCZ4324	VCZ4324	VCZ4324	_										
Secondary coil		VCF45			VCF45											
Secondary con		VCF4524	-	-	VCF4524											
Additional coil "BV"	VCF45			VCF45												
AUUIUONAI CON BV	VCF4524	-	-	VCF4524	-											

2 way valve kit

| 100 | 101 | 102 | 150 | 200
 | 201
 | 202
 | 250 | 300 | 301 | 302 | 350
 | 400 | 401 | 402 | 450
 |
|---------|-------------------------------------|---|---
--
--
--
--|--|---|---|--
--|--
--|--|---|---|
| VCZD1 | VCZD1 | VCZD1 | VCZD1 | VCZD1
 | VCZD1
 | VCZD1
 | VCZD1 | VCZD2 | VCZD2 | VCZD2 | VCZD2
 | VCZD2 | VCZD2 | VCZD2 | VCZD2
 |
| VCZD124 | VCZD124 | VCZD124 | VCZD124 | VCZD124
 | VCZD124
 | VCZD124
 | VCZD124 | VCZD224 | VCZD224 | VCZD224 | VCZD224
 | VCZD224 | VCZD224 | VCZD224 | VCZD224
 |
| | VCFD4 | VCFD4 | |
 | VCFD4
 | VCFD4
 | | | VCFD4 | VCFD4 |
 | | VCFD4 | VCFD4 |
 |
| - | VCFD424 | VCFD424 | - | -
 | VCFD424
 | VCFD424
 | - | - | VCFD424 | VCFD424 | -
 | - | VCFD424 | VCFD424 | -
 |
| VCFD4 | | | | VCFD4
 |
 |
 | | VCFD4 | | |
 | VCFD4 | | |
 |
| VCFD424 | | | | VCFD424
 |
 |
 | | VCFD424 | | |
 | VCFD424 | | |
 |
| 500 | 501 | 502 | 550 | 600
 | 601
 | 602
 | 650 | 700 | 701 | 702 | 750
 | 800 | 801 | 802 | 850
 |
| VCZD2 | VCZD2 | VCZD2 | VCZD2 | VCZD2
 | VCZD2
 | VCZD2
 | VCZD2 | VCZD2 | VCZD2 | VCZD2 | VCZD2
 | VCZD2 | VCZD2 | VCZD2 | VCZD2
 |
| VCZD224 | VCZD224 | VCZD224 | VCZD224 | VCZD224
 | VCZD224
 | VCZD224
 | VCZD224 | VCZD224 | VCZD224 | VCZD224 | VCZD224
 | VCZD224 | VCZD224 | VCZD224 | VCZD224
 |
| | VCZD124 - VCFD4 VCFD424 500 VCZD2 | VCZD1 VCZD1 VCZD124 VCZD124 VCFD4 VCFD424 VCFD424 VCFD424 VCFD424 VCFD424 VCFD424 VCFD424 VCZD2 VCZD2 | VCZD1 VCZD1 VCZD1 VCZD124 VCZD124 VCZD124 VCFD4 VCFD4 VCFD4 VCFD4 VCFD424 VCFD424 VCFD424 - - S00 501 502 VCZD2 VCZD2 VCZD2 | VCZD1 VCZD1 VCZD1 VCZD124 VCZD124 VCZD124 VCZD124 VCZD124 VCFD4 VCFD4 VCFD424 - VCFD4 VCFD424 - - VCFD424 - - - VCFD444 - - - VCFD454 - - - VCFD474 - - <td< td=""><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD124 VCZD1244 VCZD1444 VCZD1444 <t< td=""><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD124 VCZD1244 VC</td><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD12 VCZD124 VCZD1244 VCZD1244 VCZD1244 VCZD1244 VCZD1244</td></t<><td>VCZD1 VCZD1 VCZD124 <</td><td>VCZD1 VCZD1 VCZD12 VCZD124 VCZD124</td><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD2 VCZD2 VCZD2 VCZD24 VCZD24 VCZD24 VCZD124 VCZD124</td><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 <th< td=""><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 <th< td=""><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD24 VCZD24</td><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD24 VCZD24</td><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD22 VCZD224 VCZD24 VCED44 VCED44</td></th<></td></th<></td></td></td<> | VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD124 VCZD1244 VCZD1444 VCZD1444 <t< td=""><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD124 VCZD1244 VC</td><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD12 VCZD124 VCZD1244 VCZD1244 VCZD1244 VCZD1244 VCZD1244</td></t<> <td>VCZD1 VCZD1 VCZD124 <</td> <td>VCZD1 VCZD1 VCZD12 VCZD124 VCZD124</td> <td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD2 VCZD2 VCZD2 VCZD24 VCZD24 VCZD24 VCZD124 VCZD124</td> <td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 <th< td=""><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 <th< td=""><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD24 VCZD24</td><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD24 VCZD24</td><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD22 VCZD224 VCZD24 VCED44 VCED44</td></th<></td></th<></td> | VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD124 VCZD1244 VC | VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD12 VCZD124 VCZD1244 VCZD1244 VCZD1244 VCZD1244 VCZD1244 | VCZD1 VCZD124 < | VCZD1 VCZD12 VCZD124 VCZD124 | VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD2 VCZD2 VCZD2 VCZD24 VCZD24 VCZD24 VCZD124 VCZD124 | VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD2 <th< td=""><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 <th< td=""><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD24 VCZD24</td><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD24 VCZD24</td><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD22 VCZD224 VCZD24 VCED44 VCED44</td></th<></td></th<> | VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD2 <th< td=""><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD24 VCZD24</td><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD24 VCZD24</td><td>VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD22 VCZD224 VCZD24 VCED44 VCED44</td></th<> | VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD24 VCZD24 | VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD24 VCZD24 | VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD22 VCZD224 VCZD24 VCED44 VCED44 |

	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450
Secondary coil	-	VCFD424	VCFD4 VCFD424	-	-	VCFD4 VCFD424	VCFD4 VCFD424	-	-	VCFD4 VCFD424	VCFD4 VCFD424	-	-	VCFD4 VCFD424	VCFD4 VCFD424	-
Additional coil "BV"	VCFD4	-	TCIDIZI		VCFD4	-	-		VCFD4	-	TCIDIZI	_	VCFD4	-	-	
Additional Con DV	VCFD424				VCFD424				VCFD424				VCFD424			
	900	901	950	1000	1001											
Main coil	VCZD3	VCZD3	VCZD3	VCZD3	VCZD3											
	VCZD324	VCZD324 VCFD4	VCZD324	VCZD324	VCZD324 VCFD4											
Secondary coil	-	VCFD424	-	-	VCFD424											
Additional coil "BV"	VCFD424	-	-	VCFD4 VCFD424	-											
Valve Kit for 4 pipe sys	tems - Require	es a the	rmostat	with v	alve ma	nageme	ent									
Model		er	100)	101		102		150	200)	201		202	2	50
VCZ1X4L (1)		J,UA,UF	•						•	•						•
VCZ1X4R (1)		J,UA,UF							•	•						·
Model VCZ2X4L (1)		er J,UA,UF	300		301		302		350	400)	401		402		50 •
VCZ2X4R (1)		J,UA,UF	•						•	•					-	•
Model		er	500)	501		502		550	600)	601		602	6	50
VCZ2X4L (1)	AF	,UF	•						•							
	AS,I AF	J,UA LIE	•						•	•						•
VCZ2X4R (1)		J,UA	•						•							•
Model		er	700		701		702		750	800)	801		802		50
VCZ2X4L (1)		J,UA	•						•							
VCZ2X4R (1)	AS,I	J,UA	•						•	•						•
		or		900			901			50		1000	0		1001	
Model	V															
VCZ3X4L (1) VCZ3X4R (1) (1) The valves can be combined w	AF,AS,l AF,AS,l ith the units if there is	J,UA,UF J,UA,UF a control p		• naging the	m.					•		•				
VC73X4L (1) VC73X4R (1) (1) The valves can be combined w Combined Adjustment	AF,AS,U AF,AS,U ith the units if there is t and Balancin V	J,UA,UF J,UA,UF a control p g Valve er		• naging then	n. 101		102)			202	2	50
VC73X4L (1) VC73X4R (1) (1) The valves can be combined w Combined Adjustment	AF,AS,L AF,AS,L tith the units if there is t and Balancin V ACT	J,UA,UF J,UA,UF a control p. g Valve er .APC	Kit 100	• naging then	101				150	200)	201				•
VC3X4L (1) VC23X4R (1) (1) The valves can be combined w Combined Adjustment Model VJP060 (1)	AF,AS,I AF,AS,I ith the units if there is and Balancin V ACT AS,I	J,UA,UF J,UA,UF a control p. g Valve er APC J,UA	Kit 100	• naging then			102		150	200)	•		202		
VC3X4L (1) VC23X4R (1) (1) The valves can be combined w Combined Adjustment Model VJP060 (1)	AF,AS,I AF,AS,I ith the units if there is and Balancin V ACT AS,I	J,UA,UF J,UA,UF a control p. g Valve er .APC	100 •	• naging then	101				150	200)	201				•
VC3X4L (1) VC23X4R (1) (1) The valves can be combined w Combined Adjustment Model VJP060 (1)	AF,AS,I AF,AS,I ith the units if there is t and Balancin V ACT AS,I AS,I	J,UA,UF J,UA,UF a control p. g Valve er APC J,UA APC J,UA	100 • • • •	• maging then	101		•		150	200		201		•		• •
VC73X4L (1) VC73X4R (1) (1) The valves can be combined w Combined Adjustment Model VJP060 (1) VJP060M (2)	AF,AS,I AF,AS,I ith the units if there is t and Balancin V ACT, AS,I V ACT, AS,I ACT,	J,UA,UF J,UA,UF a control p. g Valve er .APC J,UA .APC J,UA .APC	100 • • • • •	• maging then					150 · · · · · 350	. 200		201		•		•
VC73X4L (1) VC73X4R (1) (1) The valves can be combined w Combined Adjustment Model VJP060 (1) VJP060M (2) Model VJP060 (1)	AF,AS,I AF,AS,I ith the units if there is t and Balancin V ACT, AS,I ACT, AS,I ACT, AS,I	J,UA,UF J,UA,UF a control p g Valve er .APC J,UA .APC J,UA .APC J,UA .APC	100 • • • •	• maging then			•		150	. 200		201		•		•
VC73X4L (1) VC73X4R (1) (1) The valves can be combined w Combined Adjustment Model VJP060 (1) VJP060M (2) Model	AF,AS,I AF,AS,I ith the units if there is t and Balancin V ACT, AS,I V ACT, AS,I	J,UA,UF J,UA,UF a control p g Valve er ,APC J,UA APC J,UA APC J,UA APC J,UA APC J,UA APC J,UA APC J,UA	100 • • • • • • •	• maging then					150 	. 200		201		•		•
VC73X4L (1) VC73X4R (1) (1) The valves can be combined w Combined Adjustment Model VJP060 (1) VJP060M (2) Model VJP060M (2)	AF,AS,t AF,AS,t ith the units if there is t and Balancin V ACT, AS,t V ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t	J,UA,UF J,UA,UF a control p. g Valve er .APC J,UA .APC J,UA er .APC J,UA .APC J,UA .APC J,UA .APC J,UA .APC	Kit 1000	• maging then			302		150 	200		201		. 402	4	50
VC73X4L (1) VC73X4R (1) (1) The valves can be combined w Combined Adjustment Model VJP060 (1) VJP060M (2) Model VJP060 (1) VJP060M (2) VJP060M (2)	AF,AS,t AF,AS,t ith the units if there is t and Balancin V ACT, AS,I V ACT, AS,I ACT, AS,I ACT, AS,I ACT, AS,I	J,UA,UF J,UA,UF a control p. g Valve er .APC J,UA .APC J,UA er .APC J,UA .APC J,UA .APC J,UA .APC J,UA	Kit 1000	• maging then			302		150 	200		201		•	4	· · · · · · · · · · · · · · · · · · ·
VCZ3X4L (1) VCZ3X4R (1) (1) The valves can be combined w Combined Adjustment Model VJP060 (1) VJP060M (2) Model VJP060M (2) VJP060M (2) VJP060M (2)	AF,AS,t AF,AS,t ith the units if there is t and Balancin V ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t ACT, AS,t	J,UA,UF J,UA,UF a control p. g Valve er .APC J,UA .APC J,UA er .APC J,UA .APC J,UA .APC J,UA .APC J,UA .APC	Kit 1000	• maging then			302		150 	200		201		. 402	4	50
VCZ3X4L (1) VCZ3X4R (1) (1) The valves can be combined w Combined Adjustment Model VJP060 (1) VJP060M (2) Model VJP060M (2) VJP060M (2) VJP0900M (2)	AF,AS,t AF,AS,t AF,AS,t AF,AS,t AF,AS,t ACT, AS,t	J,UA,UF J,UA,UF a control p g Valve er .APC J,UA .APC J,UA er .APC J,UA .APC	Kit 1000	enaging then			302		150 	200		201		402	4	50
VC73X4L (1) VC73X4R (1) (1) The valves can be combined w Combined Adjustment Model VJP060 (1) VJP060M (2) Model VJP060M (2) VJP060M (2) VJP090M (2) VJP090M (2)	AF,AS,t AF,AS,t AF,AS,t AF,AS,t AF,AS,t ACT, AS,t ACT, ACT, AS,t ACT, ACT, ACT, ACT, ACT, ACT, ACT, ACT,	J,UA,UF J,UA,UF a control p g Valve er .APC J,UA .APC J,UA er .APC J,UA .APC	Kit 1000	enaging then	301				150 	. 200		201 · 401		. 402	4	
VCZ3X4L (1) VCZ3X4R (1) (1) The valves can be combined w Combined Adjustment Model VJP060 (1) VJP060M (2) Model VJP060M (2) VJP090 (1) VJP090M (2) Model VJP090 (1)	AF,AS,t AF,AS,t AF,AS,t AF,AS,t AF,AS,t AF,AS,t ACT, AS,t	J,UA,UF J,UA,UF a control p g Valve er .APC J,UA .APC J,UA er .APC J,UA	Kit 1000	enaging then	101		302		150 	. 200 		201		402	4	
VCZ3X4L (1) VCZ3X4R (1) (1) The valves can be combined w Combined Adjustment Model VJP060 (1) VJP060M (2) Model VJP060M (2) VJP090 (1) VJP090M (2) Model VJP090 (1)	AF,AS,t AF,AS,t th the units if there is t and Balancin V ACT, AS,t	J,UA,UF J,UA,UF a control p g Valve er .APC J,UA	Kit 1000	enaging then	301				150 	. 200		201 · 401		. 402	6	
VC23X4L (1) VC23X4R (1) (1) The valves can be combined we combined Adjustment Model VJP060 (1) VJP060M (2) Model VJP060M (2) VJP090 (1) VJP090M (2) Model VJP090M (2)	AF,AS,I AF,AS,I AF,AS,I ith the units if there is t and Balancin V ACT, AS,I ACT, ACT,	J,UA,UF J,UA,UF a control p. g Valve er .APC J,UA .APC	Kit 1000	enaging then	101 				150 	. 200 		201 		. 402	6	
VC23X4L (1) VC23X4R (1) (1) The valves can be combined we combined Adjustment Model VJP060 (1) VJP060M (2) Model VJP060M (2) VJP090 (1) VJP090M (2) Model VJP090M (2)	AF,AS,I AF,AS,I AF,AS,I ith the units if there is t and Balancin V ACT, AS,I	J,UA,UF J,UA,UF a control p g Valve er .APC J,UA	Kit 1000	enaging then	101 				150 	200		201 		. 402	6	
VC73X4L (1) VC73X4R (1) (1) The valves can be combined w Combined Adjustment Model VJP060 (1) VJP060M (2) Model VJP060M (2) VJP090M (2) VJP090 (1) VJP090M (2) VJP090M (2) VJP090M (2) VJP090M (2) VJP090M (2) VJP090M (2)	AF,AS,I AF,AS,I AF,AS,I ith the units if there is t and Balancin V ACT, AS,I	J,UA,UF J,UA,UF a control p. g Valve er .APC J,UA	Kit 1000	enaging then	101 				150 	200		201 401		. 402	6	
VC23X4L (1) VC23X4R (1) (1) The valves can be combined w Combined Adjustment Model VJP060 (1) VJP060M (2) WJP060M (2) VJP090 (1) VJP090M (2) WJP090M (2) VJP090M (2) VJP150 (1) VJP150M (2)	AF,AS,I AF,AS,I AF,AS,I AF,AS,I AF,AS,I ACT, AS,I	J,UA,UF J,UA,UF a control p g Valve er .APC J,UA .APC J,UA er .APC J,UA	Kit 100	enaging then	101 				150 	200		201 · 401 · 601 ·		. 402	6	
VC73X4L (1) VC73X4R (1) (1) The valves can be combined we combined Adjustment Model VJP060 (1) VJP060M (2) Model VJP060M (2) VJP090 (1) VJP090M (2) Model VJP090 (1) VJP090M (2) VJP090 (1) VJP090M (2) VJP090M (2) VJP090M (2) VJP090M (2) VJP090M (2) VJP150 (1) VJP150M (2)	AF,AS,I AF,AS,I ith the units if there is t and Balancin V ACT, AS,I ACT,	J,UA,UF J,UA,UF J,UA,UF a control p g Valve er .APC J,UA .APC J,UA er .APC J,UA	Kit 1000	enaging then	101 				150 · · · 350 · · · · 550 · · · · ·	. 200 		201		. 402	6	
VC73X4L (1) VC73X4R (1) (1) The valves can be combined w Combined Adjustment Model VJP060 (1) VJP060M (2) Model VJP060M (2) VJP090 (1) VJP090M (2) Model VJP090M (2) Model	AF,AS,I AF,AS,I AF,AS,I AF,AS,I AF,AS,I ACT, AS,I	J,UA,UF J,UA,UF J,UA,UF a control p g Valve er .APC J,UA	Kit 1000	enaging then	101 				150 · · · · · · · · · · · · · · · · · · ·	. 200 		201			6	
VC73X4L (1) VC73X4R (1) (1) The valves can be combined we combined Adjustment Model VJP060 (1) VJP060M (2) Model VJP060M (2) VJP090 (1) VJP090M (2) Model VJP090 (1) VJP090M (2) VJP090 (1) VJP090M (2) VJP090M (2) VJP090M (2) VJP090M (2) VJP090M (2) VJP150 (1) VJP150M (2)	AF,AS,I AF,AS,I AF,AS,I ith the units if there is it and Balancin V ACT, AS,I COMBAN ACT, AS,I	J,UA,UF J,UA,UF a control p g Valve er .APC J,UA .APC J,UA er .APC J,UA	Kit 1000	enaging then	101 				150 · · · 350 · · · · 550 · · · · ·	. 200 		201		. 402	6	
VC23X4L (1) VC23X4R (1) (1) The valves can be combined w Combined Adjustment Model VJP060 (1) VJP060M (2) Model VJP090 (1) VJP090M (2) Model VJP090 (1) VJP090M (2) VJP090M (2) VJP150 (1) VJP150M (2) VJP150 (1) VJP150M (2)	AF,AS,I AF,AS,I AF,AS,I AF,AS,I AF,AS,I ACT, AS,I	J,UA,UF J,UA,UF J,UA,UF a control p g Valve er .APC J,UA	Kit 1000	enaging then	101 				150 · · · · · · · · · · · · · · · · · · ·	. 200 		201	0	. 402 	6	
VC73X4L (1) VC73X4R (1) (1) The valves can be combined we combined Adjustment Model VJP060 (1) VJP060M (2) Model VJP060M (2) VJP090M (2) VJP090M (2) VJP090M (2) VJP090M (2) VJP090M (2) VJP150 (1) VJP150 (1) VJP150 (1)	AF,AS,I AF,AS,I AF,AS,I AF,AS,I AF,AS,I ACT, AS,I	J,UA,UF J,UA,UF J,UA,UF a control p g Valve er .APC J,UA .APC	Kit 1000	enaging then	101 				150 · · · · · · · · · · · · · · · · · · ·	200		201	0	. 402 	6	

Model	Ver	900	901	950	1000	1001
VID1FOM (2)	ACT,APC	•		•	•	
VJP 15UM (2)	AS,U,UA	•	•	•	•	•

^{(1) 230}V~50Hz (2) 24V

(Heating only) additional coil

Heating only additional coil

	,								
Model	Ver	100	101	102	150	200	201	202	250
3V117 (1)	A,AF,AS,U,UA,UF	•							
3V122 (1)	A,AF,AS,U,UA,UF					•			
Model	Ver	300	301	302	350	400	401	402	450
BV132 (1)	A,AF,AS,U,UA,UF	•							
BV142 (1)	A,AF,AS,U,UA,UF					•			
Model	Ver	500	501	502	550	600	601	602	650
BV142 (1)	A,AF,AS,U,UA,UF	•							
BVZ800 (1)	A,AS,U,UA					•			
Model	Ver	700	701	702	750	800	801	802	850
BVZ800 (1)	A,AS,U,UA	•				•			
Model	Ver	900		901	9	50	1000		1001
BV162 (1)	A,AF,AS,U,UA,UF			·					

⁽¹⁾ Not available for sizes with oversized main coil.

Electric coil - Requires a thermostat with heater management. Not available for sizes with an oversized main coil.

Model	Ver	100	101	102	150	200	201	202	250
RX17 (1)	AF,AS,U,UA,UF								
RX22 (1)	AF,AS,U,UA,UF					•			
Model	Ver	300	301	302	350	400	401	402	450
RX32 (1)	AF,AS,U,UA,UF								
RX42 (1)	AF,AS,U,UA,UF			-		•			
Model	Ver	500	501	502	550	600	601	602	650
RX52 (1)	AF,AS,U,UA,UF	•							
RXZ800 (1)	AS,U,UA	,				•			
Model	Ver	700	701	702	750	800	801	802	850
RXZ800 (1)	AS,U,UA	•				•			
Model	Ver	900		901	9:	50	1000		1001
RX62 (1)	AF,AS,U,UA,UF						•		

⁽¹⁾ Requires a thermostat with heater management. Not available for sizes with an oversized main coil. The PCR1 PCR2 or PCR1V appliance must also be provided depending on the unit.

Installation accessories

ACT,APC

Wall mounting kit

an mounting	y Kit								
Ver	100	101	102	150	20	0	201	202	250
U, UA	AMP20	AMP20	AMP20	AMP20	AMP	20	AMP20	AMP20	AMP20
UF	AMP20	-	-	AMP20	AMP	20	-	-	AMP20
Ver	300	301	302	350	40	0	401	402	450
U, UA	AMP20	AMP20	AMP20	AMP20	AMP	20	AMP20	AMP20	AMP20
UF	AMP20	-	-	AMP20	AMP	20	-	-	AMP20
Ver	500	501	502	550	60	0	601	602	650
U, UA	AMP20	AMP20	AMP20	AMP20	AMI	PZ	AMPZ	AMPZ	AMPZ
UF	AMP20	-	-	AMP20	-		-	-	-
ne accessory cannot	be fitted on the configura	ntions indicated with -							
Ver	700	701	702	750	80	0	801	802	850
U, UA	AMPZ	AMPZ	AMPZ	AMPZ	AMI	PZ	AMPZ	AMPZ	AMPZ
Ver	900	,	901	,	950		1000	,	1001
U, UA	AMPZ		AMPZ		AMPZ		AMPZ		AMPZ
	ecirculation devi								
odel	Ver	100	101	102	150	200	201	202	250
SCZ4 (1)	A,AS,U,UA	•	•	•	•	•	•	•	•
742.(1)	ACT,APC	•			•	•			•
lodel	Ver	300	301	302	350	400	401	402	450
SCZ4 (1)	A,AS,U,UA	•	•	•	•	•	•	•	•
JCZ4 (1)	ACT,APC	•			•	•			•
lodel	Ver	500	501	502	550	600	601	602	650
SCZ4 (1)	A,AS,U,UA	•	•	•	•	•	•	•	•
JC27 (1)	ACT.APC	•			•				

Model	Ver	700	701	702	750	800	801	802	850
DCC74 (1)	A,AS,U,UA	•	•	•	•	•	•	•	•
DSCZ4 (1)	ACT,APC	•			•	•			•
Model	Ver	900		901	9	50	1000		1001
DSCZ4 (1)	A,AS,U,UA	900		901	9	•	1000		•

⁽¹⁾ DSCZ4 due to space problems inside the unit, the VCZ1-2-3-4 X4L/R valves cannot be mounted together with the amp/AMPZ accessories, with all the condensate collection trays. With the VMF-E19/E19I thermostats, please contact the head office.

Condensate drip

Condens	sate drip								
Model	Ver	100	101	102	150	200	201	202	250
BCZ4 (1) —	A,AS,U,UA	•	•	•	•	•	•	•	•
DC24 (1)	ACT,APC	•			•	•			•
BCZ5 (2) -	A,AS,U,UA	•	•	•	•	•	•	•	•
DC23 (2)	ACT,APC	•			•	•			•
Model	Ver	300	301	302	350	400	401	402	450
BCZ4 (1) —	A,AS,U,UA	•	•	•	•	•	•	•	•
DCZ4 (1)	ACT,APC	•			•	•			•
BCZ5 (2) —	A,AS,U,UA	•	•	•	•	•	•	•	•
DCZ3 (Z)	ACT,APC	•			•	•			•
Model	Ver	500	501	502	550	600	601	602	650
0(74/1) _	A,AS,U,UA	•	•	•	•	•	•	•	•
BCZ4 (1) —	ACT,APC	•			•	•			•
BCZ5 (2) —	A,AS,U,UA	•	•	•	•	•	•	•	•
DCL3 (2)	ACT,APC	•		,	•	•			•
Model	Ver	700	701	702	750	800	801	802	850
0.674 (1)	A,AS,U,UA	•	•	•	•	•	•	•	•
BCZ4 (1) —	ACT,APC	•			•	•			•
)(7E (2)	A,AS,U,UA	•	•	•	•	•	•	•	•
BCZ5 (2) —	ACT,APC	•			•	•			•
Model	Ver	900		901	9:	50	1000		1001
	A,AS,U,UA	•		•		•	•		•
BCZ4 (1) —	ACT,APC	•				•	•		
PC76 (2)	A,AS,U,UA	•		•		•	•		•
BCZ6 (2) -	ACT,APC	•				•			

⁽¹⁾ For vertical installation.(2) For horizontal installation.

Panel closing the rear of the unit

Model	Ver	100	101	102	150	200	201	202	250
DC7100	A,AS,U,UA	•	•	•	•				
PCZ100	ACT,APC	•			•				
DC7200	A,AS,U,UA					•	•	•	
PCZ200	ACT,APC					•			•
Model	Ver	300	301	302	350	400	401	402	450
0.7200	A,AS,U,UA	•	•	•	•				
PCZ300	ACT,APC	•			•				
0.67500	A,AS,U,UA					•			
PCZ500	ACT,APC					•			•
Model	Ver	500	501	502	550	600	601	602	650
0.67500	A,AS,U,UA	•	•	•	•				
PCZ500	ACT,APC	•			•				
0.7000	A,AS,U,UA					•	•	•	
PCZ800	ACT,APC					•			
Model	Ver	700	701	702	750	800	801	802	850
007000	A,AS,U,UA	•	•	•	•	•	•	•	•
PCZ800	ACT,APC	•			•	•			•
Model	Ver	900		901	9.	50	1000		1001
PCZ1000	A,AS,U,UA	•		•		•	•		•
FCZ 1000	ACT,APC								

Lower intake grille

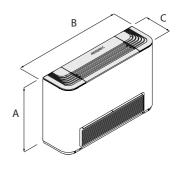
Model	Ver	100	101	102	150	200	201	202	250
GA100	U,UA	•	•	•	•				
GA200	U,UA					•	•	•	•
Model	Var	300	301	302	350	400	401	402	450
Model	Ver	300	301	302	330	700	701	702	730
GA300	U,UA	•	•	•	•	700	701	702	450

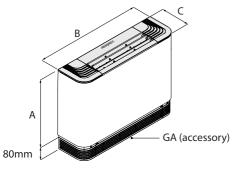
Model	Ver	500	501	502	550	600	601	602	650
GA500	U,UA		•	•	•				
GA800	U,UA					•	•	•	•
Model	Ver	700	701	702	750	800	801	802	850
GA800	U,UA	•	•	•	•	•	•	•	•
Model	Ver	900		901	950)	1000		1001
GA800	U,UA	•		•	•		•		•
Supports to I	e combined with	the ornament:	al arillo (GA) fo	floor installat	ion of the fan	roil			
Model	Ver		101	1001 Histaliat	150	200	201	202	250
	A,AS,U		•	•	•				
FIKIT100	ACT, AF, A				•				
FIKIT200	A,AS,U	,UA				•	•	•	•
TRITZUU	ACT, AF, A	PC,UF				•			•
Nodel	Ver	r 300	301	302	350	400	401	402	450
FIKIT300	A,AS,U			•	•				
TRITOU	ACT,AF,A				•				
FIKIT500	A,AS,U				<u> </u>	•	•	•	•
	ACT,AF,A	PC,UF				•			•
Nodel	Ver	r 500	501	502	550	600	601	602	650
IKIT500	A,AS,U		•	•	•				
	ACT,AF,A				•				
FIKIT800	A,AS,U					•	•	•	•
	ACT,A					•			•
Model	Ver		701	702	750	800	801	802	850
FIKIT800	ACT,A				•	•			•
	U,U/		•	•	•	•	•	•	
Nodel	Ver		900	901		950	1000		1001
IKIT800	A,AS,U		•	•		•	•		•
	ACT,AF,A	PC,UF	•			•	•		
Pair of stylisl	n structural feet								
Nodel	Ver	100	101	102	150	200	201	202	250
XZ	A,AS,U,UA	•	•	•	•	•	•	•	•
ΛL	ACT,APC	•			•	•			•
Model .	Ver	300	301	302	350	400	401	402	450
XZ	A,AS,U,UA	•		•	•	•	•	•	•
λL	ACT,APC	•			•	•			•
Nodel	Ver	500	501	502	550	600	601	602	650
	A,AS,U,UA	•	•	•	•	•	•	•	•
XZ	ACT,APC	•			•	•			•
Nodel	Ver	700	701	702	750	800	801	802	850
	A,AS,U,UA	•	•	•	•	•	•	•	•
XXZ	ACT,APC	•			•				•
Model	Ver	900		901	950)	1000		1001
ZXZ	A,AS,U,UA	•		•			•		•

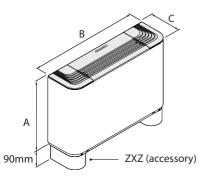
PERFORMANCE SPECIFICATIONS

2-pipe

2-pipe		F	CZ100	1	F	CZ150		FCZ	000	1 1	FCZ250) I	FC	Z300		F	CZ350			CZ40	n I	F	CZ450	١		CZ50	0		FCZ55	n
		1	2	3	1		3	1 2		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		Ė	M	H	i		_	L N		Ė	 M	H	÷	M	Н	Ĺ	M	Н	Ė	M	H	÷	M	H	i	M	H	ΤĖ	M	H
Heating performance 70 °C / 60 °C	(1)		IVI			· · ·	''		- "	1 -	- 141			III	"		IVI									141	- "	1 -		
Heating capacity	-	1,45	2.00	2,40	1,55	2,19 2	65 2	.02 2,9	5 3,70	2 20	3 18	4.05	3 47	4,46	5 50	2 77	A 97	6 15	437	5 74	7,15	4,57	6,29	7 87	5,27	7,31	8 50	5,82	8 3/1	9 75
Water flow rate system side	I/h	125		, .			_	77 25		+ -		355			_		431	-	379	503	627			685	462			510		
	kPa	4	7	9	5		-	6 1		7	15	23			18	8		20	9	16	24	6	11	16	-	21	28			
Pressure drop system side		4	/	9)	9	12	0 1.	10	/	13	23	/	IZ	10	0	14	20	9	10	24	0	- 11	10	12	21		10	20	26
Heating performance 45 °C / 40 °C		۸ 72	0.00	1 10	0 77	1 00 1	21 1	00 1	C 10/	1 00	1 [0	2.01	1 72	1 11 '	2 72	1 07	2.44	2.00	214	2.05	2 [[2 27	2 12	2.00	2 (2	2 (2	4 22	1 2 00	414	4.00
Heating capacity		0,72							6 1,84 4 319		1,58 274		1,72		_		2,44 425				617			5,88 675	455		734	2,89	720	
Water flow rate system side	I/h	126	173	_			_			-					_			_	373						_			_		
Pressure drop system side	kPa	4	7	10	5	9	12	6 1	18	8	15	22	8	12	18	8	14	20	10	16	24	6	11	16	12	21	28	10	20	26
Cooling performance 7 °C / 12 °C	111/							00 11					1.10			4 00	~		2 2 2	2.02	2 40	2 11	2.24	4.00	2 (0	2 40				4.70
Cooling capacity	_		0,84	,	0,80		_		8 1,60	+ '																		2,91		
Sensible cooling capacity		0,51			0,57		_	.71 1,0		0,79	1,20		1,26				1,76											3 2,07		
Water flow rate system side	I/h	112	144	_			_	53 22		-	267	334	288		_			560	379	503	619			694	460	634		+		
Pressure drop system side	kPa	4	6	8	6	12	13	6 1	18	8	17	25	8	13	18	11	18	25	10	16	24	9	15	22	13	22	29	12	22	28
Fan																														
Туре	type													(Centrif	ugal														
Fan motor	type														synchro	onous														
Number	no.		1			1		1			1			2			2			2			2			2			2	
Air flow rate	m³/h	110	160	200	110	160 2	00 1	40 22	0 290	140	220		260	350	450	260	350	450	330	460	600	330	460	600	400	600	720	400	600	720
Input power	W	19	29	35	19	29	35 2	25 29	33	25	29	33	25	33	44	25	33	44	30	43	57	30	43	57	38	52	76	38	52	76
Electrical wiring		٧1	V2	V3	۷1	V2 \	/3 \	/1 V	2 V3	V1	V2	V3	V1	V2	V3	۷1	V2	V3	V1	V2	V3	V1	V2	٧3	V1	V2	V3	V1	V2	٧3
Fan coil sound data (3)																														
Sound power level	dB(A)	31,0	38,0	45,0	31,0	38,0 4	5,0 3.	5,0 46	.0 51,0	35,0	46,0	51,0	34,0	41,0	48,0	34,0	41,0	48,0	37,0	44,0	51,0	37,0	44,0	51,0	42,0	51,0	56,0	42,0	51,0	56,0
Sound pressure level	dB(A)	23,0	30,0	37,0	23,0	30,0 3	7,0 2	7,0 38	.0 43,0	27,0	38,0	43,0	26,0	33,0	40,0	26,0	33,0	40,0	29,0	36,0	43,0	29,0	36,0	43,0	34,0	43,0	48,0	34,0	43,0	48,0
Diametre hydraulic fittings																														
Main heat exchanger	Ø		1/2"			1/2"		1/.)"		1/2"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"	
						-																								
rower supply																														
Power supply Power supply														2	30V~	50Hz														_
Power supply Power supply			F.C7.6.0			F.C7.C5			EC770			F.C77E	•	2	30V~		_		7050			F.C700		_	F.C7	050			7100	
		1	FCZ60		1	FCZ65		1	FCZ70		1	FCZ75		2	FCZ8	00		FC	Z850	2	1	FCZ90		1	FCZ		2	FC	Z100	
		1	2	3	1	2	3	1	2	3	1	2	3	1	FCZ8	00	_	1	2	3	1	2	3	1	2	2	3	1	2	3
Power supply	7(1)	1 L			1 L	_		1 L			1 L			1 L	FCZ8	00	_	F(3 H	1 L			1 L		2	3 H	1 L		
Power supply Heating performance 70 °C / 60 °C		1 L	2 M	3 H	1 L	2 M	3 H	Ĺ	2 M	3 H	1 L	2 M	3 H	1 L	FCZ8 2 M	00 :	1	1 L	2 M	Н	1 L	2 M	3 H	1 L	. A	<u>N</u>	Н	1 L	2 M	3 H
Power supply Heating performance 70 °C / 60 °C Heating capacity	kW	1 L 6,50	2 M 8,10	3 H	+ -	2 M 9 9,15	3 H	L 0 8,10	2 M 9,80	3 H 11,00	1 L 9,10	2 M	3 H	1 L	FCZ8 2 M	00 F 80 12,	00 11	1 L ,30 1	2 M 2,35	H 14,00	1 L	2 M	3 H	_	A 20 14,	,42 1	H 7,10	1 L	2 M	3 H 17,02
Power supply Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side	kW I/h	1 L 6,50 570	2 M 8,10 710	3 H 10,00	631	2 M 9 9,15 802	3 H 11,5 1008	L 8,10	2 M 9,80 860	3 H 11,00 964	1 L 9,10 798	2 M 11,30 991	3 H 12,50 1096	9,80 859	FCZ8 2 M 10,8 947	00 H 30 12, 7 10	00 11 52 9	1 L ,30 1 91 1	2 M 2,35 083	H 14,00 1227	1 L 10,77 945	2 M 13,35 1171	3 H 15,14 1328	3 98	20 14, 20 12	,42 17 64 1	7,10 500	1 L 12,53 1101	2 M 15,24 1337	3 H 17,02 1493
Power supply Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side	kW I/h kPa	1 L 6,50	2 M 8,10	3 H	+ -	2 M 9 9,15 802	3 H	L 0 8,10	2 M 9,80	3 H 11,00	1 L 9,10	2 M	3 H	1 L	FCZ8 2 M 10,8 947	00 H 30 12, 7 10	00 11 52 9	1 L ,30 1 91 1	2 M 2,35	H 14,00	1 L	2 M	3 H	_	20 14, 20 12	,42 17 64 1	H 7,10	1 L	2 M	3 H 17,02
Power supply Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C	kW I/h kPa	1 L 6,50 570 12	2 M 8,10 710 18	3 H 10,00 877 26	631	2 M 9 9,15 1 802 21	3 H 11,5 1008 31	L L S S S S S S S S S S S S S S S S S S	9,80 860 24	3 H 11,00 964 29	9,10 798 10	2 M 11,30 991 15	3 H 12,50 1096 18	9,80 859 22	FCZ8 2 M 10,8 947 27	00 H 30 12, 7 10 3	00 11 52 9	1 L ,30 1 91 1	2 M 2,35 083 20	H 14,00 1227 25	1 L 10,77 945 12	2 M 13,35 1171 17	3 H 15,14 1328 22	3 98	20 14, 20 12 5 2	,42 17 64 1	7,10 500 33	1 L 12,53 1101 22	2 M 15,24 1337 32	3 H 17,02 1493 38
Power supply Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C Heating capacity	kW I/h kPa (2) kW	1 L 6,50 570 12	2 M 8,10 710 18	3 H 10,00 877 26	631	2 M 9 9,15 802 21	3 H 11,5 1008 31	L L S S S S S S S S S S S S S S S S S S	2 M 9,80 860 24	3 H 11,00 964 29	9,10 798 10	2 M 11,30 991 15	3 H 12,50 1096 18	9,80 859 22	FCZ8 2 M 10,8 947 27	00 3 1 30 12, 7 10 3	00 11 52 9 2 1	1 L ,30 1 91 1 17	2 M 2,35 083 20	H 14,00 1227 25 6,96	1 L 10,77 945 12	2 M 13,35 1171 17	3 H 15,1- 1328 22 7,53	3 98 16 5,5	20 14, 20 12 20 12 50 2	,42 17 64 1 4	7,10 500 33 3,50	1 L 12,53 1101 22 6,24	2 M 15,24 1337 32 7,58	3 H 17,02 1493 38 8,46
Power supply Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C Heating capacity Water flow rate system side	kW I/h kPa (2) kW I/h	1 L 6,50 570 12 3,32 561	2 M 8,10 710 18 4,03 699	3 H 10,00 877 26 4,97 863	631 14 3,57 621	2 M 9 9,15 1 802 21 7 4,55 790	3 H 11,5 1008 31 5,72 993	L L S S S S S S S S S S S S S S S S S S	2 M 9,80 860 24 4,87 846	3 H 11,00 964 29 5,47 950	9,10 798 10 4,52 786	2 M 11,30 991 15 5,62 975	3 H 12,50 1096 18 6,21 1079	9,80 859 22 4,87	FCZ8 2 M 10,8 947 27 5,33	00 H 30 12, 7 10 3 3 7 5,9 2 10	00 11 52 9 2 1 97 5,	1 L ,30 1 91 1 17 .62 6 75 1	2 M 2,35 1083 20 5,14	H 14,00 1227 25 6,96 1209	1 L 10,77 945 12 5,35 930	2 M 13,35 1171 17 6,64 1152	3 H 15,1- 1328 22 7,53 1307	3 98 16 5,5 7 96	20 14, 20 12 2 12 5 2	2 ,42 17 64 1 4 17 8 45 1	7,10 500 33 8,50 476	1 L 12,53 1101 22 6,24 1084	2 M 15,24 1337 32 7,58 1316	3 H 17,00 1493 38 8,46 1469
Power supply Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C Heating capacity Water flow rate system side Pressure drop system side	kW I/h kPa (2) kW	1 L 6,50 570 12	2 M 8,10 710 18	3 H 10,00 877 26	631	2 M 9 9,15 1 802 21 7 4,55 790	3 H 11,5 1008 31	L L S S S S S S S S S S S S S S S S S S	2 M 9,80 860 24	3 H 11,00 964 29	9,10 798 10	2 M 11,30 991 15	3 H 12,50 1096 18	9,80 859 22	FCZ8 2 M 10,8 947 27	00 H 30 12, 7 10 3 3 7 5,9 2 10	00 11 52 9 2 1 97 5,	1 L ,30 1 91 1 17 .62 6 75 1	2 M 2,35 083 20	H 14,00 1227 25 6,96	1 L 10,77 945 12	2 M 13,35 1171 17	3 H 15,1- 1328 22 7,53	3 98	20 14, 20 12 2 12 5 2	2 ,42 17 64 1 4 17 8 45 1	7,10 500 33 3,50	1 L 12,53 1101 22 6,24	2 M 15,24 1337 32 7,58	3 H 17,02 1493 38 8,46
Power supply Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating capacity Water flow rate system side Pressure drop system side Pressure drop system side Cooling performance 7 °C / 12 °C	kW I/h kPa C(2) kW I/h kPa	1 L 6,50 570 12 3,32 561 12	2 M 8,10 710 18 4,03 699 18	3 H 10,00 877 26 4,97 863 26	631 14 3,57 621 14	2 M 9 9,15 1 802 21 7 4,55 790 20	3 H 11,5 1008 31 5,72 993 31	L 0 8,10 17 17 4,03 699 16	2 M 9,80 860 24 4,87 846 24	3 H 11,00 964 29 5,47 950 29	9,10 798 10 4,52 786 10	2 M 11,30 991 15 5,62 975 14	3 H 12,50 1096 18 6,21 1079	9,80 859 22 4,87 846 22	2 M 1 10,88 947 27 5,33 932 26	3 H H H H H H H H H H H H H H H H H H H	00 111 52 9 2 1 97 5, 36 9	1 L ,30 1 1 17 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16	2 M 22,35 083 20 55,14 066 20	H 14,00 1227 25 6,96 1209 25	1 L 10,77 945 12 5,35 930 12	2 M 13,35 1171 17 6,64 1152	3 H 15,14 1328 22 7,53 1307 22	3 98 16 5,5 7 96	20 14, 20 12, 5 2, 7 7, 7 12, 5 2	2,42 17,64 1.4 17 8,45 1.4	7,10 500 33 476 33	1 L 12,53 1101 22 6,24 1084 22	2 M 15,24 1337 32 7,58 1316 31	3 H 17,02 1493 38 8,46 1469 38
Power supply Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C Heating capacity Water flow rate system side Pressure drop system side	kW I/h kPa I (2) kW I/h kPa kPa kW	1 L 6,50 570 12 3,32 561 12	2 M 8,10 710 18 4,03 699 18	3 H 10,00 877 26 4,97 863 26	631 14 3,57 621 14	2 M 9 9,15 1 802 21 7 4,55 790 20	3 H 11,5 1008 31 5,72 993 31	L L L L L L L L L L L L L L L L L L L	2 M 9,80 860 24 4,87 846 24	3 H 11,00 964 29 5,47 950 29	9,10 798 10 4,52 786 10	2 M 11,30 991 15 5,62 975 14	3 H 12,50 1096 18 6,21 1079 18	9,80 859 22 4,87 846 22	FCZ8 2 M 1 10,8 947 27 5,33 932 26	00 13 14 17 10 10 10 10 10 10 10 10 10 10	00 111 52 9 2 1 97 5, 36 9 2 1	1 L	2 M 22,35 083 20 55,14 066 20	H 14,00 1227 25 6,96 1209 25 6,91	1 L 10,77 945 12 5,35 930 12	2 M 13,35 1171 17 6,64 1152 17	3 H 15,1-15,1-1328 222 7,533 1307 22 6,91	3 98 16 5,5 7 96 15	M M 220 14, M 220 14, M 22 12 12 12 12 12 12 12 12 12 12 12 12	2 17 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	H 77,10 500 333 33 476 476 4,60	1 L 12,53 1101 22 6,24 1084 22 5,69	2 M 115,24 1337 32 7,58 1316 31	3 H 17,02 1493 38 8,46 1469 38
Power supply Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C	kW I/h kPa I (2) kW I/h kPa kPa kW	1 L 6,50 570 12 3,32 561 12 3,22 2,56	2 M 8,10 710 18 4,03 699 18	3 H 10,00 877 26 4,97 863 26	3,57 621 14 3,95 2,78	2 M 9 9,15 1 802 21 7 4,55 7 790 20 5 4,80 3 3,43	3 H 11,5 1008 31 5,72 993 31	L	2 M 9,80 860 24 4,87 846 24	3 H 11,00 964 29 5,47 950 29	9,10 798 10 4,52 786 10	2 M 11,30 991 15 5,62 975 14 5,34 4,05	3 H 12,50 1096 18 6,21 1079 18	9,80 859 22 4,87 846 22 4,84 3,72	FCZ8 2 M 10,8 947 27 5,33 932 26 5,66 4,4,4	00 13 14 17 10 10 10 10 10 10 10 10 10 10	00 111 52 9 2 1 97 5, 36 9 2 1	1 L L ,30 1 T T T T T T T T T T T T T T T T T T	2 M M 22,35 0083 220 55,14 20 55,29 4,83	H 14,00 1227 25 6,96 1209 25 6,91 5,36	10,777 945 12 5,35 930 12 4,29 2,97	2 M 13,35 1171 17 6,64 1152 17	3 H 15,1-15,1-1328 222 7,533 1307 22 6,91	3 98 16 5,5 7 96 15 5,7 8 3,8	12	2 17 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	H 77,10 500 333 33 476 476 4,60	1 L 12,53 1101 22 6,24 1084 22	2 M 115,24 1337 32 7,58 1316 31	3 H 17,02 1493 38 8,46 1469 38
Power supply Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity	kW I/h kPa I (2) kW I/h kPa kPa kW	1 L 6,50 570 12 3,32 561 12	2 M 8,10 710 18 4,03 699 18	3 H 10,00 877 26 4,97 863 26	631 14 3,57 621 14	2 M 9 9,15 1 802 21 7 4,55 7 790 20 5 4,80 3 3,43	3 H 11,5 1008 31 5,72 993 31	L L S S S S S S S S S S S S S S S S S S	2 M 9,80 860 24 4,87 846 24	3 H 11,00 964 29 5,47 950 29	9,10 798 10 4,52 786 10	2 M 11,30 991 15 5,62 975 14	3 H 12,50 1096 18 6,21 1079 18	9,80 859 22 4,87 846 22	FCZ8 2 M 10,8 947 27 5,33 932 26 5,66 4,4,4	000 13 14 18 18 19 19 19 19 19 19 19 19 19 19	1	1 L L ,30 1 T T T T T T T T T T T T T T T T T T	2 M 22,35 1083 20 55,14 1066 20	H 14,00 1227 25 6,96 1209 25 6,91 5,36	1 L 10,77 945 12 5,35 930 12	2 M 13,35 1171 17 6,64 1152 17	3 H 15,1-15,1-1328 222 7,533 1307 22 6,91	3 98 16 5,5 7 96 15 5,7 8 3,8	1220 14,1 1220 14,2 122 122 122 123 123 123 123 123 123 123	2 M M 64 1. 44 117 8 45 1. 44	H H 5500 5500 5500 476 476 476 5500 470 5500 470 5500 470 5500 470 5500 470 5500 470 5500 470 5500 470 5500 470 5500 470 5500 470	1 L 12,53 1101 22 6,24 1084 22 5,69 4,42	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34	3 H 17,02 1493 38 8,46 1469 38
Power supply Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity	kW I/h kPa C(2) kW I/h kPa kW kW	1 L 6,50 570 12 3,32 561 12 3,22 2,56	2 M 8,10 710 18 4,03 699 18 3,90 3,17	3 H 10,000 877 26 4,97 863 26 4,65 3,92	3,57 621 14 3,95 2,78	2 M 9 9,15 802 21 7 4,55 790 20 5 4,80 3 3,43 6 825	3 H 11,5 1008 31 5,72 993 31 5,67 4,12	L	2 M 9,80 860 24 4,87 846 24 4,89 3,76	3 H 11,00 964 29 5,47 950 29 5,50 4,30	9,10 798 10 4,52 786 10 4,27 3,20	2 M 11,30 991 15 5,62 975 14 5,34 4,05	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72	9,80 859 22 4,87 846 22 4,84 3,72	2 M 10,88 9477 277 5,332 26 5,660 4,4.4.	000 12, 17 100 3 3 3 3 3 3 3 3 3 3 3 4, 4 100	1 000 111 52 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 L	2 M M 22,35 0083 220 55,14 20 55,29 4,83	H 14,00 1227 25 6,96 1209 25 6,91 5,36	10,777 945 12 5,35 930 12 4,29 2,97	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78	3 H 15,11 1328 22 7,533 1307 22 6,911 5,68	3 98 16 5,5 7 96 15 5,7 8 3,8	1220 14, M 220 14, 157 7, 7, 167 7, 177 7,	2	H H 5500 5500 5500 476 476 476 5500 470 5500 470 5500 470 5500 470 5500 470 5500 470 5500 470 5500 470 5500 470 5500 470 5500 470	1 L 12,53 1101 22 6,24 1084 22 5,69 4,42	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34	3 H 17,02 1493 38 8,466 1469 38 7,62 5,53
Power supply Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side	kW I/h kPa I (2) kW I/h kPa kW kW I/h	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800	631 14 3,57 621 14 3,99 2,78 595	2 M 9 9,15 802 21 7 4,55 790 20 5 4,80 3 3,43 6 825	3 H 11,5 1008 31 5,772 993 31 5,677 4,12	L 0 8,10 3 710 17 4,03 699 16 3,92 2,99 675	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841	3 H 11,000 964 29 5,47 950 29 5,50 4,30 946	9,10 798 10 4,52 786 10 4,27 3,20 734	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056	9,80 859 22 4,87 846 22 4,84 3,72 833	FCZ8 2 M 10,8 947 27 5,33 932 26 5,66 4,44 974	000 12, 17 100 3 3 3 3 3 3 3 3 3 3 3 4, 4 100	1 000 111 52 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 L 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 M M 22,35 083 20 55,14 066 20 55,29 44,83 082	H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189	10,777 945 12 5,35 930 12 4,29 2,97 738	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860	3 H 15,1-1 1328 22 7,53 1307 22 6,91 5,68	3 98 16 5,5 7 96 15 5,7 8 3,8 9 99	1220 14, M 220 14, 157 7, 7, 167 7, 177 7,	2	H 77,10 77,1	1 L 12,53 1101 22 6,24 1084 22 5,69 4,42 979	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 1183	3 H 17,02 1493 38 8,469 1469 38 7,62 5,53
Power supply Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C Heating capacity Water flow rate system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side	kW I/h kPa I (2) kW I/h kPa kW kW I/h	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800	631 14 3,57 621 14 3,99 2,78 595	2 M 9 9,15 802 21 7 4,55 790 20 5 4,80 3 3,43 6 825	3 H 11,5 1008 31 5,772 993 31 5,677 4,12	L 0 8,10 3 710 17 4,03 699 16 3,92 2,99 675	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841	3 H 11,000 964 29 5,47 950 29 5,50 4,30 946	9,10 798 10 4,52 786 10 4,27 3,20 734	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056	9,80 859 22 4,87 846 22 4,84 3,72 833 20	FCZ8 2 M 10,8 947 27 5,33 932 26 5,66 4,44 974	00 13 14 17 10 10 10 10 10 10 10 10 10 10	1 000 111 52 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 L 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 M M 22,35 083 20 55,14 066 20 55,29 44,83 082	H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189	10,777 945 12 5,35 930 12 4,29 2,97 738	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860	3 H 15,1-1 1328 22 7,53 1307 22 6,91 5,68	3 98 16 5,5 7 96 15 5,7 8 3,8 9 99	1220 14, M 220 14, 157 7, 7, 167 7, 177 7,	2	H 77,10 77,1	1 L 12,53 1101 22 6,24 1084 22 5,69 4,42 979	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 1183	3 H 17,02 1493 38 8,466 1469 38 7,62 5,53
Power supply Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C Heating capacity Water flow rate system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type	kW I/h kPa I (2) kW I/h kPa kW kW I/h kPa	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800	631 14 3,57 621 14 3,99 2,78 595	2 M 9 9,15 802 21 7 4,55 790 20 5 4,80 3 3,43 6 825	3 H 11,5 1008 31 5,772 993 31 5,677 4,12	L 0 8,10 3 710 17 4,03 699 16 3,92 2,99 675	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841	3 H 11,000 964 29 5,47 950 29 5,50 4,30 946	9,10 798 10 4,52 786 10 4,27 3,20 734	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056	9,80 859 22 4,87 846 22 4,84 3,72 833 20	FCZ8 2 M 10,8 947 27 5,33 932 26 - 5,660 974 26	00 13 14 17 10 10 10 10 10 10 10 10 10 10	1000 111 52 9 2 1 10 52, 1 10 52, 1 10 52, 1 10 53, 1 10 54, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 L 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 M M 22,35 083 20 55,14 066 20 55,29 44,83 082	H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189	10,777 945 12 5,35 930 12 4,29 2,97 738	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860	3 H 15,1-1 1328 22 7,53 1307 22 6,91 5,68	3 98 16 5,5 7 96 15 5,7 8 3,8 9 99	1220 14, M 220 14, 157 7, 7, 167 7, 177 7,	2	H 77,10 77,1	1 L 12,53 1101 22 6,24 1084 22 5,69 4,42 979	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 1183	3 H 17,02 1493 38 8,466 1469 38 7,62 5,53
Power supply Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C Heating capacity Water flow rate system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor	kW I/h kPa I (2) kW I/h kPa kW I/h kPa type	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800	631 14 3,57 621 14 3,99 2,78 595	2 M 9 9,15 802 21 7 4,55 790 20 5 4,80 3 3,43 6 825	3 H 11,5 1008 31 5,772 993 31 5,677 4,12	L 0 8,10 3 710 17 4,03 699 16 3,92 2,99 675	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841	3 H 11,000 964 29 5,47 950 29 5,50 4,30 946	9,10 798 10 4,52 786 10 4,27 3,20 734	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056	9,80 859 22 4,87 846 22 4,84 3,72 833 20	FCZ8 2 M 10,88 947 27 27 5,33 26 5,66 4,44 26 Centrifit	00 3 12, 7 10 3 3 7 5,5 2 100 3 3 3 6 6 6, 7 100 3 3 100 3 1	1000 111 52 9 2 1 10 52, 1 10 52, 1 10 52, 1 10 53, 1 10 54, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 L 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 M M 22,35 083 20 55,14 066 20 55,29 44,83 082	H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189	10,777 945 12 5,35 930 12 4,29 2,97 738	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860	3 H 15,1-1 1328 22 7,53 1307 22 6,91 5,68	3 98 16 5,5 7 96 15 5,7 8 3,8 9 99	1220 14, M 220 14, 157 7, 7, 167 7, 177 7,	2	H 77,10 77,1	1 L 12,53 1101 22 6,24 1084 22 5,69 4,42 979	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 1183	3 H 17,02 1493 38 8,466 1469 38 7,62 5,53
Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating capacity Water flow rate system side Heating performance 45 °C / 40 °C Heating capacity Water flow rate system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number	kW I/h kPa (2) kW I/h kPa kW I/h kPa type type no.	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800 26	631 14 3,57 621 14 3,99 2,78 595 15	2 M 9 9,15 802 21 7 4,55 790 20 20 3 3,43 3 3,43	3 H 11,5 1008 31 5,72 993 31 5,67 4,12 975 28	L 4,03 699 16 3,92 2,99 675 16	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946 30	9,10 798 10 4,52 786 10 4,27 3,20 734	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14	3 H 12,500 1096 18 6,21 1079 18 6,14 4,72 1056 18	9,800 859 22 4,87 846 22 4,84 3,72 833 20	FCZ8 2 M 10,8 947 27 27 26 5,3(3) 932 26 Centrifit	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 000 111 000 111 000 117 5,2 9 100 5,336 9 100 5,333 4,49 9 100 11	1 L	2 M 2,35 083 20 5,14 0066 20 5,29 4,83 082 20	H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189 23	1 L 10,777 945 12 5,35 930 12 4,29 2,97 738 10	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860 12	3 H 15,1-1328 22 7,53 1307 22 6,91 5,68 1189 22	5,5 5,7 96 15 5,7 5,7 15 5,7 15	120 14, M 220 14, 22 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	2	H 5500 5500 476 533 33 33 33 33 33 33 33 33 33 33 33 33	1 L 12,53 11101 22 6,24 1084 22 5,69 4,42 979 22	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 1183 31	3 H 17,02 1493 38 8,46 1469 38 7,62 5,53 1311 36
Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating capacity Water flow rate system side Heating performance 45 °C / 40 °C Heating capacity Water flow rate system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate	kW I/h kPa (2) kW I/h kPa kW I/h kPa type type no.	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800	631 14 3,57 621 14 3,99 2,78 595	2 M 9 9,15 802 21 7 4,55 790 20 20 5 4,803 3 3,43 3 3 3 720	3 H 11,5 1008 31 5,772 993 31 5,677 4,12	L 4,03 699 16 3,92 2,99 675 16	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946 30	9,10 798 10 4,52 786 10 4,27 3,20 734 10	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056	9,800 859 22 4,87 846 22 4,84 3,72 833 20	2 M 10,88 947 27 27 26 5,66 4,44 974 26 Centrifit	00 3 12,7 100 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 000 111 000 111 977 5, 977 5, 977 5, 100 5, 110 5, 1333 4, 149 9, 100 11	1 L	2 M M 2,35 0083 20 5,14 0066 20 5,29 4,83 0082 20	H 14,00 1227 25 6,96 1209 25 6,91 1300	1 L 10,777 945 12 5,35 930 12 4,29 2,97 738 10	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860 12	3 H 15,1-1328 22 7,53 1307 22 6,91 5,68 1189 22	5,57 98 16 5,57 96 19 5,77 96 19 19 19 19	120 14, 120 14, 120 14, 120 14, 120 15 15 15 15 15 15 15 15 15 15 15 15 15	2 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	H 77,10 5500 333 33,50 476 333 479 330 1440	1 L 12,53 11101 22 6,24 1084 22 5,69 4,42 979 22	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 1183 3 1120	3 H 17,00 1493 38 8,46 1469 38 7,62 5,53 1311 36
Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C Heating capacity Water flow rate system side Pressure drop system side Cooling capacity Water flow rate system side Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fran Type Fan motor Number Air flow rate Input power	kW I/h kPa (2) kW I/h kPa kW I/h kPa type type no. m³/h	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800 26	3,57 621 14 3,99 2,78 595 15	2 M M 802 21 77 4,555 7900 20 20 21 3 3 3 3 720 60	3 H 11,5 1008 31 5,72 993 31 5,67 4,12 28	L 4,03 8,100 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24	3 H 11,000 964 29 5,47 950 29 5,50 4,30 946 30	9,10 798 10 4,52 786 10 4,27 3,20 734 10	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14	3 H 12,500 1096 18 6,21 1079 18 6,14 4,72 1056 18	9,80 859 22 4,87 846 22 4,84 3,72 833 20 (C As	FCZ8 2 M 10,84 947 27 27 26 26 Centrific synchron 3 112 100	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1000 111 1000 111 1000 121 1000 1	1 L L	2 M 2,35 083 20 5,14 066 20 5,29 4,83 082 20	H 14,00 1227 25 6,96 1209 25 6,91 1300 131	1 L 10,777 945 12 5,35 930 12 4,29 2,97 738 10	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860 12 3 930 80	3 H 15,1-1328 22 7,53 1300 22 6,91 5,68 1189 22	5,5,5 5,7,7 96 119 5,7,7 96 129 5,7,7 96 159 159 159 159 159 159 159 159 159 159	220 14, M 220 14, 22 12 2 12 2 12 2 12 2 12 2 12 2 12 2	2 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	H 77,10 5500 333 33 8,50 476 333 4476 333 4479 330 140 106	1 L L 12,53 11001 22 6,24 1084 22 25,69 4,42 979 22 900 80	2 M 115,24 1337 32 7,58 1316 6,88 5,34 1183 31 1120 100	3 H 17,0. 1493 38 8,466 38 7,62 5,53 1311 36
Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating capacity Water flow rate system side Heating capacity Water flow rate system side Cooling capacity Water flow rate system side Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fran Type Fan motor Number Air flow rate Input power Electrical wiring	kW I/h kPa (2) kW I/h kPa kW I/h kPa type type no. m³/h	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800 26	631 14 3,57 621 14 3,99 2,78 595 15	2 M M 802 21 7 4,555 790 20 20 5 4,800 3 3,43 3 3,43 3 3 3 3 3 3 3 3 3 3 3 3 3	3 H 11,5 1008 31 5,72 993 31 5,67 4,12 975 28	L 4,03 8,100 17 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946 30	9,10 798 10 4,52 786 10 4,27 3,20 734 10	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14	3 H 12,500 1096 18 6,21 1079 18 6,14 4,72 1056 18	9,80 859 22 4,87 846 22 4,84 3,72 833 20	2 M 10,88 947 27 27 26 5,66 4,44 974 26 Centrifit	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1000 111 1000 111 1000 121 1000 1	1 L L	2 M M 2,35 0083 20 5,14 0066 20 5,29 4,83 0082 20	H 14,00 1227 25 6,96 1209 25 6,91 1300	1 L 10,777 945 12 5,35 930 12 4,29 2,97 738 10	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860 12	3 H 15,1-1328 22 7,53 1307 22 6,91 5,68 1189 22	5,57 98 16 5,57 96 19 5,77 96 19 19 19 19	220 14, M 220 14, 22 12 2 12 2 12 2 12 2 12 2 12 2 12 2	2 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	H 77,10 5500 333 33,50 476 333 479 330 1440	1 L 12,53 11101 22 6,24 11084 22 5,69 4,42 979 22	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 1183 3 1120	3 H 17,00 149 38 8,46 146 38 7,62 5,53 131 36
Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating capacity Water flow rate system side Heating capacity Water flow rate system side Cooling capacity Water flow rate system side Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fran Type Fan motor Number Air flow rate Input power Electrical wiring Fan coil sound data (3)	kW I/h kPa (2) kW I/h kPa kW I/h kPa type type no. m³/h W	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14	2 M 8,10 710 18 4,03 699 18 3,17 671 19 3 720 60 V2	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800 26	3,57 621 14 3,99 2,78 595 15	2 M M 9,15 802 21 21 21 20 20 20 20 20 21 3 3 3,43 3 825 21 3 3 4 720 60 V2	3 H 11,5 1008 31 5,72 993 31 5,67 4,12 975 28 920 91 V3	10 8,100 8,700 17 17 17 14,03 699 16 16 16 17 16 16 16 17 16 16 16 17 16 16 16 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24 3 930 V2	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946 30	9,10 798 10 4,52 786 10 4,27 3,20 734 10	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14	3 H 10, 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18	9,80 859 22 4,87 846 22 4,84 3,72 833 20 (As	FCZ8 2 M 10,8 947 27 27 26 26 5,660 4,44 26 Centrifit 3 112 100 V2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1	1 L L	2 M 2,35 083 20 20 5,14 066 220 5,29 4,83 082 20 3 1120 1000 V2	H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189 23 1300 131 V3	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 12 3 930 80 V2	3 H 15,1-1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 106 V3	5,5,7 96 15 5,7,7 96 15 5,7,7 96 15 15 15 15 15 15 15 15 15 15 15 15 15	7 A A A A A A A A A A A A A A A A A A A	2	H 77,10 5000 333 33,500 4476 333 4479 330 1440 1066 V3	1 L 12,53 1101 22 6,24 1084 22 5,69 4,42 979 22 900 80 V1	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 11183 31 1120 100 V2	3 H 17,00 1499 38 8,466 38 7,62 5,53 1311 36
Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating capacity Water flow rate system side Heating capacity Water flow rate system side Cooling capacity Water flow rate system side Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fran Type Fan motor Number Air flow rate Input power Electrical wiring Fan coil sound data (3) Sound power level	kW I/h kPa C (2) kW I/h kPa W I/h kPa type type no. m³/h W	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 520 38 V1	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 3 720 60 V2	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800 26 920 91 V3	631 14 3,57 621 14 3,99 2,78 599 15	2 M M 9,15 802 21 7 4,55 790 20 20 5 4,80 3 3,43 825 21 3 1 720 60 V2	3 H 11,5 1008 31 5,72 993 31 5,67 28 920 91 V3	8,100 8,100 8,710 17 4,03 699 16 3,92 2,99 675 16 700 59 V1	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24 3 930 V2	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946 30 1140 V3	9,10 798 10 4,52 786 10 4,27 3,20 734 10 700 59 V1	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14 3 930 80 V2	3 H 10 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18 1140 V3	9,80 859 22 4,87 846 22 4,84 3,72 833 20 (As	FCZ8 2 M 10,88 947 27 27 26 5,66 4,4.4 26 Centrification of the control of the co	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1000 111 1000 112 1000 1	1 L	2 M M 2,35 083 20 55,14 066 220 3 3 1120 1000 V2	H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189 23 1300 131 V3	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 700 59 V1	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860 12 3 930 80 V2	3 H 15,11 1328 22 7,53 1307 22 6,91 5,68 1189 22 1144 106 V3	5,5,5,7 966 15 5,7 966 15 15 15 15 15 15 15 15 15 15 15 15 15	20 14, 14, 16, 17, 17, 17, 17, 17, 17, 17, 17	2	H 77,10 5000 333 333 333 333 333 333 333 333 3	1 L 1 12,53 11101 22 6,24 1084 22 5,69 4,42 979 22 900 80 V1	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 11183 31 1120 100 V2	3 H 17,00 1493 38 8,46 38 7,62 5,53 1311 36 1300 1311 V3
Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating capacity Water flow rate system side Heating capacity Water flow rate system side Cooling capacity Water flow rate system side Cooling capacity Sensible cooling capacity Water flow rate system side Fressure drop syste	kW I/h kPa C (2) kW I/h kPa W I/h kPa type type no. m³/h W	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 520 38 V1	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 3 720 60 V2	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800 26 920 91 V3	631 14 3,57 621 14 3,99 2,78 599 15	2 M M 9,15 802 21 21 21 20 20 20 20 20 21 3 3 3,43 3 825 21 3 3 4 720 60 V2	3 H 11,5 1008 31 5,72 993 31 5,67 28 920 91 V3	8,100 8,100 8,710 17 4,03 699 16 3,92 2,99 675 16 700 59 V1	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24 3 930 V2	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946 30	9,10 798 10 4,52 786 10 4,27 3,20 734 10 700 59 V1	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14 3 930 80 V2	3 H 10, 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18	9,80 859 22 4,87 846 22 4,84 3,72 833 20 (As	FCZ8 2 M 10,8 947 27 27 26 26 5,660 4,44 26 Centrifit 3 112 100 V2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1000 111 1000 112 1000 1	1 L	2 M M 2,35 083 20 55,14 066 220 3 3 1120 1000 V2	H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189 23 1300 131 V3	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860 12 3 930 80 V2	3 H 15,11 1328 22 7,53 1307 22 6,91 5,68 1189 22 1144 106 V3	5,5,5,7 966 15 5,7 966 15 15 15 15 15 15 15 15 15 15 15 15 15	20 14, 14, 16, 17, 17, 17, 17, 17, 17, 17, 17	2	H 77,10 5000 333 333 333 333 333 333 333 333 3	1 L 12,53 1101 22 6,24 1084 22 5,69 4,42 979 22 900 80 V1	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 11183 31 1120 100 V2	3 H 17,00 1499 38 8,46 1466 38 7,62 5,53 1311 36 1300 1311 V3
Power supply Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating capacity Water flow rate system side Heating capacity Water flow rate system side Cooling performance 45 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fressure drop system side Fran Type Fan motor Number Air flow rate Input power Electrical wiring Fan coil sound data (3) Sound power level Sound pressure level Diametre hydraulic fittings	kW I/h kPa C (2) kW I/h kPa W I/h kPa type type no. m³/h W dB(A) dB(A)	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 520 38 V1	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 3 720 60 V2	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800 26 920 91 V3	631 14 3,57 621 14 3,99 2,78 599 15	2 M M 9,15 802 21 7 4,55 790 20 20 5 4,80 3 3,43 825 21 3 1 720 60 V2	3 H 11,5 1008 31 5,72 993 31 5,67 28 920 91 V3	8,100 8,100 8,710 17 4,03 699 16 3,92 2,99 675 16 700 59 V1	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24 3 930 V2	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946 30 1140 V3	9,10 798 10 4,52 786 10 4,27 3,20 734 10 700 59 V1	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14 3 930 80 V2	3 H 10 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18 1140 V3	9,80 859 22 4,87 846 22 4,84 3,72 833 20 (As	FCZ8 2 M 10,88 947 27 5,33 932 26 5,66 4,43 974 26 Centrifit 100 V2	3 12, 7 100 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1000 111 1000 112 1000 1	1 L	2 M M 2,35 083 20 55,14 066 220 3 3 1120 1000 V2	H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189 23 1300 131 V3	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 700 59 V1	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860 12 3 930 80 V2	3 H 15,11 1328 22 7,53 1307 22 6,91 5,68 1189 22 1144 106 V3	5,5,5,7 966 15 5,7 966 15 15 15 15 15 15 15 15 15 15 15 15 15	20 14, 14, 16, 17, 17, 17, 17, 17, 17, 17, 17	2	H 77,10 5000 333 333 333 333 333 333 333 333 3	1 L 1 12,53 11101 22 6,24 1084 22 5,69 4,42 979 22 900 80 V1	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 11183 31 1120 100 V2	3 H 17,00 1499 38 8,46 1466 38 7,62 5,53 1311 36 1300 1311 V3
Power supply Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating capacity Water flow rate system side Pressure drop system side Cooling capacity Water flow rate system side Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fressure drop system sid	kW I/h kPa C (2) kW I/h kPa W I/h kPa type type no. m³/h W	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 520 38 V1	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 3 720 60 V2	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800 26 920 91 V3	631 14 3,57 621 14 3,99 2,78 599 15	2 M M 9,15 802 21 7 4,55 790 20 20 5 4,80 3 3,43 825 21 3 1 720 60 V2	3 H 11,5 1008 31 5,72 993 31 5,67 28 920 91 V3	8,100 8,100 8,710 17 4,03 699 16 3,92 2,99 675 16 700 59 V1	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24 3 930 V2	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946 30 1140 V3	9,10 798 10 4,52 786 10 4,27 3,20 734 10 700 59 V1	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14 3 930 80 V2	3 H 10 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18 1140 V3	9,80 859 22 4,87 846 22 4,84 3,72 833 20 (As	FCZ8 2 M 10,88 947 27 27 26 5,66 4,4.4 26 Centrification of the control of the co	3 12, 7 100 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1000 111 1000 112 1000 1	1 L	2 M 2,35 083 20 55,14 066 220 55,29 14,83 082 20 3 1120 V2	H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189 23 1300 131 V3	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 700 59 V1	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860 12 3 930 80 V2	3 H 15,11 1328 22 7,53 1307 22 6,91 5,68 1189 22 1144 106 V3	5,5,5,7 966 15 5,7 966 15 15 15 15 15 15 15 15 15 15 15 15 15	7	2	H 77,10 5000 333 333 333 333 333 333 333 333 3	1 L 12,53 11101 22 6,24 1084 22 5,69 4,42 979 22 900 80 V1	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 11183 31 1120 100 V2	3 H 17,00 1493 38 8,46 38 7,62 5,53 1311 36 1300 1311 V3
Heating performance 70 °C / 60 °C Heating capacity Water flow rate system side Pressure drop system side Heating capacity Water flow rate system side Heating capacity Water flow rate system side Pressure drop system side Cooling capacity Water flow rate system side Cooling capacity Water flow rate system side Pressure drop system side Fran rotor Number Air flow rate Input power Electrical wiring Fan coil sound data (3) Sound power level Sound pressure level Diametre hydraulic fittings	kW I/h kPa C (2) kW I/h kPa W I/h kPa type type no. m³/h W dB(A) dB(A)	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 520 38 V1	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 3 720 60 V2	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800 26 920 91 V3	631 14 3,57 621 14 3,99 2,78 599 15	2 M M 9,15 802 21 7 4,55 790 20 20 5 4,80 3 3,43 825 21 3 1 720 60 V2	3 H 11,5 1008 31 5,72 993 31 5,67 28 920 91 V3	8,100 8,100 8,710 17 4,03 699 16 3,92 2,99 675 16 700 59 V1	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24 3 930 V2	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946 30 1140 V3	9,10 798 10 4,52 786 10 4,27 3,20 734 10 700 59 V1	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14 3 930 80 V2	3 H 10 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18 1140 V3	9,800 859 22 4,87 846 22 4,84 3,72 833 20 (As 900 80 V1	FCZ8 2 M 10,88 947 27 5,33 932 26 5,66 4,43 974 26 Centrifit 100 V2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1000 111 1000 112 1000 1	1 L	2 M 2,35 083 20 55,14 066 220 55,29 14,83 082 20 3 1120 V2	H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189 23 1300 131 V3	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 700 59 V1	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860 12 3 930 80 V2	3 H 15,11 1328 22 7,53 1307 22 6,91 5,68 1189 22 1144 106 V3	5,5,5,7 966 15 5,7 966 15 15 15 15 15 15 15 15 15 15 15 15 15	7	2	H 77,10 5000 333 333 333 333 333 333 333 333 3	1 L 12,53 11101 22 6,24 1084 22 5,69 4,42 979 22 900 80 V1	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 11183 31 1120 100 V2	3 H 17,02 1493 38 8,466 1469 38 7,62 5,53 1311 36


⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.


4-pipe


		ı	FCZ10	1	ı	FCZ20	1		CZ30	1		FCZ40	1		FCZ50	1		FCZ60	1	-	FCZ70	1		FCZ80	1	ı	FCZ90	1	F	CZ100	1
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 65 °C / 55 °C	C (1)																														
Heating capacity	kW	0,75	1,01	1,17	1,02	1,35	1,60	1,80	2,18	2,56	2,21	2,65	3,12	2,59	3,34	3,73	2,96	3,67	4,36	3,66	4,29	4,94	4,20	4,79	5,35	4,73	5,63	5,72	4,85	5,56	6,08
Water flow rate system side	l/h	65	89	102	89	118	140	158	191	224	186	232	273	227	293	327	259	321	381	320	375	437	368	419	467	414	492	501	424	487	532
Pressure drop system side	kPa	2	4	4	4	8	10	16	23	30	4	6	8	6	8	10	8	12	16	11	14	18	16	20	24	8	12	12	10	14	16
Cooling performance 7 °C / 12 °C																															
Cooling capacity	kW	0,65	0,84	1,00	0,89	1,28	1,60	1,68	2,17	2,65	2,20	2,92	3,60	2,68	3,69	4,25	3,22	3,90	4,65	3,92	4,89	5,50	4,84	5,66	6,10	4,29	5,00	6,91	5,69	6,88	7,62
Sensible cooling capacity	kW	0,51	0,69	0,83	0,71	1,05	1,33	1,26	1,65	2,04	1,59	2,14	2,67	1,94	2,73	3,18	2,56	3,17	3,92	2,99	3,76	4,30	3,72	4,42	4,83	2,97	3,78	5,68	4,42	5,34	5,53
Water flow rate system side	l/h	112	144	172	153	221	275	288	374	456	379	503	619	460	634	731	554	671	800	675	841	946	833	974	1049	738	860	1189	979	1183	1311
Pressure drop system side	kPa	4	6	8	6	12	18	8	13	18	10	16	24	13	22	29	14	19	26	16	24	30	20	26	30	10	12	22	22	31	36
Fan																															
Туре	type															Centr	ifugal														
Fan motor	type															Asynch	ronou	IS													
Number	no.		1			1			2			2			2			3			3			3			3			3	
Air flow rate	m³/h	110	160	200	140	220	290	260	350	450	330	460	600	400	600	720	520	720	920	700	930	1140	900	1120	1300	700	930	1140	900	1120	1300
Input power	W	19	29	35	25	29	33	25	33	44	30	43	57	38	52	76	38	60	91	59	80	106	80	100	131	59	80	106	80	100	131
Electrical wiring		V1	V2	V3	٧1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	٧3	V1	V2	V3	٧1	V2	V3	٧1	V2	V3	٧1	V2	V3
Fan coil sound data (2)																															
Sound power level	dB(A)	31,0	38,0	45,0	35,0	46,0	51,0	34,0	41,0	48,0	37,0	44,0	51,0	42,0	51,0	56,0	42,0	51,0	57,0	50,0	57,0	62,0	56,0	61,0	66,0	51,0	57,0	62,0	56,0	61,0	66,0
Sound pressure level	dB(A)	23,0	30,0	37,0	27,0	38,0	43,0	26,0	33,0	40,0	29,0	36,0	43,0	34,0	43,0	48,0	34,0	43,0	49,0	42,0	49,0	54,0	48,0	53,0	58,0	43,0	49,0	54,0	48,0	53,0	58,0
Diametre hydraulic fittings																															
Main heat exchanger	Ø		1/2"			1/2"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"	
Secondary heat exchanger	Ø															1/	/2"														
Power supply																															
Power supply																230V	~50Hz														

(1) Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
(2) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

		FCZ100	FCZ101	FCZ102	FCZ150	FCZ200	FCZ201	FCZ202	FCZ250	FCZ300	FCZ301	FCZ302	FCZ350	FCZ400	FCZ401	FCZ402	FCZ450
Dimensions and weights																	
A	mm	486	486	486	486	486	486	486	486	486	486	486	486	486	486	486	486
В	mm	640	640	640	640	750	750	750	750	980	980	980	980	1200	1200	1200	1200
C	mm	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220
Empty weight	kg	13	14	14	14	15	15	16	16	17	18	19	19	33	23	23	24
		FCZ500	FCZ501	FCZ502	FCZ550	FCZ600	FCZ601	FCZ602	FCZ650	FCZ700	FCZ701	FCZ702	FCZ750	FCZ800	FCZ801	FCZ802	FCZ850
Dimensions and weights																	
A	mm	486	486	486	486	486	486	486	486	486	486	486	486	486	486	486	486
B	mm	1200	1200	1200	1200	1320	1320	1320	1320	1320	1320	1320	1320	1320	1320	1320	1320
U		220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220
C	mm	220															-
C Empty weight	mm kg	24	22	23	24	24	29	31	33	29	31	33	33	29	29	31	33

		FCZ900	FCZ901	FCZ950	FCZ1000	FCZ1001
Dimensions and weights						
A	mm	591	591	591	591	591
В	mm	1320	1320	1320	1320	1320
(mm	220	220	220	220	220
Empty weight	kg	34	34	34	34	34

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

FCZI

- Very quiet
- Touch controller mounted on-board. allows remote control with smart devices

Fan coil for universal and floor installation

Cooling capacity 0,65 ÷ 7,62 kW Heating capacity 1,45 ÷ 17,02 kW

DESCRIPTION

fan coil can be installed in any 2/4 pipe system and operates with any heat generator even at low temperatures, and thanks to varied versions and settings, it is easy to pick the ideal solution for any need.

FEATURES

Case

Protective metal cabinet with anti-corrosion polyester RAL 9003 paint, whereas the head with the air distribution grille is in RAL 7047 plastic.

Depending on the version, the distribution grille may be adjustable.

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low poice.

Their characteristics permit energy savings compared to conventional fans. They are statically and dynamically balanced and directly coupled to the motor shaft.

The Brushless electric motor with 0-100% continuous speed variation, which allows precise adaptation to the real demands of the internal environment without temperature fluctuations.

The air flow can be continuously changed through a 1-10 V signal, coming from adjustment and control commands Aermec or from independent adjustment systems.

This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors). The plastic augers are extractable for easy and efficient cleaning.

Finned pack heat exchanger

With copper pipes and aluminium louvers, the standard or oversized heat exchanger and the possible secondary heat exchanger have female gas water connections on the left side and the manifolds have air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Reversibility of the water connections during installation only for units with a standard or boosted main heat exchanger, or standard with BV accessory. Not reversible in all other configurations. In any case, units with the coil water connections on the right are available at the time of ordering.

Condensate drip

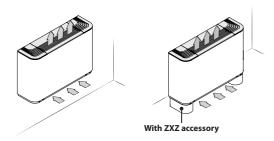
Provided standard in plastic and fixed to the interior structure; with external condensate discharge.

Air filter

Air filter class Coarse 25% for all versions easy to pull out and clean.

Versions

ACT High, with air distribution grille and electronic thermostat

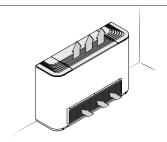

AF High, without built-in command but with front intake

AS Free standing without installed switch

U Universal, with adjustable air distribution grille but without built-in thermostat

UF Universal, with adjustable air distribution grille but without built-in thermostat and with front intake grille

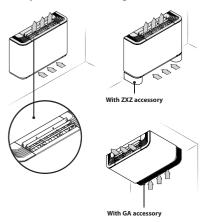
Versions with fixed grille (high cabinet)



FCZI_AS

- Compatibility with VMF system.
- Without installed switch

FCZI ACT


— With electronic thermostat for 2-pipe systems only.

FCZI_AF

- Without installed switch
- Compatibility with VMF system.
- Front intake grille.

Versions with adjustable and fixed grille (universal)



FCZI_U

- Compatibility with VMF system.
- Without installed switch

- Distribution grille with adjustable fins. Sizes 2 and 3 have a single grille, whereas sizes 4, 5, 7 and 9 have three grilles fully independent of each other. When all the louvers have closed, the unit switches off.

 — Vertical and horizontal installation for 2-pipe and 4-pipe systems.

FCZI_UF

- Compatibility with VMF system.
- Without installed switch
- Air delivery grille with adjustable louvers.
- Vertical and horizontal installation.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Field	Description
1,2,3,4	FCZI
5,6,7	Size 200, 201, 202, 250, 300, 301, 302, 350, 400, 401, 402, 450, 500, 501, 502, 550, 700, 701, 702, 750, 900, 901, 950
8	main heat exchanger
9	Secondary heat exchanger
10,11,12	Version
ACT	High, with air distribution grille and electronic thermostat
AF	High, without built-in command but with front intake
AS	Free standing without installed switch
U	Universal, with adjustable air distribution grille but without built-in thermostat
UF	Universal, with adjustable air distribution grille but without built-in thermostat and with front intake grille

SIZE AVAILABLE FOR VERSION

Size		200	201	202	250	300	301	302	350	400	401	402	450
Versions produced (by size)													
Varsians available (hy size)	AS,ACT,U	•			•	•	•	•	•	•	•	•	•
Versions available (by size)	AF,UF	•	-	-	•	•	-	-	•	•	-	-	•
		500	501	502	550	700	701	702	750	900	901	950	
Versions produced (by size)													
Varriana available (bu sine)	A,AS,U,UA	•	•	•	•	•	•	•	•	•	•	•	
Versions available (by size)	AF,UF	•	-	-		-	-	-	-		-		

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. **PRO503:** Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

T-TOUCH-I: Touch control on board the machine, for controlling fan coils with brushless motors. In 2-pipe systems, it can control standard fan coils or those equipped with an electric heater, with air purifying devices or with FCZI-D twin delivery (Dualjet). In 4-pipe systems, only standard fan coils.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualiet).

TXBI: On board thermostat for fan coils 2/4 pipes of the FCZI series with brushless motor, complete with water probe and air probe to be positioned in the dedicated housings. The thermostat in 2-pipe systems it can control standard fan coils or those equipped with electrical resistors, with purification devices (Cold Plasma and germicidal lamp) with the radiating plate or with double flow FCZI-D (Dualjet).

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF system

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, D124 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, D124 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, D124CP, is also available as a separate accessory in our catalog.

VMF-E19I: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe, it controls systems with 2 pipes, 4 pipes, 2 pipes + Cold Plasma, 2 pipes + UV lamps, 2 pipes + Heating element. Equipped with an external contact to be used as a remote ON-OFF at low voltage. By means of 2-wire serial communication, this thermostat allows for the creation of a single fan coil area (1 master + maximum 5

slaves). Compared to the previous model, thanks to a different dip switch configuration, it allows implementing new features:In systems with two pipes and a heating element - the latter can be activated as a complete replacement - allowing you to warm the environment exclusively with this accessory - Dualjet features are available in standard software and can be set via dip switch - Economy contact/presence sensor - Additional water sensor for overall control in 4-pipe systems (with VMF-SW1 accessory) - Serial RS485, ModBus RTU protocol, for centralised control - Possibility of inserting expansion boards for future developments. The VMF-E19 accessory must be therefore used in masters in the presence of multiple zones, or for communication with the chiller/heat pump - Compatibility with the VMF-IO accessory - Compatibility with VMF-LON expansion board. The thermostat is protected by a fuse.

VMF-E2Z: User interface on the fan coil, with two selectors, one for temperature and the other for speed control; to be combined with accessories VMF-E19 and VMF-E19I.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4X: A wall-mounted user interface to be combined with VMF-E19, VMF-E19I, VMF-E24 ed VMF-E24I accessories. Featuring an innovative, extremely slim and cost-effective design, it allows running functions via a capacitive touchscreen keyboard with LCD display. You can choose to adjust the environment temperature with a panel-mounted sensor probe (standard), or with the VMF-E19/E19I probe, or through mediated reading. It also enables the activation of an air purifier (Cold Plasma/ UV lamp) and a heating element. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-LON: Expansion allowing the thermostat to interface with BMS systems that use the LON protocol.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Water valves

VCZ_X: 3-way valve kit for single-coil fan coil, RH connections, (VCZ_X4R) or LH (VCZ_X4L) for 4-pipe systems. With totally separate "heating" and "cooling" circuits. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings. X4L version for fan coils with LH connections, and X4R for fan coils with RH connections. 230V~50Hz power supply.

VCZ: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCF44 - 45 - for secondary heat exchanger: The 3-way motorised valve kit for the secondary coil heat only. The kit consists of a valve with its insulating shell, actuator and relevant water fittings; it is suitable to be installed on the fan coils with right and left water connections.

VCZD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

Additional coil

BV: Hot water heat exchanger with 1 row.

Installation accessories

PCZ: Metal panel for the unit rear closing. SPCZ brackets are necessary to fix floor standing fan coils.

GA: Lower intake grille for encapsulated fan coils. Can also be used in wall-mounted or floor installations, the FIKIT accessory is needed only in the case of floor installation.

FIKIT: Structural bracket in floor installation.

DSCZ4: Condensate drainage device.

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing.

AMP: Wall mounting kit

ZXZ: Pair of stylish and structural feet.

ACCESSORIES COMPATIBILITY

Control panels

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
AEDEARID (1)	AF,UF	•			•	•			•	•			•
AER503IR (1)	AS,U	•	•	•	•		•	•		•	•	•	•
מחטרמים	AF,UF												
PR0503	AS,U	•	•	•	•	•	•	•		•	•	•	•
CAE (2)	AF,UF	•			•	•			•	•			•
SA5 (2)	AS,U	•	•	•	•			•		•			•
CM3 /3)	AF,UF	•			•	•				•			•
SW3 (2)	AS,U							•					
CML (3)	AF,UF	•			•	•				•			•
SW5 (2)	AS,U	•	•	•	•	•		•		•			•
T TOUCH I	AF,UF	•			•	•			•	•			
T-TOUCH-I	AS,U	•	•	•	•	•		•	•	•		•	
TV (2)	AF,UF	•			•								
TX (3)	AS,U		•										
TVDL (4)	AF,UF												
TXBI (4)	AS,U	•	•	•	•	•	•	•	•	•	•	•	•
Model	Ver	500	501	502	550	700	701		702	750	900	901	950
	AF,UF				•						•		
AER503IR (1)	AS,U												
						•	•		•	•	•	•	•
	AF,UF				•	•	•		•	•	•	•	•
PR0503	AF,UF AS,U	•		•			•		•			•	
	AS,U		•		•	•				•	•		•
	AS,U AF,UF	•	•		•	•				•	•		•
SA5 (2)	AS,U AF,UF AS,U	•		•	•	•	•		•	•	•	•	•
	AS,U AF,UF AS,U AF,UF	•		•	•	•	•		•	•	•	•	
SA5 (2) SW3 (2)	AS,U AF,UF AS,U AF,UF AS,U	•	•	•	•	•					•	•	•
SA5 (2) SW3 (2)	AS,U AF,UF AS,U AF,UF		•	•	•	•						•	
SA5 (2) SW3 (2) SW5 (2)	AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U		•	•		•	•						
SA5 (2) SW3 (2)	AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF		•	•		•	•						
SA5 (2) SW3 (2) SW5 (2) T-TOUCH-I	AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U		•	•		•	•						
SA5 (2) SW3 (2) SW5 (2) T-TOUCH-I	AS,U AF,UF		•	•		•	•						
SA5 (2) SW3 (2) SW5 (2)	AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U												

VMF system

For more information about VMF system, refer to the dedicated documentation.

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
DI24	AF,UF	•			•	•			•	•			•
DI24	AS,U	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E19I (1)	AF,UF	•			•	•			•	•			•
VIVIF-E191(1)	AS,U	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E2Z	AF,UF	•			•	•			•	•			•
VIVIF-LZZ	AS,U	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E3	AF,UF	•			•	•			•	•			•
VIVIF-LD	AS,U	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E4X	AF,UF	•			•	•			•	•			•
VIVIF-L4A	AS,U	•	•	•	•	•	•	•	•	•	•	•	•
VMF-IO	AF,UF	•			•	•			•				•
VIVIT-IU	AS,U	•	•	•	•	•	•	•	•	•	•	•	•
VMF-IR	AF,UF	•			•	•			•	•			•
VIVIT-IN	AS,U	•	•	•	•	•	•	•	•	•	•	•	•
VMF-LON	AF,UF	•			•	•			•	•			•
VIVIT-LUIV	AS,U	•	•	•	•	•	•	•	•		•	•	•
VMF-SW	AF,UF	•			•	•			•	•			•
VVC-JIVIV	AS,U	•	•	•	•	•	•	•	•		•	•	•
VMF-SW1	AF,UF	•			•	•			•	•			•
I MC-JIM	AS,U	•	•					•	•		•		

Wall-mount installation.
 Probe for AERSO3IR-TX thermostats, if fitted.
 Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.
 Installation on the fan coil.

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
VAAUU	AF,UF	•				•			•	•			•
VMHI	AS,U	•	•	•	•	•	•	•	•	•	•	•	•
Model	Ver	500	501	502	550	700	701		702	750	900	901	950
DI24	AF,UF	•			•	•				•	•		•
VI24	AS,U	•	•	•	•	•	•		•	•	•	•	•
VMF-E19I (1)	AF,UF	•			•						•		•
VIVIF-E191 (1)	AS,U	•		•	•	•	•		•	•	•	•	•
VMF-E2Z	AF,UF	•			•						•		•
VIVIF-EZZ	AS,U	•	•	•	•	•	•		•	•	•	•	•
VMF-E3	AF,UF	•			•	•				•	•		•
VIVIT-E3	AS,U	•	•	•	•	•	•		•	•	•	•	•
VMF-E4X	AF,UF	•			•						•		•
VIVIT-L4A	AS,U	•	•	•	•	•	•		•	•	•	•	•
VMF-IO	AF,UF	•			•						•		•
VIVIT-IU	AS,U	•	•	•	•	•			•	•	•	•	•
VMF-IR	AF,UF	•			•	•				•	•		•
VIVIT-IK	AS,U	•	•	•	•	•			•	•	•	•	•
VMF-LON	AF,UF	•			•						•		•
VIVIT-LOIV	AS,U	•	•	•	•	•			•	•	•	•	•
VMF-SW	AF,UF	•			•						•		•
VIVIT-3VV	AS,U	•	•		•	•			•	•	•	•	•
VMF-SW1	AF,UF	•			•						•		•
I WC-JIVIV	AS,U	•			•				•	•	•	•	•
VMHI	AF,UF				•						•		•
AIMILI	AS,U	•	•		•	•			•		•	•	

(1) Mandatory accessory.

Water valves

3 way valve kit

	200	201	202	250	300	301	302	350	400	401	402	450
Main coil	VCZ41	VCZ41	VCZ41	VCZ41	VCZ42							
Maiii Coii	VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4224							
Commission will		VCF44	VCF44			VCF44	VCF44			VCF44	VCF44	
Secondary coil	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-
A .l.	VCF44				VCF44				VCF44			
Additional coil "BV"	VCF4424	-		-	VCF4424		-	-	VCF4424	-	-	
	500	501	502	550	700	701	702	750	900	901	950	
Made and	VCZ42	VCZ43	VCZ43	VCZ43								
Main coil	VCZ4224	VCZ4324	VCZ4324	VCZ4324								
C		VCF44	VCF44			VCF44	VCF44			VCF45		
Secondary coil	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-	-	VCF4524	-	
Additional sail //DV//	VCF44				VCF44				VCF45			
Additional coil "BV"	VCF4424	-	-	-	VCF4424	-	-	-	VCF4524	-	-	

VCZ41 - 42 - 43; VCF44 - 45 (230V~50Hz) VCZ4124 - 4224 - 4324; VCF4224 - 4524 (24V)

2 way valve kit

2 way valve kit												
	200	201	202	250	300	301	302	350	400	401	402	450
Main sail	VCZD1	VCZD1	VCZD1	VCZD1	VCZD2							
Main coil	VCZD124	VCZD124	VCZD124	VCZD124	VCZD224							
Ca and dame and		VCFD4	VCFD4			VCFD4	VCFD4			VCFD4	VCFD4	
Secondary coil	-	VCFD424	VCFD424	-	-	VCFD424	VCFD424	-	-	VCFD424	VCFD424	-
Additional cail //DV//	VCFD4				VCFD4				VCFD4			
Additional coil "BV"	VCFD424	-	-	-	VCFD424	-	-	-	VCFD424	-	-	-
	500	501	502	550	700	701	702	750	900	901	950	
Main coil	VCZD2	VCZD3	VCZD3	VCZD3								
Main coil	VCZD224	VCZD324	VCZD324	VCZD324								
Carandami sail		VCFD4	VCFD4			VCFD4	VCFD4		-	VCFD4	-	
Secondary coil	-	VCFD424	VCFD424	-	-	VCFD424	VCFD424	-	-	VCFD424	-	
A J J L L L L L L L L L L L L L L L L L	VCFD4				VCFD4				VCFD4			
Additional coil "BV"	VCFD424	-	-	-	VCFD424	-	-	-	VCFD424	-	-	

VCZD1 - 2 - 3; VCFD4 (230V~50Hz) VCZD124 - 224 - 324; VCFD424 (24V)

Valve Kit for 4 pipe systems

	p /												
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
VCZ1X4L (1)	AF,AS,U,UF	•			•								
VCZ1X4R (1)	AF,AS,U,UF				•								
VCZ2X4L (1)	AF,AS,U,UF					•			•	•			•
VCZ2X4R (1)	AF,AS,U,UF												•

Model	Ver	500	501	502	550	700	701	702	750	900	901	950
VC73V4L (1)	AF,UF	•			•							
VCZ2X4L (1)	AS,U	•			•	•			•			
VC72V4D (1)	AF,UF	•										
VCZ2X4R (1)	AS,U	•			•	•						
VCZ3X4L (1)	AF,AS,U,UF									•		•
VCZ3X4R (1)	AF,AS,U,UF											

 $(1) \ \ The valves can be combined with the units if there is a control panel for managing them.$

Combined Adjustment and Balancing Valve Kit

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
VIDOCO (1)	ACT,AS,U	•	•	•	•	•	•	•	•				
VJP060 (1)	AF,UF					•					-		
VIDOCOM (2)	ACT,AS,U	•	•	•			•	•	•				
VJP060M (2)	AF,UF										-		
VID000 (1)	ACT,AS,U										•		
VJP090 (1)	AF,UF									•			
VIDOCOM (2)	ACT,AS,U										•		•
VJP090M (2)	AF,UF									•			
Model	Ver	500	501	502	550	700	7(01	702	750	900	901	950
//D000 /1\	ACT,AS,U	•	•	•									
VJP090 (1)	AF,UF	•			•								
VIDOCOM (2)	ACT,AS,U	•	•	•	•								
VJP090M (2)	AF,UF	•			•								
VID150 (1)	ACT,AS,U					•		•			•	•	•
VJP150 (1)	AF,UF										•		
	ΛI,UI												
VJP150M (2)	ACT,AS,U					•		•	•	•	•	•	•

(1) 230V~50Hz (2) 24V

(Heating only) additional coil

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
BV122 (1)	ACT,AF,AS,U,UF	•											
BV132 (1)	ACT, AF, AS, U, UF					•							
BV142 (1)	ACT,AF,AS,U,UF									•			
					_								
Model	Ver	500	501	502	550	700	701		702	750	900	901	950
Model BV142 (1)	Ver ACT,AF,AS,U,UF	500	501	502	550	700	701		702	750	900	901	950
		500	501	502	550	700	701		702	750	900	901	950

(1) Not available for sizes with oversized main coil.

Installation accessories

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
AMP20	U	•	•		•		•	•		•			•
AMPZ	U	•	•	•	•		•	•	•	•	•	•	
Model	Ver	500	501	502	550	700	7	01	702	750	900	901	950
AMP20	U	•	•	•	•								
AMPZ	U	•	•	•	•	•			•	•	•	•	•
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
DCC74 (1)	ACT,AS,U	•	•	•	•	•	•	•	•	•	•	•	•
DSCZ4 (1)	AF,UF	•			•	•			•	•			•
	Ver	500	501	502	550	700	7	01	702	750	900	901	950
Model	vei	300											
Model DSCZ4 (1)	ACT,AS,U	•	•	•	•	•		•	•	•	•	•	•

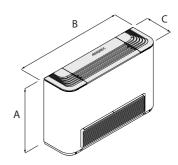
(1) DSCZ4 due to space problems inside the unit, the VCZ1-2-3-4 X4L/R valves cannot be mounted together with the amp/AMPZ accessories, with all the condensate collection trays. With the VMF-E19/E19I thermostats, please contact the head office.

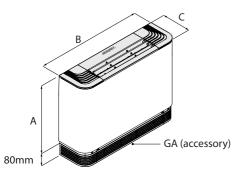
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
DC74 (1)	ACT,AS,U	•	•	•	•	•	•	•	•	•	•	•	
BCZ4 (1)	AF,UF									•			
DC75 (2)	ACT,AS,U	•	•	•	•			•	•	•	•	•	
BCZ5 (2)	AF,UF	•			•	•			•	•			•
Model	Ver	500	501	502	550	700	701		702	750	900	901	950
DC74 (1)	ACT,AS,U	•	•	•	•	•	•		•	•	•	•	•
BCZ4 (1)	AF,UF	•			•								•
DC7F (2)	ACT,AS,U	•		•	•	•	•		•				
BCZ5 (2)	AF,UF	•			•								
DC7(/2)	ACT,AS,U										•	•	•
BCZ6 (2)	AF,UF												

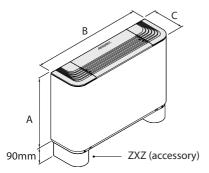
⁽¹⁾ For vertical installation.(2) For horizontal installation.

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
PCZ200	ACT,AS,U	•	•	•	•								
7(2200	AF,UF	•			•								_
PCZ300	ACT,AS,U					•	•	•	•				
(2300	AF,UF					•			•				
PCZ500	ACT,AS,U									•	•	•	•
1 (2300	AF,UF									•			•
Model	Ver	500	501	502	550	700	70	1	702	750	900	901	950
PCZ1000	ACT,AS,U										•	•	•
(21000	AF,UF					-					•		•
PCZ500	ACT,AS,U	•	•	•	•								
	AF,UF	•			•								
CZ800	ACT,AS,U					•	•		•	•			
Nodel	Ver	200	201	202	250	300	301	302	350	400	401	402	450
1,200	AF,UF	•											
A200	AS,U	•	•	•	•								
A300	AF,UF								•				
M300	AS,U					•	•	•	•				
A500	AF,UF									•			•
A300	AS,U									•	•	•	•
lodel	Ver	500	501	502	550	700	70	1	702	750	900	901	950
1500	AF,UF												
A500	AS,U	•		•	•								
A800	AF,UF										•		•
A000	AS,U					•	•		•	•	•	•	•
lodel	Ver	200	201	202	250	300	301	302	350	400	401	402	450
VITANA	AF,UF	•											
IKIT200	AS,U	•											
KIT300	AF,UF					•			•				
000117	AS,U					•	•	•	•				
KIT500	AF,UF									•			•
00011711	AS,U									•	•	•	•
lodel	Ver	500	501	502	550	700	70	1	702	750	900	901	950
	AF,UF	•			•								
KIT500	AS,U												
UUTOOO	AF,UF												
KIT800	AS,U					•	•		•	•		•	
lodel	Ver	200	201	202	250	300	301	302	350	400	401	402	450
	ACT,AS,U	•	•	•	•	•	•	•	•	•	•	•	•
XZ	AF,UF	•			•					•			
	Ver	500	501	502	550	700	70	1	702	750	900	901	950
Model													
lodel XZ	ACT,AS,U	•	•	•	•	. 700			•	•	•		

PERFORMANCE SPECIFICATIONS


Technical data - 2-pipe systems (main coil)


2-pipe		FC	Z1200	\neg	FCZ125	50	-	CZI30	0	-	CZI35	0		FCZI40	0		CZ145	0		FCZI50	0		CZI55	0
-	,	1	2 3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		Ĺ	M H	-	M	Н	Ĺ	M	H	Ĺ	M	Н	Ĺ	M	 H	Ĺ	M	 H	Ĺ	M	H	Ė	M	Н
Heating performance 70 °C / 60 °C (1)																								
Heating capacity	kW	2,02	2,95 3,7	70 2,2	0 3,18	4,05	3,47	4,46	5,50	3,77	4,92	6,15	4,32	5,74	7,15	4,57	6,29	7,82	5,27	7,31	8,50	5,82	8,34	9,75
Water flow rate system side	I/h		258 32				304	391	482	330	431	539	379	503	627	400	551	685	462	641	745	510	731	855
Pressure drop system side	kPa		12 18	_	15	23	7	12	18	8	14	20	9	16	24	6	11	16	12	21	28	10	20	26
Heating performance 45 °C / 40 °C (2)		-																						
Heating capacity	kW	1,00 1	1,46 1,8	34 1,0	9 1,58	2,01	1,72	2,21	2,73	1,87	2.44	3,06	2,14	2,85	3,55	2,27	3,12	3.88	2,62	3,63	4,22	2,89	4,14	4.85
Water flow rate system side	I/h		254 31	_			299	385	475	325	425	531	373	495	617	394	543	675	455	631	734	502	720	
Pressure drop system side	kPa		12 18	_	15	22	8	12	18	9	14	21	10	16	24	6	11	16	12	21	28	10	20	26
Cooling performance 7 °C / 12 °C																								
Cooling capacity	kW	0,89 1	1,28 1,6	0 1,0	6 1,55	1,94	1,68	2,17	2,65	1,89	2,46	3,02	2,20	2,92	3,60	2,41	3,21	4,03	2,68	3,69	4,25	2,91	4,13	4,79
Sensible cooling capacity	kW		1,05 1,3	_			-		2,04			2,18	1,59		2,67		2,30		_		3,18	-	2,98	
Water flow rate system side	I/h		221 27			334	288	374	456	350	460	560	379	503	619	414	552	694	460	634	731	501	711	824
Pressure drop system side	kPa		12 18	_	17	25	8	13	18	11	18	25	10	17	24	9	15	22	13	23	29	12	22	28
Fan																								
Туре	type											Centr	ifugal											
Fan motor	type												erter											
Number	no.		1		1			2			2			2			2			2			2	
Air flow rate	m³/h		220 29	0 14) 220	290	260	350	450	260	350	450	330	460	600	330	460	600	400	600	720	400	600	720
Input power	W	5	8 14	_	8	14	5	7	13	5	7	13	5	10	18	5	10	18	7	18	34	7	18	38
Signal 0-10V	%		68 9	_		90	52	70	90	52	70	90	49	68	90	49	68	90	50	74	90	50	74	90
Fan coil sound data (3)																-								
Sound power level	dB(A)	35,0	46,0 51	,0 35	0 46,0	51,0	34,0	41,0	48,0	34,0	41,0	48,0	37,0	44,0	51,0	37,0	44,0	51,0	42,0	51,0	56,0	42,0	51,0	56,0
Sound pressure level	dB(A)	-	38,0 43				+	33,0	40,0		33,0	40,0	29,0	36,0	_	_		43,0		43,0	48,0	34,0	43,0	
Diametre hydraulic fittings	()	/		/- /	,-	,.	1 /-		,-	,-	,-		1 /-		,.	,-		,-	1 - 1/-	,.	,.	/-		
Main heat exchanger	Ø		1/2″		1/2"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"	
Power supply											-,.												-, .	
Power supply												230V-	~50Hz											
				CZ1700					FCZ	750					FCZI	000					E (7	1950		=
		1	<u> </u>	2		3	1		102			3		1	1 (2)			3		1	_	2		3
		<u> </u>		M		H	l		1			<u>-</u> Н	-	L	٨			1	-	L				H
		l L										• •					- 1	1	1	L		M		
Heating performance 70 °C / 60 °C (1)		L		IVI				-		n								1		L		М		
	kW	_)									2,50	10	1,77	13.									.10
Heating capacity		8,10		9,80	1	1,00	9,	10	11	,30	12	2,50 096	_),77 45	13,	35	15,	,14	11	,20	14	,42	17	7,10 500
Heating capacity Water flow rate system side	kW 1/h kPa	_			1.			10		.30 91	12	2,50 096	9	1,77 45	13, 11	35 71		,14 28	11		14		17	500
Heating capacity Water flow rate system side Pressure drop system side	l/h	8,10 710		9,80 860	1.	1,00 964	9,79	10	11,	,30 91	12	096	9	45	11	35 71	15,	,14 28	11	,20 82	14	1,42 264	17	
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2)	I/h kPa	8,10 710 17		9,80 860 23	1°	1,00 964 29	9,79	10 98 0	11, 99	,30 91 5	12)96 18	9	45 12	11	35 71 7	15, 13	,14 28 2	11 9	,20 82 16	14	264 25	17 15	500
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity	I/h kPa kW	8,10 710 17 4,03	}	9,80 860 23 4,87	11 9	1,00 964 29	9, ⁻ 79	10 98 0	11, 99 1	30 91 5	12)96 18 ,20	5,	45	11 1	35 71 7	15, 13 2	,14 28 2	111 90 1	,20 82 16	14 12 2	1,42 264 25	17 15 3	500
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side	I/h kPa kW I/h	8,10 710 17 4,03 699	}	9,80 860 23 4,87 846	11 9 5 5	1,00 964 29 ,47	9,79 10 4,1	10 98 0 50	11 99 1 5,	30 91 5 60	12 10	096 18 ,20 079	5, 9	45 12 .35 30	11 1 6,0	35 71 7 7 64	15, 13 2 7,	,14 28 2 2 53 07	111 90 1	,20 82 16 .57	14 12 2 7,	264 25 17 245	17 15 3 8,	500 33 ,50 476
Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side	I/h kPa kW	8,10 710 17 4,03	}	9,80 860 23 4,87	11 9 5 5	1,00 964 29	9, ⁻ 79	10 98 0 50	11, 99 1	30 91 5 60	12 10)96 18 ,20	5, 9	45	11 1	35 71 7 7 64	15, 13 2	,14 28 2 2 53 07	111 90 1	,20 82 16	14 12 2 7,	1,42 264 25	17 15 3 8,	500
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C	I/h kPa kW I/h kPa	8,10 710 17 4,03 699	3	9,80 860 23 4,87 846 24	11 9 9 5 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1,00 964 29 ,47 950	9,79 11 4,1 78	10 98 0 50 86 0	11, 99 1 5, 97	30 91 5 60 75	12 10 6 10	,20 079 079	9 1 5, 9	45 12 35 30 12	6,0 11.	35 71 7 64 52	15, 13 2 7,, 13 2	,14 28 2 53 07 2	111 90 1 5,	,20 82 16 57 67	14 12 7, 12	264 25 17 245	17 15 3 8, 14	,50 ,50 ,476 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity	l/h kPa kW l/h kPa	8,10 710 17 4,03 699 17	3	9,80 860 23 4,87 846 24	55 9	1,00 964 29 ,47 950 29	9,79 11 4,1 78	10 98 0 50 36 0	11 99 1 5, 97 1	30 91 5 60 75 5	12 10 6, 10	096 118 ,20 079 118	9 1 5, 9 1	45 12 35 30 12	6,0 11 11 11 5,0	35 71 7 54 52 7	15, 13 2 7,, 13 2	,14 28 2 53 07 2	111 90 1 5, 90 1	,20 82 16 .57 .67	14 12 7, 12 2	264 25 17 245 24	177 155 33 8, 144 33	,50 476 33 ,60
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity	I/h kPa kW I/h kPa kW kW	8,10 710 17 4,03 699 17 3,92 2,99	2	9,80 860 23 4,87 846 24 4,89 3,76	11 g	1,00 964 29 ,47 950 29 ,50	9,79 10 4,1 78 11 4,2	10 98 0 50 36 0	11, 99 1 5, 97 1 5, 4,	30 91 5 60 75 5	12 10 6, 10 6,	,20 ,079 118 ,14 ,72	9 1 5, 9 1 4,	35 33 30 12 29	6,4 11. 1. 1. 1. 5,6	35 71 7 64 52 7	15, 13 2 7,, 13 2 6,5	,14 28 2 53 07 2	111 9. 1 5, 9. 1 5, 3,	,20 82 16 .57 .67 15	14 12 7, 12 7, 12 7, 4,	264 25 17 245 24 32 87	177 153 3 8, 144 3 8, 5,	,500 33 ,50 476 33 ,60 ,78
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side	I/h kPa kW I/h kPa kW I/h kPa	8,10 710 17 4,03 699 17 3,92 2,99 675	2	9,80 860 23 4,87 846 24 4,89 3,76 841	55 55 54 49	1,00 964 29 ,47 950 29 ,50 ,30	9,79 10 4,4 78 11 4,7 3,7	10 98 0 50 36 0 27 20 34	11 99 1 5, 97 1 5, 4,	30 91 5 60 75 5 34 05	122 10 6,6 6,6 6,4	096 18 ,20 079 18 ,14 ,72	9 1 5, 9 1 4, 2,	35 30 12 29 97 38	6,6 11 11 11 15,6 3,7	35 71 7 64 52 7 00 78	15, 13 2 7, 13 2 6, 5,	1,14 228 22 25 3007 22 22 91 668 89	111 90 1 5, 90 1 5, 3,	,20 82 16 .57 .67 15 .77 .80	14 12 7, 12 7, 12 7, 4,	264 25 27 27 27 27 27 27 27 27 27 27 27 27 27	177 153 3 8, 144 3 8, 5,	,50 476 33 ,60 ,78 479
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side	I/h kPa kW I/h kPa kW kW	8,10 710 17 4,03 699 17 3,92 2,99	2	9,80 860 23 4,87 846 24 4,89 3,76	55 55 54 49	1,00 964 29 ,47 950 29 ,50	9,79 10 4,1 78 11 4,2	10 98 0 50 36 0 27 20 34	11 99 1 5, 97 1 5, 4,	30 91 5 60 75 5	122 10 6,6 6,6 6,4	,20 ,079 118 ,14 ,72	9 1 5, 9 1 4, 2,	35 33 30 12 29	6,4 11. 1. 1. 1. 5,6	35 71 7 64 52 7 00 78	15, 13 2 7, 13 2 6, 5,	,14 28 2 53 07 2	111 90 1 5, 90 1 5, 3,	,20 82 16 .57 .67 15	14 12 7, 12 7, 12 7, 4,	264 25 17 245 24 32 87	177 153 3 8, 144 3 8, 5,	,500 33 ,50 476 33 ,60 ,78
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan	I/h kPa kW I/h kPa kW W I/h kPa	8,10 710 17 4,03 699 17 3,92 2,99 675	2	9,80 860 23 4,87 846 24 4,89 3,76 841	55 55 54 49	1,00 964 29 ,47 950 29 ,50 ,30	9,79 10 4,4 78 11 4,7 3,7	10 98 0 50 36 0 27 20 34	11 99 1 5, 97 1 5, 4,	30 91 5 60 75 5 34 05	122 10 6,6 6,6 6,4	,20 ,20 ,079 18 ,14 ,72 ,056	9 1 5, 9 1 4, 2, 7	35 30 12 29 97 38	6,6 11 11 11 15,6 3,7	35 71 7 64 52 7 00 78	15, 13 2 7, 13 2 6, 5,	1,14 228 22 25 3007 22 22 91 668 89	111 90 1 5, 90 1 5, 3,	,20 82 16 .57 .67 15 .77 .80	14 12 7, 12 7, 12 7, 4,	264 25 27 27 27 27 27 27 27 27 27 27 27 27 27	177 153 3 8, 144 3 8, 5,	,50 476 33 ,60 ,78 479
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type	kW I/h kPa kW I/h kPa kW kW I/h kPa	8,10 710 17 4,03 699 17 3,92 2,99 675	2	9,80 860 23 4,87 846 24 4,89 3,76 841	55 55 54 49	1,00 964 29 ,47 950 29 ,50 ,30	9,79 10 4,4 78 11 4,7 3,7	10 98 0 50 36 0 27 20 34	11 99 1 5, 97 1 5, 4,	30 91 5 60 75 5 34 05	122 10 6,6 6,6 6,4	,20 ,779 ,18 ,14 ,72 ,72 ,756 ,19	99 1 5, 99 1 1 4, 2, 7 7	35 30 12 29 97 38	6,6 11 11 11 15,6 3,7	35 71 7 64 52 7 00 78	15, 13 2 7, 13 2 6, 5,	1,14 228 22 25 3007 22 22 91 668 89	111 90 1 5, 90 1 5, 3,	,20 82 16 .57 .67 15 .77 .80	14 12 7, 12 7, 12 7, 4,	264 25 27 27 27 27 27 27 27 27 27 27 27 27 27	177 153 3 8, 144 3 8, 5,	,50 476 33 ,60 ,78 479
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor	kW I/h kPa kW I/h kPa kW kW I/h kPa type	8,10 710 17 4,03 699 17 3,92 2,99 675	2	9,80 860 23 4,87 846 24 4,89 3,76 841 25	55 55 54 49	1,00 964 29 ,47 950 29 ,50 ,30	9,79 10 4,4 78 11 4,7 3,7	10 98 0 50 36 0 27 20 34	11, 99, 1 5, 99, 1 1, 5, 4, 4, 9,	330 55 55 55 55 55 55 84 88 55	122 10 6,6 6,6 6,4	,20 ,779 ,18 ,14 ,72 ,72 ,756 ,19	9 1 5, 9 1 4, 2, 7	35 30 12 29 97 38	111 1 6,6,6,1 111 1 5,0 3,2,1 8,6	77 77 77 77 77 77 77 77 77 77 77 77 78 78	15, 13 2 7, 13 2 6, 5,	1,14 228 22 25 3007 22 22 91 668 89	111 90 1 5, 90 1 5, 3,	,20 82 16 .57 .67 15 .77 .80	144 122 7,7,122 2,7,124 4,121 122 123	264 25 17 245 24 24 25 24 24 32 87 2259	177 153 3 8, 144 3 8, 5,	,50 476 33 ,60 ,78 479
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number	kW I/h kPa kW kW I/h kPa type type no.	8,10 7100 17 4,03 699 17 3,92 2,959 17	2	9,80 860 23 4,87 846 24 4,89 3,76 841 25	1° 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1,00 064 229 ,47 050 229 ,50 ,30 046	9,75 75 11 4,2 78 11 4,4,4 73 73 11	110 00 00 00 00 00 00 00 00 00 00 00 00	111 99 1 5, 90 1 5, 4, 9	330 91 55 55 55 55 55 55 88	122 100 60 100 60 44 100	096 18 8 779 18 8 8 9 14 72 72 19 Centri Invi	99 1 1 5, 5, 9 9 1 1 4, 2, 7 7 1 1 1 1 ifitugal erter	445 12 335 330 12 29 97 97 338 10	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	335 771 77 77 77 77 77 77 78 800 33	15, 133 2 7, 133 2 6, 5, 111 2	1,14 28 22 25 353 07 22 2 2 2 89 2	111 99 1 55, 99 1 55, 99 1	,20 ,20 882 166 57 667 155 777 880 992	7, 12, 2, 3, 4, 4, 12, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	264 25 17 245 245 245 245 259 259 33	177 159 3 8, 144 3 8, 5, 144 3 3	5500 333 333 333 333 333 333 4476 479 4479
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate	kW I/h kPa kW I/h kPa kW L/h kPa type type no. m²/h	8,100 7100 17 4,033 6999 17 3,922 2,999 6755 17	2	9,80 860 23 4,87 846 24 4,89 3,76 841 25	1112 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1,00 1,00 1,47 1,50 1,50 1,50 1,50 1,50 1,40 1,40 1,40	9,759 11 1 4,2 78 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	110 10 10 10 10 10 10 10 10 10	111 99 1 5, 99 1 1	330 301 55 560 60 60 775 55 55 58 88 88 80	12 10 6 10 6 4 10	0996 118 00779 118 118 118 119 119 119 1140	99 1 1 5, 99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	445 2 2 335 330 12 2 97 97 338 10	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	335 771 77 77 77 77 77 78 660 33	15, 133 2 7,, 133 2 6, 5, 111 2	1,14 28 2 2 53 07 2 2 2 91 668 89 2	111 99 11 5, 99 11 5, 33, 99 11	,20 ,20 ,882 ,57 ,667 ,77 ,80 ,992 ,15	144 12 7,7,1 12 2 7,7,4 4,1 12 2	264 225 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	177 159 3 8,8,14 3 3 8,7 5,5,14 11	,50 ,50 ,476 ,333 ,60 ,78 ,78 ,479
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power	kW I/h kPa kW I/h kPa kW L/h kPa type type no. m²/h W	8,100 7100 17 4,033 6999 17 3,922 6755 17	22	9,80 860 23 846 24 4,89 3,76 841 25	11 12 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1,00 1,00 1,47 1,50 1,50 1,50 1,50 1,44 1,40 1,40 1,40 1,40 1,40 1,40 1,4	9,79 79 11 4,4,7 78 1 1 1 1 1 7 7 7 7 7 7 7 7 7	110 10 10 10 10 10 10 10 10 10	111 999 1 55, 973 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	330 301 55 560 600 775 55 55 58 88 55 88 60 60 60 60 60 60 60 60 60 60	122 10 6,6 10 10 10 10 10 10 10 10 10 10 10 10 10	0996 118 0779 118 118 118 118 119 119 119 1140 1140	99 1 1 5, 99 1 1 1 4, 22, 7 7 1 1 1 fifugal erter	445 12 3.35 330 122 29 9.97 338 10	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	335 771 77 77 77 77 77 77 77 77 78 80 80 90 90 90 90 90 90 90 90 90 90 90 90 90	15, 13 2 2, 7, 13 2 2 6, 5, 111 2 2	28 22 25 30 30 7 22 2 2 2 40 0	111 99 11 5,99 11 5,33,99 11	,20 ,20 ,882 ,57 ,667 ,77 ,80 ,992 ,15	144 12 7, 12 2 7, 4, 4, 12 2	32 87 2559 33 3 3 3 3 40	177 155 3 8,8,4 144 3 3 8,7 5,5,1 144 111 8	,50 ,50 ,50 ,50 ,476 ,33 ,60 ,78 ,479 ,380
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V	kW I/h kPa kW I/h kPa kW L/h kPa type type no. m²/h	8,100 7100 17 4,033 6999 17 3,922 2,999 6755 17	22	9,80 860 23 4,87 846 24 4,89 3,76 841 25	11 12 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1,00 1,00 1,47 1,50 1,50 1,50 1,50 1,50 1,40 1,40 1,40	9,759 11 1 4,2 78 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	110 10 10 10 10 10 10 10 10 10	111 999 1 55, 973 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	330 301 55 560 60 60 775 55 55 58 88 88 80	122 10 6,6 10 10 10 10 10 10 10 10 10 10 10 10 10	0996 118 00779 118 118 118 119 119 119 1140	99 1 1 5, 99 1 1 1 4, 22, 7 7 1 1 1 fifugal erter	445 2 2 335 330 12 2 97 97 338 10	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	335 771 77 77 77 77 77 77 77 77 78 80 80 90 90 90 90 90 90 90 90 90 90 90 90 90	15, 13 2 2, 7, 13 2 2 6, 5, 111 2 2	1,14 28 2 2 53 07 2 2 2 91 668 89 2	111 99 11 5,99 11 5,33,99 11	,20 ,20 ,882 ,57 ,667 ,77 ,80 ,992 ,15	144 12 7, 12 2 7, 4, 4, 12 2	264 225 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	177 155 3 8,8,4 144 3 3 8,7 5,5,1 144 111 8	,50 ,50 ,476 ,333 ,60 ,78 ,78 ,479
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Fan coil sound data (3)	kW I/h kPa kW I/h kPa kW L/h kPa type type no. m³/h W	8,10 7101017 4,03 6999 17 3,92 2,999 6755 17	2	9,80 860 23 4,87 846 24 4,89 3,76 841 25 3 930 40 72	11 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1,00 1,664 229 ,47 ,50 ,30 ,30 ,46 330 140 880	9,75 11 4,27 78 11 4,27 73 11	110 110 110 110 110 110 110 110	111 99 1 5, 99 1 1 1 1 99 4 7	330 55 560 60 775 55 55 88 88 90 90 90 90 90 90 90 90 90 90 90 90 90	12 10 66 10 10 10 10 10 10 10 10 10 10 10 10 10	0996 18 18 20 0779 18 8 4 14 1772 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	99 1 1 5, 6 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	445 122 335 330 122 229 997 338 100	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	335 771 77 664 6552 77 78 660 33	15, 13 13 2 2 7, 13 2 2 5, 11 1 2 2 11 8 8 9	1,14 28 22 25 30 30 7 2 2 91 668 889 2 2	111 99 11 5, 99 11 55, 33, 39 99 11	,20 ,20 ,882 ,57 ,667 ,57 ,77 ,880 ,992 ,55 ,580 ,666	144 127 7,7,127 24 14,127 29 99	32 87 223 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	177 199 3 3 8 8, 144 3 3 3 8 8, 5, 5, 144 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6	,50 4476 333 ,60 ,78 4479 380
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Fan coil sound data (3) Sound power level	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W %	8,101 7101 17 4,033 6999 17 3,922 2,999 6755 17 7000 30 566	2	9,80 860 23 4,87 846 24 4,89 3,76 841 25 3 930 40 72	11 17 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1,00 1,64 229 ,47 ,550 229 ,50 ,30 146 330	9,755 11 4,2,2 11 11 4,2,2 11 11 11 11 11 11 11 11 11 11 11 11 11	110 110 110 110 110 110 110 110	111 999 1 1 1 5, 99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	330 330 330 331 341 352 363 363 363 363 363 363 363 36	122 100 66,0 100 44,100 110 110 110 110 110 110 110 110 110	0996 18 18 20 0779 18 18 14 17,72 19 10 10 10 10 10 10 10 10 10 10 10 10 10	9 9 1 1 1 5, 9 9 1 1 1 4, 1 2, 2, 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45 45 12 335 330 12 29 997 997 998 900 900 900 900 900 900 900	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	335 771 77 664 6552 77 78 660 33	15,13 13 2 2 7,7 13 2 2 6,6 5,0 111 8 8 9 62	14 28 2 2 53 07 2 2 53 68 89 2 2 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	111 99 11 5, 99 11 55, 33, 33, 99 11 11	,20 ,20 ,882 ,57 ,667 ,57 ,77 ,880 ,992 ,55 ,580 ,666 ,666	144 122 7,7,1 122 2 7,7,4 4,4 122 2 2 2 3 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7	32 87 225 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	177 155 3 3 8, 8, 144 3 3 3 3 8 8, 55, 144 5 5 5 666	,50 ,50 ,476 ,78 ,479 380
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Fan coil sound data (3) Sound power level Sound pressure level	kW I/h kPa kW I/h kPa kW L/h kPa type type no. m³/h W	8,10 7101017 4,03 6999 17 3,92 2,999 6755 17	2	9,80 860 23 4,87 846 24 4,89 3,76 841 25 3 930 40 72	11 17 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1,00 1,664 229 ,47 ,50 ,30 ,30 ,46 330 140 880	9,75 11 4,27 78 11 4,27 73 11	110 110 110 110 110 110 110 110	111 999 1 1 1 5, 99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	330 55 560 60 775 55 55 88 88 90 90 90 90 90 90 90 90 90 90 90 90 90	122 100 66,0 100 44,100 110 110 110 110 110 110 110 110 110	0996 18 18 20 0779 18 8 4 14 1772 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	9 9 1 1 1 5, 9 9 1 1 1 4, 1 2, 2, 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	445 122 335 330 122 229 997 338 100	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	335 771 77 664 6552 77 78 660 33	15,13 13 2 2 7,7 13 2 2 6,6 5,0 111 8 8 9 62	1,14 28 22 25 30 30 7 2 2 91 668 889 2 2	111 99 11 5, 99 11 55, 33, 33, 99 11 11	,20 ,20 ,882 ,57 ,667 ,57 ,77 ,880 ,992 ,55 ,580 ,666	144 122 7,7,1 122 2 7,7,4 4,4 122 2 2 2 3 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7	32 87 223 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	177 155 3 3 8, 8, 144 3 3 3 3 8 8, 55, 144 5 5 5 666	,50 4476 333 ,60 ,78 4479 380
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Fan coil sound data (3) Sound power level Sound pressure level Diametre hydraulic fittings	kW I/h kPa kW I/h kPa kW L/h kPa type type no. m³/h W % dB(A) dB(A)	8,101 7101 17 4,033 6999 17 3,922 2,999 6755 17 7000 30 566	2	9,80 860 23 4,87 846 24 4,89 3,76 841 25 3 930 40 72	11 17 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1,00 1,64 229 ,47 ,550 229 ,50 ,30 146 330	9,755 11 4,2,2 11 11 4,2,2 11 11 11 11 11 11 11 11 11 11 11 11 11	110 110 110 110 110 110 110 110	111 999 1 1 1 5, 99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	330 330 330 331 341 352 363 363 363 363 363 363 363 36	122 100 66,0 100 44,100 110 110 110 110 110 110 110 110 110	20 20 20 20 20 20 20 20 20 20 20 20 20 2	99 1 1 1 5, 5, 99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45 45 12 335 330 12 29 997 997 998 900 900 900 900 900 900 900	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	335 771 77 664 6552 77 78 660 33	15,13 13 2 2 7,7 13 2 2 6,6 5,0 111 8 8 9 62	14 28 2 2 53 07 2 2 53 68 89 2 2 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	111 99 11 5, 99 11 55, 33, 33, 99 11 11	,20 ,20 ,882 ,57 ,667 ,57 ,77 ,880 ,992 ,55 ,580 ,666 ,666	144 122 7,7,1 122 2 7,7,4 4,4 122 2 2 2 3 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7	32 87 225 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	177 155 3 3 8, 8, 144 3 3 3 3 8 8, 55, 144 5 5 5 666	,50 ,50 ,476 ,78 ,479 380
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Fan coil sound data (3) Sound power level Sound pressure level Diametre hydraulic fittings Main heat exchanger	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W %	8,101 7101 17 4,033 6999 17 3,922 2,999 6755 17 7000 30 566	2	9,80 860 23 4,87 846 24 4,89 3,76 841 25 3 930 40 72	11 17 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1,00 1,64 229 ,47 ,550 229 ,50 ,30 146 330	9,755 11 4,2,2 11 11 4,2,2 11 11 11 11 11 11 11 11 11 11 11 11 11	110 110 110 110 110 110 110 110	111 999 1 1 1 5, 99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	330 330 330 331 341 352 363 363 363 363 363 363 363 36	122 100 66,0 100 44,100 110 110 110 110 110 110 110 110 110	20 20 20 20 20 20 20 20 20 20 20 20 20 2	9 9 1 1 1 5, 9 9 1 1 1 4, 1 2, 2, 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45 45 12 335 330 12 29 997 997 998 900 900 900 900 900 900 900	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	335 771 77 664 6552 77 78 660 33	15,13 13 2 2 7,7 13 2 2 6,6 5,0 111 8 8 9 62	14 28 2 2 53 07 2 2 53 68 89 2 2 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	111 99 11 5, 99 11 55, 33, 33, 99 11 11	,20 ,20 ,882 ,57 ,667 ,57 ,77 ,880 ,992 ,55 ,580 ,666 ,666	144 122 7,7,1 122 2 7,7,4 4,4 122 2 2 2 3 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7	32 87 225 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	177 155 3 3 8, 8, 144 3 3 3 3 8 8, 55, 144 5 5 5 666	,50 ,50 ,476 ,78 ,479 380
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Fan coil sound data (3) Sound power level Sound pressure level Diametre hydraulic fittings	kW I/h kPa kW I/h kPa kW L/h kPa type type no. m³/h W % dB(A) dB(A)	8,101 7101 17 4,033 6999 17 3,922 2,999 6755 17 7000 30 566	2	9,80 860 23 4,87 846 24 4,89 3,76 841 25 3 930 40 72	11 17 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1,00 1,64 229 ,47 ,550 229 ,50 ,30 146 330	9,755 11 4,2,2 11 11 4,2,2 11 11 11 11 11 11 11 11 11 11 11 11 11	110 110 110 110 110 110 110 110	111 999 1 1 1 5, 99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	330 330 330 331 341 352 363 363 363 363 363 363 363 36	122 100 66,0 100 44,100 110 110 110 110 110 110 110 110 110	1996 188 188 188 188 188 188 188 1995 1	99 1 1 1 5, 5, 99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35 33 33 33 33 22 29 997 338 38 30 00 00 66 66	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	335 771 77 664 6552 77 78 660 33	15,13 13 2 2 7,7 13 2 2 6,6 5,0 111 8 8 9 62	14 28 2 2 53 07 2 2 53 68 89 2 2 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	111 99 11 5, 99 11 55, 33, 33, 99 11 11	,20 ,20 ,882 ,57 ,667 ,57 ,77 ,880 ,992 ,55 ,580 ,666 ,666	144 122 7,7,1 122 2 7,7,4 4,4 122 2 2 2 3 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7	32 87 225 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	177 155 3 3 8, 8, 144 3 3 3 3 8 8, 55, 144 5 5 5 666	,50 ,50 ,476 ,78 ,479 380


⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

Technical data - 4-pipe systems (main coil + secondary coil)

DIMENSIONS

	,	FCZI200	FCZI201	FCZI250	FCZI300	FCZI301	FCZI350	FCZI400	FCZI401	FCZ1450
Dimensions and weights	'									
A	mm	486	486	486	486	486	486	486	486	486
В	mm	750	750	750	980	980	980	1200	1200	1200
C	mm	220	220	220	220	220	220	220	220	220
Empty weight	kg	15	15	16	17	17	18	22	23	24
		FCZI500	FCZI501	FCZI550	FCZI700	FCZI701	FCZI750	FCZI900	FCZI901	FCZ1950
Dimensions and weights										
A	mm	486	486	486	486	486	486	591	591	591
D	mm	1200	1200	1200	1320	1320	1320	1320	1320	1320
В										
<u>C</u>	mm	220	220	220	220	220	220	220	220	220

www.aermec.com

Fully silent operation

· Backlit touch command with

programming via a smart deviceTotal comfort in every season

FCZ-D

Fan coil for vertical wall-mounting or free-standing installation

Cooling capacity 0,89 ÷ 4,25 kW Heating capacity 2,02 ÷ 8,50 kW

DESCRIPTION

The perception of uneven temperature distribution in various settings, especially in the vertical direction, is one of the main factors leading to a drastic reduction in the well-being perceived by occupants.

FCZ D are able to provide a pleasant sensation of comfort by directing the air in a way that ensures uniform temperature distribution throughout the setting. In winter, hot air is direct downwards; in summer, cool air is directed upwards.

Air supply switching at the front or from the top by operating directly on the orientable grille.

They can be installed in any type of 2 / 4 pipe system and in combination with any heat generator even at low temperatures. Thanks to the availability of several versions and configurations, it is easy to choose the optimal solution for every requirement.

FEATURES

Case

Protective metal cabinet with anti-corrosion polyester RAL 9003 paint, whereas the head with the air distribution grille is in RAL 7047 plastic.

Ventilation group

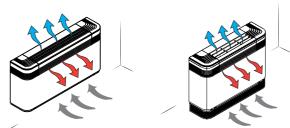
Consisting of double suction centrifugal fans that are particularly silent, statically and dynamically balanced, and directly coupled with the motor shaft.

The motor is wired for single phase and has three speeds, with capacitor. The motor is fitted on sealed for life bearings and is secured on anti-vibration and self-lubricating mountings.

Extractable shrouds for easy, effective cleaning

Finned pack heat exchanger

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air vents


The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

The hydraulic connections can be inverted during installation.

Air filter

Air filter class Coarse 25% for all versions easy to pull out and clean.

VERSION WITH DOUBLE SUPPLY

FCZ D

With on-board thermostat.

FCZ_DS

- Compatibility with VMF system.
- Without installed switch

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Field		Description
1,2,3		FCZ
4		Size 2, 3, 4, 5
5		main heat exchanger
(0	Standard
6		Secondary heat exchanger
(0	Without coil
7		Version
	D	Dualjet with thermostat TXB on-board the system
	DS	Dualjet without on-board thermostat

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air puri-

fying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

T-TOUCH: Touch control on board the machine, for controlling fan coils with asynchronous motors. In 2-pipe systems, it can control standard fan coils or those equipped with an electric heater, with air purifying devices or with FCZ-D twin delivery (Dualjet). In 4-pipe systems, only standard fan coils.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF system

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, D124 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, D124 is compatible with switch plates from major brands available on the market. For more information, please refer to our documen-

tation. However, a switch plate with its graphite gray support, DI24CP, is also available as a separate accessory in our catalog.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E22: User interface on the machine, to be combined with the VMF-E19 and VMF-E19I accessory.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19l thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Water valves

VCZ_X: 3-way valve kit for single-coil fan coil, RH connections, (VCZ_X4R) or LH (VCZ_X4L) for 4-pipe systems. With totally separate "heating" and "cooling" circuits. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings. X4L version for fan coils with LH connections, and X4R for fan coils with RH connections. 230V~50Hz power supply.

VCZ: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

Installation accessories

PCZ: Metal panel for the unit rear closing. SPCZ brackets are necessary to fix floor standing fan coils.

GA: Lower intake grille for encapsulated fan coils. Can also be used in wall-mounted or floor installations, the FIKIT accessory is needed only in the case of floor installation.

FIKIT: Structural bracket in floor installation.

DSCZ4: Condensate drainage device.

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing.

35

ACCESSORIES COMPATIBILITY

Control panels

Model	Ver	200	300	400	500
AER503IR (1)	DS	•	•	•	•
PR0503	DS	•	•	•	•
SA5 (2)	DS	•	•	•	•
SW3 (2)	DS	•	•	•	•
SW5 (2)	DS	•	•	•	•
T-TOUCH (3)	DS	•	•	•	•
TY (A)	nc				

- (1) Wall-mount installation.
- (2) Probe for AER503IR-TX thermostats, if fitted.
- (3) Installation on the fan coil.
- (4) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

VMF system

For more information about VMF system, refer to the dedicated documentation.

Model	Ver	200	300	400	500
DI24	DS	•	•	•	•
VMF-E19 (1)	DS	•	•	•	•
VMF-E2Z	DS	•	•	•	•
VMF-E3	DS	•	•	•	•
VMF-E4DX	DS	•	•	•	•
VMF-E4X	DS	•	•	•	•
VMF-I0	DS	•	•	•	•
VMF-IR	DS	•	•	•	•
VMHI	DS	•	•	•	•

(1) Also the accessory VMF-SIT3V is mandatory if the unit exceeds 0.7 Amperes.

Water valves

3 way valve kit

Model	Ver	200	300	400	500		
VCZ41 (1)	D,DS	•					
VCZ4124 (2)	D,DS	•					
VCZ42 (1)	D,DS		•	•	•		
VCZ4224 (2)	D,DS		•	•	•		

(1) 230V~50Hz (2) 24V

2 way valve kit

Model	Ver	200	300	400	500
VCZD1 (1)	D,DS	•			
VCZD124 (2)	D,DS	•			
VCZD2 (1)	D,DS		•	•	•
VCZD224 (2)	D,DS		•	•	•

(1) 230V~50Hz (2) 24V

Valve Kit for 4 pipe systems - Requires a thermostat with valve management

Model	Ver	200	300	400	500
VCZ1X4L (1)	D,DS	•			
VCZ1X4R (1)	D,DS	•			
VCZ2X4L (1)	D,DS		•	•	•
VCZ2X4R (1)	D,DS		•	•	•

(1) The valves can be combined with the units if there is a control panel for managing them.

Combined Adjustment and Balancing Valve Kit

Model	Ver	200	300	400	500
VJP060 (1)	D,DS	•	•		
VJP060M (2)	D,DS	•	•		
VJP090 (1)	D,DS			•	•
VJP090M (2)	D,DS			•	•

(1) 230V~50Hz (2) 24V

Installation accessories

Condensate recirculation device

Model	Ver	200	300	400	500
DSCZ4 (1)	D,DS	•	•	•	•

(1) DSCZ4 due to space problems inside the unit, the VCZ1-2-3-4 X4L/R valves cannot be mounted together with the amp/AMPZ accessories, with all the condensate collection trays. With the VMF-E19/E19I thermostats, please contact the head office.

Condensate drip

Model	Ver	200	300	400	500
BCZ4 (1)	D,DS	•	•	•	•

(1) For vertical installation.

Panel closing the rear of the unit

Model	Ver	200	300	400	500
PCZ200	D,DS	•			_
PCZ300	D,DS		•		
PCZ500	D,DS			•	•

Ornamental grille

Model	Ver	200	300	400	500
GA200	D,DS	•			
GA300	D,DS		•		
GA500	20.0				

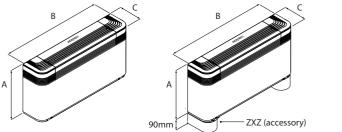
Supports to be combined with the ornamental grille (GA) for floor installation of the fan coil

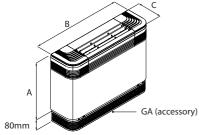
		······································			
Model	Ver	200	300	400	500
FIKIT200	D,DS	•			

Model	Ver	200	300	400	500
FIKIT300	D,DS		•		
FIKIT500	D.DS				•

Pair of stylish structural feet

Model	Ver	200	300	400	500
ZXZ	D,DS	•	•	•	•


PERFORMANCE SPECIFICATIONS


2-pipe

z-pipe	1	FCZ200D			FCZ300D			FCZ400D			FCZ500D	
	1	2	3	1	2	3	1	7	3	1	7	3
		M	Н Н	1	M	Н	1	M	Н Н	1	M	H
Heating performance 70 °C / 60 °C (1)	L	IVI	п	L	IVI	П	L	IVI	п	L L	IVI	
	2,02	2,95	3,70	3,47	4,46	5,50	4,32	5,74	7,15	5,27	7,31	8,50
3 1 1 1 1 1			3,70						627			
	177	258		304 7	391	482	379	503		462	641	745
Pressure drop system side kPa	6	12	18	/	12	18	9	16	24	12	21	28
Heating performance 45 °C / 40 °C (2)	1.00	1.16	101	4.72	2.24	2.72	2.14	2.05	2.55	2.02	2.62	4.22
Heating capacity kW	1,00	1,46	1,84	1,72	2,21	2,73	2,14	2,85	3,55	2,62	3,63	4,22
Water flow rate system side I/h	174	254	319	299	385	475	373	495	617	455	631	734
Pressure drop system side kPa	6	12	18	8	12	18	10	16	24	12	21	28
Cooling performance 7 °C / 12 °C												
Cooling capacity kW	0,89	1,28	1,60	1,68	2,17	2,65	2,20	2,92	3,60	2,68	3,69	4,25
Sensible cooling capacity kW	0,71	1,05	1,33	1,26	1,65	2,04	1,59	2,14	2,67	1,94	2,73	3,18
Water flow rate system side 1/h	153	221	275	288	374	456	379	503	619	460	634	731
Pressure drop system side kPa	7	13	18	8	13	18	10	17	24	13	23	29
Fan			-									
<u>Type</u> type		Centrifugal			Centrifugal			Centrifugal			Centrifugal	
Fan motor type		Asynchronous	S		Asynchronous	5		Asynchronous			Asynchronous	
Number no.		1			2			2			2	
Air flow rate cfm	-	220	290	-	350	450	-	460	600	-	600	720
Input power W	13	25	35	25	33	44	30	43	57	38	52	76
Electrical wiring	V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3
Fan coil sound data (3)												
Sound power level dB(A)	35,0	46,0	51,0	34,0	41,0	48,0	37,0	44,0	51,0	42,0	51,0	56,0
Sound pressure level dB(A)	27,0	38,0	43,0	26,0	33,0	40,0	29,0	36,0	43,0	34,0	43,0	48,0
Finned pack heat exchanger	•											
Water content main heat exchanger		0,5			0,8			1,0			1,0	
Diametre hydraulic fittings												
Main heat exchanger Ø		1/2"			3/4"			3/4"			3/4"	
Power supply												
Power supply		230V~50Hz			230V~50Hz			230V~50Hz			230V~50Hz	

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

		FCZ200D	FCZ300D	FCZ400D	FCZ500D
Dimensions and weights					
A	mm	486	486	486	486
В	mm	750	980	1200	1200
C	mm	220	220	220	220
Empty weight	kg	15	17	23	22

FCZI-D

Fan coil for vertical wall-mounting or free-standing installation

Cooling capacity 0,89 ÷ 4,25 kW Heating capacity 2,02 ÷ 8,50 kW

- Total comfort in every season
- Electric saving equal to 50% with respect to a fan coil with 3-speed motor
- Fully silent operation
- Backlit Touch command with programming via a smart device (DT vesion)

The perception of uneven temperature distribution in various settings, especially in the vertical direction, is one of the main factors leading to a drastic reduction in the well-being perceived by occupants.

FCZI D are able to provide a pleasant sensation of comfort by directing the air in a way that ensures uniform temperature distribution throughout the setting. In winter, hot air is direct downwards; in summer, cool air is directed upwards.

Air supply switching at the front or from the top by operating directly on the orientable grille.

They can be installed in any type of 2 / 4 pipe system and in combination with any heat generator even at low temperatures. Thanks to the availability of several versions and configurations, it is easy to choose the optimal solution for every requirement.

FEATURES

Protective metal cabinet with anti-corrosion polyester RAL 9003 paint, whereas the head with the air distribution grille is in RAL 7047 plastic.

Ventilation group

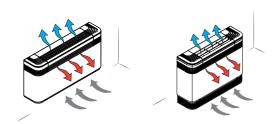
Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise.

Their characteristics permit energy savings compared to conventional fans. They are statically and dynamically balanced and directly coupled to the motor shaft.

The Brushless electric motor with 0-100% continuous speed variation, which allows precise adaptation to the real demands of the internal environment without temperature fluctuations.

Finned pack heat exchanger

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air vents.


The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

The hydraulic connections can be inverted during installation.

Air filter

Air filter class Coarse 25% for all versions easy to pull out and clean.

VERSION WITH DOUBLE SUPPLY

FCZI_D

With on-board thermostat.

FCZI DT

- With thermostat T-TOUCH-I on-board the system
- Compatibility with VMF system.

FCZI DS

- Without installed switch
- Compatibility with VMF system.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Field	Description					
1,2,3,4	FCZI					
5	Size					
	2,3,4,5					
6	main heat exchanger					
0	Standard					
7	Secondary heat exchanger					
0	Without coil					
8	Version					
D	Dualjet with thermostat TXBI on-board the system					
DS	Dualjet without on-board thermostat					
DT	Dualjet with T-Touch-I thermostat					

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: Water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF system

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, D124 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, D124 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, D124CP, is also available as a separate accessory in our catalog.

VMF-E19I: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E22: User interface on the machine, to be combined with the VMF-E19 and VMF-E19I accessory.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (MFTAL)

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19l thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Water valves

VCZ_X: 3-way valve kit for single-coil fan coil, RH connections, (VCZ_X4R) or LH (VCZ_X4L) for 4-pipe systems. With totally separate "heating" and "cooling" circuits. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings. X4L version for fan coils with LH connections, and X4R for fan coils with RH connections. 230V~50Hz power supply.

VCZ: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

Installation accessories

PCZ: Metal panel for the unit rear closing. SPCZ brackets are necessary to fix floor standing fan coils.

GA: Lower intake grille for encapsulated fan coils. Can also be used in wall-mounted or floor installations, the FIKIT accessory is needed only in the case of floor installation.

FIKIT: Structural bracket in floor installation.

DSCZ4: Condensate drainage device.

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing. **ZXZ:** Pair of stylish and structural feet

ACCESSORIES COMPATIBILITY

Control panels

Model	Ver	200	300	400	500
AER503IR (1)	DS	•	•	•	•
PR0503	DS	•	•	•	•
SA5 (2)	DS	•	•	•	•
SW3 (2)	DS	•	•	•	•
SW5 (2)	DS	•	•	•	•
TX (3)	DS	•	•	•	•

VMF system

For more information about VMF system, refer to the dedicated documentation.

Model	Ver	200	300	400	500		
DI24	DS	•	•	•	•		
VMF-E19I (1)	DS	•	•	•	•		
VMF-E2Z	DS	•	•	•	•		
VMF-E3	DS,DT	•	•	•	•		
VMF-E4DX	DS,DT	•	•	•	•		
VMF-E4X	DS,DT	•	•	•	•		
VMF-IO	DS	•	•	•	•		
VMF-IR	DS	•	•	•	•		
VMF-SW	DS		•		•		
VMHI	DS	•	•	•	•		

⁽¹⁾ Mandatory accessory.

Water valves

3 way valve kit

Model	Ver	200	300	400	500
VCZ41 (1)	D,DS,DT	•			
VCZ4124 (2)	D,DS,DT	•			
VCZ42 (1)	D,DS,DT		•	•	•
VCZ4224 (2)	D,DS,DT			•	•

^{(1) 230}V~50Hz (2) 24V

2 way valve kit

Model	Ver	200	300	400	500
VCZD1 (1)	D,DS,DT	•			
VCZD124 (2)	D,DS,DT	•			
VCZD2 (1)	D,DS,DT		•	•	•
VCZD224 (2)	D,DS,DT		•	•	•

^{(1) 230}V~50Hz (2) 24V

Valve Kit for 4 pipe systems

Model	Ver	200	300	400	500
VCZ1X4L (1)	D,DS,DT	•			
VCZ1X4R (1)	D,DS,DT	•			
VCZ2X4L (1)	D,DS,DT		•	•	•
VCZ2X4R (1)	D,DS,DT		•	•	•

 $^{(1) \ \} The valves can be combined with the units if there is a control panel for managing them.$

Combined Adjustment and Balancing Valve Kit

Model	Ver	200	300	400	500
VJP060 (1)	D,DS,DT	•	•		
VJP060M (2)	D,DS,DT	•	•		
VJP090 (1)	D,DS,DT			•	•
VJP090M (2)	D,DS,DT			•	•

^{(1) 230}V~50Hz (2) 24V

Installation accessories

Condensate recirculation device

Model	Ver	200	300	400	500
DSCZ4 (1)	D,DS,DT	•	•	•	•

⁽¹⁾ DSCZ4 due to space problems inside the unit, the VCZ1-2-3-4 X4L/R valves cannot be mounted together with the amp/AMPZ accessories, with all the condensate collection trays. With the VMF-E19/E19I thermostats, please contact the head office.

 ⁽¹⁾ Wall-mount installation.
 (2) Probe for AERSO3IR-TX thermostats, if fitted.
 (3) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

Co			

Model	Ver	200	300	400	500
BCZ4 (1)	D,DS,DT	•	•	•	•

(1) For vertical installation.

Panel closing the rear of the unit

Model	Ver	200	300	400	500
PCZ200	D,DS,DT	•			
PCZ300	D,DS,DT		•		
PCZ500	D,DS,DT			•	•

Ornamental grille

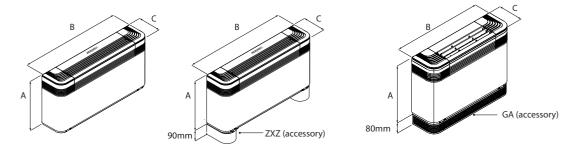
Model	Ver	200	300	400	500
GA200	D,DS,DT	•			
GA300	D,DS,DT		•		
GA500	D,DS,DT			•	•

Supports to be combined with the ornamental grille (GA) for floor installation of the fan coil

Model	Ver	200	300	400	500
FIKIT200	D,DS,DT	•			
FIKIT300	D,DS,DT		•		
FIKIT500	D,DS,DT			•	•

Pair of stylish structural feet

Model	Ver	200	300	400	500
ZXZ	D,DS,DT	•	•	•	•


PERFORMANCE SPECIFICATIONS

2-pipe

			FCZI200D			FCZI300D			FCZI400D			FCZI500D	
		1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)								,					
Heating capacity	kW	2,02	2,95	3,70	3,47	4,46	5,50	4,32	5,74	7,15	5,27	7,31	8,50
Water flow rate system side	l/h	177	258	324	304	391	482	379	503	627	462	641	745
Pressure drop system side	kPa	6	12	18	7	12	18	9	16	24	12	21	28
Heating performance 45 °C / 40 °C (2)													
Heating capacity	kW	1,00	1,46	1,84	1,72	2,21	2,73	2,14	2,85	3,55	2,62	3,63	4,22
Water flow rate system side	l/h	174	254	319	299	385	475	373	495	617	455	631	734
Pressure drop system side	kPa	6	12	18	8	12	18	10	16	24	12	21	28
Cooling performance 7 °C / 12 °C													
Cooling capacity	kW	0,89	1,28	1,60	1,68	2,17	2,65	2,20	2,92	3,60	2,68	3,69	4,25
Sensible cooling capacity	kW	0,71	1,05	1,33	1,26	1,65	2,04	1,59	2,14	2,67	1,94	2,73	3,18
Water flow rate system side	l/h	153	221	275	288	374	456	379	503	619	460	634	731
Pressure drop system side	kPa	7	13	18	8	13	18	10	17	24	13	23	29
Fan							-						
Туре	type		Centrifugal			Centrifugal			Centrifugal			Centrifugal	
Fan motor	type		Inverter			Inverter		Inverter		Inve		Inverter	
Number	no.		1			2			2			2	
Air flow rate	m³/h	140	220	290	260	350	450	330	460	600	400	600	720
Input power	W	5	8	14	5	7	13	5	10	18	8	18	34
Signal 0-10V	%	44	68	90	52	70	90	49	68	90	50	74	90
Fan coil sound data (3)											,		
Sound power level	dB(A)	31,0	43,0	50,0	34,0	41,0	48,0	37,0	44,0	41,0	42,0	51,0	56,0
Sound pressure level	dB(A)	23,0	35,0		26,0	33,0		29,0	36,0		34,0	43,0	
Finned pack heat exchanger													
Water content main heat exchanger	- 1		0,5			0,8			1,0			1,0	
Diametre hydraulic fittings													
Main heat exchanger	Ø		1/2"			3/4"			3/4"			3/4"	
Power supply					r			r					
Power supply			230V~50Hz			230V~50Hz			230V~50Hz			230V~50Hz	

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

		FCZI200D	FCZI300D	FCZ1400D	FCZI500D
Dimensions and weights					
A	mm	486	486	486	486
В	mm	750	980	1200	1200
C	mm	220	220	220	220
Empty weight	kg	15	17	23	22

FCZ-H

Fan coil with the photocatalytic device, for universal and floor installation

- Photocatalytic device
- Tested effectiveness against viruses, bacteria and allergens
- Active against the SARS-CoV-2 virus, even on surfaces
- Certifications VDI 6022

DESCRIPTION

Fan coil with built-in **photocatalytic device**.

Active against the airborne Sars-CoV-2 virus (95%-99% abatement efficacy after 20 minutes of operation tested at the Virostatics laboratory in Alghero).

Active against the SARS-CoV-2 virus, even on surfaces - 84% effectiveness after 12 h (tests carried out in collaboration with the Department of Microbiology of the University of Padua).

Suitable for air conditioning in places requiring optimum hygiene levels, such as:

- Hospitals
- Dentists' surgeries
- Doctors' and vets' surgeries
- Analysis laboratories
- Waiting rooms
- Public premises

They can be installed in any type of 2-pipe system (version for 4-pipe systems available upon request) and in combination with any heat generator, even at low temperatures. Thanks to the availability of several versions and configurations, it's easy to find the right solution for every need.

VERSIONS

- H Unit with shell without thermostat vertical and horizontal installation.
- HP Unit without shell and without thermostat vertical and horizontal installation. Can also be supplied in a configuration equipped with a boosted asynchronous motor (HPO).
- HT Unit with shell and thermostat vertical installation.

FEATURES

Case

Metallic protective cabinet with rustproofing polyester paint RAL 9003. The head with adjustable air distribution grille is made of plastic RAL 7047. When the grille closes, the fan coil automatically switches off.

Ventilation group

Comprised of a dual intake centrifugal fan that is particularly silent, statically and dynamically balanced and directly coupled to the motor shaft.

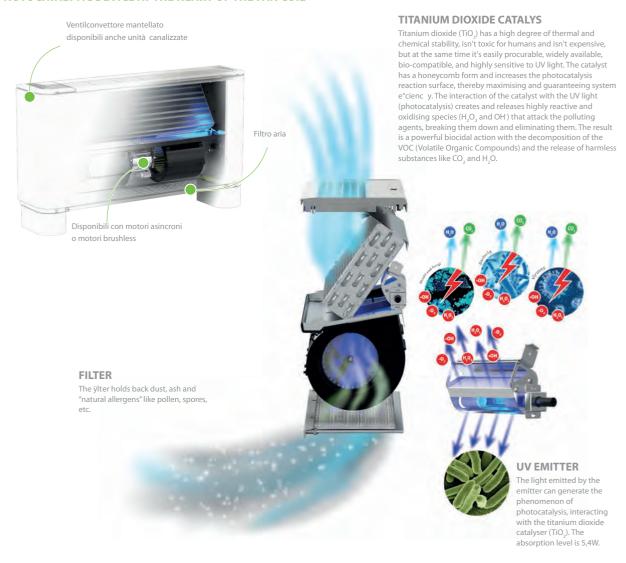
The electric motor is single-phase and asynchronous, mounted on anti-vibration supports, and has a permanently engaged condenser.

The scroll that protects the fan can be extracted and inspected, for easy and effective cleaning.

 Apart from the traditional asynchronous motor, each unit can also be supplied with an inverter (brushless) motor. Refer to the relative FCZI - H datasheet

Finned pack heat exchanger

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air vents


The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

The coil is not reversible during installation but, when ordering, you can choose units with the coil water connections on the right (at no extra charge).

Air filter

Air filter class **COARSE 25%** for all versions; easy to pull out and clean. Shrouds can be pulled out and inspected for easy and effective cleaning.

PHOTOCATALYTIC DEVICE AT THE HEART OF THE FAN COIL

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Configuration options FCZ - H

Field	Description
1,2,3	FCZ
4	Size 2, 3, 4, 5, 6, 9
5	main heat exchanger
0	Standard
5	Oversized
6	Secondary heat exchanger
0	Without coil
7	Version
Н	Unit with shell without thermostat - vertical and horizontal mount
HP	Unit without shell and thermostat - vertical and horizontal mount
HP0	Unit without shell and thermostat with upgraded motor - vertical and horizontal mount
HPOR	Unit without shell and thermostat with upgraded motor - vertical and horizontal installation - water connections on the right
HPR	Unit without shell and thermostat - vertical and horizontal installation - water connections on the right
HR	Unit with shell without thermostat - vertical and horizontal installation - water connections on the right
HT	Unit with shell with thermostat - vertical mount
HTR	Unit with shell with thermostat - vertical mount - water connections on the right

ACCESSORIES

Control panels and dedicated accessories - FCZ-H

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those

with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air puri-

fying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SA503: Wall-mountable ambient sensor, compatible with AER503IR.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualiet).

TXB: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualiet).

VMF system

■ The fan coil can also be teamed up with the VMF system; please contact headquarters about compatibility with the various system components.

Common accessories

VCZ: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VCFD: Motorized 2-way valve kit without insulating shell, can be installed on the main or secondary battery or a battery that is only warm. The kit is made up of a valve, actuator and relative hydraulic fittings. It can be installed on fan coils with connections on the right and on the left.

VCF41 - 42 - 43 - for main heat exchanger: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit.

AMP: Wall mounting kit

DSC: Condensate drainage device.

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing. **PCZ:** Metal panel for the unit rear closing. SPCZ brackets are necessary to fix floor standing fan coils.

GA: Lower intake grille for encapsulated fan coils. Can also be used in wall-mounted or floor installations, the FIKIT accessory is needed only in the case of floor installation.

FIKIT: Structural bracket in floor installation.

ZXZ: Pair of stylish and structural feet

BC: Condensate drip.

Ventilcassaforma: Galvanised sheet metal template. It makes it possible to obtain directly in the wall a space for housing the fan coil.

SPCZ: Brackets to fix the fan coil to the floor.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories - FCZ-H

Model	Ver	200	300	400	500	600	900	950
AER503IR (1)	H,HP	•	•	•	•	•	•	•
PR0503	H,HP	•	•	•	•	•	•	•
SA5 (2)	H,HP,HT	•	•		•	•	•	•
SA503 (3)	H,HP	•	•	•	•	•	•	•
SIT3 (4)	H,HP,HT	•	•	•	•	•	•	•
SIT5 (5)	H,HP,HT	•	•	•	•	•	•	•
SW3 (2)	H,HP,HT	•	•	•	•	•	•	•
SW5 (2)	H,HP,HT	•	•	•	•	•	•	•
TX (6)	H,HP	•	•	•	•	•	•	•
TXB (7)	H,HP		•	•	•	•	•	•

- (1) Wall-mount installation.
- (3) Thermostat probe for AER503IR if available.
- Cards for AER503IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere.
- (5) Probe for AER503IR-TX thermostats, if fitted.
- Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.
- (7) Installation on the fan coil.

Common accessories

3 way valve kit

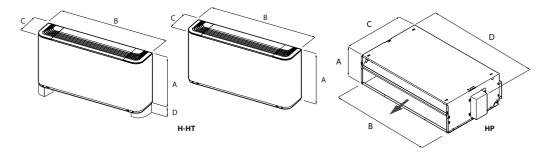
,								
Model	Ver	200	300	400	500	600	900	950
VCZ41 (1)	H,HP,HT	•						
VCZ4124 (2)	H,HP,HT	•						
VCZ42 (1)	H,HP,HT			•	•	•		
VCZ4224 (2)	H,HP,HT		•	•	•	•		
VCZ43 (1)	H,HP,HT						•	•
VCZ4324 (2)	H,HP,HT							•

(1) 230V~50Hz

2 way valve kit

Model	Ver	200	300	400	500	600	900	950
VCZD1 (1)	H,HP,HT	•						
VCZD124 (2)	H,HP,HT	•						

Model	Ver	200	300	400	500 600	900	950
CZD2 (1)	H,HP,HT		•	•	•		
/CZD224 (2)	Н,НР,НТ		•	•	•		
/CZD3 (1)	Н,НР,НТ		<u> </u>	•	•	•	
/CZD324 (2)	H,HP,HT					•	•
1) 230V~50Hz	11,111,111	-1					
2) 24V							
Combined Adjustment an							
Model	Ver	200	300	400	500 600	900	950
/JP060 (1)	H,HP,HT	•	•				
/JP060M (2)	Н,НР,НТ	•	•				
/JP090 (1)	H,HP,HT			•	• •		
/JP090M (2)	H,HP,HT			•	•		
/JP150 (1)	H,HP,HT					•	•
/JP150M (2)	H,HP,HT					•	•
1) 230V~50Hz 2) 24V							
Vall mounting kit							
Ver	200	300	400	500	600	900	950
Н	AMP20	AMP20	AMP20	AMP20	AMP20	AMP20	AMP20
HP	AMP20	AMP20	AMP20	AMP20	AMP20	AMP20	AMP20
Condensate drainage							
Model	Ver	200	300	400	500 600	900	950
DSCZ4 (1)	HP	•	•	•	•	•	•
Condensate drip Ver	200	300	400	500	600	900	950
	200 BCZ4 (1), BCZ5 (2)	300 BCZ4 (1), BCZ5 (2)	400 BCZ4 (1), BCZ5 (2)	500 BCZ4 (1), BCZ5 (2)		900 BCZ6 (2)	950 BCZ6 (2)
Ver H, HP, HT 1) For vertical installation.							
Ver H, HP, HT 1) For vertical installation.							
Ver H, HP, HT 1) For vertical installation. 2) For horizontal installation.	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ6 (2)	BCZ6 (2)
Ver H, HP, HT 1) For vertical installation. 2) For horizontal installation. Ver HP	BCZ4 (1), BCZ5 (2) 200	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2) 400	BCZ4 (1), BCZ5 (2) 500	BCZ4 (1), BCZ5 (2) 600	BCZ6 (2)	BCZ6 (2)
Ver H, HP, HT 1) For vertical installation. 2) For horizontal installation. Ver HP 1) For horizontal installation.	BCZ4 (1), BCZ5 (2) 200 BC8 (1)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2) 400	BCZ4 (1), BCZ5 (2) 500	BCZ4 (1), BCZ5 (2) 600	BCZ6 (2)	BCZ6 (2)
Ver H, HP, HT 1) For vertical installation. 2) For horizontal installation. Ver HP 1) For horizontal installation. Panel closing the rear of t	BCZ4 (1), BCZ5 (2) 200 BC8 (1)	BCZ4 (1), BCZ5 (2) 300 BC8 (1)	BCZ4 (1), BCZ5 (2) 400 BC8 (1)	BCZ4 (1), BCZ5 (2) 500 BC8 (1)	BCZ4 (1), BCZ5 (2) 600 BC8 (1)	900 BC9 (1)	950 BC9 (1)
Ver H, HP, HT 1) For vertical installation. 2) For horizontal installation. Ver HP 1) For horizontal installation. Panel closing the rear of t	BCZ4 (1), BCZ5 (2) 200 BC8 (1) he unit 200	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300	BCZ4 (1), BCZ5 (2) 400 BC8 (1)	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500	600 BC8 (1)	900 BC9 (1)	950 950 950
Ver H, HP, HT 1) For vertical installation. 2) For horizontal installation. Ver HP 1) For horizontal installation. Panel closing the rear of t	BCZ4 (1), BCZ5 (2) 200 BC8 (1)	BCZ4 (1), BCZ5 (2) 300 BC8 (1)	BCZ4 (1), BCZ5 (2) 400 BC8 (1)	BCZ4 (1), BCZ5 (2) 500 BC8 (1)	BCZ4 (1), BCZ5 (2) 600 BC8 (1)	900 BC9 (1)	950 BC9 (1)
Ver H, HP, HT 1) For vertical installation. 2) For horizontal installation. Ver HP 1) For horizontal installation. Panel closing the rear of t Ver H, HT	BCZ4 (1), BCZ5 (2) 200 BC8 (1) he unit 200 PCZ200	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300	BCZ4 (1), BCZ5 (2) 400 BC8 (1)	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500	600 BC8 (1)	900 BC9 (1)	950 8C9 (1)
Ver H, HP, HT 1) For vertical installation. 2) For horizontal installation. Ver HP 1) For horizontal installation. Panel closing the rear of t	BCZ4 (1), BCZ5 (2) 200 BC8 (1) he unit 200 PCZ200	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300	BCZ4 (1), BCZ5 (2) 400 BC8 (1)	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500	600 BC8 (1)	900 BC9 (1)	950 8C9 (1)
Ver H, HP, HT Tor vertical installation. For horizontal installation. Ver HP For horizontal installation. Panel closing the rear of to Ver H, HT Sprille also applicable for form	BC74 (1), BC75 (2) 200 BC8 (1) he unit 200 PC7200	300 BC8 (1) 300 PCZ300	400 BC8 (1) 400 PCZ500	500 BC8 (1) 500 PCZ500	600 BC8 (1) 600 PCZ800	900 BC9 (1) 900 PCZ1000	950 BC9 (1) 950 PCZ1000
Ver H, HP, HT 1) For vertical installation. 2) For horizontal installation. Ver HP 1) For horizontal installation. Panel closing the rear of t Ver H, HT Grille also applicable for f	BCZ4 (1), BCZ5 (2) 200 BC8 (1) he unit 200 PCZ200 loor installation 200 GA200	300 BC8 (1) 300 PCZ300	400 BC8 (1) 400 PCZ500	500 BC8 (1) 500 PCZ500	600 BC8 (1) 600 PCZ800	900 BC9 (1) 900 PCZ1000	950 BC9 (1) 950 PCZ1000
Ver H, HP, HT T) For vertical installation. 2) For horizontal installation. Ver HP T) For horizontal installation. Panel closing the rear of to the stallation. Ver H, HT Grille also applicable for for the stallation also applicable for for the stallation. Ver H, HP, HT	BCZ4 (1), BCZ5 (2) 200 BC8 (1) he unit 200 PCZ200 loor installation 200 GA200	300 BC8 (1) 300 PCZ300	400 BC8 (1) 400 PCZ500	500 BC8 (1) 500 PCZ500	600 BC8 (1) 600 PCZ800	900 BC9 (1) 900 PCZ1000	950 BC9 (1) 950 PCZ1000
Ver H, HP, HT 1) For vertical installation. 2) For horizontal installation. Ver HP 1) For horizontal installation. Panel closing the rear of t Ver H, HT Grille also applicable for f Ver H, HP, HT	8CZ4 (1), BCZ5 (2) 200 BC8 (1) he unit 200 PCZ200 loor installation 200 GA200	300 BC8 (1) 300 PCZ300 300 GA300	400 BC8 (1) 400 PCZ500 400 GA500	500 BC8 (1) 500 PC2500 GA500	600 BC8 (1) 600 PCZ800 600 GA800	900 BC9 (1) 900 PCZ1000 900 GA800	950 BC9 (1) 950 PC21000 950 PC31000
Ver H, HP, HT 1) For vertical installation. 2) For horizontal installation. Ver HP 1) For horizontal installation. Panel closing the rear of t Ver H, HT Grille also applicable for f Ver H, HP, HT Wetal supports for GA gril Ver H, HP, HT	8CZ4 (1), BCZ5 (2) 200 BC8 (1) he unit 200 PCZ200 loor installation 200 GA200	300 BC8 (1) 300 PCZ300 300 GA300	### BCZ4 (1), BCZ5 (2) ### 400 ### BC8 (1) ### 400 ### PCZ500 ### 400 ### GA500	500 BC8 (1) 500 PC2500 GA500	600 BC8 (1) 600 PCZ800 600 GA800	900 BC9 (1) 900 PCZ1000 900 GA800	950 BC9 (1) 950 PC21000 950 GA800
Ver H, HP, HT 1) For vertical installation. 2) For horizontal installation. Ver HP 1) For horizontal installation. Panel closing the rear of t Ver H, HT Grille also applicable for f Ver H, HP, HT Metal supports for GA gril Ver H, HP, HT	BCZ4 (1), BCZ5 (2) 200 BC8 (1) he unit 200 PCZ200 loor installation 200 GA200 Ille 200 FIKIT200	300 BC8 (1) 300 PCZ300 300 GA300 FIKIT300	### BCZ4 (1), BCZ5 (2) ### 400 ### BC8 (1) ### 400 ### FCZ500 ### 400 ### GA500 ### 400 ### FIKIT500	500 BC8 (1) 500 PCZ500 500 GA500 FIKIT500	600 BC8 (1) 600 PCZ800 600 GA800 600 GA800	900 BC9 (1) 900 PCZ1000 900 GA800 FIKIT800	950 BC9 (1) 950 PC21000 950 GA800 FIKIT800
Ver H, HP, HT 1) For vertical installation. 2) For horizontal installation. Ver HP 1) For horizontal installation. Panel closing the rear of t Ver H, HT Grille also applicable for f Ver H, HP, HT Wetal supports for GA gril Ver H, HP, HT Ver H, HP, HT Ventilcassaforma Ver	BCZ4 (1), BCZ5 (2) 200 BC8 (1) he unit 200 PCZ200 loor installation 200 GA200 Ille 200 FIKIT200	300 BC8 (1) 300 PCZ300 PCZ300 300 GA300 FIKIT300	### A00 #### A00 #######################	500 BC8 (1) 500 PCZ500 500 GA500 FIKIT500	600 BC8 (1) 600 PCZ800 600 GA800 600 FIKIT800	900 BC9 (1) 900 PCZ1000 PCZ1000 GA800 FIKIT800	950 950 PC21000 950 GA800 FIKIT800
Ver H, HP, HT Tor vertical installation. Per HP For horizontal installation. Ver HP For horizontal installation. Panel closing the rear of t Ver H, HT Grille also applicable for f Ver H, HP, HT Metal supports for GA gril Ver H, HP, HT /entilcassaforma Ver HP	BCZ4 (1), BCZ5 (2) 200 BC8 (1) he unit 200 PCZ200 loor installation 200 GA200 Ile 200 FIKIT200 CHF22	300 BC8 (1) 300 PCZ300 300 GA300 FIKIT300	### BCZ4 (1), BCZ5 (2) ### 400 ### BC8 (1) ### 400 ### GA500 ### 400 ### FIKIT500	500 BC8 (1) 500 PCZ500 500 GA500 FIKIT500	600 BC8 (1) 600 PCZ800 600 GA800 600 GA800	900 BC9 (1) 900 PCZ1000 900 GA800 FIKIT800	950 BC9 (1) 950 PCZ1000 950 GA800 FIKIT800
Ver H, HP, HT 1) For vertical installation. 2) For horizontal installation. Ver HP 1) For horizontal installation. Panel closing the rear of t Ver H, HT Grille also applicable for f Ver H, HP, HT Wetal supports for GA gril Ver H, HP, HT Ventilcassaforma Ver HP Brackets to fix the fan coil	BCZ4 (1), BCZ5 (2)	300 BC8 (1) 300 PCZ300 300 GA300 FIKIT300	### A00 ### A0	500 BC8 (1) 500 PCZ500 500 GA500 FIKIT500 CHF42	600 BC8 (1) 600 PCZ800 600 GA800 600 FIKIT800 600 CHF62	900 BC9 (1) 900 PCZ1000 900 GA800 FIKIT800 900 CHF62	950 950 PCZ1000 950 GA800 FIKIT800 CHF62
Ver H, HP, HT 1) For vertical installation. 2) For horizontal installation. 2) For horizontal installation. Ver HP 1) For horizontal installation. Panel closing the rear of t Ver H, HT Grille also applicable for f Ver H, HP, HT Wetal supports for GA gril Ver H, HP, HT Ventilcassaforma Ver HP Brackets to fix the fan coil Ver	BCZ4 (1), BCZ5 (2)	300 BC8 (1) 300 PCZ300 PCZ300 300 GA300 FIKIT300	### A00 ### A0	500 BC8 (1) 500 BC8 (1) 500 PCZ500 500 GA500 FIKIT500 CHF42	600 BC8 (1) 600 PCZ800 600 GA800 600 FIKIT800 600 CHF62	900 BC9 (1) 900 PC71000 900 GA800 FIKIT800 900 CHF62	950 950 950 950 950 950 GA800 FIKIT800 CHF62
Ver H, HP, HT I) For vertical installation. 2) For horizontal installation. Ver HP I) For horizontal installation. Panel closing the rear of t Ver H, HT Grille also applicable for f Ver H, HP, HT Ver HP Brackets to fix the fan coil	BCZ4 (1), BCZ5 (2)	300 BC8 (1) 300 PCZ300 300 GA300 FIKIT300	### A00 ### A0	500 BC8 (1) 500 PCZ500 500 GA500 FIKIT500 CHF42	600 BC8 (1) 600 PCZ800 600 GA800 600 FIKIT800 600 CHF62	900 BC9 (1) 900 PCZ1000 900 GA800 FIKIT800 900 CHF62	950 950 PCZ1000 950 GA800 PIKIT800 CHF62
Ver H, HP, HT The provertical installation of the provention of t	BCZ4 (1), BCZ5 (2) 200 BC8 (1)	300 BC8 (1) 300 PCZ300 PCZ300 300 GA300 FIKIT300	### A00 ### A0	500 BC8 (1) 500 BC8 (1) 500 PCZ500 500 GA500 FIKIT500 CHF42	600 BC8 (1) 600 PCZ800 600 GA800 600 FIKIT800 600 CHF62	900 BC9 (1) 900 PC71000 900 GA800 FIKIT800 900 CHF62	950 950 PCZ1000 950 GA800 FIKIT800 CHF62
Ver H, HP, HT Tor vertical installation. Ver HP Tor horizontal installation. Ver HP Tor horizontal installation. Panel closing the rear of tor H, HT Fille also applicable for for Wer H, HP, HT Metal supports for GA grille Ver H, HP, HT Ver H, HP, HT Ver H, HP, HT Ver HP Brackets to fix the fan coil Ver H, HT	BCZ4 (1), BCZ5 (2) 200 BC8 (1)	300 BC8 (1) 300 PCZ300 300 GA300 FIKIT300 300 CHF32	### A00 ### A0	500 BC8 (1) 500 BC8 (1) 500 PCZ500 500 GA500 FIKIT500 CHF42	600 BC8 (1) 600 PCZ800 600 GA800 600 FIKIT800 600 CHF62	900 BC9 (1) 900 PC71000 900 GA800 FIKIT800 900 CHF62	950 950 PCZ1000 950 GA800 FIKIT800 CHF62


PERFORMANCE SPECIFICATIONS

2-pipe

<u>2-pipe</u>			FCZ200H	Ī		FCZ250H	Ī		FCZ300H	Ī		FCZ350H			FCZ400H	1		FCZ450H	1
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																			
Heating capacity	kW	2,02	2,95	3,70	2,20	3,18	4,05	3,47	4,46	5,50	3,77	4,92	6,15	4,32	5,74	7,15	4,57	6,29	7,82
Water flow rate system side	l/h	177	258	324	193	278	355	304	391	482	330	431	539	379	503	627	400	551	685
Pressure drop system side	kPa	6	12	18	7	15	23	7	12	18	8	14	20	9	16	24	6	11	16
Heating performance 45 °C / 40 °C (2)																			
Heating capacity	kW	1,00	1,46	1,84	1,09	1,58	2,01	1,72	2,21	2,73	1,87	2,44	3,06	2,14	2,85	3,55	2,27	3,12	3,88
Water flow rate system side	I/h	174	254	319	190	274	350	299	385	475	325	425	531	373	495	617	394	543	675
Pressure drop system side	kPa	6	12	18	8	15	22	8	12	18	8	14	20	10	16	24	6	11	16
Cooling performance 7 °C / 12 °C																			
Cooling capacity	kW	0,89	1,28	1,60	1,06	1,55	1,94	1,68	2,17	2,65	1,89	2,46	3,02	2,20	2,92	3,60	2,41	3,21	4,03
Sensible cooling capacity	kW	0,71	1,05	1,33	0,79	1,20	1,52	1,26	1,65	2,04	1,33	1,76	2,18	1,59	2,14	2,67	1,69	2,30	2,90
Water flow rate system side	l/h	153	221	275	182	267	334	288	374	456	350	460	560	379	503	619	414	552	694
Pressure drop system side	kPa	7	13	18	8	17	25	8	13	18	11	18	25	10	17	24	9	15	22
Fan																			
Туре	type	(Centrifuga	al	(Centrifuga	ıl	(Centrifuga	ıl	(Centrifuga	al	(Centrifuga	al	(Centrifuga	al
Fan motor	type	As	synchrono	ous	A:	synchrono	us	As	ynchrono	us	As	ynchrono	us	As	synchrono	ous	As	synchrono	ous
Number	no.		1			1			2			2			2			2	
Air flow rate	m³/h	140	220	290	140	220	290	260	350	450	260	350	450	330	460	600	330	460	600
Input power	W	25	29	33	25	29	33	25	33	44	25	33	44	30	43	57	30	43	57
Electrical wiring		V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3
Diametre hydraulic fittings																			
Туре	type		Gas - F			Gas - F			Gas - F			Gas - F			Gas - F			Gas - F	
Main heat exchanger	Ø		1/2"			1/2"			3/4"			3/4"			3/4"			3/4"	
Fan coil sound data (3)																			
Sound power level	dB(A)	35,0	46,0	51,0	35,0	46,0	51,0	34,0	41,0	48,0	34,0	41,0	48,0	37,0	44,0	51,0	37,0	44,0	51,0
Sound pressure level	dB(A)	27,0	38,0	43,0	27,0	38,0	43,0	26,0	33,0	40,0	26,0	33,0	40,0	29,0	36,0	43,0	29,0	36,0	43,0
Power supply Power supply																			
Power supply		2	30V~50l	łz	2	230V~50H	łz	2	30V~50l	łz	2	30V~50H	łz	2	30V~50l	Hz	2	30V~50H	Hz
			FCZ500H	ı		FCZ550H			FCZ600l			FCZ650H			FCZ900l	ł		FCZ950ŀ	1
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Heating performance 70 °C/60 °C (1)																			
Heating performance 70 °C / 60 °C (1) Heating capacity	kW	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Heating capacity	kW	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H
		1 L 5,27	2 M	3 H 8,50	1 L	2 M 8,34	3 H 9,75	1 L	2 M 8,10	3 H	1 L	2 M 9,15	3 H 11,50	1 L	2 M	3 H 15,14	1 L	2 M	3 H 17,10
Heating capacity Water flow rate system side Pressure drop system side	I/h	1 L 5,27 462	2 M 7,31 641	3 H 8,50 745	1 L 5,82 510	2 M 8,34 731	3 H 9,75 855	1 L 6,50 570	2 M 8,10 710	3 H 10,00 877	7,19 631	2 M 9,15 802	3 H 11,50 1008	1 L 10,77 945	2 M 13,35 1171	3 H 15,14 1328	1 L 11,20 982	2 M 14,42 1264	3 H 17,10 1500
Heating capacity Water flow rate system side	I/h	1 L 5,27 462	2 M 7,31 641	3 H 8,50 745	1 L 5,82 510	2 M 8,34 731	3 H 9,75 855	1 L 6,50 570	2 M 8,10 710	3 H 10,00 877	7,19 631	2 M 9,15 802	3 H 11,50 1008	1 L 10,77 945	2 M 13,35 1171	3 H 15,14 1328	1 L 11,20 982	2 M 14,42 1264	3 H 17,10 1500
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2)	I/h kPa	1 L 5,27 462 12	2 M 7,31 641 21	3 H 8,50 745 28	1 L 5,82 510 10	2 M 8,34 731 20	3 H 9,75 855 26	1 L 6,50 570 12	2 M 8,10 710 18	3 H 10,00 877 26	7,19 631 14	2 M 9,15 802 21	3 H 11,50 1008 31	1 L 10,77 945 12	2 M 13,35 1171 17	3 H 15,14 1328 22	1 L 11,20 982 16	2 M 14,42 1264 25	3 H 17,10 1500 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity	I/h kPa kW	1 L 5,27 462 12	2 M 7,31 641 21	3 H 8,50 745 28	5,82 510 10	2 M 8,34 731 20	3 H 9,75 855 26	1 L 6,50 570 12	2 M 8,10 710 18	3 H 10,00 877 26	7,19 631 14	2 M 9,15 802 21	3 H 11,50 1008 31	1 L 10,77 945 12	2 M 13,35 1171 17	3 H 15,14 1328 22 7,53	1 L 11,20 982 16	2 M 14,42 1264 25	3 H 17,10 1500 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side	I/h kPa kW I/h	1 L 5,27 462 12 2,62 455	2 M 7,31 641 21 3,63 631	3 H 8,50 745 28 4,22 734	5,82 510 10 2,89 502	2 M 8,34 731 20 4,14 720	3 H 9,75 855 26 4,85 842	1 L 6,50 570 12 3,32 561	2 M 8,10 710 18 4,03 699	3 H 10,00 877 26 4,97 863	7,19 631 14 3,57 621	2 M 9,15 802 21 4,55 790	3 H 11,50 1008 31 5,72 993	1 L 10,77 945 12 5,35 930	2 M 13,35 1171 17 6,64 1152	3 H 15,14 1328 22 7,53 1307	1 L 11,20 982 16 5,57 967	2 M 14,42 1264 25 7,17 1245	3 H 17,10 1500 33 8,50 1476
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side	I/h kPa kW I/h	1 L 5,27 462 12 2,62 455	2 M 7,31 641 21 3,63 631	3 H 8,50 745 28 4,22 734	5,82 510 10 2,89 502	2 M 8,34 731 20 4,14 720	3 H 9,75 855 26 4,85 842	1 L 6,50 570 12 3,32 561	2 M 8,10 710 18 4,03 699	3 H 10,00 877 26 4,97 863	7,19 631 14 3,57 621	2 M 9,15 802 21 4,55 790	3 H 11,50 1008 31 5,72 993	1 L 10,77 945 12 5,35 930	2 M 13,35 1171 17 6,64 1152	3 H 15,14 1328 22 7,53 1307	1 L 11,20 982 16 5,57 967	2 M 14,42 1264 25 7,17 1245	3 H 17,10 1500 33 8,50 1476
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity	I/h kPa kW I/h kPa	1 L 5,27 462 12 2,62 455 12	7,31 641 21 3,63 631 21	3 H 8,50 745 28 4,22 734 28	5,82 510 10 2,89 502	2 M 8,34 731 20 4,14 720 20	3 H 9,75 855 26 4,85 842 26	1 L 6,50 570 12 3,32 561 12	2 M 8,10 710 18 4,03 699 18	3 H 10,00 877 26 4,97 863 26	7,19 631 14 3,57 621 14	2 M 9,15 802 21 4,55 790 20	3 H 11,50 1008 31 5,72 993 31	1 L 10,77 945 12 5,35 930 12	2 M 13,35 1171 17 6,64 1152	3 H 15,14 1328 22 7,53 1307 22	1 L 11,20 982 16 5,57 967 15	2 M 14,42 1264 25 7,17 1245 24	3 H 17,10 1500 33 8,50 1476 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C	I/h kPa kW I/h kPa kW W	5,27 462 12 2,62 455 12	7,31 641 21 3,63 631 21	3 H 8,50 745 28 4,22 734 28	5,82 510 10 2,89 502 10	2 M 8,34 731 20 4,14 720 20	3 H 9,75 855 26 4,85 842 26	1 L 6,50 570 12 3,32 561 12 3,22 2,56	2 M 8,10 710 18 4,03 699 18	3 H 10,00 877 26 4,97 863 26	7,19 631 14 3,57 621 14	2 M 9,15 802 21 4,55 790 20	3 H 11,50 1008 31 5,72 993 31	1 L 10,77 945 12 5,35 930 12	2 M 13,35 1171 17 6,64 1152 17	3 H 15,14 1328 22 7,53 1307 22	1 L 11,20 982 16 5,57 967 15	2 M 14,42 1264 25 7,17 1245 24	3 H 17,10 1500 33 8,50 1476 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side	l/h kPa kW l/h kPa	1 L 5,27 462 12 2,62 455 12 2,68 1,94	2 M 7,31 641 21 3,63 631 21 3,69 2,73	3 H 8,50 745 28 4,22 734 28 4,25 3,18	5,82 510 10 2,89 502 10 2,91 2,07	2 M 8,34 731 20 4,14 720 20 4,13 2,98	3 H 9,75 855 26 4,85 842 26 4,79 3,49	1 L 6,50 570 12 3,32 561 12	2 M 8,10 710 18 4,03 699 18 3,90 3,17	3 H 10,00 877 26 4,97 863 26 4,65 3,92	7,19 631 14 3,57 621 14 3,95 2,78	2 M 9,15 802 21 4,55 790 20 4,80 3,43	3 H 11,50 1008 31 5,72 993 31 5,67 4,12	1 L 10,77 945 12 5,35 930 12 4,29 2,97	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68	1 L 11,20 982 16 5,57 967 15 5,77 3,80	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity	I/h kPa kW I/h kPa kW I/h kPa	1 L 5,27 462 12 2,62 455 12 2,68 1,94 460	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731	5,82 510 10 2,89 502 10 2,91 2,07 501	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800	1 L 7,19 631 14 3,57 621 14 3,95 2,78 595	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825	3 H 11,50 1008 31 5,72 993 31 5,67 4,12	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189	1 L 11,20 982 16 5,57 967 15 5,77 3,80 992	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan	I/h kPa kW I/h kPa kW KW kW kW I/h kPa	1 L 5,27 462 12 2,62 455 12 2,68 1,94 460 13	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29	1 L 5,82 510 10 2,89 502 10 2,91 2,07 501 12	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	1 L 7,19 631 14 3,57 621 14 3,95 2,78 595 15	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	1 L 11,20 982 16 5,57 967 15 5,77 3,80 992 15	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side	I/h kPa kW I/h kPa kW I/h kPa kW kW I/h kPa	5,27 462 12 2,62 455 12 2,68 1,94 460 13	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23	8,50 745 28 4,22 734 28 4,25 3,18 731 29	5,82 510 10 2,89 502 10 2,91 2,97 501 12	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28	6,50 570 12 3,32 561 12 3,22 2,56 554	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	7,19 631 14 3,57 621 14 3,95 2,78 595 15	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 1 10,77 945 12 5,35 930 12 4,29 738 10	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	11,20 982 16 5,57 15 5,77 15 5,77 3,80 992	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fressure drop system side Fan Type	kW I/h kPa kW I/h kPa kW kW I/h kPa	5,27 462 12 2,62 455 12 2,68 1,94 460 13	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23	8,50 745 28 4,22 734 28 4,25 3,18 731 29	5,82 510 10 2,89 502 10 2,91 2,97 501 12	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28	6,50 570 12 3,32 561 12 3,22 2,56 554	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	7,19 631 14 3,57 621 14 3,95 2,78 595 15	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 1 10,77 945 12 5,35 930 12 4,29 738 10	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	11,20 982 16 5,57 15 5,77 15 5,77 3,80 992	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number	kW I/h kPa kW I/h kPa kW L/h kPa type type no.	1 L 5,27 462 12 2,62 455 12 2,68 1,94 460 13	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 Centrifuga 2	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29	5,82 510 10 2,89 502 10 2,91 2,07 501 12	8,34 731 20 4,14 720 20 4,13 2,98 711 22 Centrifuga 2	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	7,19 631 14 3,57 621 14 3,95 2,78 595 15	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 1 0,77 945 12 5,35 930 12 4,29 2,97 738 10 (As	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	1 L 11,20 982 16 5,57 15 5,77 3,80 992 15	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 Centrifuga 3	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate	kW I/h kPa kW I/h kPa kW kW I/h kPa	5,27 462 12 2,62 455 12 2,68 1,94 460 13	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 Centrifuga 2 600	8,50 745 28 4,22 734 28 4,25 3,18 731 29	5,82 510 10 2,89 502 10 2,91 2,97 501 12	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 Centrifuga	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28	6,50 570 12 3,32 561 12 3,22 2,56 554	8,10 710 18 4,03 699 18 3,90 3,17 671 19	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	7,19 631 14 3,57 621 14 3,95 2,78 595 15	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 1 10,77 945 12 5,35 930 12 4,29 738 10	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	11,20 982 16 5,57 15 5,77 15 5,77 3,80 992	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power	kW I/h kPa kW I/h kPa kW L/h kPa type type no. m³/h	1 L 5,27 462 12 2,62 455 12 2,68 1,94 460 13	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 Centrifuga 2	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 720	5,82 510 10 2,89 502 10 2,91 2,07 501 12	8,34 731 20 4,14 720 20 4,13 2,98 711 22 Centrifuga 2 600	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 (6,45 520 520 520 550 570 570 570 570 570 570 570 570 57	8,10 710 18 4,03 699 18 3,90 3,17 671 19 Centrifuga 3 720	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	7,19 631 14 3,57 621 14 3,95 2,78 595 15	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 1 0,77 945 12 5,35 930 12 4,29 2,97 738 10 (Ass	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13	3 H 15,14 1328 22 7,53 1307 22 2,568 1189 22 22	1 L 11,20 982 16 5,57 967 15 5,77 3,80 992 15	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 Centrifuga 3 930	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring	kW I/h kPa kW I/h kPa kW L/h kPa type type no. m³/h	1 L 5,27 462 12 12 2,62 455 12 2,68 1,94 460 13 400 38	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 Centrifuga 2 600 52	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 720 76	5,82 510 10 2,89 502 10 2,91 2,07 501 12 400 38	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 Centrifuga 5 600 52	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28 720 76	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 6 6 As 520 38	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 Centrifuggynchronc 3 720 60	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	7,19 631 14 3,57 621 14 3,95 2,78 595 15 (0 As	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifuga 3 720 60	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 (0 As	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13 Centrifuga 3 930 80	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 106	1 L 11,20 982 16 5,57 967 15 5,77 3,80 992 15 700 59	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 Centrifuga yynchronoc 3 930 80	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30 1140 106
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Diametre hydraulic fittings	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W	1 L 5,27 462 12 12 2,62 455 12 2,68 1,94 460 13 400 38	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 Centrifugg 2 600 52 V2	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 720 76	5,82 510 10 2,89 502 10 2,91 2,07 501 12 400 38	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 Centrifuga 2 600 52 V2	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28 720 76	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 6 6 As 520 38	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 Centrifugg yynchronc 3 720 60 V2	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	7,19 631 14 3,57 621 14 3,95 2,78 595 15 (0 As	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifuga 3 720 60	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 (0 As	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13 Centrifugi 3 930 80 V2	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 106	1 L 11,20 982 16 5,57 967 15 5,77 3,80 992 15 700 59	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 Centrifuga yynchronoc 3 930 80	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30 1140 106
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Diametre hydraulic fittings Type	kW I/h kPa kW I/h kPa kW L/h kPa type type no. m³/h	1 L 5,27 462 12 12 2,62 455 12 2,68 1,94 460 13 400 38	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 Centrifuga 2 600 52	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 720 76	5,82 510 10 2,89 502 10 2,91 2,07 501 12 400 38	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 Centrifuga 5 600 52	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28 720 76	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 6 6 As 520 38	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 Centrifuggynchronc 3 720 60	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	7,19 631 14 3,57 621 14 3,95 2,78 595 15 (0 As	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifuga 3 720 60 V2	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 (0 As	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13 Centrifuga 3 930 80	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 106	1 L 11,20 982 16 5,57 967 15 5,77 3,80 992 15 700 59	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 Centrifuga 3 930 80 V2	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30 1140 106
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Diametre hydraulic fittings Type Main heat exchanger	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W	1 L 5,27 462 12 12 2,62 455 12 2,68 1,94 460 13 400 38	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 Centrifuga 2 600 52 V2	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 720 76	5,82 510 10 2,89 502 10 2,91 2,07 501 12 400 38	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 600 52 V2	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28 720 76	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 6 6 As 520 38	2 M 8,10 710 18 4,03 699 18 3,90 671 19 Eentrifuga 4,03 772 60 V2	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	7,19 631 14 3,57 621 14 3,95 2,78 595 15 (0 As	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Eentrifuga 7720 60 V2	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 (0 As	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13 13 Centrifug: cynchrono 3930 80 V2	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 106	1 L 11,20 982 16 5,57 967 15 5,77 3,80 992 15 700 59	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 23 Eentrifuga 80 V2	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30 1140 106
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Diametre hydraulic fittings Type Main heat exchanger Fan coil sound data (3)	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W	1 L 5,27 462 12 2,62 455 12 2,68 1,94 460 13 400 38 V1	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 Centrifuga 2,00 52 V2	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 720 76 V3	5,82 510 10 2,89 502 10 2,91 2,07 501 12 400 38 V1	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 600 52 V2	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28 720 76 V3	1 L 6,50 570 12 3,32 561 12 3,22 2,56 654 14 C As	2 M 8,10 710 18 4,03 699 18 3,17 671 19 Centrifuga 720 60 V2 Gas-F 3,4"	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26 11 11 12 900 91 V3	7,19 631 14 3,57 621 14 3,95 2,78 595 15 620 38 V1	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Eentrifuga 720 60 V2	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 6 As	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13 13 Centrifug: Cynchrono 80 V2	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 22 1140 106 V3	1 L 11,20 982 16 5,57 967 15 5,77 3,80 992 15 6 As	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 23 23 4,87 1259 23 80 V2	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30 1140 106 V3
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Diametre hydraulic fittings Type Main heat exchanger Fan coil sound data (3) Sound power level	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W type Ø dB(A)	1 L 5,27 462 12 2,62 455 12 2,68 1,94 460 13 42,0 440 442,0	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 Centrifuga 2 600 52 V2 Gas-F 3/4"	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 720 76 V3	5,82 510 10 2,89 502 10 2,91 2,07 501 12 400 38 V1	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 6600 52 V2 Gas-F 3/4"	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28 720 76 V3	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 C As	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 Centrifuga 60 V2 Gas - F 3/4"	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26 11 V3	1 L 7,19 631 14 3,57 621 14 3,95 2,78 595 15 C AS	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifuga 3 720 60 V2	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28 91 V3	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 (Ass. 700 59 V1 51,0	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13 13 Eentrifuga 80 V2 Gas-F 3/4" 57,0	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 106 V3	1 L 11,20 982 16 5,57 967 15 5,77 3,80 992 15 6 A: 700 59 V1	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 23 23 Eentrifuga 80 V2 Gas-F 3/4" 57,0	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30 1140 106 V3
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Diametre hydraulic fittings Type Main heat exchanger Fan coil sound data (3) Sound power level Sound pressure level	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W	1 L 5,27 462 12 2,62 455 12 2,68 1,94 460 13 400 38 V1	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 Centrifuga 2,00 52 V2	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 720 76 V3	5,82 510 10 2,89 502 10 2,91 2,07 501 12 400 38 V1	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 600 52 V2	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28 720 76 V3	1 L 6,50 570 12 3,32 561 12 3,22 2,56 654 14 C As	2 M 8,10 710 18 4,03 699 18 3,17 671 19 Centrifuga 720 60 V2 Gas-F 3,4"	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26 11 11 12 900 91 V3	7,19 631 14 3,57 621 14 3,95 2,78 595 15 620 38 V1	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Eentrifuga 720 60 V2	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 6 As	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13 13 Centrifug: Cynchrono 80 V2	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 22 1140 106 V3	1 L 11,20 982 16 5,57 967 15 5,77 3,80 992 15 6 As	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 23 23 4,87 1259 23 80 V2	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30 1140 106 V3
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Diametre hydraulic fittings Type Main heat exchanger Fan coil sound data (3) Sound power level	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W type Ø dB(A)	1 L 5,27 462 12 2,62 455 12 2,68 1,94 460 13 400 38 V1 42,0 34,0	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 Centrifuga 2 600 52 V2 Gas-F 3/4"	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 720 76 V3	1 L 5,82 510 10 10 2,89 502 10 2,91 2,07 501 12 42,0 38 V1	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 6600 52 V2 Gas-F 3/4"	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28 720 76 V3	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 (42,0 34,0 42,0 34,0	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 Centrifuga 60 V2 Gas - F 3/4"	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26 11 V3	7,19 631 14 3,57 621 14 3,95 2,78 595 15 (CASS) 42,0 34,0	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifuga 3 720 60 V2	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28 11 V3	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 (Ass. 55,00 10 10 10 10 10 10 10 10 10 10 10 10 1	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13 13 Eentrifuga 80 V2 Gas-F 3/4" 57,0	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 106 V3	1 L 11,20 982 16 5,57 967 15 5,77 3,80 992 15 700 59 V1	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 23 23 Eentrifuga 80 V2 Gas-F 3/4" 57,0	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30 1140 106 V3

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

Size			200	300	400	500	600	900	950
Dimensions and weights									
A	H,HT	mm	486	486	486	486	486	591	591
A	HP	mm	216	216	216	216	216	216	216
D.	H,HT	mm	750	980	1200	1200	1320	1320	1320
В	HP	mm	562	793	1013	1013	1147	1147	1147
(H,HT	mm	220	220	220	220	220	220	220
· ·	HP	mm	453	453	453	453	453	558	558
D	H,HT	mm	90	90	90	90	90	90	90
ν	HP	mm	522	753	973	973	1122	1122	1122
F	H,HT	kg	15	17	23	22	29	34	34
Empty weight	HP	kg	12	14	20	23	29	32	32

FCZI-H

Fan coil with the photocatalytic device, for universal and floor installation

- Photocatalytic device
- Tested effectiveness against viruses, bacteria and allergens
- Active against the SARS-CoV-2 virus, even on surfaces
- Certifications VDI 6022

DESCRIPTION

Fan coil with built-in **photocatalytic device**.

Active against the airborne Sars-CoV-2 virus (95%-99% abatement efficacy after 20 minutes of operation tested at the Virostatics laboratory in Alghero).

Active against the SARS-CoV-2 virus, even on surfaces - 84% effectiveness after 12 h (tests carried out in collaboration with the Department of Microbiology of the University of Padua).

Suitable for air conditioning in places requiring optimum hygiene levels, such as:

- Hospitals
- Dentists' surgeries
- Doctors' and vets' surgeries
- Analysis laboratories
- Waiting rooms
- Public premises

They can be installed in any type of 2-pipe system (version for 4-pipe systems available upon request) and in combination with any heat generator, even at low temperatures. Thanks to the availability of several versions and configurations, it's easy to find the right solution for every need.

VERSIONS

- H Unit with shell without thermostat vertical and horizontal installation.
- HP Unit without shell and without thermostat vertical and horizontal installation.
- HT Unit with shell and thermostat vertical installation.

FEATURES

Case

Metallic protective cabinet with rustproofing polyester paint RAL 9003. The head with adjustable air distribution grille is made of plastic RAL 7047. When the grille closes, the fan coil automatically switches off.

Ventilation group

Comprised of a dual intake centrifugal fan that is particularly silent, statically and dynamically balanced and directly coupled to the motor shaft.

The Brushless electric motor with 0-100% continuous speed variation, which allows precise adaptation to the real demands of the internal environment without temperature fluctuations.

Continuous air flow rate variation is made possible by a 0-10V signal generated by Aermec adjustment and control commands or by independent regulation systems.

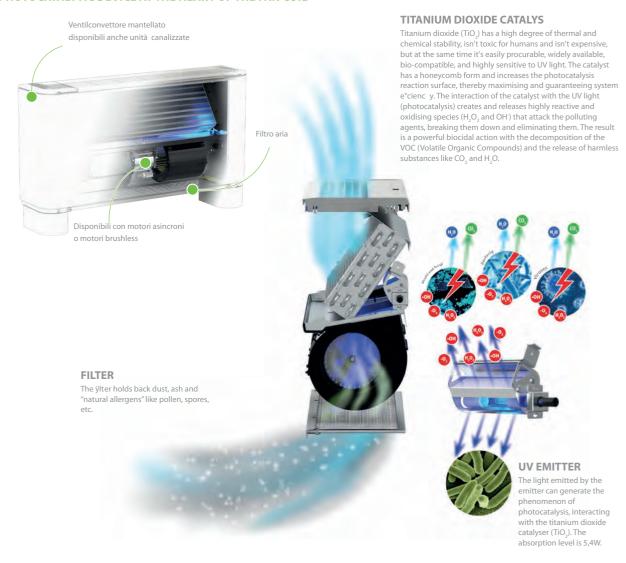
This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors). The scroll that protects the fan can be extracted and inspected, for easy and effective classifier.

Apart from the brushless motor, each unit can also be supplied with a single-phase asynchronous motor. Refer to the relative FCZ - H datasheet

Finned pack heat exchanger

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air years.


The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

The coil is not reversible during installation but, when ordering, you can choose units with the coil water connections on the right (at no extra charge).

Air filter

Air filter class **COARSE 25%** for all versions; easy to pull out and clean. Shrouds can be pulled out and inspected for easy and effective cleaning.

PHOTOCATALYTIC DEVICE AT THE HEART OF THE FAN COIL

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Field	Description
1,2,3,4	FCZI
5	Size 2, 3, 4, 5, 7, 9
6	main heat exchanger
0	Standard
5	Oversized
7	Secondary heat exchanger
0	Without coil
В	Version
Н	Unit with shell without thermostat - vertical and horizontal mount
HP	Unit without shell and thermostat - vertical and horizontal mount
HPR	Unit without shell and thermostat - vertical and horizontal installation - water connections on the right
HR	Unit with shell without thermostat - vertical and horizontal installation - water connections on the right
HT	Unit with shell with thermostat - vertical mount
HTR	Unit with shell with thermostat - vertical mount - water connections on the right

ACCESSORIES

Control panels and dedicated accessories - FCZI-H

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualiet).

DI24: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, DI24 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, DI24 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, DI24CP, is also available as a separate accessory in our catalog.

VMF-E19I: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E2Z: User interface on the machine, to be combined with the VMF-E19 and VMF-F19I accessory.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (MFTAL)

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-LON: Expansion allowing the thermostat to interface with BMS systems that use the LON protocol.

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

VMF system

■ The fan coil can also be teamed up with the VMF system; please contact headquarters about compatibility with the various system components.

Common accessories

VCZ: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit.

AMP: Wall mounting kit

DSC: Condensate drainage device.

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing. **PCZ:** Metal panel for the unit rear closing. SPCZ brackets are necessary to fix floor standing fan coils.

GA: Lower intake grille for encapsulated fan coils. Can also be used in wall-mounted or floor installations, the FIKIT accessory is needed only in the case of floor installation.

FIKIT: Structural bracket in floor installation.

ZXZ: Pair of stylish and structural feet

BC: Condensate drip.

Ventilcassaforma: Galvanised sheet metal template. It makes it possible to obtain directly in the wall a space for housing the fan coil.

SPCZ: Brackets to fix the fan coil to the floor.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Model	Ver	200	250	300	350	400	450	500
AER503IR (1)	H,HP	•	•	•		•	•	•
PR0503	H,HP	•	•	•	•	•	•	•
SA5 (2)	H,HP	•	•	•	•	•	•	•
SW3 (2)	H,HP,HT	•	•	•	•	•	•	•
CME (2)	H,HP	•	•	•	•	•	•	•
SW5 (2)	HT		•		•		•	
TX (3)	H,HP,HT	•	•	•		•		•

Model	Ver	550	700	750	900	950
AER503IR (1)	H,HP	•	•	•	•	•
PR0503	H,HP	•	•	•	•	•
SA5 (2)	H,HP	•	•	•	•	•
SW3 (2)	H,HP,HT	•	•	•	•	•
CML (3)	H,HP	•	•	•	•	•
SW5 (2)	HT	•		•		
TX (3)	H,HP,HT		•	•	•	•

(1) Wall-mount installation.(2) Probe for AER503IR-TX thermostats, if fitted.

(3) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

Model	Ver	200	250	300	350	400	450	500	550	700	750	900	950
DI24	H,HP	•	•	•	•	•	•	•	•	•	•	•	•

Model	Ver	200	250	300	350	400	450	500	550	700	750	900	950
VMF-E19I (1)	H,HP	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E2Z	Н		•	•	•	•	•	•			•		•
VMF-E3	H,HP		•		•	•					•		•
VMF-E4DX	H,HP	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E4X	H,HP	•	•	•	•	•	•	•	•	•	•	•	•
VMF-IO	Н	•	•	•	•	•	•	•	•	•	•	•	•
VMF-IR	H,HP	•	•	•	•	•	•	•	•	•	•	•	•
VMF-LON	Н		•	•	•								•
VMF-SW1	H,HP	•	•	•	•	•	•	•	•	•	•	•	•
VMHI	H,HP		•	•	•	•	•	•	•	•	•	•	•

(1) Mandatory accessory.

Common accessories

3 way valve kit

Model	Ver	200	250	300	350	400	450	500	550	700	750	900	950
VCZ41 (1)	H,HP,HT	•	•										
VCZ4124 (2)	H,HP,HT	•	•										
VCZ42 (1)	H,HP,HT			•	•	•	•	•	•	•	•		
VCZ4224 (2)	H,HP,HT			•	•	•	•	•	•	•	•		
VCZ43 (1)	H,HP,HT											•	•
VCZ4324 (2)	H,HP,HT											•	

(1) 230V~50Hz (2) 24V

2 way valve kit

Model	Ver	200	250	300	350	400	450	500	550	700	750	900	950
VCZD1 (1)	H,HP,HT	•	•										
VCZD124 (2)	H,HP,HT	•	•										
VCZD2 (1)	H,HP,HT			•	•	•	•	•	•	•	•		
VCZD224 (2)	H,HP,HT			•	•	•	•	•	•	•	•		
VCZD3 (1)	H,HP,HT											•	•
VCZD324 (2)	H,HP,HT			·						·		•	•

(1) 230V~50Hz (2) 24V

Combined Adjustment and Balancing Valve Kit

Model	Ver	200	250	300	350	400	450	500	550	700	750	900	950
VJP060 (1)	H,HP,HT	•	•	•	•								
VJP060M (2)	H,HP,HT	•	•	•	•								
VJP090 (1)	H,HP,HT					•	•	•	•				
VJP090M (2)	H,HP,HT					•	•	•	•				
VJP150 (1)	H,HP,HT									•	•	•	•
VJP150M (2)	H,HP,HT									•	•	•	•

(1) 230V~50Hz (2) 24V

Wall mounting kit

Ver	200	250	300	350	400	450	500	550	700	750	900	950
H, HP	AMP20											

Condensate drainage

Model	Ver	200	250	300	350	400	450	500	550	700	750	900	950
DSC4 (1)	HP	•	•	•	•	•	•	•	•	•	•	•	•

(1) DSC4 cannot be mounted if even just one of these accessories is also installed: AMP - AMPZ valve VCZ1-2-3-4 X4L/R and all the condensate collection trays.

Condensate drip

communicate unip												
Ver	200	250	300	350	400	450	500	550	700	750	900	950
HP	BCZ4 (1)											
(1) For vertical installation.												
Ver	200	250	300	350	400	450	500	550	700	750	900	950
HP	BC8 (1)	BC9 (1)	BC9 (1)									

(1) For horizontal installation.

Panel closing the rear of the unit

Ver	200	250	300	350	400	450	500	550	700	750	900	950
H, HT	PCZ200	PCZ200	PCZ300	PCZ300	PCZ500	PCZ500	PCZ500	PCZ500	PCZ800	PCZ800	PCZ1000	PCZ1000

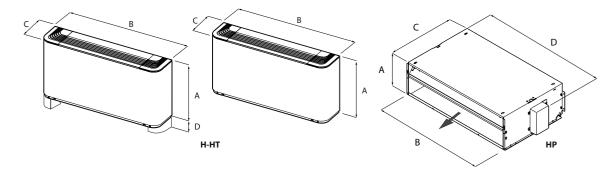
Grille also applicable for floor installation

_	- ''												
	Ver	200	250	300	350	400	450	500	550	700	750	900	950
	H, HP, HT	GA200	GA200	GA300	GA300	GA500	GA500	GA500	GA500	GA800	GA800	GA800	GA800

Ver	200	250	30	0	350	400	4.	50	500		550	7	00	750		900		950
H, HP, HT	FIKIT200	FIKIT200	FIKIT	300	FIKIT300	FIKIT500	FIKI	T500	FIKIT50	00	FIKIT500	FIKI	T800	FIKIT80	00	FIKIT800	FIK	(IT800
Ventilcassaforma																		
Ver	200	250	30	0	350	400	4.	50	500		550	7	00	750		900		950
HP	CHF22	CHF22	CHF	32	CHF32	CHF42	СН	F42	CHF4	2	CHF42	CH	F62	CHF6	2	CHF62	C	HF62
Brackets to fix the fan coil to	the floor.																	
Ver	200	250	30	0	350	400	4	50	500		550	7	00	750		900		950
H, HT	SPCZ	SPCZ	SPO	7.	SPCZ	SPCZ	SF	PCZ	SPCZ		SPCZ	SI	PCZ	SPCZ		SPCZ	9	PCZ
Pair of stylish structural feet																		
Ver	200	250	30	0	350	400	4	50	500		550	7	00	750		900		950
141	200	230		-														
H, HP, HT	ZXZ	ZXZ	ZX	_	ZXZ	ZXZ	Z	XZ	ZXZ		ZXZ	Z	XZ	ZXZ		ZXZ		ZXZ
·	ZXZ	ZXZ	ZX	Z	ZXZ	ZXZ												ZXZ
H, HP, HT PERFORMANCE SPECIFI	ZXZ	ZXZ	ZX FCZI200H	Z I	ZXZ	ZXZ CZ1250H		FCZI300	Н	1	FCZI350H			FCZ1400H	ı		CZ1450I	ZXZ
H, HP, HT PERFORMANCE SPECIFI	ZXZ	ZXZ	ZX	Z	ZXZ	ZXZ				1 L								ZXZ •• 3
H, HP, HT PERFORMANCE SPECIFI	ZXZ	ZXZ	FCZI200H 2	Z <u>I</u> 3	ZXZ	ZXZ CZI250H 2 3		FCZI300	H	1 L	FCZI350H	3		F CZ1400 H	1 3	1	CZI450I 2	ZXZ
H, HP, HT PERFORMANCE SPECIFI 2-pipe Heating performance 70 °C / 60 °C (1)	ZXZ CATIONS	ZXZ	FCZI200H 2	Z <u>I</u> 3	ZXZ	ZXZ CZI250H 2 3		FCZI300	H	1 L	FCZI350H	3		F CZ1400 H	1 3	1	CZI450I 2	ZXZ •• • 3
H, HP, HT PERFORMANCE SPECIFI 2-pipe Heating performance 70 °C / 60 °C (1) Heating capacity	ZXZ CATIONS	ZXZ	FCZI200H 2 M	Z I 3 H	ZXZ F 1 L	ZXZ CZ1250H 2 3 M H	1 L	FCZI300 I	H 3 H	1 L	FCZI350H 2 M	3 H	1 1 L	F CZ1400 H 2 M	1 3 H	1 1 L	CZI450I 2 M	7,5
H, HP, HT PERFORMANCE SPECIFI 2-pipe Heating performance 70 °C / 60 °C (1) Heating capacity Water flow rate system side	ZXZ CATIONS k	ZXZ 1 1 L W 2,02	FCZ1200H 2 M	Z 1 3 H	ZXZ F F 1 L 2,20	ZXZ CZI250H 2 3 M H 3,18 4,05	1 L	FCZI3000 2 M	H 3 H	1 L	FCZI350H 2 M	3 H	1 L	FCZI400H 2 M	1 3 H 7,15	1 L	2 M	ZXZ •• 3
H, HP, HT PERFORMANCE SPECIFI 2-pipe Heating performance 70 °C / 60 °C (1) Heating capacity Water flow rate system side Pressure drop system side	ZXZ CATIONS k	ZXZ 1 1 L W 2,022 W 1777	FCZ1200H 2 M 2,95 258	7 3 H 3,70 324	ZXZ F F 1 L L 2,20 193	ZXZ CZI250H 2 3 M H 3,18 4,05 278 355	1 L 3,47 304	FCZI3000 2 M 4,46 391	H 3 H 5,50 482	1 L 3,77 330	FCZI350H 2 M 4,92 431	3 H 6,15 539	1 L 4,32 379	FCZI400H 2 M 5,74 503	3 H 7,15 627	1 1 L 4,57 400	2 M 6,29 551	7,8 68
H, HP, HT PERFORMANCE SPECIFI 2-pipe	ZXZ CATIONS k	ZXZ 1 1 L W 2,022 W 1777	FCZ1200H 2 M 2,95 258	7 3 H 3,70 324	ZXZ F F 1 L L 2,20 193	ZXZ CZI250H 2 3 M H 3,18 4,05 278 355	1 L 3,47 304	FCZI3000 2 M 4,46 391	H 3 H 5,50 482	1 L 3,77 330	FCZI350H 2 M 4,92 431	3 H 6,15 539	1 L 4,32 379	FCZI400H 2 M 5,74 503	3 H 7,15 627	1 1 L 4,57 400	2 M 6,29 551	7,8 68
H, HP, HT PERFORMANCE SPECIFI 2-pipe Heating performance 70 °C / 60 °C (1) Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2)	ZXZ CATIONS k II k	ZXZ 1	FCZI200H 2 M 2,95 258	Z 3 H 3,70 324 18	ZXZ F F 1 L 2,20 193 7	ZXZ CZI250H 2 3 M H 3,18 4,05 278 355 15 23	3,47 304 7	FCZI300I 2 M 4,46 391 12	H 3 H 5,50 482 18	3,77 330 8	FCZI350H 2 M 4,92 431 14	3 H 6,15 539 20	1 L 4,32 379 9	5,74 503 16	3 H 7,15 627 24	1 1 L 4,57 400 6	2 M 6,29 551	7, 68

ressure drop system side	iti u		14	10	,	15	23	, ,	12	10	"		20		10	2.1			10
Heating performance 45 °C / 40 °C (2)																			
Heating capacity	kW	1,00	1,46	1,84	1,09	1,58	2,01	1,72	2,21	2,73	1,87	2,44	3,06	2,14	2,85	3,55	2,27	3,12	3,88
Water flow rate system side	l/h	174	254	319	190	274	350	299	385	475	325	425	531	373	495	617	394	543	675
Pressure drop system side	kPa	6	12	18	8	15	22	8	12	18	8	14	20	10	16	24	6	11	16
Cooling performance 7 °C / 12 °C																			
Cooling capacity	kW	0,89	1,28	1,60	1,06	1,55	1,94	1,68	2,17	2,65	1,89	2,46	3,02	2,20	2,92	3,60	2,41	3,21	4,03
Sensible cooling capacity	kW	0,71	1,05	1,33	0,79	1,20	1,52	1,26	1,65	2,04	1,33	1,76	2,18	1,59	2,14	2,67	1,69	2,30	2,90
Water flow rate system side	l/h	153	221	275	182	267	334	288	374	456	350	460	560	379	503	619	414	552	694
Pressure drop system side	kPa	7	13	18	8	17	25	8	13	18	11	18	25	10	17	24	9	15	22
Fan																			
Туре	type	(Centrifuga	ı	(Centrifuga	ıl	(Centrifuga	al	(entrifuga	ıl	(entrifuga	ıl	(entrifuga	ıl
Fan motor	type		Inverter			Inverter			Inverter			Inverter			Inverter			Inverter	
Number	no.		1			1			2			2			2			2	
Air flow rate	m³/h	140	220	290	140	220	290	260	350	450	260	350	450	330	460	600	330	460	600
Input power	W	5	8	14	5	8	14	5	7	13	5	7	13	5	10	18	5	10	18
Signal 0-10V	%	44	68	90	44	68	90	52	70	90	52	70	90	49	68	90	49	68	90
Diametre hydraulic fittings																			
Time	4		С Г			С Г			С Г			С Г			С Г			C F	

Diametre hydraulic fittings																			
Туре	type		Gas - F																
Fan coil sound data (3)																			
Sound power level	dB(A)	35,0	46,0	51,0	35,0	46,0	51,0	34,0	41,0	48,0	34,0	41,0	48,0	37,0	44,0	51,0	37,0	44,0	51,0
Sound pressure level	dB(A)	27,0	38,0	43,0	27,0	38,0	43,0	26,0	33,0	40,0	26,0	33,0	40,0	29,0	36,0	43,0	29,0	36,0	43,0
Power supply																			
D		3.	201/ 501	1-	1	201/ 501	1-	1	201/ 501	1-	2	201/ 501	1_	2	201/ 501	1_	1	201/ 501	1-


Power supply		2	30V~50H	lz	2	30V~50H	z	2	30V~50H	lz	2	30V~50H	lz	2	30V~50H	łz	2	30V~50H	łz
			FCZI500I	H		FCZI550I	1		FCZI700I	H		FCZI750I	1		FCZI900I	Н	ı	CZI950l	1
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																			
Heating capacity	kW	5,27	7,31	8,50	5,82	8,34	9,75	6,50	8,10	10,00	7,19	9,15	11,50	10,77	13,35	15,14	11,20	14,42	17,10
Water flow rate system side	I/h	462	641	745	510	731	855	570	710	877	631	802	1008	945	1171	1328	982	1264	1500
Pressure drop system side	kPa	12	21	28	10	20	26	12	18	26	14	21	31	12	17	22	16	25	33
Heating performance 45 °C / 40 °C (2)																			
Heating capacity	kW	2,62	3,63	4,22	2,89	4,14	4,85	3,32	4,03	4,97	3,57	4,55	5,72	5,35	6,64	7,53	5,57	7,17	8,50
Water flow rate system side	l/h	455	631	734	502	720	842	561	699	863	621	790	993	930	1152	1307	967	1245	1476
Pressure drop system side	kPa	12	21	28	10	20	26	12	18	26	14	20	31	12	17	22	15	24	33
Cooling performance 7 °C / 12 °C																			
Cooling capacity	kW	2,68	3,69	4,25	2,91	4,13	4,79	3,22	3,90	4,65	3,95	4,80	5,67	4,29	5,00	6,91	5,77	7,32	8,60
Sensible cooling capacity	kW	1,94	2,73	3,18	2,07	2,98	3,49	2,56	3,17	3,92	2,78	3,43	4,12	2,97	3,78	5,68	3,80	4,87	5,78
Water flow rate system side	l/h	460	634	731	501	711	824	554	671	800	595	825	975	738	860	1189	992	1259	1479
Pressure drop system side	kPa	13	23	29	12	22	28	14	19	26	15	21	28	10	13	22	15	23	30
Fan																			
Туре	type	(Centrifuga	al	(Centrifuga	ıl	(Centrifuga	al	(entrifuga	ıl	(Centrifuga	al	(entrifuga	d
Fan motor	type		Inverter			Inverter			Inverter			Inverter			Inverter			Inverter	

riessure drop system side	Kra	13		29	1Z	22		14	19	20	13	21		10	13	22	10	23	30
Fan																			
Туре	type	(Centrifuga	l		Centrifuga	ı	(entrifuga	ıl	(entrifuga	ı	(Centrifuga	al	(Centrifuga	ıl
Fan motor	type		Inverter			Inverter			Inverter			Inverter			Inverter			Inverter	
Number	no.		2			2			3			3			3			3	
Air flow rate	m³/h	400	600	720	400	600	720	520	720	900	520	720	900	700	930	1140	700	930	1140
Input power	W	7	18	34	7	18	34	30	40	80	30	40	80	30	40	80	30	40	80
Signal 0-10V	%	50	74	90	50	74	90	56	72	90	56	72	90	56	72	90	56	72	90

			CZI500H			FCZI550H	l	ı	CZI700H	1		FCZI750H	1	ı	CZI900H			FCZI950I	1
Diametre hydraulic fittings																			
Туре	type		Gas - F			Gas - F			Gas - F			Gas - F			Gas - F			Gas - F	
Fan coil sound data (3)																			
Sound power level	dB(A)	42,0	51,0	56,0	42,0	51,0	56,0	42,0	51,0	57,0	42,0	51,0	57,0	51,0	57,0	62,0	51,0	57,0	61,0
Sound pressure level	dB(A)	34,0	43,0	48,0	34,0	43,0	48,0	34,0	43,0	49,0	34,0	43,0	49,0	43,0	49,0	54,0	43,0	49,0	53,0
Power supply																			
Power supply		2	30V~50H	Z	2	30V~50H	Z	2	30V~50H	łz	2	30V~50H	łz	2	30V~50H	Z	2	30V~50H	łz

- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
 (2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
 (3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

Size			200	250	300	350	400	450	500	550	700	750	900	950
Dimensions and weights	,													
Λ	H,HT	mm	486	486	486	486	486	486	486	486	486	486	591	591
A	HP	mm	216	216	216	216	216	216	216	216	216	216	216	216
n	H,HT	mm	750	750	980	980	1200	1200	1200	1200	1320	1320	1320	1320
В	HP	mm	522	522	753	753	973	973	973	973	1122	1122	1122	1122
(H,HT	mm	220	220	220	220	220	220	220	220	220	220	220	220
C	HP	mm	453	453	453	453	453	453	453	453	453	453	558	558
D	H,HT	mm	90	-	90	-	90	-	90	-	90	-	90	90
V	HP	mm	562	-	793	-	1013	-	1013	-	1147	-	1147	1147
F	H,HT	kg	15	16	17	18	22	24	22	24	29	31	34	34
Empty weight	HP	kg	12	14	14	16	20	22	23	24	26	31	32	32

FCZ-ASW

- Adiabatic "retractable stand-alone" ultrasonic humidifier
- Fully silent operation
- Total comfort in every season

Fan coil for vertical wall-mounting or free-standing installation

Cooling capacity 0,65 ÷ 7,62 kW Heating capacity 1,45 ÷ 17,02 kW

The FCZ-ASW series adds winter air humidity control to the typical functions of a fan coil, guaranteeing the best degree of thermo-hygrometric comfort without any impact on acoustic performance and with extremely low electricity consumption.

INTEGRATED ULTRASONIC HUMIDIFIER: EFFICIENCY AND

Our "stand-alone" adiabatic ultrasonic humidifier, which disappears from view because it is perfectly integrated into the fan coil cabinet, guarantees precise and silent humidification of the environment.

It consists of a transparent tank, a feeding unit with a three-speed micro-fan and a piezoelectric transducer.

The latter, thanks to ultrasonic technology, nebulizes the demineralised water into microparticles, creating a fine mist that evaporates quickly once in contact with the ambient air.

The electronic control makes it possible to set three humidity levels, adapting to any need, the integrated level sensor promptly signals the need to top up only demineralised water.

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Metallic micro-perforated cabinet with rustproofing polyester paint RAL 9003. Head with plastic air distribution grille RAL 7047.

Ventilation group

Consisting of double suction centrifugal fans that are particularly silent, statically and dynamically balanced, and directly coupled with the motor

The motor is wired for single phase and has three speeds, with capacitor. The motor is fitted on sealed for life bearings and is secured on anti-vibration and self-lubricating mountings.

Extractable shrouds for easy, effective cleaning

Finned pack heat exchanger

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Specify the position of the water connections at the time of ordering.

Air filter class Coarse 25% for all versions easy to pull out and clean.

DATA AND ACCESSORIES

For performance data and accessory compatibility, please refer to the commercial documentation of the FCZ series.

Please note that only wall-mounted control panels are compatible with this unit, so it cannot be used in units with on-board thermostats

Aermec S.p.A.

Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

Omnia UL

Fan coil for universal installation

- Fully silent functioning
- Ideal for residential or office solutions

fan coil can be installed in any 2 pipe system and operates with any heat generator even at low temperatures, and thanks to varied versions and settings, it is easy to pick the ideal solution for any need.

C Vertical installation, intake at base, electronic thermostat

PC Vertical installation, intake at base, electronic thermostat, Cold Plasma purifier

S Vertical and horizontal installation, intake at base, without commands **UL** Standard - Vertical installation, bottom intake, manual switch-over

FEATURES

Case

Protective metal cabinet with anti-corrosion polyester RAL 9003 paint, whereas the head with the air distribution grille is in RAL 7047 plastic.

Ventilation group

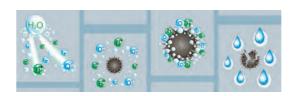
Comprised of a dual intake centrifugal fan that is particularly silent, statically and dynamically balanced and directly coupled to the motor shaft. The electric motor is single-phase multi-speed (3 selectable), mounted on anti-vibration supports and with a permanently inserted capacitor. The plastic augers are extractable for easy and efficient cleaning.

Finned pack heat exchanger

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.


Condensate drip

Provided standard in plastic and fixed to the interior structure; with external condensate discharge.

The fan coil units are equipped with a standard air filter. For specific details, please refer to the unit's documentation.

APC versions equipped with Coldplasma Air purifier.

The purifier is able to reduce pollutants, decomposing their molecules using electrical charges, causing the water molecules in the air to split into positive and negative ions. These ions neutralise the molecules in the gaseous pollutants, obtaining products normally present in clean air. The device is able to eliminate 90% of the bacteria. The result is clean, ionized air, free of foul odours.

ACCESSORIES

with water side changeover.

Control panels and dedicated accessories

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. **PRO503:** Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualiet).

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

WMT16: Electronic thermostat with thermostated ventilation.

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF system

DI24: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate

and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, Dl24 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, Dl24 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, Dl24CP, is also available as a separate accessory in our catalog.

DI24CP: Complete flush-mounted interface plate with support for DI24, Vimar brand, Arké series, graphite gray color.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E2U: User interface on the machine, to be combined with the VMF-E19 and VMF-E19l accessory. It has 2 selector switches, one for temperature and the other for speed control.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19l thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Common accessories

AMP: Wall mounting kit

DSC: Condensate drainage device.

VCH: 3-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VCHD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings.

BC: Condensate drip.

GU: Intake grid covers the front space between the ornamental feet and does not interfere with the filter.

PCU: Sheet metal panel closing the rear of the unit.

ZU1: Pair of stylish and structural feet.

GU: Intake grid covers the front space between the ornamental feet and does not interfere with the filter.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Accessory	UL12C	UL12PC	UL12S	UL17C	UL17PC	UL17S	UL27C	UL27PC	UL27S	UL37C	UL37PC	UL37S
AER503IR	,		•			•			•			•
PR0503			•			•			•			•
SA5			•						•			•
SW3	•	•	•	•	•	•	•	•	•	•	•	•
SW5			•			•	-		•			•
TX						•	-		•			•
WMT10			•			•			•			•
WMT16												

VMF	systen	n
-----	--------	---

Accessory	UL12S	UL17S	UL27S	UL37S
DI24	•	•	•	•
DI24CP	•	•	•	•
VMF-E19	•	•	•	•
VMF-E2U	•	•	•	•
VMF-E3	•	•	•	•
VMF-E4DX	•	•	•	•
VMF-E4X	•	•	•	•
VMF-IR	•	•	•	•
VMHI	•	•	•	•

3 way valve kit

Accessory	UL12	UL12C	UL12PC	UL12S	UL17	UL17C	UL17PC	UL17S	UL27	UL27C	UL27PC	UL27S	UL37	UL37C	UL37PC	UL37S
VCH	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

2 way valve kit

Accessory	UL12	UL12C	UL12PC	UL12S	UL17	UL17C	UL17PC	UL17S	UL27	UL27C	UL27PC	UL27S	UL37	UL37C	UL37PC	UL37S
VCHD	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•

Condensate drip

Accessory	UL17	UL17C	UL17PC	UL17S	UL27	UL27C
BC10 (1)	•	•	•	•	•	•
BC20 (2)	•	•	•	•	•	•
Accessory	UL27PC	UL27S	UL37	UL37C	UL37PC	UL37S
BC10 (1)	•	•	•	•	•	•
BC20 (2)	•	•	•	•	•	•

Condensate drainage

Accessory	UL12	UL12C	UL12PC	UL12S	UL17	UL17C	UL17PC	UL17S	UL27	UL27C	UL27PC	UL27S	UL37	UL37C	UL37PC	UL37S
DSC5 (1)		•	•	•	•	•		•	•	•	•	•			•	•

⁽¹⁾ The accessory cannot be fit if the accessory BC10 or BC20 is installed.

Wall mounting kit

Accessory	UL12C	UL17C	UL17PC	UL27C	UL27PC	UL37C	UL37PC
AMP10			•	•	•		

Panel closing the rear of the unit

Accessory	UL12	UL12C	UL12PC	UL12S	UL17	UL17C	UL17PC	UL17S	UL27	UL27C	UL27PC	UL27S	UL37	UL37C	UL37PC	UL37S
PCU12	•	•	•	•												
PCU17					•	•	•	•								
PCU27									•	•		•				
PCU37													•			•

Intake grids

Accessory	UL12	UL12C	UL12PC	UL12S	UL17	UL17C	UL17PC	UL17S	UL27	UL27C	UL27PC	UL27S	UL37	UL37C	UL37PC	UL37S
GU12 (1)	•	•	•	•												
GU17 (1)					•	•	•	•								
GU27 (1)									•	•	•	•				
GU37 (1)													•			•

⁽¹⁾ The combination with a pair of stylish and structural feet is mandatory.

Pair of stylish structural feet

Accessory	UL12	UL12C	UL12PC	UL12S	UL17	UL17C	UL17PC	UL17S	UL27	UL27C	UL27PC	UL27S	UL37	UL37C	UL37PC	UL37S
7111		•	•		•			•	•	-						.

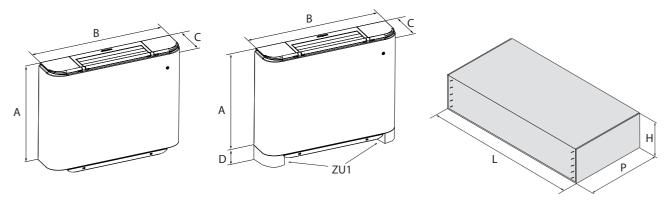
Configuration

Configuration options

Field	Description
1,2	UL
3,4	Size 12, 17, 27, 37
5	Version
С	Vertical installation, intake at base, electronic thermostat
PC	Vertical installation, intake at base, electronic thermostat, Cold Plasma purifier
S	Vertical and horizontal installation, intake at base, without commands
UL	Standard - Vertical installation, bottom intake, manual switch-over

⁽¹⁾ For vertical installation.(2) For horizontal installation.

PERFORMANCE SPECIFICATIONS


Technical data

2-pipe

			UL17			UL27			UL37	
		1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)										
Heating capacity	kW	1,54	2,12	2,91	2,89	3,83	4,62	3,63	4,87	5,94
Water flow rate system side	l/h	135	186	255	254	336	405	310	427	521
Pressure drop system side	kPa	1	2	4	5	8	11	3	5	7
Heating performance 45 °C / 40 °C (2)										
Heating capacity	kW	0,76	1,05	1,44	1,44	1,90	2,29	1,75	2,42	2,95
Water flow rate system side	l/h	133	183	251	249	331	399	305	420	513
Pressure drop system side	kPa	2	3	3	5	8	11	7	13	18
Cooling performance 7 °C / 12 °C								,	,	
Cooling capacity	kW	0,69	0,87	1,17	1,26	1,65	1,99	1,63	2,26	2,79
Sensible cooling capacity	kW	0,52	0,69	0,96	0,97	1,30	1,61	1,13	1,59	2,00
Water flow rate system side	l/h	122	153	206	220	289	349	286	394	487
Pressure drop system side	kPa	2	3	5	5	8	11	7	13	19
Fan										
Туре	type		Centrifugal			Centrifugal			Centrifugal	
Fan motor	type		On-Off			On-Off			0n-0ff	
Number	no.		1			2			2	
Air flow rate	m³/h	110	160	240	190	270	350	240	350	460
Input power	W	23	25	32	24	27	35	30	35	42
Electrical wiring		V1	V2	V3	V1	V2	V3	V1	V2	V3
Fan coil sound data (3)										
Sound power level	dB(A)	34,0	43,0	48,0	35,0	43,0	48,0	34,0	43,0	50,0
Sound pressure level	dB(A)	26,0	35,0	40,0	27,0	35,0	40,0	26,0	33,0	40,0
Finned pack heat exchanger										
Water content main heat exchanger	I		0,4			0,6			0,8	
Diametre hydraulic fittings										
Main heat exchanger	Ø		1/2"			1/2"			1/2"	
Power supply										
Power supply			230V~50Hz			230V~50Hz			230V~50Hz	

- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
 (2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
 (3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

Dimensions and weights

		UL12	UL12C	UL12S	UL17	UL17S	UL17C	UL17PC	UL27	UL27S	UL27C	UL27PC	UL37	UL37S	UL37C	UL37PC
Dimensions and weig	hts															
A	mm	485	485	485	485	485	485	485	485	485	485	485	485	485	485	485
В	mm	640	640	640	750	750	750	750	980	980	980	980	1200	1200	1200	1200
C	mm	173	173	173	173	173	173	173	173	173	173	173	173	173	173	173
D	mm	94	94	94	94	94	94	94	94	94	94	94	94	94	94	94
Empty weight	kg	12	12	12	13	13	13	13	17	17	18	18	20	20	20	20
Dimensions and weig	hts for transp	ort														
Н	mm	275	275	275	275	275	275	275	275	275	275	275	275	275	275	275
L	mm	710	710	710	820	820	820	820	1050	1050	1050	1050	1270	1270	1270	1270
P	mm	590	590	590	590	590	590	590	590	590	590	590	590	590	590	590
Weight for transport	kg	12,5	13,0	12,5	14,5	14,5	15,0	15,0	19,0	19,0	19,5	19,5	22,5	22,5	23,0	23,0

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

Omnia ULI

Fan coil for universal and floor installation

- Electric saving equal to 50% compared to a fancoil with 3-speed motor.
- · Fully silent functioning
- · Ideal for residential or office solutions

DESCRIPTION

Fan coils with inverter technology for heating, cooling, and dehumidifying. Equipped with a state of the art ventilation unit with continuous modulation of the air flow rate, which allows for precise adaptation of the actual indoor ambient requirements without temperature oscillations, for increased comfort, also in terms of noise, and electrical savings.

It can be installed on 2-pipe systems and combined with any heat generator even at low temperatures. Choosing the optimal solution for any requirement is easy thanks to the various versions available and to the possibility of horizontal or vertical installation, depending on the version.

VERSIONS

C Vertical installation, intake at base, electronic thermostat

PC Vertical installation, intake at base, electronic thermostat, Cold Plasma purifier

S Vertical and horizontal installation, intake at base, without commands

FEATURES

Case

Protective metal cabinet with anti-corrosion polyester RAL 9003 paint, whereas the head with the air distribution grille is in RAL 7047 plastic.

Ventilation group

Comprised of a dual intake centrifugal fan that is particularly silent, statically and dynamically balanced and directly coupled to the motor shaft. Brushless motor with continuous speed variation 0-100%.

The scroll that protects the fan can be extracted and inspected, for easy and effective cleaning.

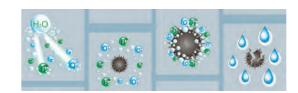
Finned pack heat exchanger

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air vents

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.

Condensate drip


Provided standard in plastic and fixed to the interior structure; with external condensate discharge.

Air filter

The fan coil units are equipped with a standard air filter. For specific details, please refer to the unit's documentation.

APC versions equipped with Coldplasma Air purifier.

The purifier is able to reduce pollutants, decomposing their molecules using electrical charges, causing the water molecules in the air to split into positive and negative ions. These ions neutralise the molecules in the gaseous pollutants, obtaining products normally present in clean air. The device is able to eliminate 90% of the bacteria. The result is clean, ionized air, free of foul odours.

ACCESSORIES

Control panels and dedicated accessories

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualiet).

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF system

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, DI24 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, DI24 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, DI24CP, is also available as a separate accessory in our catalog.

DI24CP: Complete flush-mounted interface plate with support for DI24, Vimar brand, Arké series, graphite gray color.

VMF-E19I: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E2U: User interface on the machine, to be combined with the VMF-E19 and VMF-E19I accessory. It has 2 selector switches, one for temperature and the other for speed control.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Common accessories

AMP: Wall mounting kit

DSC: Condensate drainage device.

VCH: 3-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VCHD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings.

BC: Condensate drip.

GU: Intake grid covers the front space between the ornamental feet and does not interfere with the filter.

PCU: Sheet metal panel closing the rear of the unit.

ZU1: Pair of stylish and structural feet.

ACCESSORIES COMPATIBILITY

Model	Ver	17	27	37
AER503IR (1)	S	•	•	•
PR0503	S	•	•	•
SA5 (2)	S	•	•	•
SW3 (2)	C,PC,S	•	•	•
SW5 (2)	S	•	•	•
TX (3)	S	•	•	•

- (1) Wall-mount installation.
 (2) Probe for AERSO3IR-TX thermostats, if fitted.
 (3) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

VMF system

Model	Ver	17	27	37
DI24	S	•	•	•
DI24CP	S	•	•	•
VMF-E19I (1)	S	•	•	•
VMF-E2U	S	•	•	•
VMF-E3	S	•	•	•
VMF-E4DX	S	•	•	•
VMF-E4X	S	•	•	•
VMF-IR	S	•	•	•
VMHI	S	•	•	

(1) Mandatory accessory.

Condensate drip

Model	Ver	17	27	37
BC10 (1)	C,PC,S	•	•	•
BC20 (2)	C,PC,S	•	•	•

- (1) For vertical installation.(2) For horizontal installation.

Condensate drainage

Model	Ver	17	27	37
DSC5 (1)	C,PC	•	•	•

(1) The accessory cannot be fit if the accessory BC10 or BC20 is installed.

3 way valve kit

Model	Ver	17	27	37
VCH	C,PC	•	•	•

2 way valve kit

Model	Ver	17	27	37
VCHD	C,PC	•	•	•

Panel closing the rear of the unit

Model	Ver	17	27	37
PCU17	C,PC,S	•		
PCU27	C,PC,S		•	
PCII37	CPCS			

Intake grids

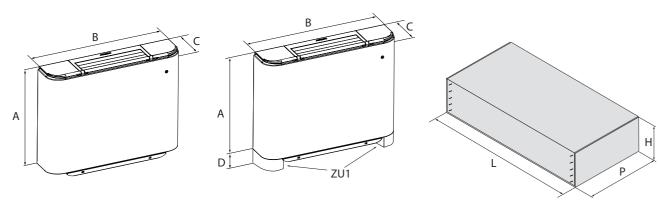
Model	Ver	17	27	37
GU17 (1)	C,PC,S	•		
GU27 (1)	C,PC,S		•	
GU37 (1)	C.PC.S			•

(1) The combination with a pair of stylish and structural feet is mandatory.

Wall mounting kit

Model	Ver	17	27	37
AMP10	S	•	•	•
	,			

Pair of stylish structural feet


Model	Ver	17	27	37
ZU1	C,PC,S	•	•	•

PERFORMANCE SPECIFICATIONS

2-pipe

			ULI17			ULI27			ULI37	
		1	2	3	1	2	3	1	2	3
		L	M	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)	•							•		
Heating capacity	kW	1,54	2,12	2,91	2,89	3,83	4,62	3,53	4,87	5,94
Water flow rate system side	l/h	135	186	255	254	336	405	310	427	521
Pressure drop system side	kPa	1	2	4	5	8	11	3	5	7
Heating performance 45 °C / 40 °C (2)										
Heating capacity	kW	0,76	1,05	1,44	1,44	1,90	2,29	1,75	2,42	2,95
Water flow rate system side	l/h	133	183	251	249	331	399	305	420	513
Pressure drop system side	kPa	2	2	2	5	8	11	7	12	18
Cooling performance 7 °C / 12 °C										
Cooling capacity	kW	0,69	0,87	1,17	1,26	1,65	1,99	1,63	2,26	2,79
Sensible cooling capacity	kW	0,52	0,69	0,96	0,97	1,30	1,61	1,13	1,59	2,00
Water flow rate system side	l/h	122	153	206	220	289	349	286	394	487
Pressure drop system side	kPa	2	3	5	6	8	11	7	13	19
Fan										
Туре	type					Centrifugal				
Fan motor	type					Inverter				
Number	no.		1			2			2	
Air flow rate	m³/h	110	160	240	190	270	350	240	350	460
Input power	W	23	25	32	24	27	35	30	35	42
Signal 0-10V	%	38	56	83	49	70	90	48	70	90
Sound power level	dB(A)	34,0	43,0	48,0	35,0	43,0	48,0	34,0	43,0	50,0
Sound pressure level (10 m)	dB(A)	26,0	35,0	40,0	27,0	35,0	40,0	26,0	33,0	42,0
Finned pack heat exchanger										
Water content	I		0,4			0,6			0,8	
Diametre hydraulic fittings										
Main heat exchanger	Ø					1/2"				
Power supply										
Power supply						230V~50Hz				

DIMENSIONS

Size			17	27	37
Dimensions and weights					
A	C,PC,S	mm	513	513	513
В	C,PC,S	mm	750	980	1200
C	C,PC,S	mm	173	173	173
D	C,PC,S	mm	93	93	93
Emptyweight	C,PC	kg	13	18	20
Empty weight	S	kg	13	17	20
Dimensions and weights for tra	ansport				
Н	C,PC,S	mm	275	275	275
L	C,PC,S	mm	820	1050	1270
P	C,PC,S	mm	590	590	590
Weight for transport	C,PC	kg	15,0	19,5	23,0
Weight for transport	S	kg	14,5	19,0	22,5

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C (2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT

Omnia Radiant

Fan coils with radiant panel for residential use

- Low temperature radiation *
- Ventilated heating
- Cooling dehumidification
- Energy saving
- Low operating temperature

DESCRIPTION

* Radiant technology under licence.

Omnia Radiant and Omnia Radiant Plus Aermec innovative solutions. In this particular worldwide market evolution, we are pleased to present to you OMNIA Radiant, which represents the innovation of the OMNIA AERMEC series, fan coils especially designed for residential comfort.

OMNIA Radiant inherits all the advantages of the OMNIA UL series, and is characterized by the introduction of the frontal plate for radiant heating.

OMNIA Radiant Plus is provided with the DC Brushless electric engine, equipped with the latest Inverter technology, granting the highest energy efficiency and able to regulate the air flow through the continuous fan speed modulation. This allows to achieve up to 60% in energy saving when compared to the traditional On-Off fan system, in both air conditioning and heating.

OMNIA Radiant and Radiant Plus offer the following advantages when compared to the traditional systems:

- The radiant plate combination the finned coil allows the best winter comfort with the lower energy consumption because it provides heating with lower water temperature: only 45°C against the about 65°C needed for the traditional radiator. This not only increases the comfort for the user, but also significantly increases the overall efficiency in case of heat pumps usage;
- The fan system allows to quickly reach the desired temperature, meeting the requirement of a fast start-up;
- The unit can be combined other than the boiler, also to energy saving heat pumps: air to water, water to water and geothermic type;
- During summer Omnia Radiant and Radiant Plus provide air conditioning and dehumidification in a fast and efficient way in every room.

THE FOUR DIFFERENT WORKING MODES OF OMNIA RADIANT ANNUAL FUNCTIONING

Radiant

Heating through radiation, comfortable and noiseless, is granted by the radiant plate placed on the front of the fan coil cover; if necessary, the triple-fins delivery head can be closed to increases the heating of the plate, thus maximizing the radiant effect.

Radiant + Natural Convection

With the triple-fins open, heating through natural convection, obtained thanks to the bigger coil exchange surface, is added to the radiant heating. As for the radiant-only mode (see above), the fan groups are in off mode. This results in acoustic comfort and energy saving.

Radiant + Forced Convection

The electronic regulation, precise and reliable, continuously compares the effective indoor temperature with the desired temperature: whenever the difference between the two should prove to be too high (e.g. during the heating system start-up) the software will lead the fan system start-up.

Start-up is fast and efficient and grants significant energy savings especially in rooms that are occasionally used.

Omnia Radiant during summer provides air conditioning and dehumidification

Forced Convection

During summer, Omnia Radiant and Radiant Plus provide air conditioning and dehumidification for each room of the house in a fast and efficient way. Efficiency and quietness benefit from the quality that has always characterized the Omnia series.

FEATURES

- Radiant plate
- 2 Switching valve
- Water probe
- Condensate storage container, hydraulic hoses

OMNIA Radiant (UL_R) standard features:

- Radiant plate
- Centrifugal fan
- Three-speed cross flow fan
- Condensate storage container, hydraulic hoses
- Two way valve
- Water temperature probe
- VMF-thermostat for asynchronous motor
- Compatibility with VMF system

OMNIA Radiant (UL_RI) standard features:

- Radiant plate
- Centrifugal fan
- Electric DC Brushless motor with Inverter
- Condensate storage container, hydraulic hoses
- Two way valve
- Water temperature probe
- VMF thermostat for DC Brushless motor

ACCESSORIES

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

Compatibility with VMF system

Ventilation group

Thanks to special centrifugal fans, Omnia Radiant fan coils are incredibly silent, making them the best buy when it comes to acoustic comfort, given the total lack of peak noise.

"The heating by radiation at top speed ensures total silence regime"

The fan blades on the Omnia Radiant are easy to clean. As a matter of fact, the new versions now offer the possibility of opening the worm screw of the fan (the casing that encloses the blades) to perform routine cleaning.

Finned pack heat exchanger

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

The heat exchanger is not reversible.

VMF system

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, D124 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, D124 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, D124CP, is also available as a separate accessory in our catalog.

DI24CP: Complete flush-mounted interface plate with support for DI24, Vimar brand, Arké series, graphite gray color.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C

VMF-E6: Wall user interface.

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC sys-

tem. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

For compatibility of the VMF-E6 with sizes 27R-37R contact the office.

Common accessories

AMP: Wall mounting kit

GU: Intake grid covers the front space between the ornamental feet and does not interfere with the filter.

PCU: Sheet metal panel closing the rear of the unit.

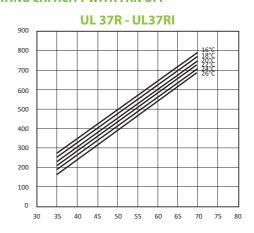
ZU1: Pair of stylish and structural feet.

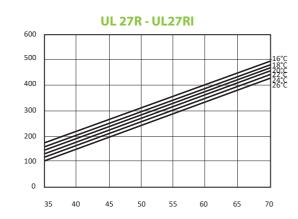
VCHRAD: Kit consisting of motor-driven 3-way valve copper couplings and pipes.

ACCESSORIES COMPATIBILITY

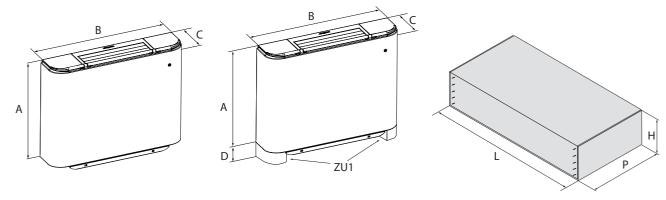
VMF system

Accessory	UL27R	UL27RI	UL37R	UL37RI
0124	•	•	•	•
DI24CP	•	•	•	•
VMF-E4DX	•	•	•	
VMF-E4X	•	•	•	•
VMF-E6		•		
VMHI	•	•	•	•
3 way valve kit				
Accessory	UL27R	UL27RI	UL37R	UL37RI
VCHRAD	•	•	•	•
Accessory	UL27R	UL27RI	UL37R	UL37RI
PCU27	•	•		
PCU37			•	•
Intake grids				
Accessory	UL27R	UL27RI	UL37R	UL37RI
GU27	•	•		
GU37			•	•
Wall mounting kit				
Accessory	UL27R	UL27RI	UL37R	UL37RI
AMP10	•	•	•	•
Pair of stylish structural feet				
Accessory	UL27R	UL27RI	UL37R	UL37RI
7111				


PERFORMANCE SPECIFICATIONS


2-pipe

		UL27R		UL27RI				UL37R		UL37RI			
		1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performances													
Heating capacity (70 °C) (1)	kW	2,89	3,83	4,62	2,89	3,83	4,62	3,53	4,87	5,94	3,53	4,87	5,94
Heating capacity (50 °C) (2)	kW	2,75	2,75	2,75	2,75	2,75	2,75	3,54	3,54	3,54	3,54	3,54	3,54
Water flow rate system side	l/h	397	397	397	397	397	397	511	511	511	511	511	511
Pressure drop system side	kPa	17	17	17	17	17	17	21	21	21	21	21	21
Static heating power (70 °C) (3)	kW	0,65	0,65	0,65	0,65	0,65	0,65	0,75	0,75	0,75	0,75	0,75	0,75
Static heating power (50 °C) (4)	kW	0,39	0,39	0,39	0,39	0,39	0,39	0,45	0,45	0,45	0,45	0,45	0,45
Static heating power (35 °C) (5)	kW	0,20	0,20	0,20	0,20	0,20	0,20	0,23	0,23	0,23	0,23	0,23	0,23
Cooling performance 7 °C / 12 °C (6)								•					
Cooling capacity	kW	1,42	1,78	2,03	1,42	1,78	2,03	1,73	2,31	2,83	1,73	2,31	2,83
Sensible cooling capacity	kW	1,05	1,37	1,64	1,05	1,37	1,64	1,28	1,79	2,04	1,28	1,79	2,04
Water flow rate system side	l/h	349	349	349	349	349	349	487	487	487	487	487	487
Pressure drop system side	kPa	18	18	18	18	18	18	22	22	22	22	22	22
Fan													
Туре	type		Centrifugal		Centrifugal		Centrifugal				Centrifugal		
Fan motor	type		Asynchronous			Inverter			Asynchronous	S		Inverter	
Number	no.		2			2			2			2	
Air flow rate	m³/h	190	270	350	190	270	350	240	350	460	240	350	460
Fan coil sound data (7)													
Sound power level	dB(A)	35,0	43,0	48,0	35,0	43,0	48,0	34,0	43,0	50,0	34,0	43,0	50,0
Sound pressure level	dB(A)	27,0	35,0	40,0	27,0	35,0	40,0	26,0	33,0	40,0	26,0	33,0	40,0
Fan													
Input power	W	35	35	35	12	12	12	42	42	42	16	16	16
Electrical wiring		V1	V2	V1	-	-	-	V1	V2	V3	-	-	-
Signal 0-10V	%	-	-	-	5	7	9	-	-	-	5	7	9
Diametre hydraulic fittings													
Main heat exchanger	Ø		1/2"			1/2"			1/2"			1/2"	
Finned pack heat exchanger													
Water content main heat exchanger			0,8			0,8			1,1			1,1	
Power supply													
Power supply			230V~50Hz			230V~50Hz			230V~50Hz			230V~50Hz	


(1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air 20 °C b.s.; Water (in) 50 °C; Water flow rate as in cooling mode (EUROVENT)
(3) Radiant power + natural convection; Hot water (in) 70 °C (water flow same as in heating cycle)
(4) Radiant power + natural convection; Hot water (in/*) 50 °C/*°C (water flow same as in heating cycle)
(5) Radiant power + natural convection; Hot water (in/*) 55 °C/*°C (water flow same as in heating cycle)
(6) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/owt) 7 °C/12 °C; EUROVENT
(7) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

HEATING CAPACITY WITH FAN OFF

DIMENSIONS

		UL27R	UL27RI	UL37R	UL37RI
Dimensions and weights					
A	mm	513	513	513	513
В	mm	980	980	1200	1200
C	mm	173	173	173	173
D	mm	93	93	93	93
Empty weight	kg	20	20	24	24
Dimensions and weights for transport					
Н	mm	275	275	275	275
L	mm	1050	1050	1270	1270
P	mm	590	590	590	590
Weight for transport	kg	22,0	22,0	27,0	27,0

Omnia ULSI_B

Vertical wall-mounting or freestanding installation

- Compact dimensions, thickness 130 mm
- · Low operating temperature
- · Cooling, heating, and dehumidification

DESCRIPTION

The Omnia Slim fan coils have been designed to meet the need to combine the typical features of a classic radiator - namely reduced depth and quiet operation - with the ability of a fan coil to air-condition rooms throughout the year.

They can be installed on any system with a 2-pipe system and it fits with any heat generator even at low temperatures, and thanks to varied versions and settings, it is easy to pick the ideal solution for any need.

VERSIONS

ULSI_B Inverter without control board

ULSI_BR Inverter without control with hydraulic connections on the right

FEATURES

Case

Structure in sheet metal, 12/10 and 8/10 mm.

Front cover in 8/10 mm galvanised sheet metal with RAL9003 white epoxy powder coating and thermal-acoustic insulation of 13 mm thickness.

Ventilation group

These fan coils have extremely silent ventilation by using special tangential fans, which guarantees maximum acoustic comfort.

The electric motor is a new generation Brushless with built-in driver and IP66 protection rating, continuously variable speed

Finned pack heat exchanger

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Control

Both versions are supplied without on-board control, however, various thermostats or control panels are available as accessories to be installed on board the fan coil unit or on the wall.

ACCESSORIES

Control panels and dedicated accessories

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. **DSKTS:** Thermostat with an easy-to-read light display that provides clear information on room temperature, programming settings and more. Thanks to the ergonomic ring nut switch, adjusting the desired temperature is very easy. The knob allows precise and immediate adjustments, offering a classic but highly effective control mode. Not only functional, but also aesthetically pleasing. Our thermostat features a modern, compact design that fits perfectly in any environment, adding a touch of style to your home or office. EC-DSKT: Electric cable for use with DSKT control panel. Mandatory acces-

EC-DSKT: Electric cable for use with DSKT control panel. Mandatory accessory when combined with ULSI_BR versions.

EC-TXBI: Electric cable for use with TXBI control panel. Mandatory accessory when combined with ULSI_BR versions.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Du-

TXBIS: Thermostat installation on the fan coil.

ULSI B + DSKTS

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF Components

DI24: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, DI24 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, DI24 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, DI24CP, is also available as a separate accessory in our catalog.

KITSV: Kit for installing the VMF-E19/19I.

VMF-E19I: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E2S: User interface on the fan coil, with two selectors - one for temperature and the other for speed control. For operation, the installation of either the VMF-E19 or VMF-E19I accessory is required.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Common accessories

BCSV: Condensate collection tray, for valve kit.

DSC7: Condensate drainage device.

VCS2: 2-way motorised valve kit without insulating shell. The kit is made up of a valve, actuator and relative hydraulic fittings.

VCS3: 3-way motorised valve kit without insulating shell for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings.

ZXS: Pair of stylish and structural feet.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

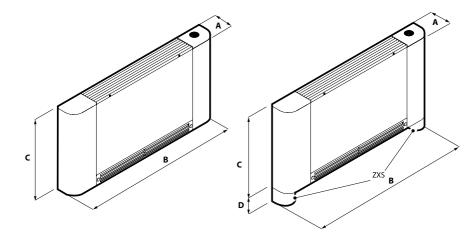
Model	Ver	10	20	30	40	50
AER503IR (1)	ULSI_B,ULSI_BR	•	•	•	•	•
DSKTS (2)	ULSI_B,ULSI_BR	•	•	•	•	•
EC-DSKT	ULSI_BR	•	•	•	•	•
EC-TXBI	ULSI_BR	•	•	•	•	•
PR0503	ULSI_B,ULSI_BR	•	•	•	•	•
SA5 (3)	ULSI_B,ULSI_BR	•	•	•	•	•
SW5 (3)	ULSI_B,ULSI_BR	•	•	•	•	•
TX (4)	ULSI_B,ULSI_BR	•	•	•	•	•
TXBIS (5)	ULSI_B,ULSI_BR	•	•	•	•	•

- (1) Wall-mount installation.
- (2) For ULSI_BR units add the mandatory EC_DSKT accessory.
 (3) Probe for AER503IR-TX thermostats, if fitted.
- (4) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

 (5) For ULSI_BR units add the mandatory ULSI_BR accessory.

VMF system

Model	Ver	10	20	30	40	50
DI24	ULSI_B,ULSI_BR	•	•	•	•	•
KITSV (1)	ULSI_B,ULSI_BR	•	•	•	•	•
VMF-E19I (2)	ULSI_B,ULSI_BR	•	•	•	•	•
VMF-E2S (3)	ULSI_B,ULSI_BR	•	•	•	•	•
VMF-E3	ULSI_B,ULSI_BR	•	•	•	•	•
VMF-E4X	ULSI_B,ULSI_BR	•	•	•	•	•
VMF-IR	ULSI_B,ULSI_BR		•	•		•


Model	Ver	10	20	30	40	50
/MHI	ULSI_B,ULSI_BR	•	•	•	•	•
(1) Mandatory when the VM (2) Mandatory accessory. (3) Installation on the fan co	F-E19/19I thermostat is required. iil.					
3 way valve kit						
Model	Ver	10	20	30	40	50
VCS3 (1)	ULSI_B,ULSI_BR	•	•	•	•	•
(1) Power supply 230V - Hyd	lraulic connections Ø 1/2"					
2 way valve kit						
Model	Ver	10	20	30	40	50
VCS2 (1)	ULSI_B,ULSI_BR	•	•	•	•	•
(1) Power supply 230V - Hyd	lraulic connections Ø 1/2"					
Condensate drip						
Model	Ver	10	20	30	40	50
BCSV	ULSI_B,ULSI_BR	•	•	•	•	•
Condensate draina	ige					
Model	Ver	10	20	30	40	50
DSC7	ULSI_B,ULSI_BR	•	•	•	•	•
Pair of stylish struc	ctural feet					
Model	Ver	10	20	30	40	50
	ULSI_B,ULSI_BR		•			

2-pipe

		ULSI10B		ULSI20B		ULSI30B		ULSI40B			ULSI50B					
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																
Heating capacity	kW	0,70	1,14	1,53	1,27	1,88	2,86	1,88	2,91	3,72	2,32	3,55	4,77	2,49	3,85	5,73
Water flow rate system side	l/h	61	100	134	111	165	251	165	254	326	203	311	418	218	337	501
Pressure drop system side	kPa	2	4	7	5	10	20	6	14	22	6	13	22	5	10	21
Heating performance 45 °C / 40 °C (2)																
Heating capacity	kW	0,35	0,57	0,76	0,63	0,94	1,43	0,94	1,45	1,85	1,15	1,77	2,38	1,24	1,92	2,85
Water flow rate system side	l/h	61	99	132	110	163	248	163	251	322	201	307	413	216	333	495
Pressure drop system side	kPa	2	4	7	5	9	20	6	14	22	6	13	22	5	10	21
Cooling performance 7 °C / 12 °C																
Cooling capacity	kW	0,37	0,60	0,80	0,67	0,98	1,50	0,98	1,52	1,95	1,22	1,86	2,50	1,30	2,02	3,00
Sensible cooling capacity	kW	0,25	0,42	0,57	0,46	0,68	1,08	0,68	1,06	1,39	0,84	1,30	1,79	0,90	1,40	2,15
Water flow rate system side	l/h	63	103	137	114	169	257	169	261	335	209	319	429	224	346	515
Pressure drop system side	kPa	3	6	10	7	13	28	9	19	30	9	18	30	7	14	29
Fan																
Туре	type								Tangential							
Fan motor	type								Inverter							
Number	no.		1			1			1			2			2	
Air flow rate	m³/h	46	82	134	78	128	241	109	188	301	126	218	370	127	225	427
Input power	W	5	8	10	6	9	15	7	12	17	7	14	20	7	13	21
Signal 0-10V	%	40	70	90	40	70	90	40	70	90	40	70	90	40	70	90
Fan coil sound data (3)																
Sound power level	dB(A)	39,0	47,0	51,0	39,0	47,0	51,0	40,0	48,0	53,0	41,0	49,0	54,0	42,0	52,0	56,0
Sound pressure level	dB(A)	31,0	39,0	43,0	31,0	39,0	43,0	32,0	40,0	45,0	33,0	41,0	46,0	34,0	44,0	48,0
Finned pack heat exchanger																
Water content main heat exchanger	- 1		0,5			0,9			1,2			1,5			1,8	
Diametre hydraulic fittings																
Main heat exchanger	Ø								1/2"							
Power supply																
Power supply									230V~50H	Z						

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

Size			10	20	30	40	50
Dimensions and weights							
A	ULSI_B,ULSI_ Br	mm	130	130	130	130	130
В	ULSI_B,ULSI_ BR	mm	745	940	1134	1328	1524
C	ULSI_B,ULSI_ Br	mm	580	580	580	580	580
D	ULSI_B,ULSI_ BR	mm	80	80	80	80	80
Empty weight	ULSI_B,ULSI_ BR	kg	11	13	15	19	17

FCY

- Plug and play installation only in horizontal
- Reduced dimensions
- Inspectable ventilation group

Fan coil unit for ducted installations

DESCRIPTION

Monobloc duct type fan coils for heating and/or cooling small and medium-sized environments for civil and commercial use.

They were designed and built for flush horizontal installation in any type of 2/4 pipe system and in combination with any heat generator, also at low temperatures.

Thanks to the availability of various versions and configurations, with a standard or oversized coil, it is easy to select the optimal solution for any requirement.

FEATURES

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise.

Their characteristics permit energy savings compared to conventional fans. They are statically and dynamically balanced and directly coupled to the motor shaft.

The electric motor is single-phase multi-speed (3 selectable), mounted on anti-vibration supports and with a permanently inserted capacitor.

The plastic augers are extractable for easy and efficient cleaning.

Heat exchanger coil

With copper pipes and aluminium louvers, the standard or oversized heat exchanger and the possible secondary heat exchanger have female gas water connections on the left side and the manifolds have air vents.

 Reversibility of the water connections during installation only for units with a main standard or oversized coil or standard with BV accessory. Not reversible in all other configurations.

Air filter

Where present, the Coarse 25% Class according to ISO16890 (G2 according to EN779) air filter, which is easy to remove and clean.

Condensate drip

In addition to the internal tray, all units are equipped with a **configurable external condensate collection tray** during installation.

Control

The unit's electrical box is reversible, with the option of mounting it also on the same side of the water connections.

The standard equipment includes a single 10-pin control board as an interface for the electrical connections, the preparation for the VMF series thermostat fastener and the included supply of a DIN guide for the installation of a third-party control.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Field	Description
1,2,3	FCY
4	Size 2, 3, 4, 5, 6, 7
5	main heat exchanger (1)
0	Standard
5	Oversized
6	Secondary heat exchanger
0	Without coil
1	Standard (2)
7	Version
С	Compact
U	Universal (3)
8	Connections
D	Water connections and electrical panel on the right
G	Water connections and electrical panel on the left
L	Hydraulic connections on the left and electric connections on the opposite side
R	Hydraulic connections on the right and electric connections on the opposite side
9	Options
Н	Electric heater (500W) (4)
Р	With the photocatalytic device (4)
Х	No present
10	Filter
F	With air filter (5)
G	On the GKY accessory (6)
Х	No present

- Reversibility of the water connections during installation only for units with a main standard or oversized coil. They are not reversible for units with a secondary coil.
 Only for the standard main coil
- (3) Only for sizes from 2 to 5
- (4) Options "P and H" are available only in units for 2-pipe systems.

- (5) The DFA kit must mandatorily be installed on the units The DFA kit must mandatorily be installed on the units in option F?.

 (6) Only for sizes 2 and 3, without secondary heat exchanger (0), in U version, D connections, without RX or
- photocatalytic device (X).

SIZE AVAILABLE FOR VERSION

C version

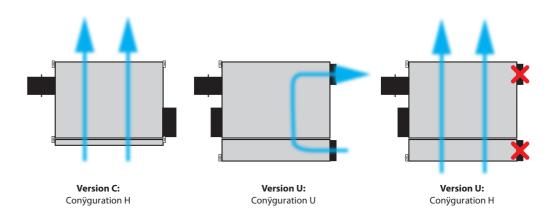
Size	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
Versions produced (by size)																		
Versions available (by size)	•	•		•	•	•	•	•	•	•	•	•	•	•		•	•	•
Version U																		
Size		200	2(01	250	30	0	301	350		400	401	4.	50	500	50	<u> </u>	550
Versions produced (by size)																		
Versions available (by size)																		

INSTALLATION VERSIONS AND EXAMPLES

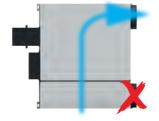
C: Compact version.

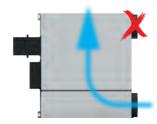
Compact structure with opposed intake and delivery lines, for an "H"shaped configuration.

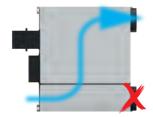
The unit is provided without openings and without flanges, which can be purchased separately as an accessory.


The delivery and intake part of the structure is designed to house flanges of Ø 200 mm (or Ø 160 mm) and one of the intake flanges can be replaced by a Ø 125 or 100 mm flange for the intake of outside air.

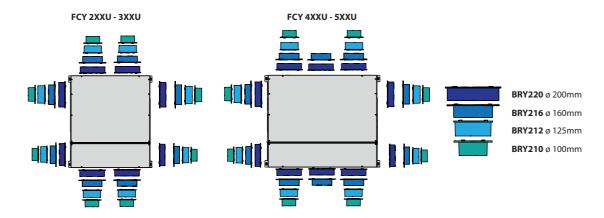
On the side, it can house Ø 125 or 100 mm flanges for the intake of outside air for delivery.

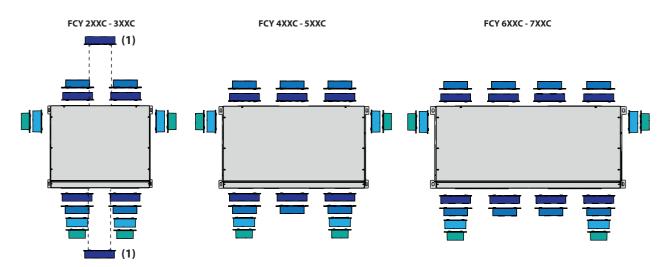

U: Universal version.


Structure for the "U" configuration with intake and delivery on the same side, opposite of the side with the water connections and the electrical box. The delivery and intake part of the structure is designed to house flanges of Ø 200 mm (or Ø 160 mm) and one of the intake or delivery flanges can be replaced by a Ø 125 or 100 mm flange for the intake of outside air.


This version is called universal because it guarantees the possible installations permitted by the C version and adds additional possibilities.

POSSIBLE ALTERNATIVE CONFIGURATIONS OF THE UVERSION




The performance data for the configurations shown here are equal to those for the U version in the U configuration.

POSSIBLE POSITIONS FOR THE INSTALLATION OF THE BRY ACCESSORIES

In every unit it is possible to use a maximum of one flange accessory for the intake of outside air (BRY210 or BRY212). The number and position of the preparations for the installation of the BRY accessories varies based on the unit size and version.

The standard **C version unit is supplied without flanges**, which can be purchased separately as an accessory.

1 There is a central preparation for the installation of an accessory BRY220 as an alternative to using the two more external preparations.

For the C version: it is necessary to use a number of recirculation air preparations at least equal to the maximum number possible for the size selected less 1.

Example: for FCY6xxC it is necessary to open at least 3 flange preparations for intake recirculation air and 3 flange preparations for delivery recirculation air (= maximum number - 1).

If the number of intake/delivery flanges used is less than the maximum possible for the considered size, their diameter must be 200 mm (BRY220).

For more information about the possible configurations for both versions, refer to the unit's selection software.

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. **SA5:** air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF system

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, D124 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, D124 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, D124CP, is also available as a separate accessory in our catalog.

VMF-E19Y: Thermostat to be fixed on the side of the fan coil, fitted as standard with an air and water probe. Depending on the option chosen (P - X - H), VMF-E19Y must be completed with the mandatory electrical completion unit accessory (VMF-YCC, VMF-YCCH or VMF-YCCK / VMF-YICCK).

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L=2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMF-YCC: Electric on/off completion unit for the VMF-E19Y accessory (mandatory for the unit with options P and X).

VMF-YCCH: Electric on/off completion unit for the VMF-E19Y accessory (mandatory for the unit with option H).

VMF-YCCK: Electric on/off completion unit for the VMF-E19Y accessory, mandatory for FCY units with GKY accessory.

Valves for main coil

VCY41 - 42 - for main heat exchanger: 3-way motorised valve kit for the main coil. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left hydraulic connections.

VCYD for main and secondary coil: The 2-way motorised valve kit for the primary or secondary coil or an additional optional heat only coil. The kit consists of a valve, the actuator and the corresponding hydraulic fittings. It can be installed both on fan coils with right-hand and left-hand connections

VDP15HF: Combined adjustment and balancing valve, for 2 and 4 pipe systems to be installed outside the unit. It is comprised of a valve body without nipples with Ø 3/4'M water connections, a 230 V powered actuator with On-Off function and a 5 m power supply cable. The valve is supplied without connections or hydraulic components.

VDP15HF24: Combined adjustment and balancing valve, for 2 and 4 pipe systems to be installed outside the unit. It is comprised of a valve body without nipples with Ø 3/4'M water connections, a 24 V powered actuator with On-Off function and a 5 m power supply cable. The valve is supplied without connections or hydraulic components.

VDP15HFM: Combined adjustment and balancing valve, for 2 and 4 pipe systems to be installed outside the unit. It is comprised of a valve body without nipples with Ø 3/4'M water connections, a 24 V powered actuator with modulating function and a 5 m power supply cable. The valve is supplied without connections or hydraulic components.

Valves for secondary coil

VCY44 - for secondary heat exchanger: 3-way motorized valve kit for hot only coil. The kit consists of a valve, actuator and relative hydraulic fittings, it is suitable for installation on both fan coils with hydraulic connections on the right and left.

VCYD for main and secondary coil: The 2-way motorised valve kit for the primary or secondary coil or an additional optional heat only coil. The kit consists of a valve, the actuator and the corresponding hydraulic fittings. It can be installed both on fan coils with right-hand and left-hand connections.

Additional hot water coil.

BV: Hot water heat exchanger with 1 row.

Valve support kit

KITVPI: Main coil VDP valve support kit. The kit consists of a bracket for supporting the valve and the corresponding hydraulic fittings.

KITVP112H: VDP valve support kit for the secondary coil. The kit consists of a bracket for supporting the valve and the corresponding hydraulic fittings.

Installation accessories

BDP: 200 mm plug.

BRY: Flange with hydraulic "spigot" connection.

GMYC: Plate flange that makes it possible to install the accessory GM either in the intake section or in the delivery section. The accessory is comprised of a plate flange with gasket and 4 screws to fasten it to the unit.

AFY: the kit is comprised of a Coarse 25% class filter according to ISO16890 (G2 according to EN779) and four fastening brackets to insert in the grille GM17. To be used together with fan coils supplied without a filter installed in unit "X".

GMYU: Plate flange that makes it possible to install the accessory GM17 either in the intake section or in the delivery section. The accessory is comprised of a plate flange with gasket and 4 screws to fasten it to the unit. **DSC:** Condensate drainage device.

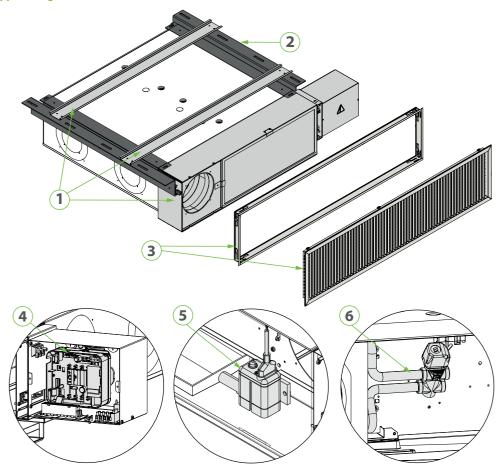
DAYKIT: Air deflector for U versions. To be installed in the delivery plenum, on the side opposite the air outlet, to facilitate the flow towards the delivery opening.

AMPY: Additional brackets for ceiling mount. Only for "U" version.

Accessories in multiple packages

DFA: Size of filter halved on the short side. The kit is comprised of two filters with a length equal to the standard filter and with half the height. This fa-

cilitates filter cleaning and/or replacement operations if there is a reduced space for vertical extraction. 20 piece package.


PPB: Protection for flanges to be used during installation to prevent dust from entering the unit before connecting the ducts. To be removed when making the connection. 100 piece package.

CHR12: Hydraulic connection kit for Ø 1/2" two-way valves, with soft coil side O-ring seal and with a flat plate and system side gasket, which can also be used for installing flat seal two-way valves. 50 piece package.

CHR34: Hydraulic connection kit for Ø 3/4" two-way valves, with soft coil side O-ring seal and with a flat plate and system side gasket, which can also be used for installing flat seal two-way valves. 30 piece package.

FLK60: Filter locking kit, allows the filter to be locked and unlocked from below instead of from the side. Pack of 60 pcs.

New GKY equipped flange

- I GKY
- 2 GKY2GT- GKY3GT (mandatory accessory)
- 3 GKYG (mandatory accessory)
- 4 VMF-E19Y + VMF-YICCK (FCYI) / VMF-YCCK (FCY) (optional accessory)
- 5 DSC6 (optional accessory)
- 6 2 pipes with 2/3-way valve (optional accessory)

GKY: Extractable galvanised sheet metal equipped flange with electric box, allows for routine and extraordinary maintenance without the need for an inspection hatch underneath. The accessory is only compatible for units in UDXG configuration and recirculation air openings on the right side.

 $\label{eq:GKY2GT:} \textbf{GKY2GT:} \ Accessory \ mandatory \ for \ the \ installation \ of \ the \ GKY \ plenum, \ consisting \ of \ telescopic \ guides \ compatible \ with \ size \ 2.$

GKY3GT: Accessory mandatory for the installation of the GKY plenum, consisting of telescopic guides compatible with size 3.

GKYG: grille kit in RAL9010 colour with counterframe, mandatory accessory compatible with GKY equipped flange accessory.

Extractable equipped flange

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
GKY	U			•	•		•												
Telescopic guides																			
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
GKY2GT (1)	U			•															

⁽¹⁾ Accessory mandatory for the installation of the GKY plenum

Telescopic guides

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
GKY3GT (1)	U				•		•												

(1) Accessory mandatory for the installation of the GKY plenum

Grid kit

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
GKYG	U			•	•		•												

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
AEDEONID (1)	C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AER503IR (1)	U	•	•	•	•	•	•	•	•	•	•	•	•						
CAT (2)	C		•	•	•	•	•	•	•	•	•	•	•					•	
SA5 (2)	U		•		•			•			•	•	•						
SIT3 (3)	C,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	C	•					•							•					
SIT5 (4)	U	•	•	•	•	•	•	•	•	•	•	•	•						
CM2 (2)	C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
SW3 (2)	U			•	•	•	•	•	•	•		•	•						
CME (2)	C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SW5 (2)	U			•	•	•	•					•	•						
TV (r)	(•		•						•	•
TX (5)	U	•																	

Wall-mount installation.
 Probe for AERSO3IR-TX thermostats, if fitted.
 Cards for AERSO3IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere.
 Probe for AERSO3IR-TX thermostats, if fitted.
 Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

VMF system

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
DIDA	C	•	•	•								•				•			
DI24	U	•		•	•	•	•				•	•	•						
VMF F10V	C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E19Y	U		•	•	•	•		•	•	•	•	•	•						
VMF-E3	C		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VIVIT-ED	U		•	•		•	•	•	•	•	•	•	•						
VMF FADV	C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E4DX	U	•	•	•	•	•	•	•	•	•	•	•	•						
VMF-E4X	(•	•	•	•	•	•	•		•	•	•	•	•	•		
VIVIF-E4X	U	•	•	•	•	•	•	•	•	•	•	•	•						
VMF-IR	C		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VIVIT-IK	U	•	•	•	•	•	•	•	•	•	•	•	•						
VMF-SW	C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VIVIT-3VV	U	•	•	•	•	•	•	•	•	•	•	•	•						
VMF-SW1	C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
NINL-2NI	U	•	•	•	•	•	•	•	•	•	•		•						
VMF-YCC	C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VIVIT-TCC	U	•	•	•	•	•	•	•	•	•	•		•						
VMF-YCCH	C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VIVIE-TUUT	U		•	•	•	•	•	•	•	•	•	•	•						
VMF-YCCK	U			•	•		•												

Additional heat only coil for only option "X" (without an electric heater and without a photocatalytic device)

Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
(BV122	-	-	BV132	-	-	BV142	-	-	BV142	-	-	BVZ800	-	-	BVZ800	-	-
U	BV122	-	-	BV132	-	-	BV142	-	-	BV142	-	-	-	-	-	-	-	-

Combined adjustment and balancing valve

	200	201	250	300	301	350	400	401	450
	VDP15HF								
Main coil	VDP15HF24								
	VDP15HFM								
		VDP15HF			VDP15HF			VDP15HF	
Secondary coil	-	VDP15HF24	-	-	VDP15HF24	-	-	VDP15HF24	-
		VDP15HFM			VDP15HFM			VDP15HFM	
	VDP15HF			VDP15HF			VDP15HF		
Additional coil "BV"	VDP15HF24	-	-	VDP15HF24	-	-	VDP15HF24	-	-
	VDP15HFM			VDP15HFM			VDP15HFM		

	500	501	550	600	601	650	700	701	750
	VDP15HF								
Main coil	VDP15HF24								
	VDP15HFM								
		VDP15HF			VDP15HF			VDP15HF	
Secondary coil	-	VDP15HF24	-	-	VDP15HF24	-	-	VDP15HF24	-
		VDP15HFM			VDP15HFM			VDP15HFM	
	VDP15HF			VDP15HF			VDP15HF		
Additional coil "BV"	VDP15HF24	-	-	VDP15HF24	-	-	VDP15HF24	-	-
	VDP15HFM			VDP15HFM			VDP15HFM		

Valves combinations for main and secondary coil

3-way valve kit - main and secondary coil or accessory BV coil

	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
Main coil	VCY41	VCY41	VCY41	VCY42														
Main Coil	VCY4124	VCY4124	VCY4124	VCY4224														
Carandami sail		VCY44																
Secondary coil	-	VCY4424	-															
Additional coil "BV"	VCY44																	
Additional coll BV	VCY4424	-	-															

2-way valve kit - main and secondary coil or accessory BV coil

	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
Material I	VCYD1	VCYD1	VCYD1	VCYD2														
Main coil	VCYD124	VCYD124	VCYD124	VCYD224														
Cacandanycail		VCYD1																
Secondary coil	-	VCYD124	-															
Additional coil//DW/	VCYD1																	
Additional coil "BV"	VCYD124	-	-															

Valve support kit

Main coil VDP valve support kit.

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
KITVPI12 (1)	C,U	•	•	•															
VITVDI24 (2)	C				•	•	•	•		•	•	•	•	•	•	•	•	•	•
KITVPI34 (2)	- II							•	•	•	•	•							

- (1) Connections Ø 1/2" (2) Connections Ø 3/4"

Secondary coil VDP valve support kit.

	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650
Main coil	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Secondary coil	-	KITVPI12H	-												
Additional coil "BV"	KITVPI12H	-	-												

	700	701	750
Main coil	-	-	-
Secondary coil	-	KITVPI12H	-
Additional coil "RV"	KITVPI12H	_	

Ver

200

201

250

300

301

350 400

Connections ø 1/2"

Installation accessories

Plastic caps Model

DDD200	C				•			•	•								•		
BDP200	U	•	•	•	•	•	•	•	•	•	•	٠	•						
Flange																			
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
DDV210 (1)	C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
BRY210 (1)	U				•		•			•	•		•						
DDV(242 (2)	C	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•
BRY212 (2)	U	•	•	•	•	•	•	•	•	•	•	•	•						
DDV24.6 (2)	C	•	•	•				•	•	•	•	•		•	•	•	•	•	•
BRY216 (3)	U	•			•														
DDV220 (4)	C	•							•								•		
BRY220 (4)	- 11																		

401

450

500

501 550 600

650

700

601

750

701

- (1) Ø 100 mm (2) Ø 125 mm (3) Ø 160 mm (4) Ø 200 mm

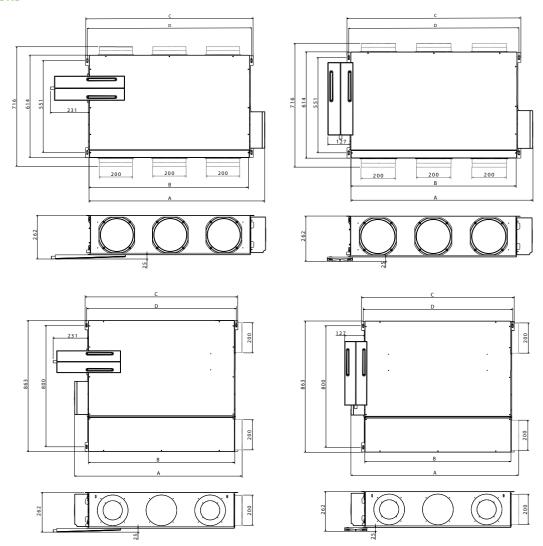
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
GMY200C (1)	(•	•	•															
GMY300C (1)	C				•	•	•												
GMY400C (1)	(
GMY600C (1)	(•	•	•	•	•	
1) only for "C" version.																			
	.4.11.4:	. 	II. CM	17															
Flange for the in																			
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
GMYU (1)	U	•	•	•	•	•	•	•	•	•	•	•	•						
(1) Only for "U" version w	ith connections	"G and D".																	
Coarse 25% class	air filter k	it accord	ling to	ISO168	890 (G2	2 accor	ding to	EN77	9)										
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
AFY100 (1)	U	•			•	•	•	•	•	•	•	•						-701	
(1) To be used with fan co	ils supplied with	nout a filter ii	nstalled in	unit "X" a	nd in asso	ciation wi	th GM17 a	nd GMYU.											
Air deflector																			
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
DAYKIT	U					•					•	•	•						
Brackets for ceili	ng mount.																		
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
AMPY (1)	U		•	•	•	•	•	•	•	•	•	•	•						
(1) Only for "U" version.																			
Condensate disc	harge devi	ce kit																	
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
DSC6 (1) —	(•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
D3C0 (1)	U	•	•	•	•	•	•	•	•	•	•	•	•						
(1) Only for "L and R" con	nections.																		
Delivery grille																			
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
GM17	U	•	•	•	•	•	•	•	•	•	•	•	•						
GM22	(•	•	•															
GM32	(•	•	•												
GM42	(•	•	•	•	•	•						
GM62	(•	•	•	•	•	•
Accessories in I	multiple p	oackage	es .																
Hydraulic connec	tion kit																		
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
CHR12 (1)	C,U	. 200	- 201	- 230	300	301	330	700	701	7,70	300	301	330	000	001	030	700	701	/30
CIII.12 (1)	(,0	•	•	•															
CHR34 (2) —	U				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
					•	•	<u> </u>	<u> </u>	<u> </u>	•	•	•	•						
(1) Hydraulic connections																			
(2) Hydraulic connections																			
Half-size filter ki	t																		
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
	C,U		•	•															
DFA2						•													-
	(,II												•						
DFA3	C,U							-	-	-			-						
DFA3 DFA5	C,U		-																
DFA3 DFA5														•	•	•	•	•	•
DFA3 DFA5 DFA7	C,U													•	•	•	•	•	•
DFA3 DFA7 Protection for fla	C,U C	300	201	250	200	201	350	400	401	450	E00	E01	- FFA					701	7.
DFA3 DFA5 DFA7 Protection for fla	(,U (Inge Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	
DFA2 DFA3 DFA5 DFA7 Protection for fla Model PPB —	C,U C	200	201	250	300	301	350	400	401	450	500	501	550					701	750

PERFORMANCE DATA - FCY_C AND FCY_U (CONFIGURATION OF THE H NOZZLES) - 2 PIPES

2-pipe

			FCY200C			FCY250C			FCY300C			FCY350C			FCY4000	: -		FCY4500	
		2	4	6	2	4	6	1	4	6	1	4	6	1	3	6	1	3	6
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																			
Heating capacity	kW	2,11	3,00	3,32	2,29	3,24	3,60	3,50	5,03	5,45	3,80	5,59	6,10	4,49	6,02	6,74	4,79	6,62	7,40
Water flow rate system side	I/h	182	258	285	197	179	310	301	433	469	327	481	524	386	517	580	412	569	637
Pressure drop system side	kPa	7	12	15	9	16	19	8	15	18	9	18	21	11	18	22	7	12	15
Heating performance 45 °C / 40 °C (2)																			
Heating capacity	kW	1,05	1,49	1,65	1,14	1,61	1,79	1,74	2,50	2,71	1,89	2,78	3,03	2,23	2,99	3,35	2,38	3,29	3,68
Water flow rate system side	l/h	160	224	248	196	277	308	299	430	466	325	478	521	383	514	576	409	566	633
Pressure drop system side	kPa	7	12	15	9	16	19	8	15	18	9	17	20	11	18	22	7	12	15
Cooling performance 7 °C / 12 °C																			
Cooling capacity	kW	0,93	1,30	1,44	1,11	1,59	1,74	1,70	2,40	2,63	1,91	2,77	3,00	2,29	3,06	3,41	2,51	3,37	3,79
Sensible cooling capacity	kW	0,74	1,14	1,18	0,83	1,23	1,36	1,27	1,86	2,03	1,34	1,99	2,16	1,66	2,24	2,52	1,76	2,42	2,73
Water flow rate system side	l/h	160	224	248	191	273	299	292	413	452	328	476	516	394	526	586	432	580	652
Pressure drop system side	kPa	8	13	15	10	18	21	9	16	18	11	21	25	11	18	22	11	16	20
Fan											•								
Туре	type									Centi	rifugal								
Fan motor	type									Asynch	ronous								
Air flow rate	m³/h	148	226	254	148	226	254	263	404	446	263	404	446	346	487	559	346	487	559
High static pressure	Pa	21	50	63	21	50	63	21	50	61	21	50	61	25	50	66	25	50	66
Sound power level (inlet + radiated)	dB(A)	41,0	56,0	59,0	41,0	56,0	59,0	39,0	51,0	54,0	39,0	51,0	54,0	44,0	54,0	55,0	44,0	54,0	55,0
Sound power level (outlet)	dB(A)	37,0	52,0	55,0	37,0	52,0	55,0	35,0	47,0	49,0	35,0	47,0	49,0	40,0	50,0	52,0	40,0	50,0	52,0
Input power	W	28	41	74	28	41	74	38	55	78	38	55	78	53	63	102	53	63	102
Finned pack heat exchanger																			
Water content			0,5			0,7			0,8			1,0			1,0			1,4	
Diametre hydraulic fittings																		,	
Main heat exchanger	Ø		1/2"			1/2"			3/4"			3/4"			3/4"			3/4"	
Power supply																			
Power supply										230V	~50Hz								
,			FCY500C			FCY550C			FCY600C			FCY650C			FCY7000			FCY7500	_
		1	5	6	1	5	6		4	7	1	4	7	2	5	7	2	5	7
		- 1				 M	H	1 L	4 M	/ H	'	M							
		- 1	M								L				M	Ц	l ı		
Heating performance 70 °C / 60 °C / 1)		L	М	Н	L			L .	IVI				- 11	L	М	Н	L	М	п
Heating performance 70 °C / 60 °C (1)	₽W.	L 5 27			5 81			_			7.63			_			10.02		
Heating capacity	kW	5,27 453	7,22	7,59	5,81	8,25	8,67	6,86	8,55	10,00	7,63	9,72	11,51	8,77	10,10	10,52	10,02	11,65	12,09
Heating capacity Water flow rate system side	l/h	453	7,22 621	7,59 652	500	8,25 709	8,67 746	6,86 590	8,55 735	10,00	656	9,72 836	11,51 990	8,77 754	10,10	10,52 905	862	11,65 1002	12,09 1040
Heating capacity Water flow rate system side Pressure drop system side			7,22	7,59		8,25	8,67	6,86	8,55	10,00		9,72	11,51	8,77	10,10	10,52		11,65	12,09
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2)	I/h kPa	453 12	7,22 621 21	7,59 652 23	500	8,25 709 19	8,67 746 21	6,86 590 13	8,55 735 20	10,00 860 26	656 15	9,72 836 23	11,51 990 31	8,77 754 19	10,10 868 25	10,52 905 27	862	11,65 1002 15	12,09 1040 16
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity	I/h kPa kW	453 12 2,62	7,22 621 21 3,59	7,59 652 23 3,77	500 10 2,89	8,25 709 19 4,10	8,67 746 21 4,31	6,86 590 13	8,55 735 20 4,25	10,00 860 26 4,97	656 15 3,79	9,72 836 23 4,83	11,51 990 31 5,72	8,77 754 19 4,36	10,10 868 25 5,02	10,52 905 27 5,23	862 12 4,98	11,65 1002 15 5,79	12,09 1040 16 6,01
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side	I/h kPa kW I/h	453 12 2,62 451	7,22 621 21 3,59 617	7,59 652 23 3,77 648	500 10 2,89 497	8,25 709 19 4,10 705	8,67 746 21 4,31 741	6,86 590 13 3,41 586	8,55 735 20 4,25 731	10,00 860 26 4,97 855	656 15 3,79 652	9,72 836 23 4,83 831	11,51 990 31 5,72 984	8,77 754 19 4,36 750	10,10 868 25 5,02 863	10,52 905 27 5,23 899	862 12 4,98 856	11,65 1002 15 5,79 996	12,09 1040 16 6,01 1034
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side	I/h kPa kW	453 12 2,62	7,22 621 21 3,59	7,59 652 23 3,77	500 10 2,89	8,25 709 19 4,10	8,67 746 21 4,31	6,86 590 13	8,55 735 20 4,25	10,00 860 26 4,97	656 15 3,79	9,72 836 23 4,83	11,51 990 31 5,72	8,77 754 19 4,36	10,10 868 25 5,02	10,52 905 27 5,23	862 12 4,98	11,65 1002 15 5,79	12,09 1040 16 6,01
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C	I/h kPa kW I/h kPa	453 12 2,62 451 12	7,22 621 21 3,59 617 21	7,59 652 23 3,77 648 23	500 10 2,89 497 10	8,25 709 19 4,10 705	8,67 746 21 4,31 741 21	6,86 590 13 3,41 586	8,55 735 20 4,25 731 19	10,00 860 26 4,97 855 25	656 15 3,79 652 15	9,72 836 23 4,83 831 23	11,51 990 31 5,72 984 31	8,77 754 19 4,36 750	10,10 868 25 5,02 863 25	10,52 905 27 5,23 899 27	862 12 4,98 856 12	11,65 1002 15 5,79 996 15	12,09 1040 16 6,01 1034 16
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity	l/h kPa kW l/h kPa	453 12 2,62 451 12 2,68	7,22 621 21 3,59 617 21	7,59 652 23 3,77 648 23	500 10 2,89 497 10	8,25 709 19 4,10 705 19	8,67 746 21 4,31 741 21	6,86 590 13 3,41 586 13	8,55 735 20 4,25 731 19	10,00 860 26 4,97 855 25	656 15 3,79 652 15	9,72 836 23 4,83 831 23	11,51 990 31 5,72 984 31	8,77 754 19 4,36 750 19	10,10 868 25 5,02 863 25	10,52 905 27 5,23 899 27	862 12 4,98 856 12	11,65 1002 15 5,79 996 15	12,09 1040 16 6,01 1034 16
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity	I/h kPa kW I/h kPa	453 12 2,62 451 12 2,68 1,94	7,22 621 21 3,59 617 21 3,65 2,70	7,59 652 23 3,77 648 23 3,82 2,83	500 10 2,89 497 10 2,91 2,07	8,25 709 19 4,10 705 19 4,08 2,94	8,67 746 21 4,31 741 21 4,28 3,09	6,86 590 13 3,41 586 13 3,37 2,70	8,55 735 20 4,25 731 19 4,08 3,34	10,00 860 26 4,97 855 25 4,65 3,92	656 15 3,79 652 15 4,15 2,93	9,72 836 23 4,83 831 23 5,02 3,60	11,51 990 31 5,72 984 31 5,67 4,12	8,77 754 19 4,36 750 19 4,24 3,24	10,10 868 25 5,02 863 25 4,97 3,83	10,52 905 27 5,23 899 27 5,18 4,02	862 12 4,98 856 12 4,69 3,53	11,65 1002 15 5,79 996 15 5,53 4,20	12,09 1040 16 6,01 1034 16 5,80 4,41
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side	I/h kPa kW I/h kPa kW I/h kPa	453 12 2,62 451 12 2,68 1,94 461	7,22 621 21 3,59 617 21 3,65 2,70 628	7,59 652 23 3,77 648 23 3,82 2,83 657	500 10 2,89 497 10 2,91 2,07 500	8,25 709 19 4,10 705 19 4,08 2,94 702	8,67 746 21 4,31 741 21 4,28 3,09 736	6,86 590 13 3,41 586 13 3,37 2,70 580	8,55 735 20 4,25 731 19 4,08 3,34 702	10,00 860 26 4,97 855 25 4,65 3,92 800	656 15 3,79 652 15 4,15 2,93 714	9,72 836 23 4,83 831 23 5,02 3,60 863	11,51 990 31 5,72 984 31 5,67 4,12 975	8,77 754 19 4,36 750 19 4,24 3,24 729	10,10 868 25 5,02 863 25 4,97 3,83 855	10,52 905 27 5,23 899 27 5,18 4,02 891	862 12 4,98 856 12 4,69 3,53 807	11,65 1002 15 5,79 996 15 5,53 4,20 951	12,09 1040 16 6,01 1034 16 5,80 4,41 997
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side	I/h kPa kW I/h kPa	453 12 2,62 451 12 2,68 1,94	7,22 621 21 3,59 617 21 3,65 2,70	7,59 652 23 3,77 648 23 3,82 2,83	500 10 2,89 497 10 2,91 2,07	8,25 709 19 4,10 705 19 4,08 2,94	8,67 746 21 4,31 741 21 4,28 3,09	6,86 590 13 3,41 586 13 3,37 2,70	8,55 735 20 4,25 731 19 4,08 3,34	10,00 860 26 4,97 855 25 4,65 3,92	656 15 3,79 652 15 4,15 2,93	9,72 836 23 4,83 831 23 5,02 3,60	11,51 990 31 5,72 984 31 5,67 4,12	8,77 754 19 4,36 750 19 4,24 3,24	10,10 868 25 5,02 863 25 4,97 3,83	10,52 905 27 5,23 899 27 5,18 4,02	862 12 4,98 856 12 4,69 3,53	11,65 1002 15 5,79 996 15 5,53 4,20	12,09 1040 16 6,01 1034 16 5,80 4,41 997
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan	l/h kPa kW l/h kPa kW l/h kPa	453 12 2,62 451 12 2,68 1,94 461	7,22 621 21 3,59 617 21 3,65 2,70 628	7,59 652 23 3,77 648 23 3,82 2,83 657	500 10 2,89 497 10 2,91 2,07 500	8,25 709 19 4,10 705 19 4,08 2,94 702	8,67 746 21 4,31 741 21 4,28 3,09 736	6,86 590 13 3,41 586 13 3,37 2,70 580	8,55 735 20 4,25 731 19 4,08 3,34 702	10,00 860 26 4,97 855 25 4,65 3,92 800 26	656 15 3,79 652 15 4,15 2,93 714	9,72 836 23 4,83 831 23 5,02 3,60 863	11,51 990 31 5,72 984 31 5,67 4,12 975	8,77 754 19 4,36 750 19 4,24 3,24 729	10,10 868 25 5,02 863 25 4,97 3,83 855	10,52 905 27 5,23 899 27 5,18 4,02 891	862 12 4,98 856 12 4,69 3,53 807	11,65 1002 15 5,79 996 15 5,53 4,20 951	12,09 1040 16 6,01 1034 16 5,80 4,41 997
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type	l/h kPa kW l/h kPa kW l/h kPa type	453 12 2,62 451 12 2,68 1,94 461	7,22 621 21 3,59 617 21 3,65 2,70 628	7,59 652 23 3,77 648 23 3,82 2,83 657	500 10 2,89 497 10 2,91 2,07 500	8,25 709 19 4,10 705 19 4,08 2,94 702	8,67 746 21 4,31 741 21 4,28 3,09 736	6,86 590 13 3,41 586 13 3,37 2,70 580	8,55 735 20 4,25 731 19 4,08 3,34 702	10,00 860 26 4,97 855 25 4,65 3,92 800 26	656 15 3,79 652 15 4,15 2,93 714 16	9,72 836 23 4,83 831 23 5,02 3,60 863	11,51 990 31 5,72 984 31 5,67 4,12 975	8,77 754 19 4,36 750 19 4,24 3,24 729	10,10 868 25 5,02 863 25 4,97 3,83 855	10,52 905 27 5,23 899 27 5,18 4,02 891	862 12 4,98 856 12 4,69 3,53 807	11,65 1002 15 5,79 996 15 5,53 4,20 951	12,09 1040 16 6,01 1034 16 5,80 4,41 997
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor	kW I/h kPa kW kW I/h kPa type type	453 12 2,62 451 12 2,68 1,94 461 13	7,22 621 21 3,59 617 21 3,65 2,70 628 22	7,59 652 23 3,77 648 23 3,82 2,83 657 24	500 10 2,89 497 10 2,91 2,07 500 12	8,25 709 19 4,10 705 19 4,08 2,94 702 21	8,67 746 21 4,31 741 21 4,28 3,09 736 23	6,86 590 13 3,41 586 13 3,37 2,70 580	8,55 735 20 4,25 731 19 4,08 3,34 702 21	10,00 860 26 4,97 855 25 4,65 3,92 800 26	656 15 3,79 652 15 4,15 2,93 714 16	9,72 836 23 4,83 831 23 5,02 3,60 863 23	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20	10,10 868 25 5,02 863 25 4,97 3,83 855 26	10,52 905 27 5,23 899 27 5,18 4,02 891 28	4,98 856 12 4,69 3,53 807 12	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,09 1040 16 6,01 1034 16 5,80 4,41 997
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fressure drop system side Fan Type Fan motor Air flow rate	l/h kPa kW l/h kPa kW l/h kPa type type m³/h	453 12 2,62 451 12 2,68 1,94 461 13	7,22 621 21 3,59 617 21 3,65 2,70 628 22	7,59 652 23 3,77 648 23 3,82 2,83 657 24	500 10 2,89 497 10 2,91 2,07 500 12	8,25 709 19 4,10 705 19 4,08 2,94 702 21	8,67 746 21 4,31 741 21 4,28 3,09 736 23	6,86 590 13 3,41 586 13 3,37 2,70 580 15	8,55 735 20 4,25 731 19 4,08 3,34 702 21	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Central Asynchesis	656 15 3,79 652 15 4,15 2,93 714 16 ifugal pronous 567	9,72 836 23 4,83 831 23 5,02 3,60 863 23	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 729 20	10,10 868 25 5,02 863 25 4,97 3,83 855 26	10,52 905 27 5,23 899 27 5,18 4,02 891 28	862 12 4,98 856 12 4,69 3,53 807 12	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,09 1040 16 6,01 1034 16 5,80 4,41 997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fressure drop system side Fan Type Fan motor Air flow rate High static pressure	kW I/h kPa kW I/h kPa kW I/h kPa type type m³/h Pa	453 12 2,62 451 12 2,68 1,94 461 13	7,22 621 21 3,59 617 21 3,65 2,70 628 22	7,59 652 23 3,77 648 23 3,82 2,83 657 24	500 10 2,89 497 10 2,91 2,07 500 12 400 22	8,25 709 19 4,10 705 19 4,08 2,94 702 21	8,67 746 21 4,31 741 21 4,28 3,09 736 23	6,86 590 13 3,41 586 13 3,37 2,70 580 15	8,55 735 20 4,25 731 19 4,08 3,34 702 21	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Central Asynch 920 71	656 15 3,79 652 15 4,15 2,93 714 16 ifugal ironous 567 27	9,72 836 23 4,83 831 23 5,02 3,60 863 23	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20	10,10 868 25 5,02 863 25 4,97 3,83 855 26	10,52 905 27 5,23 899 27 5,18 4,02 891 28	4,98 856 12 4,69 3,53 807 12	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,099 1040 16 6,01 1034 16 5,80 4,41 997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Air flow rate High static pressure Sound power level (inlet + radiated)	kW I/h kPa kW I/h kPa kW I/h kPa type type m³/h Pa dB(A)	453 12 2,62 451 12 2,68 1,94 461 13 400 22 45,0	7,22 621 21 3,59 617 21 3,65 2,70 628 22 592 50 55,0	7,59 652 23 3,77 648 23 3,82 2,83 657 24	2,89 497 10 2,91 2,07 500 12 400 22 45,0	8,25 709 19 4,10 705 19 4,08 2,94 702 21	8,67 746 21 4,31 741 21 4,28 3,09 736 23	6,86 590 13 3,41 586 13 3,37 2,70 580 15	8,55 735 20 4,25 731 19 4,08 3,34 702 21	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Central 920 71 61,0	3,79 652 15 4,15 2,93 714 16 rifugal nronous 567 27 46,0	9,72 836 23 4,83 831 23 5,02 3,60 863 23 770 50 56,0	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20	10,10 868 25 5,02 863 25 4,97 3,83 855 26	10,52 905 27 5,23 899 27 5,18 4,02 891 28	4,98 856 12 4,69 3,53 807 12 785 32 54,0	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,099 1040 16 6,01 1034 16 5,80 4,41 997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Air flow rate High static pressure Sound power level (inlet + radiated) Sound power level (outlet)	kW I/h kPa kW I/h kPa kW I/h kPa type type m³/h Pa dB(A) dB(A)	453 12 2,62 451 12 2,68 1,94 461 13 400 22 45,0 41,0	7,22 621 21 3,59 617 21 3,65 2,70 628 22 50 55,0 51,0	7,59 652 23 3,77 648 23 3,82 2,83 657 24	500 10 2,89 497 10 2,91 2,07 500 12 400 22 45,0 41,0	8,25 709 19 4,10 705 19 4,08 2,94 702 21	8,67 746 21 4,31 741 21 4,28 3,09 736 23 627 56 57,0 53,0	6,86 590 13 3,41 586 13 3,37 2,70 580 15	8,55 735 20 4,25 731 19 4,08 3,34 702 21 770 50 56,0 54,0	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Centri Asynch 920 71 61,0	656 15 3,79 652 15 4,15 2,93 714 16 ifugal rronous 567 27 46,0 44,0	9,72 836 23 4,83 831 23 5,02 3,60 863 23 770 50 56,0 54,0	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20 785 32 54,0 52,0	10,10 868 25 5,02 863 25 4,97 3,83 855 26 978 50 60,0 59,0	10,52 905 27 5,23 899 27 5,18 4,02 891 28	862 12 4,98 856 12 4,69 3,53 807 12 785 32 54,0 52,0	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,099 1040 16 6,01 1034 16 5,80 4,41 997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Air flow rate High static pressure Sound power level (inlet + radiated) Sound power level (outlet) Input power	kW I/h kPa kW I/h kPa kW I/h kPa type type m³/h Pa dB(A)	453 12 2,62 451 12 2,68 1,94 461 13 400 22 45,0	7,22 621 21 3,59 617 21 3,65 2,70 628 22 592 50 55,0	7,59 652 23 3,77 648 23 3,82 2,83 657 24	2,89 497 10 2,91 2,07 500 12 400 22 45,0	8,25 709 19 4,10 705 19 4,08 2,94 702 21	8,67 746 21 4,31 741 21 4,28 3,09 736 23	6,86 590 13 3,41 586 13 3,37 2,70 580 15	8,55 735 20 4,25 731 19 4,08 3,34 702 21	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Central 920 71 61,0	3,79 652 15 4,15 2,93 714 16 rifugal nronous 567 27 46,0	9,72 836 23 4,83 831 23 5,02 3,60 863 23 770 50 56,0	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20	10,10 868 25 5,02 863 25 4,97 3,83 855 26	10,52 905 27 5,23 899 27 5,18 4,02 891 28	4,98 856 12 4,69 3,53 807 12 785 32 54,0	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,099 1040 16 6,01 1034 16 5,80 4,41 1997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Air flow rate High static pressure Sound power level (inlet + radiated) Sound power level (outlet) Input power Finned pack heat exchanger	kW I/h kPa kW I/h kPa kW I/h kPa type type m³/h Pa dB(A) dB(A)	453 12 2,62 451 12 2,68 1,94 461 13 400 22 45,0 41,0	7,22 621 21 3,59 617 21 3,65 2,70 628 22 50 55,0 80	7,59 652 23 3,77 648 23 3,82 2,83 657 24	500 10 2,89 497 10 2,91 2,07 500 12 400 22 45,0 41,0	8,25 709 19 4,10 705 19 4,08 2,94 702 21 592 50 55,0 80	8,67 746 21 4,31 741 21 4,28 3,09 736 23 627 56 57,0 53,0	6,86 590 13 3,41 586 13 3,37 2,70 580 15	8,55 735 20 4,25 731 19 4,08 3,34 702 21 770 50 56,0 89	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Centri Asynch 920 71 61,0	656 15 3,79 652 15 4,15 2,93 714 16 ifugal rronous 567 27 46,0 44,0	9,72 836 23 4,83 831 23 5,02 3,60 863 23 770 50 56,0 54,0 89	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20 785 32 54,0 52,0	10,10 868 25 5,02 863 25 4,97 3,83 855 26 978 50 60,0 59,0	10,52 905 27 5,23 899 27 5,18 4,02 891 28	862 12 4,98 856 12 4,69 3,53 807 12 785 32 54,0 52,0	11,65 1002 15 5,79 996 15 5,53 4,20 951 16 978 50 60,0 59,0	12,099 1040 16 6,01 1034 16 5,80 4,41 997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Air flow rate High static pressure Sound power level (inlet + radiated) Sound power level (outlet) Input power Finned pack heat exchanger Water content	kW I/h kPa kW I/h kPa kW I/h kPa type type m³/h Pa dB(A) dB(A)	453 12 2,62 451 12 2,68 1,94 461 13 400 22 45,0 41,0	7,22 621 21 3,59 617 21 3,65 2,70 628 22 50 55,0 51,0	7,59 652 23 3,77 648 23 3,82 2,83 657 24	500 10 2,89 497 10 2,91 2,07 500 12 400 22 45,0 41,0	8,25 709 19 4,10 705 19 4,08 2,94 702 21	8,67 746 21 4,31 741 21 4,28 3,09 736 23 627 56 57,0 53,0	6,86 590 13 3,41 586 13 3,37 2,70 580 15	8,55 735 20 4,25 731 19 4,08 3,34 702 21 770 50 56,0 54,0	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Centri Asynch 920 71 61,0	656 15 3,79 652 15 4,15 2,93 714 16 ifugal rronous 567 27 46,0 44,0	9,72 836 23 4,83 831 23 5,02 3,60 863 23 770 50 56,0 54,0	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20 785 32 54,0 52,0	10,10 868 25 5,02 863 25 4,97 3,83 855 26 978 50 60,0 59,0	10,52 905 27 5,23 899 27 5,18 4,02 891 28	862 12 4,98 856 12 4,69 3,53 807 12 785 32 54,0 52,0	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,099 1040 16 6,01 1034 16 5,80 4,41 997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Air flow rate High static pressure Sound power level (inlet + radiated) Sound power level (outlet) Input power Finned pack heat exchanger Water content Diametre hydraulic fittings	kW I/h kPa kW I/h kPa kW I/h kPa type type m³/h Pa dB(A) dB(A) W	453 12 2,62 451 12 2,68 1,94 461 13 400 22 45,0 41,0	7,22 621 21 3,59 617 21 3,65 2,70 628 22 50 55,0 80	7,59 652 23 3,77 648 23 3,82 2,83 657 24	500 10 2,89 497 10 2,91 2,07 500 12 400 22 45,0 41,0	8,25 709 19 4,10 705 19 4,08 2,94 702 21 592 50 55,0 80	8,67 746 21 4,31 741 21 4,28 3,09 736 23 627 56 57,0 53,0	6,86 590 13 3,41 586 13 3,37 2,70 580 15	8,55 735 20 4,25 731 19 4,08 3,34 702 21 770 50 56,0 89	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Centtr 4,67 161,0 60,0 118	656 15 3,79 652 15 4,15 2,93 714 16 iffugal irronous 567 27 46,0 44,0 66	9,72 836 23 4,83 831 23 5,02 3,60 863 23 770 50 56,0 54,0 89	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20 785 32 54,0 52,0	10,10 868 25 5,02 863 25 4,97 3,83 855 26 978 50 60,0 59,0	10,52 905 27 5,23 899 27 5,18 4,02 891 28	862 12 4,98 856 12 4,69 3,53 807 12 785 32 54,0 52,0	11,65 1002 15 5,79 996 15 5,53 4,20 951 16 978 50 60,0 59,0	12,099 1040 16 6,01 1034 16 5,80 4,41 997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Air flow rate High static pressure Sound power level (inlet + radiated) Sound power level (outlet) Input power Finned pack heat exchanger Water content Diametre hydraulic fittings Main heat exchanger	kW I/h kPa kW I/h kPa kW I/h kPa type type m³/h Pa dB(A) dB(A)	453 12 2,62 451 12 2,68 1,94 461 13 400 22 45,0 41,0	7,22 621 21 3,59 617 21 3,65 2,70 628 22 50 55,0 80	7,59 652 23 3,77 648 23 3,82 2,83 657 24	500 10 2,89 497 10 2,91 2,07 500 12 400 22 45,0 41,0	8,25 709 19 4,10 705 19 4,08 2,94 702 21 592 50 55,0 80	8,67 746 21 4,31 741 21 4,28 3,09 736 23 627 56 57,0 53,0	6,86 590 13 3,41 586 13 3,37 2,70 580 15	8,55 735 20 4,25 731 19 4,08 3,34 702 21 770 50 56,0 89	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Centtr 4,67 161,0 60,0 118	656 15 3,79 652 15 4,15 2,93 714 16 ifugal rronous 567 27 46,0 44,0	9,72 836 23 4,83 831 23 5,02 3,60 863 23 770 50 56,0 54,0 89	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20 785 32 54,0 52,0	10,10 868 25 5,02 863 25 4,97 3,83 855 26 978 50 60,0 59,0	10,52 905 27 5,23 899 27 5,18 4,02 891 28	862 12 4,98 856 12 4,69 3,53 807 12 785 32 54,0 52,0	11,65 1002 15 5,79 996 15 5,53 4,20 951 16 978 50 60,0 59,0	12,09 1040 16 6,01 1034 16 5,80 4,41 997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Air flow rate High static pressure Sound power level (inlet + radiated) Sound power level (outlet) Input power Finned pack heat exchanger Water content Diametre hydraulic fittings	kW I/h kPa kW I/h kPa kW I/h kPa type type m³/h Pa dB(A) dB(A) W	453 12 2,62 451 12 2,68 1,94 461 13 400 22 45,0 41,0	7,22 621 21 3,59 617 21 3,65 2,70 628 22 50 55,0 80	7,59 652 23 3,77 648 23 3,82 2,83 657 24	500 10 2,89 497 10 2,91 2,07 500 12 400 22 45,0 41,0	8,25 709 19 4,10 705 19 4,08 2,94 702 21 592 50 55,0 80	8,67 746 21 4,31 741 21 4,28 3,09 736 23 627 56 57,0 53,0	6,86 590 13 3,41 586 13 3,37 2,70 580 15	8,55 735 20 4,25 731 19 4,08 3,34 702 21 770 50 56,0 89	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Centtr 61,0 60,0 118	656 15 3,79 652 15 4,15 2,93 714 16 iffugal irronous 567 27 46,0 44,0 66	9,72 836 23 4,83 831 23 5,02 3,60 863 23 770 50 56,0 54,0 89	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20 785 32 54,0 52,0	10,10 868 25 5,02 863 25 4,97 3,83 855 26 978 50 60,0 59,0	10,52 905 27 5,23 899 27 5,18 4,02 891 28	862 12 4,98 856 12 4,69 3,53 807 12 785 32 54,0 52,0	11,65 1002 15 5,79 996 15 5,53 4,20 951 16 978 50 60,0 59,0	12,09 1040 16 6,01 1034 16 5,80 4,41 997 17

(1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C (2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT Refer to the selection software for performance data related to the different configurations.


PERFORMANCE DATA FCY_C AND FCY_U (CONFIGURATION OF THE H NOZZLES) - 4 PIPES

4-pipe

			FCY201C			FCY3010	:		FCY401C			FCY501C			FCY601C			FCY701C	
		2	4	6	1	4	6	1	3	6	1	5	6	1	4	7	2	5	7
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 65 °C / 55 °C (1)																			
Heating capacity	kW	1,06	1,37	1,48	1,82	2,39	2,55	2,19	2,75	2,99	2,59	3,30	3,34	3,13	3,85	4,35	4,13	4,40	4,60
Water flow rate system side	l/h	93	120	130	159	210	223	192	240	262	226	290	301	274	336	381	361	385	403
Pressure drop system side	kPa	5	8	9	8	12	14	5	7	8	6	9	9	9	13	16	16	15	17
Cooling performance 7 °C / 12 °C																			
Cooling capacity	kW	0,93	1,30	1,44	1,70	2,40	2,63	2,29	3,06	3,41	2,68	3,65	3,82	3,37	4,08	4,65	4,24	4,97	5,18
Sensible cooling capacity	kW	0,74	1,14	1,18	1,27	1,86	2,03	1,66	2,24	2,52	1,94	2,70	2,83	2,70	3,34	3,92	3,24	3,83	4,02
Water flow rate system side	l/h	160	224	248	292	413	452	394	526	586	461	628	657	580	702	800	729	855	891
Pressure drop system side	kPa	8	13	15	9	16	18	11	18	22	13	22	24	15	21	26	20	26	28
Fan																			
Туре	type									Centr	ifugal								
Fan motor	type									Asynch	ronous								
Air flow rate	m³/h	148	226	254	263	404	446	346	487	559	400	592	627	567	770	920	785	978	1050
High static pressure	Pa	21	50	63	21	50	61	25	50	66	22	50	56	27	50	71	32	50	58
Sound power level (inlet + radiated)	dB(A)	41,0	56,0	59,0	39,0	51,0	54,0	44,0	54,0	55,0	45,0	55,0	57,0	46,0	56,0	61,0	54,0	60,0	62,0
Sound power level (outlet)	dB(A)	37,0	52,0	55,0	35,0	47,0	49,0	40,0	50,0	52,0	41,0	51,0	53,0	44,0	54,0	60,0	52,0	59,0	61,0
Input power	W	28	41	74	38	55	78	53	63	102	49	80	96	66	89	118	92	117	138
Diametre hydraulic fittings																			
Main heat exchanger	Ø		1/2"			3/4"			3/4"			3/4"			3/4"			3/4"	
Secondary heat exchanger	Ø									1,	/2"								
Power supply																			
Power supply										230V	~50Hz								

(1) Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT Refer to the selection software for performance data related to the different configurations.

DIMENSIONS

FCY - C

Size		200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
Dimensions and weights																			
A	mm	598	598	598	829	829	829	1050	1050	1050	1050	1050	1050	1171	1171	1171	1171	1171	1171
В	mm	507	507	507	735	735	735	960	960	960	960	960	960	1080	1080	1080	1080	1080	1080
(mm	550	550	550	781	781	781	1003	1003	1003	1003	1003	1003	1122	1122	1122	1122	1122	1122
D	mm	529	529	529	760	760	760	982	982	982	982	982	982	1100	1100	1100	1100	1100	1100
Empty weight	kg	19	20	21	23	24	26	31	32	33	31	32	33	41	43	46	41	43	46

FCY - U

Size		200	201	250	300	301	350	400	401	450	500	501	550
Dimensions and weights													
A	mm	647	647	647	878	878	878	1100	1100	1100	1100	1100	1100
В	mm	508	508	508	739	739	739	960	960	960	960	960	960
(mm	550	550	550	781	781	781	1003	1003	1003	1003	1003	1003
D	mm	529	529	529	760	760	760	982	982	982	982	982	982
Empty weight	kg	22	23	24	26	27	29	35	36	37	35	36	37

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

FCYI

Fan coil unit for ducted installations

- Plug and play installation only in horizontal
- Reduced dimensions
- Inspectable ventilation group

DESCRIPTION

Monobloc duct type fan coils for heating and/or cooling small and medium-sized environments for civil and commercial use.

They were designed and built for flush horizontal installation in any type of 2/4 pipe system and in combination with any heat generator, also at low temperatures.

Thanks to the availability of various versions and configurations, with a standard or oversized coil, it is easy to select the optimal solution for any requirement.

FEATURES

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise.

Their characteristics permit energy savings compared to conventional fans. They are statically and dynamically balanced and directly coupled to the motor shaft.

The Brushless electric motor with 0-100% continuous speed variation, which allows precise adaptation to the real demands of the internal environment without temperature fluctuations.

The air flow can be continuously changed through a 1-10 V signal, coming from adjustment and control commands Aermec or from independent adjustment systems.

This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors). The plastic augers are extractable for easy and efficient cleaning.

Heat exchanger coil

With copper pipes and aluminium louvers, the standard or oversized heat exchanger and the possible secondary heat exchanger have female gas water connections on the left side and the manifolds have air vents.

 Reversibility of the water connections during installation only for units with a main standard or oversized coil or standard with BV accessory. Not reversible in all other configurations.

Air filter

Where present, the Coarse 25% Class according to ISO16890 (G2 according to EN779) air filter, which is easy to remove and clean.

Condensate drip

In addition to the internal tray, all units are equipped with a **configurable external condensate collection tray** during installation.

Contro

The unit's electrical box is reversible, with the option of mounting it also on the same side of the water connections.

The standard equipment includes a single 10-pin control board as an interface for the electrical connections, the preparation for the VMF series thermostat fastener and the included supply of a DIN guide for the installation of a third-party control.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Field	Description
1,2,3,4	FCYI
5	Size 2, 3, 4, 5, 7
6	main heat exchanger (1)
0	Standard
5	Oversized
7	Secondary heat exchanger
0	Without coil
1	Standard (2)
8	Version
C	Compact
U	Universal (3)
9	Connections
D	Water connections and electrical panel on the right
G	Water connections and electrical panel on the left
L	Hydraulic connections on the left and electric connections on the opposite side
R	Hydraulic connections on the right and electric connections on the opposite side
10	Options
Н	Electric heater (500W) (4)
P	With the photocatalytic device (4)
Χ	No present
11	Filter
F	With air filter (5)
G	On the GKY accessory (6)
Х	No present

- Reversibility of the water connections during installation only for units with a main standard or oversized coil. They are not reversible for units with a secondary coil.
 Only for the standard main coil
- (3) Only for sizes from 2 to 5
- (4) Options "P and H" are available only in units for 2-pipe systems.

- (5) The DFA kit must mandatorily be installed on the units The DFA kit must mandatorily be installed on the units in option 'F'.

 (6) Only for sizes 2 and 3, without secondary heat exchanger (0), in U version, D connections, without RX or
- photocatalytic device (X).

SIZE AVAILABLE FOR VERSION

Cversion

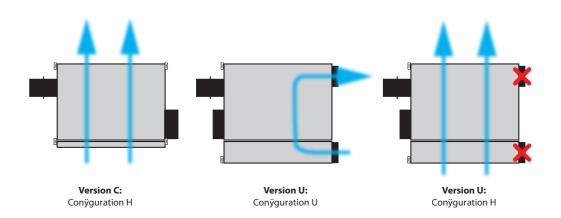
C 1 C1 51 O11															
Size	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
Versions produced (by size)	'														
Versions available (by size)	•	•	•	•	•	•	•		•		•	•	•	•	•
Version U															
Size	2	00	201	250	300	301	1 :	350	400	401	450	50	0	501	550
Versions produced (by size)	,														
Versions available (by size)			•						•					•	•

INSTALLATION VERSIONS AND EXAMPLES

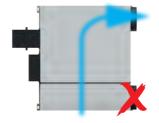
C: Compact version.

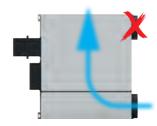
Compact structure with opposed intake and delivery lines, for an "H"shaped configuration.

The unit is provided without openings and without flanges, which can be purchased separately as an accessory.


The delivery and intake part of the structure is designed to house flanges of Ø 200 mm (or Ø 160 mm) and one of the intake flanges can be replaced by a Ø 125 or 100 mm flange for the intake of outside air.

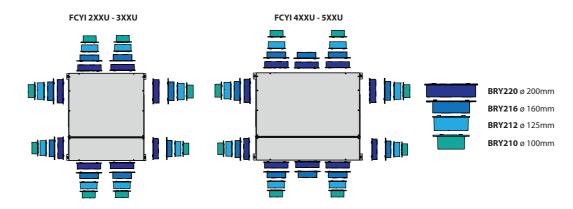
On the side, it can house Ø 125 or 100 mm flanges for the intake of outside air for delivery.

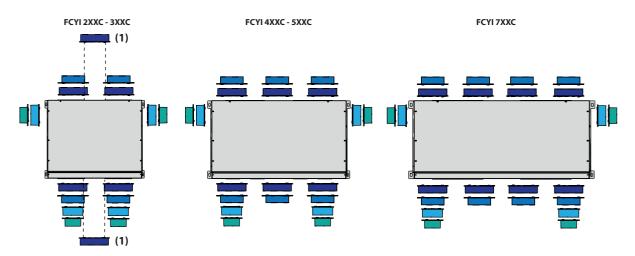

U: Universal version.


Structure for the "U" configuration with intake and delivery on the same side, opposite of the side with the water connections and the electrical box. The delivery and intake part of the structure is designed to house flanges of Ø 200 mm (or Ø 160 mm) and one of the intake or delivery flanges can be replaced by a Ø 125 or 100 mm flange for the intake of outside air.


This version is called universal because it guarantees the possible installations permitted by the C version and adds additional possibilities.

POSSIBLE ALTERNATIVE CONFIGURATIONS OF THE UVERSION




The performance data for the configurations shown here are equal to those for the U version in the U configuration.

POSSIBLE POSITIONS FOR THE INSTALLATION OF THE BRY ACCESSORIES

In every unit it is possible to use a maximum of one flange accessory for the intake of outside air (BRY210 or BRY212). The number and position of the preparations for the installation of the BRY accessories varies based on the unit size and version.

The standard **C version unit is supplied without flanges**, which can be purchased separately as an accessory.

www.aermec.com

1 There is a central preparation for the installation of an accessory BRY220 as an alternative to using the two more external preparations.

For the C version: it is necessary to use a number of recirculation air preparations at least equal to the maximum number possible for the size selected less 1.

Example: for FCY6xxC it is necessary to open at least 3 flange preparations for intake recirculation air and 3 flange preparations for delivery recirculation air (= maximum number - 1).

In both versions if the number of intake/delivery flanges used is less than the maximum possible for the considered size, their diameter must be 200 mm (BRY220). Example: for FCY17xxC it is necessary to open at least 3 flange preparations for intake recirculation air and 3 flange preparations for delivery recirculation air (= maximum number - 1).

For more information about the possible configurations for both versions, refer to the unit's selection software.

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. **SA5:** air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L=2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

 ${\bf SW5:}$ water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF system

DI24: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, DI24 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, DI24 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, DI24CP, is also available as a separate accessory in our catalog.

VMF-E19Y: Thermostat to be fixed on the side of the fan coil, fitted as standard with an air and water probe. Depending on the option chosen (P - X - H), VMF-E19Y must be completed with the mandatory electrical completion unit accessory (VMF-YCC, VMF-YCCH or VMF-YCCK / VMF-YICCK).

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMF-YICC: Electric inverter completion unit for the VMF-E19Y accessory (mandatory for the unit with options P and X).

VMF-YICCH: Electric inverter completion unit for the VMF-E19Y accessory (mandatory for the unit with option H).

VMF-YICCK: Electric inverter completion unit for the VMF-E19Y accessory, mandatory for FCYI units with GKY accessory.

Valves for main coil

VCY41 - 42 - for main heat exchanger: 3-way motorised valve kit for the main coil. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left hydraulic connections.

VCYD for main and secondary coil: The 2-way motorised valve kit for the primary or secondary coil or an additional optional heat only coil. The kit consists of a valve, the actuator and the corresponding hydraulic fittings. It can be installed both on fan coils with right-hand and left-hand connections

VDP15HF: Combined adjustment and balancing valve, for 2 and 4 pipe systems to be installed outside the unit. It is comprised of a valve body without nipples with Ø 3/4'M water connections, a 230 V powered actuator with On-Off function and a 5 m power supply cable. The valve is supplied without connections or hydraulic components.

VDP15HF24: Combined adjustment and balancing valve, for 2 and 4 pipe systems to be installed outside the unit. It is comprised of a valve body without nipples with Ø 3/4'M water connections, a 24 V powered actuator with On-Off function and a 5 m power supply cable. The valve is supplied without connections or hydraulic components.

VDP15HFM: Combined adjustment and balancing valve, for 2 and 4 pipe systems to be installed outside the unit. It is comprised of a valve body without nipples with Ø 3/4'M water connections, a 24 V powered actuator with modulating function and a 5 m power supply cable. The valve is supplied without connections or hydraulic components.

Valves for secondary coil

VCY44 - for secondary heat exchanger: 3-way motorized valve kit for hot only coil. The kit consists of a valve, actuator and relative hydraulic fittings, it is suitable for installation on both fan coils with hydraulic connections on the right and left.

VCYD for main and secondary coil: The 2-way motorised valve kit for the primary or secondary coil or an additional optional heat only coil. The kit consists of a valve, the actuator and the corresponding hydraulic fittings. It can be installed both on fan coils with right-hand and left-hand connections.

Additional hot water coil.

BV: Hot water heat exchanger with 1 row.

Valve support kit

KITVPI: Main coil VDP valve support kit. The kit consists of a bracket for supporting the valve and the corresponding hydraulic fittings.

KITVP112H: VDP valve support kit for the secondary coil. The kit consists of a bracket for supporting the valve and the corresponding hydraulic fittings.

Installation accessories

BDP: 200 mm plug.

BRY: Flange with hydraulic "spigot" connection.

GMYC: Plate flange that makes it possible to install the accessory GM either in the intake section or in the delivery section. The accessory is comprised of a plate flange with gasket and 4 screws to fasten it to the unit.

AFY: the kit is comprised of a Coarse 25% class filter according to ISO16890 (G2 according to EN779) and four fastening brackets to insert in the grille GM17. To be used together with fan coils supplied without a filter installed in unit "X".

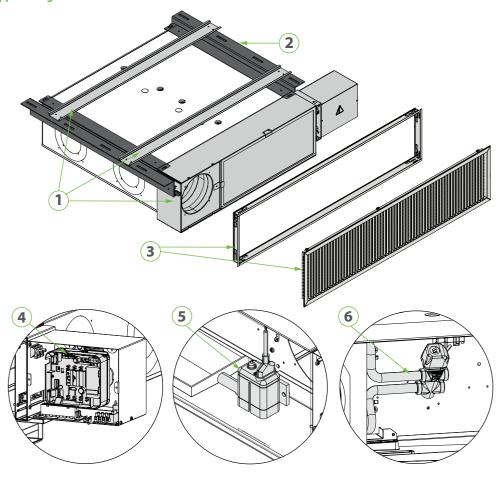
GMYU: Plate flange that makes it possible to install the accessory GM17 either in the intake section or in the delivery section. The accessory is comprised of a plate flange with gasket and 4 screws to fasten it to the unit.

DSC: Condensate drainage device.

DAYKIT: Air deflector for U versions. To be installed in the delivery plenum, on the side opposite the air outlet, to facilitate the flow towards the delivery opening.

AMPY: Additional brackets for ceiling mount. Only for "U" version.

Accessories in multiple packages


DFA: Size of filter halved on the short side. The kit is comprised of two filters with a length equal to the standard filter and with half the height. This facilitates filter cleaning and/or replacement operations if there is a reduced space for vertical extraction. 20 piece package.

PPB: Protection for flanges to be used during installation to prevent dust from entering the unit before connecting the ducts. To be removed when making the connection. 100 piece package.

CHR12: Hydraulic connection kit for Ø 1/2" two-way valves, with soft coil side O-ring seal and with a flat plate and system side gasket, which can also be used for installing flat seal two-way valves. 50 piece package.

CHR34: Hydraulic connection kit for Ø 3/4" two-way valves, with soft coil side O-ring seal and with a flat plate and system side gasket, which can also be used for installing flat seal two-way valves. 30 piece package.

New GKY equipped flange

- 1 GKY
- 2 GKY2GT- GKY3GT (mandatory accessory)
- 3 GKYG (mandatory accessory)
- 4 VMF-E19Y + VMF-YICCK (FCYI) / VMF-YCCK (FCY) (optional accessory)
- 5 DSC6 (optional accessory)
- 6 2 pipes with 2/3-way valve (optional accessory)

GKY: Extractable galvanised sheet metal equipped flange with electric box, allows for routine and extraordinary maintenance without the need for an inspection hatch underneath. The accessory is only compatible for units in UDXG configuration and recirculation air openings on the right side.

GKY2GT: Accessory mandatory for the installation of the GKY plenum, consisting of telescopic guides compatible with size 2.

GKY3GT: Accessory mandatory for the installation of the GKY plenum, consisting of telescopic guides compatible with size 3.

GKYG: grille kit in RAL9010 colour with counterframe, mandatory accessory compatible with GKY equipped flange accessory.

Extractable equipped flange

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
GKY	U	•		•	٠		•									
Telescopic guides																
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
GKY2GT (1)	U	•		•												
(1) Accessory mandatory for the installa	tion of the GKY plenum															
Telescopic guides																
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
GKY3GT (1)	U				•		•									

(1) Accessory mandatory for the installation of the GKY plenum

Grid kit

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
GKYG	U	•		•	•		•									

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
AEDEONID (1)	C	•		•	•	•		•			•	•	•	•		•
AER503IR (1)	U	•	•	•	•	•	•	•	•	•	•	•	•			
CAT (2)	C			•	•	•							•			
SA5 (2)	U	•		•	•	•	•	•		•	•	•	•			
CW2 (2)	C	•	•	•	•	•					•		•		•	
SW3 (2)	U			•									•			
CME (3)	C	•		•		•					•		•	•	•	
SW5 (2)	U	•		•	•								•			
TV (2)	C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
TX (3)	U	•		•	•	•		•	•	•	•	•	•			

(1) Wall-mount installation.
 (2) Probe for AERSO3IR-TX thermostats, if fitted.
 (3) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

VMF system

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
DIDA	C	•		•	•		•	•	•	•	•		•	•	•	
DI24	U	•	•	•	•	•	•	•		•	•	•	•			
VMF-E19Y	C	•	•	•	•	•	•	•		•	•	•	•	•	•	•
VIVIF-E191	U		•	•	•			•		•	•	•	•			
/ME E2	C	•	•	•	•	•		•		•	•	•	•		•	•
VMF-E3	U	•	•	•	•	•		•	•	•	•	•	•			
VME FADV	C	•		•	•	•	•	•	•	•	•	•	•	•	•	
VMF-E4DX	U	•		•	•	•	•		•		•	•	•			
/MF FAV	C	•											•	•		•
/MF-E4X	U	•	•	•	•		•		•	•						
VAL ID	C				•		•		•		•		•	•	•	•
VMF-IR	U	•	•	•	•	•	•	•	•	•						
VME CW	C	•	•		•									•	•	•
VMF-SW	U	•	•													
VMF CW1	C	•		•	•	•		•	•	•	•			•	•	•
VMF-SW1	U	•		•		•	•		•		•		•			
VAL VICC	C	•		•	•	•	•	•	•	•	•	•			•	•
VMF-YICC	U			•	•				•							
VIAE VICCU	C	•	•	•	•		•	•	•	•	•	•				
VMF-YICCH	U		•				•		•							
VMF-YICCK	U															

Additional heat only coil for only option "X" (without an electric heater and without a photocatalytic device)

Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
(BV122	-	-	BV132	-	-	BV142	-	-	BV142	-	-	BVZ800	-	-
U	BV122	-	-	BV132	-	-	BV142	-	-	BV142	-	-	-	-	-

Combined adjustment and balancing valve

	200	201	250	300	301	350	400	401	450
	VDP15HF	VDP15HF	VDP15HF	VDP15HF	VDP15HF	VDP15HF	VDP15HF	VDP15HF	VDP15HF
Main coil	VDP15HF24	VDP15HF24	VDP15HF24	VDP15HF24	VDP15HF24	VDP15HF24	VDP15HF24	VDP15HF24	VDP15HF24
	VDP15HFM	VDP15HFM	VDP15HFM	VDP15HFM	VDP15HFM	VDP15HFM	VDP15HFM	VDP15HFM	VDP15HFM
		VDP15HF			VDP15HF			VDP15HF	
Secondary coil	-	VDP15HF24	-	-	VDP15HF24	-	-	VDP15HF24	-
		VDP15HFM			VDP15HFM			VDP15HFM	
	VDP15HF			VDP15HF			VDP15HF		
Additional coil "BV"	VDP15HF24	-	-	VDP15HF24	-	-	VDP15HF24	-	-
	VDP15HFM			VDP15HFM			VDP15HFM		
	500		501	550		700	701		750
	500 VDP15HF		501 VDP15HF	550 VDP15HF		700 VDP15HF	701 VDP15HF		750 VDP15HF
Main coil									
Main coil	VDP15HF		VDP15HF	VDP15HF		VDP15HF	VDP15HF		VDP15HF
Main coil	VDP15HF VDP15HF24		VDP15HF VDP15HF24	VDP15HF VDP15HF24		VDP15HF VDP15HF24	VDP15HF VDP15HF24		VDP15HF VDP15HF24
Main coil Secondary coil	VDP15HF VDP15HF24		VDP15HF VDP15HF24 VDP15HFM	VDP15HF VDP15HF24		VDP15HF VDP15HF24	VDP15HF VDP15HF24 VDP15HFM		VDP15HF VDP15HF24
	VDP15HF VDP15HF24		VDP15HF VDP15HF24 VDP15HFM VDP15HF	VDP15HF VDP15HF24		VDP15HF VDP15HF24	VDP15HF VDP15HF24 VDP15HFM VDP15HF		VDP15HF VDP15HF24
	VDP15HF VDP15HF24		VDP15HF VDP15HF24 VDP15HFM VDP15HF VDP15HF24	VDP15HF VDP15HF24		VDP15HF VDP15HF24	VDP15HF VDP15HF24 VDP15HFM VDP15HF VDP15HF24		VDP15HF VDP15HF24
	VDP15HF VDP15HF24 VDP15HFM -		VDP15HF VDP15HF24 VDP15HFM VDP15HF VDP15HF24	VDP15HF VDP15HF24		VDP15HF VDP15HF24 VDP15HFM -	VDP15HF VDP15HF24 VDP15HFM VDP15HF VDP15HF24		VDP15HF VDP15HF24

Valves combinations for main and secondary coil

3-way valve kit - main and secondary coil or accessory BV coil

- 114) 14111 1114 1114 1114 114 114 114 1	,		.,,												
	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
Main coil	VCY41	VCY41	VCY41	VCY42											
Maili Coli	VCY4124	VCY4124	VCY4124	VCY4224											
Cocondary coil		VCY44													
Secondary coil	-	VCY4424	-	-	VCY4424	-	-	VCY4424		-	VCY4424	-	-	VCY4424	
Additional coil "BV"	VCY44														
AUGILIONAL CON DV	VCY4424	-	-	VCY4424	-										

2-way valve kit - main and secondary coil or accessory BV coil

	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
Main coil	VCYD1	VCYD1	VCYD1	VCYD2	VCYD2	VCYD2									
Maiii Coii	VCYD124	VCYD124	VCYD124	VCY224	VCY224	VCY224									
Secondary coil	-	VCYD1 VCYD124	-	-	VCYD1 VCYD124	-	-	VCYD1 VCYD124	-	-	VCYD1 VCYD124	-	-	VCYD1 VCYD124	-
Additional coil "BV"	VCYD1	-	-	VCYD1 VCYD124	-	-	VCYD1 VCYD124	-	-	VCYD1 VCYD124	-	-	VCYD1 VCYD124	-	-

Valve support kit

Main coil VDP valve support kit.

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
KITVPI12 (1)	C,U	•	•	•												
KITVPI34 (2)	C				•	•	•	•	•	•	•	•	•	•	•	•
KII VPI34 (Z)	Ш															

⁽¹⁾ Connections Ø 1/2" (2) Connections Ø 3/4"

Secondary coil VDP valve support kit.

	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
Main coil															
Secondary coil	-	KITVPI12H	-												
Additional coil "BV"	KITVPI12H	-	-	KITVPI12H	Н -	-									

Connections ø 1/2"

Installation accessories

Plastic caps

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
BDP200	(•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
DDF200	U								•							

Flange

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
DDV210 (1)	C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
BRY210 (1)	U	•	•	•	•	•	•	•	•	•	•	•	•			
DDV212 (2)	C				•									•		•
BRY212 (2)	U		•	•	•	•		•			•	•	•			
DDV216 (2)	C	•	•					•					•	•	•	•
BRY216 (3)	U	•											•			
DDV220 (4)	C	•	•				•	•	•					•	•	•
BRY220 (4)	U		•			•	•	•	•	•			•			

Flange for the installation of the delivery grille $\ensuremath{\mathsf{GM}}$

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
GMY200C (1)	C	•	•	•												
GMY300C (1)	C				•	•	•									
GMY400C (1)	C							•	•	•	•	•	•			
GMY600C (1)	(

⁽¹⁾ only for "C" version.

Flange for the installation of the grille GM17

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
GMYU (1)	U	•	•	•	•	•	•	•	•	•	•	•	•			

⁽¹⁾ Only for "U" version with connections "G and D".

Coarse 25% cia	ss air fliter ki	τ														
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
AFY100 (1)	U	•		•	•	•	•	•	•	•	•	•	•			

 $^{(1) \ \} To be used with fan coils supplied without a filter installed in unit "X" and in association with GM17 and GMYU.$

⁽¹⁾ Ø 100 mm (2) Ø 125 mm (3) Ø 160 mm (4) Ø 200 mm

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
DAYKIT	U	•	•	•	•	•	•	•	•	•	•	•	•			
Brackets for cei	ling mount.															
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
AMPY (1)	U	•	•	•	•	•	•	•	•	•	•	•	•			
(1) Only for "U" version.																
Condensate dis	charge devi	ce kit														
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
DCC((1)	(•	•	•	•	•	•		•	•	•	•	•	•	•	•
DSC6 (1) -	П															

⁽¹⁾ Only for "L and R" connections.

Condensate drip

Accessories in multiple packages

Hydraulic connection kit

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
CHR12 (1)	C,U	•	•	•												
(UD24/2)	C				•				•	•	•	•		•		•
CHR34 (2)	U				•			•	•	•		•				

⁽¹⁾ Hydraulic connections Ø 1/2"
(2) Hydraulic connections Ø 3/4"

Half-size filter kit

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
DFA2	C,U	•	•	•												
DFA3	C,U				•	•	•									
DFA5	C,U							•	•	•		•	•			
DFA7	(•

Protection for flange

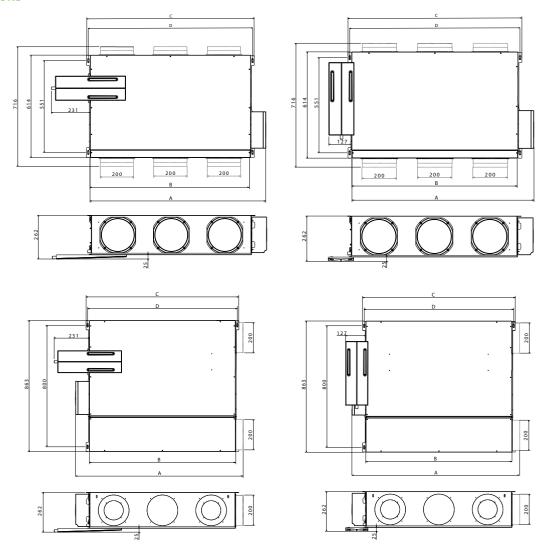
Heating performance 70 °C / 60 °C (1)

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
DDD	(•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PPB	U															

PERFORMANCE DATA - FCYI_C AND FCYI_U (H NOZZLES CONFIGURATION) 2 PIPES

			FCYI200	C	I	CYI250	[CY13000	:		FCY13500	:		FCYI400	C		FCYI450	[
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)					•														
Heating capacity	kW	1,81	3,16	3,34	2,01	3,40	3,62	3,08	4,83	5,23	3,32	5,43	5,83	3,96	5,85	6,34	4,10	6,44	6,96
Water flow rate system side	I/h	156	272	287	173	292	311	265	415	450	285	467	502	341	503	545	353	554	599
Pressure drop system side	kPa	6	13	16	7	17	19	7	14	16	7	17	19	9	17	19	5	12	13
Heating performance 45 °C / 40 °C (2)																			
Heating capacity	kW	0,90	1,57	1,66	1,00	1,69	1,80	1,53	2,40	2,60	1,65	2,70	2,90	1,97	2,91	3,15	2,04	3,20	3,46
Water flow rate system side	I/h	155	270	288	172	291	308	263	413	447	284	464	499	339	501	542	351	550	595
Pressure drop system side	kPa	6	13	16	7	17	19	7	14	16	7	17	19	9	17	19	5	12	13
Cooling performance 7 °C / 12 °C																			
Cooling capacity	kW	0,80	1,37	1,45	0,95	1,67	1,76	1,40	2,38	2,53	1,66	2,70	2,88	2,03	2,98	3,21	2,22	3,28	3,55
Sensible cooling capacity	kW	0,63	1,13	1,20	0,70	1,29	1,37	1,10	1,82	1,94	1,15	1,94	2,07	1,45	2,18	2,36	1,54	2,35	2,56
Water flow rate system side	l/h	138	236	249	163	287	303	241	409	435	285	464	495	349	512	552	382	564	610
Pressure drop system side	kPa	5	14	16	8	19	21	7	15	17	9	21	23	9	13	20	8	16	18
Fan																			
Air flow rate	m³/h	123	240	257	123	240	257	225	390	424	225	390	424	300	470	515	300	470	515
High static pressure	Pa	13	50	57	13	50	57	16	50	59	16	50	59	20	50	60	20	50	60
Sound power level (inlet + radiated)	dB(A)	37,0	57,0	59,0	37,0	57,0	59,0	36,0	50,0	53,0	36,0	50,0	53,0	43,0	53,0	55,0	43,0	53,0	55,0
Sound power level (outlet)	dB(A)	33,0	53,0	55,0	33,0	53,0	55,0	32,0	47,0	49,0	32,0	47,0	49,0	39,0	49,0	52,0	39,0	49,0	52,0
Input power	W	7	27	31	7	27	31	10	30	40	10	30	40	14	38	48	14	38	48
Diametre hydraulic fittings																			
Main heat exchanger	Ø		1/2"			1/2"			3/4"			3/4"			3/4"			3/4"	
Power supply																			
Power supply										230V	~50Hz								
		FCYI500C						FCY155	0C			FC	YI700C				FCY175	OC	
		1		2	3		1	2		3	1		2	3		1	2		3
				M	н		1	M		Ц	1		M	Н		1	M		Ш

			FCYI500C			FCYI550C			FCYI700C			FCYI750C	
Heating capacity	kW	5,39	7,28	7,63	5,92	8,37	8,71	5,33	8,34	8,88	6,17	9,52	10,15
Water flow rate system side	l/h	464	626	656	509	720	749	468	732	779	541	835	890
Pressure drop system side	kPa	12	22	23	11	20	21	8	17	20	5	11	12
Heating performance 45 °C / 40 °C (2)													
Heating capacity	kW	2,68	3,26	3,79	2,94	4,16	4,33	2,67	4,15	4,40	2,46	4,69	5,00
Water flow rate system side	l/h	461	623	652	506	715	745	460	720	767	418	806	860
Pressure drop system side	kPa	12	22	23	12	22	23	8	18	20	3	11	12
Cooling performance 7 °C / 12 °C													
Cooling capacity	kW	2,73	3,68	3,84	2,97	4,15	4,31	2,20	4,00	4,30	2,60	4,41	4,70
Sensible cooling capacity	kW	1,98	2,73	2,85	2,11	2,98	3,12	1,71	3,00	3,20	1,90	3,30	3,50
Water flow rate system side	l/h	469	633	660	511	714	741	378	688	739	447	760	818
Pressure drop system side	kPa	13	22	25	13	22	25	7	18	20	4	11	12
Fan													
Air flow rate	m³/h	410	600	630	410	600	630	405	730	799	405	730	799
High static pressure	Pa	23	50	55	23	50	55	15	50	60	15	50	60
Sound power level (inlet + radiated)	dB(A)	45,0	56,0	57,0	45,0	56,0	57,0	38,0	55,0	58,0	41,0	55,0	58,0
Sound power level (outlet)	dB(A)	42,0	52,0	52,0	42,0	52,0	52,0	34,0	51,0	54,0	36,0	51,0	54,0
Input power	W	18	50	60	18	50	60	21	61	78	21	61	78
Diametre hydraulic fittings													
Main heat exchanger	Ø						3/	/4"					
Power supply													
Power supply							230V	~50Hz					


(1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C (2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT Refer to the selection software for performance data related to the different configurations.

PERFORMANCE DATA FCYI_C AND FCYI_U (H NOZZLES CONFIGURATION) 4 PIPES

			FCYI201C			FCYI301C			FCYI401C			FCYI501C			FCYI701C	
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 65 °C / 55 °C (1)					,			•								
Heating capacity	kW	0,94	1,42	1,49	1,60	2,34	2,47	1,99	2,69	2,85	2,62	3,59	3,45	2,99	3,70	3,92
Water flow rate system side	l/h	81	122	128	138	201	212	171	231	245	225	309	297	257	318	337
Pressure drop system side	kPa	4	9	9	6	12	13	4	7	8	6	9	9	8	12	13
Cooling performance 7 °C / 12 °C																
Cooling capacity	kW	0,80	1,37	1,45	1,40	2,38	2,53	2,03	2,98	3,21	2,73	3,68	3,84	2,20	4,00	4,30
Sensible cooling capacity	kW	0,63	1,13	1,20	1,10	1,82	1,94	1,45	2,18	2,36	1,98	2,73	2,85	1,71	3,00	3,20
Water flow rate system side	l/h	138	236	249	241	409	435	349	512	552	469	633	660	378	688	739
Pressure drop system side	kPa	5	14	16	7	15	17	9	13	20	13	22	25	7	18	20
Fan																
Air flow rate	m³/h	123	240	257	225	390	424	300	470	515	410	600	630	405	730	799
High static pressure	Pa	13	50	57	16	50	59	20	50	60	23	50	55	15	50	60
Sound power level (inlet + radiated)	dB(A)	37,0	57,0	59,0	36,0	50,0	53,0	43,0	53,0	55,0	45,0	56,0	57,0	38,0	55,0	58,0
Sound power level (outlet)	dB(A)	33,0	53,0	55,0	32,0	47,0	49,0	39,0	49,0	52,0	42,0	52,0	52,0	34,0	51,0	54,0
Input power	W	7	27	31	10	30	40	14	38	48	18	50	60	21	61	78
Diametre hydraulic fittings																
Main heat exchanger	Ø		1/2"			3/4"			3/4"			3/4"			3/4"	
Secondary heat exchanger	Ø								1/2"							
Power supply																
Power supply									230V~50H	Z						

(1) Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT Refer to the selection software for performance data related to the different configurations.

DIMENSIONS

FCYI - C

Size		200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
Dimensions and weights																
A	mm	598	598	598	829	829	829	1050	1050	1050	1050	1050	1050	1171	1171	1171
В	mm	507	507	507	735	735	735	960	960	960	960	960	960	1080	1080	1080
(mm	550	550	550	781	781	781	1003	1003	1003	1003	1003	1003	1122	1122	1122
D	mm	529	529	529	760	760	760	982	982	982	982	982	982	1100	1100	1100
Empty weight	kg	19	20	21	23	24	26	31	32	33	31	32	33	41	43	46

FCYI - U

Size		200	201	250	300	301	350	400	401	450	500	501	550
Dimensions and weights													
A	mm	647	647	647	878	878	878	1100	1100	1100	1100	1100	1100
В	mm	508	508	508	739	739	739	960	960	960	960	960	960
C	mm	550	550	550	781	781	781	1003	1003	1003	1003	1003	1003
D	mm	529	529	529	760	760	760	982	982	982	982	982	982
Empty weight	kg	22	23	24	26	27	29	35	36	37	35	36	37

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

FCZ P - PO

Fan coil unit for ducted installations

Cooling capacity 0,65 ÷ 7,62 kW Heating capacity 1,45 ÷ 17,02 kW

- Very quiet
- Suitable for duct-type installations too
- Total comfort: reduced variations in temperature and relative humidity
- Vertical and horizontal installation

DESCRIPTION

fan coil can be installed in any 2/4 pipe system and operates with any heat generator even at low temperatures, and thanks to varied versions and settings, it is easy to pick the ideal solution for any need.

FEATURES

Ventilation group

Consisting of double suction centrifugal fans that are particularly silent, statically and dynamically balanced, and directly coupled with the motor

The motor is wired for single phase and has three speeds, with capacitor. The motor is fitted on sealed for life bearings and is secured on anti-vibration and self-lubricating mountings.

Extractable shrouds for easy, effective cleaning

Heat exchanger coil

With copper pipes and aluminium louvers, the standard or oversized heat exchanger and the possible secondary heat exchanger have female gas water connections on the left side and the manifolds have air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Reversibility of the water connections during installation only for units with a standard or boosted main coil, or standard with BV accessory. Not reversible in all other configurations. In any case, units with the coil water connections on the right are available at the time of ordering.

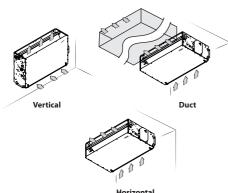
Condensate drip

Provided standard in plastic and fixed to the interior structure; with external condensate discharge.

Air filter

Air filter class Coarse 25% for all versions easy to pull out and clean.

In the PPC version, air purification is guaranteed by the Cold Plasma purifier.


GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Field	Description	
· iciu		
1.2.3	FCZ	

The purifier is able to reduce pollutants, decomposing their molecules using electrical charges, causing the water molecules in the air to split into positive and negative ions. These ions neutralise the molecules in the gaseous pollutants, obtaining products normally present in clean air. The device is able to eliminate 90% of the bacteria. The result is clean, ionized air, free of foul odours.

VERSIONS

Flush-mounting and duct-type versions

FCZ_P

Flush-mounting

FCZ_PPC

Flush-mounting with Cold Plasma purifier

FCZ PO

- Flush-mounting, duct-type
- With useful head.

Field	Description
4,5,6	Size 100, 101, 102, 150, 200, 201, 202, 250, 300, 301, 302, 350, 400, 401, 402, 450, 500, 501, 502, 550, 600, 601, 602, 650, 700, 701, 702, 750, 800, 801, 802, 850, 900, 901, 950, 1000, 1001
7	main heat exchanger
8	Secondary heat exchanger

Fiel	d	Description
9		Version
	Р	Flush-mounting
	P0	Flush-mounting, with boosted motor
	POR	Flush-mounting, with boosted motor, with water connections on right-hand side
	PPC	Flush-mounting with Cold Plasma purifier
	PR	Flush-mounting with water connections on right-hand side

SIZE AVAILABLE FOR VERSION

Size		100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
Versions produced	(by size)																				
V!! - - -	P,PR	•	•					•		•		•	•		•		•			•	
Versions available	PO,POR	-	-	-	-																
(by size)	PPC	•	-	-	•		-	-	•	•	-	-		•	-	-	•	•	-	-	•
Size		(00	(01	(0)	(50	700	701	702	750	000	001	002	050	000	001	050	1000	1001			
		600	601	602	650	700	701	702	750	800	801	802	850	900	901	950	1000	1001			
Versions produced	(by size)																				
V!	P,PR		•	•		•	•	•	•	•	•	•	•	•		•	•	•			
Versions available	PO,POR		•	•		•		•	•	-	-	-	-	•	•	•	-	-			
(by size)	PPC	•	-	-		•	-	-	•	•	-	-	•		-	•		-			

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. **PRO503:** Wall box for AER503IR and VMF-E4 thermostats.

PXAI: Thermostat on the machine for controlling the fan coils (both with asynchronous and brushless motors), complete with water and air probes to be positioned in the relative seats, and a plastic support to fix it on the side of the unit. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, purifier devices (Cold Plasma and germicidal lamp), or radiant plate.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L=2.5~m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualiet)

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation

WMT16: Electronic thermostat with thermostated ventilation.

WMT16CV: Electronic thermostat with continuous ventilation.

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF system

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, D124 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, D124 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, D124CP, is also available as a separate accessory in our catalog.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMF-SW1: Additional water probe (L=2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Water valves

VCZ_X: 3-way valve kit for single-coil fan coil, RH connections, (VCZ_X4R) or LH (VCZ_X4L) for 4-pipe systems. With totally separate "heating" and "cooling" circuits. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings. X4L version for fan coils with LH connections, and X4R for fan coils with RH connections. 230V~50Hz power supply.

VCZ: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCF44 - 45 - for secondary heat exchanger: The 3-way motorised valve kit for the secondary coil heat only. The kit consists of a valve with its insulating shell, actuator and relevant water fittings; it is suitable to be installed on the fan coils with right and left water connections.

VCZD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

(Heating only) additional coil

BV: Hot water heat exchanger with 1 row.

RX: Armoured electric coil with safety thermostat.

PCR: Galvanised plate protection for the controls and the electrical element.

Installation accessories

AMP: Wall mounting kit

DSC: Condensate drainage device.

BC: Condensate drip.

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing. **Ventilcassaforma:** Galvanised sheet metal template. It makes it possible to obtain directly in the wall a space for housing the fan coil.

MZA: Cabinet housing with fixed fins.

MZU: Cabinet housing with adjustable fins.

GA: Intake grid with fixed louvers

GAF: Intake grid with filter and fixed louvers

GM: Flow grid with adjustable louvers.

PA: Intake plenum in galvanised sheet metal, complete with suction couplings for circular-section ducts.

PAF: Intake plenum providing recovery and delivery on the same side, for all installations where the machine needs to be positioned outside the air conditioned rooms to minimise the noise levels and facilitate maintenance.

PM: Galvanised sheet steel flow plenum, externally insulated, equipped with plastic flow fittings for ducts and circular sections.

RD: Straight delivery coupling for canalisation.

RDA: Straight suction coupling for canalisation.

RP: 90° delivery coupling. **RPA:** 90° suction coupling.

Accessories for ducting

MZC: Plenum with motorised dampers.

RDA_V: Straight intake connection with rectangular flange.

RPA_V: Suction plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

RDA_C: Straight intake connection with circular flanges.

PA_V: Suction plenum with circular plastic flanges; both sides have a circular push-out Ø 150mm that can be removed.

PM_V: Internally insulated delivery plenum with circular flanges; both sides have a circular push-out Ø 150mm that can be removed.

RPM_V: Internally insulated delivery plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

RDM_V: Straight delivery coupling in galvanised sheet metal.

RDM_C: Straight discharge internally insulated, with circular flanges.

ACCESSORIES COMPATIBILITY

Control panels

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
	P,PR	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•		•
AER503IR (1)	PO,POR																				
	PPC	•			•	•			•	•			•	•			•	•			•
	P,PR																				
PR0503	PO,POR					•	•	•	•		•	•	•	•	•	•		•	•		•
	PPC	•			•	•			•	•			•	•			•	•			•
	P,PR	•																			
PXAI	PO,POR					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	PPC																				
	P,PR			•	•	•	•			•				•	•		•		•		
SA5 (2)	PO,POR																				
	PPC	•			•					•			•	•			•				•
	P,PR				•		•										•				•
SW3 (2)	PO,POR								•							•					•
	PPC								•								•				•
	P,PR																				
SW5 (2)	PO,POR					•	•		•		•			•				•	•		•
	PPC	•																			
	P,PR	•																			
TX (3)	PO,POR					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	PPC																				
	P,PR		•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•
WMT10 (3)	PO,POR											•					•		•		
	PPC				•				•				•	•			•				•
	P,PR				•							•		•					•		
WMT16 (3)	PO,POR																				
	PPC				•									•			•				
	P,PR	•	•	•	•	•	•		•		•	•	•	•		•		•	•		•
WMT16CV (3)	PO,POR																				
	PPC																				

Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	950	1000	1001
	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AER503IR (1)	PO,POR		•	•	•	•	•	•						•		•		
	PPC	•												•				
	P,PR		•	•	•	•	•	•	•	•		•		•		•	•	•
PR0503	PO,POR			•	•	•	•	•						•		•		
	PPC	•			•	•			•	•				•		•		
	P,PR		•	•			•	•			•	•	•	•	•			•
PXAI	PO,POR			•	•	•	•	•						•		•		-
	PPC								•				•	•		•	•	
	P,PR			•	•	•	•	•		•	•	•		•		•	•	
SA5 (2)	PO,POR		•	•	•		•		•						•	•		
	PPC				•	•				•				•		•	•	
	P,PR						•				•						•	
SW3 (2)	PO,POR		•	•	•	•	•	•						•		•		
	PPC				•	•				•				•		•	•	
	P,PR		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SW5 (2)	PO,POR			•	•	•	•	•						•		•		
	PPC				•				•				•	•			•	
	P,PR	•	•	•	•	•	•	•		•	•	•		•		•	•	•
TX (3)	PO,POR	•				•	•	•						•				
	PPC				•	•			•				•			•	•	
-	P,PR		•					•			•	•					•	
WMT10 (3)	PO,POR	•	•	•	•	•	•	•	•					•	•			
	PPC	•				•				•				•		•	•	
	P,PR							•			•	•	•	•			•	•
WMT16 (3)	PO,POR		•	•		•		•	•					•	•	•		
	PPC																	
	P,PR			•	•	•	•	•	•	•		•	•	•		•		
WMT16CV (3)	PO,POR																	
	PPC																	

For more information about VMF system, refer to the dedicated documentation.

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
	P,PR													•				•			
DI24	PO,POR						•	•	•	•			•	•	•	•	•		•		
_	PPC				•	•			•	•			•	•			•	•			•
	P,PR			•	•		•	•	•	•	•	•	•	•		•	•	•	•		•
VMF-E19 (1)	PO,POR					•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
-	PPC					•			•	•			•	•			•	•			•
	P,PR	•	•	•	•	•	•	•	•		•		•	•	•	•		•		•	•
VMF-E3	PO,POR					•	•	•	•	•	•		•	•	•	•	•	•		•	•
	PPC				•	•			•	•			•	•			•	•			•
	P,PR		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•
VMF-E4DX	PO,POR					•		•		•		•	•	•	•		•	•	•	•	
	PPC	•			•	•			•	•			•	•			•	•			
_	P,PR	•	•	•	•	•	•	•		•		•	•	•	•		•	•	•	•	
VMF-E4X	PO,POR					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	PPC	•			•	•			•	•			•	•			•	•			•
_	P,PR	•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•
VMF-IR	PO,POR					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	PPC	•			•	•			•	•			•	•			•	•			•
_	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VMF-SW	PO,POR					•	•	•	•	•	•	•	•	•	•	•		•	•	•	•
	PPC				•	•							•				•	•			
	P,PR		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	
VMF-SW1	PO,POR					•	•	•		•		•	•	•	•		•		•	•	
-	PPC	•			•	•			•	•			•	•			•	•			•
	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VMHI	PO,POR					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
-	PPC				•																

Wall-mount installation.
 Probe for AERSO3IR-TX thermostats, if fitted.
 Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	950	1000	1001
	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
DI24	PO,POR	•	•	•	•	•			•					•	•	•		
	PPC	•			•	•				•				•		•		
	P,PR	•		•	•	•			•	•		•		•		•	•	•
VMF-E19 (1)	PO,POR	•		•	•	•			•					•	•	•		
	PPC	•			•	•				•			•	•		•	•	
	P,PR	•		•	•	•			•	•		•		•	•	•		•
VMF-E3	PO,POR						•	•						•		•		
	PPC	•			•	•			•	•			•	•		•		
	P,PR						•						•	•		•		
VMF-E4DX	PO,POR				•	•								•	•			
	PPC												•			•		
	P,PR														•			
VMF-E4X	PO,POR																	
	PPC																	
	P,PR				•	•				•			•		•			•
VMF-IR	PO,POR																	
	PPC				•	•			•	•			•					
	P,PR												•					
VMF-SW	PO,POR																	
	PPC					•							•	•				
	P,PR																	•
VMF-SW1	PO,POR	•																
	PPC					•			•	•						•		
	P,PR	•				•				•				•	•			•
VMHI	PO,POR		•			•									•	•		
	PPC	•												•		•		

⁽¹⁾ Also the accessory VMF-SIT3V is mandatory if the unit exceeds 0.7 Amperes.

Water valves

3 way valve kit																
	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450
Main coil	VCZ41	VCZ42														
Maili Coli	VCZ4124	VCZ4224														
Secondary coil		VCF44	VCF44													
		VCF4424	VCF4424			VCF4424	VCF4424			VCF4424	VCF4424			VCF4424	VCF4424	
Additional coil "BV"	VCF44															
Additional con DV	VCF4424															
	500	501	502	550	600	601	602	650	700	701	702	750	800	801	802	850
Main coil	VCZ42															
main con	VCZ4224															
Secondary coil		VCF44	VCF44													
		VCF4424	VCF4424			VCF4424	VCF4424		_	VCF4424	VCF4424		_	VCF4424	VCF4424	
Additional coil "BV"	VCF44	_	_	_												
- Additional Con DV	VCF4424															
	900	901	950	1000	1001											
Main coil	VCZ43	VCZ43	VCZ43	VCZ43	VCZ43											
	VCZ4324	VCZ4324	VCZ4324	VCZ4324	VCZ4324											
Secondary coil		VCF45	_	_	VCF45											
		VCF4524			VCF4524											
Additional coil "BV"	VCF45	_	_	VCF45	_											
Muultiviiai toii DV	VCF4524			VCF4524												

2 way valve kit

	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450
	VCZD1	VCZD1	VCZD1	VCZD1	VCZD1	VCZD1	VCZD1	VCZD1	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2
Main coil	VCZD1	VCZD1 VCZD124	VCZD1 VCZD124	VCZD1	VCZD1	VCZD124	VCZD1 VCZD124	VCZD1 VCZD124	VCZD224	VCZD224	VCZD224	VCZD224	VCZD2 VCZD224	VCZD2 VCZD224	VCZD2 VCZD224	VCZD2
	VCZV1Z4	VCED124 VCFD4	VCZD124 VCFD4	VCLUIZ4	VCLU124	VCED124 VCFD4	VCFD4	VCZD1Z4	VCLUZZA	VCZDZZ4 VCFD4	VCZDZZ4 VCFD4	VCLUZZA	VCLUZZ4	VCZDZZ4 VCFD4	VCFD4	VCLUZZ
Secondary coil	-	VCFD424	VCFD424	-	-	VCFD424	VCFD424	-	-	VCFD424	VCFD424	-	-	VCFD424	VCFD424	-
	VCFD4	VCI D424	VCI D424		VCFD4	VCI D424	VCI D424		VCFD4	VCI D424	VCI D424		VCFD4	VCI D424	VCI D424	
Additional coil "BV"	VCFD424	-	-	-	VCFD424	-	-	-	VCFD424	-	-	-	VCFD424	-	-	-
	VCFD424				VCFD424				VCFD424				VCFD424			
	500	501	502	550	600	601	602	650	700	701	702	750	800	801	802	850
	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2
Main coil	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224
	VCLUZZT	VCED224	VCED224	VCLUZZT	VCLUZZT	VCED224	VCFD4	VCLUZZT	VCLUZZT	VCFD4	VCED224	VCLUZZT	VCLUZZT	VCED224	VCFD4	VCLDZZ
Secondary coil	-	VCFD424	VCFD424	-	-	VCFD424	VCFD424	-	-	VCFD424	VCFD424	-	-	VCFD424	VCFD424	-
	VCFD4	VCIDIZI	TCIDIZI		VCFD4	TCIDIZI	TCIDIZI		VCFD4	VCIDIZI	TCIDIZI		VCFD4	VCIDILI	TCIDIZI	
Additional coil "BV"	VCFD424	-	-	-	VCFD424	-	-	-	VCFD424	-	-	-	VCFD424	-	-	-
	76.5.2.															
	900	901	950	1000	1001											
	VCZD3	VCZD3	VCZD3	VCZD3	VCZD3	-										
Main coil	VCZD324	VCZD324	VCZD324	VCZD324	VCZD324											
		VCFD4			VCFD4											
Secondary coil	-	VCFD424	-	-	VCFD424											
A 1 11:41 1 11 11 11 11 11 11 11 11 11 11 11 11	VCFD4			VCFD4		-										
Additional coil "BV"	VCFD424	-	-	VCFD424	-											

Valve Kit for 4 pipe systems - Requires a thermostat with valve management

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
VC71V4L (1)	P,PPC,PR	•			•	•			•												
VCZ1X4L (1)	PO,POR																				
VC71V4D (1)	P,PPC,PR	•			•	•			•												
VCZ1X4R (1)	PO,POR					•			•												
VCZ2X4L (1)	P,PO,POR,PPC,PR												•				•				•
VCZ2X4R (1)	P,PO,POR,PPC,PR									•			•	٠			•	•			•
Model	Ver	600	601	60	2	550	700	701	702	750) 8	00	801	802	850	900	90	1 9	950	1000	1001
VC72V4L (1)	P,PPC,PR	•				•	•			•		•			•						
VCZ2X4L (1)	PO,POR	•					•														
VC72V4D (1)	P,PPC,PR																				
VCZ2X4R (1)	PO,POR	•					•			•											
V(C72V4L (1)	P,PPC,PR																				
VCZ3X4L (1)	PO,POR															•					
VC72V4D (4)	P,PPC,PR																				
VCZ3X4R (1)	PO.POR																				

 $^{(1) \ \} The \ valves \ can \ be \ combined \ with \ the \ units \ if \ there \ is \ a \ control \ panel \ for \ managing \ them.$

Combined Adjustment and Balancing Valve Kit

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
	P,PR	•	•	•	•	•	•	•	•	•	•	•	•								
VJP060 (1)	PO,POR					•	•	•	•	•		•	•								
	PPC	•			•	•			•	•			•								
	P,PR	•	•	•	•	•	•	•	•	•	•	•									
VJP060M (2)	PO,POR					•	•	•		•		•									
	PPC				•				•	•											
VID000 (1)	P,PO,POR,PR													•	•	•	•				
VJP090 (1)	PPC													•			•				•
VIDOOOM (2)	P,PO,POR,PR													•		•	•	•	•		•
VJP090M (2)	PPC													•			•	•			•
Model	Ver	600	601	60	2 6	550	700	701	702	750) 8	800	801	802	850	900	90	1 9	50	1000	1001

Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	950	1000	1001
VID000 (1)	P,PO,POR,PR	•	•	•														
VJP090 (1)	PPC	•																
VJP090M (2)	P,PO,POR,PR	•		•	•													
VJPU9UM (2)	PPC	•																
	P,PR	•	•	•	•			•		•		•						•
VJP150 (1)	PO,POR	•		•		•		•							•	•		
	PPC	•			•	•			•	•								
	P,PR	•		•	•	•	•	•	•	•	•	•	•		•	•		•
VJP150M (2)	PO,POR	•	•	•	•	•		•	•									
	PPC	•			•	•			•	•			•	•		•	•	

^{(1) 230}V~50Hz (2) 24V

(Heating only) additional coil

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500
RX17 (1)	P,PR	•																
RX22 (1)	P,PO,POR,PR					•												
RX32 (1)	P,PO,POR,PPC,PR									•								
RX42 (1)	P,PO,POR,PPC,PR													•				
RX52 (1)	P,PO,POR,PPC,PR																	•
Model	Ver	501	502	550	600	601	602	650	700	701	702	750	800	801	802	850	900	901
RX62 (1)	P,PO,POR,PPC,PR																•	
DV7000 (1)	P,PPC,PR																	
RXZ800 (1)	PO,POR				•				٠									
Model	Ver			950)					1000						1001		
RX62 (1)	P,PR									•								

Heating only additional coil

	,																				
Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
BV117 (1)	P,PR	•																			
BV122 (1)	P,PO,POR,PR					•															
BV132 (1)	P,PO,POR,PPC,PR									•											
BV142 (1)	P,PO,POR,PPC,PR													•				•			
Model	Ver	600	601	60	2 6	550	700	701	702	750	. 8	00	801	802	850	900	90	1 9	50	1000	1001

Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	950	1000	1001
DV/1/2 /1)	P,PR													•				
BV162 (1)	PO,POR,PPC													•				
DU7000 (1)	P,PPC,PR	•				•				•								
BVZ800 (1)	PO,POR	•				•												

 $[\]begin{tabular}{ll} \begin{tabular}{ll} \beg$

Galvanised plate protection for the controls and the electrical element.

Gaivailiseu	plate protection	ioi tile	COLLIGI	is allu t	ne elec	tiitaie	lemen											
Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500
PCR1	P,PO,POR,PR	•				•				•				•				•
Model	Ver	501	502	550	600	601	602	650	700	701	702	750	800	801	802	850	900	901
PCR1	P,PO,POR,PR								•				•					
PCR2	P,PO,POR,PR																•	
Model	Ver			950	0					1000						1001		
PCR2	P,PO,POR,PR									•								

Installation accessories

Wall mounting kit

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
	P,PR	•			•	•	•	•	•	•		•	•	•		•	•	•	•	•	•
AMP20	PO,POR									•											
	PPC	•			•				•	•				•			•				•
Model	Ver	600	601	60	2 (650	700	701	702	750	8	00	801	802	850	900	901	1 9	50	1000	1001
	P,PR	•	•	-			•	•	•	•		•	•	•	•	•			•	•	•
AMPZ	PO,POR	•		•																	

Condensate drip

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
	P,PR	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•
BCZ4 (1)	PO,POR						•	•	•	•	•	•		•	•	•	•	•	•		
	PPC	•			•	•			•	•			•	•			•	•			•
	Р		•	•	•	•	•	•	•	•	•		•			•	•			•	
DC7F (2)	PO,POR					•	•	•	•	•	•	•		•		•	•	•	•	•	•
BCZ5 (2)	PPC								•				•								
	PR		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Model	Ver	600	601	60	2 (550	700	701	702	750	- 8	00	801	802	850	900	90	1 9	950	1000	1001
	P,PR	•		•				•	•	•			•	•	•	•	•			.	.
BCZ4 (1)	PO,POR																				
	PPC																			•	
	P,PR							•						•							
BCZ5 (2)	PO,POR																				
	PPC											•									
	P,PR																			•	
BCZ6 (2)	PO,POR															•					
* *	PPC																				

⁽¹⁾ For vertical installation.(2) For horizontal installation.

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
BC8 (1)	PO,POR						•	•	•	•		•									•
	PPC								•	•							•				
Model	Ver	600	601	602	2	650	700	701	702	750	8	00	801	802	850	900	901	9	950	1000	1001
	P,PR	•		•					•					•							
3C8 (1)	PO,POR	•																			
	PPC	•					•					•			•						
	P,PR															•			•	•	•
BC9 (1)	PO,POR															•	•				
	PPC															•			•		
1) For horizontal i Condensate Model	recirculation de	evice 100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
	P,PR	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
OSCZ4 (1)	PO,POR					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	PPC	•			٠	•			•	•			•	•			•	•			•
Nodel	Ver	600	601	602	2	650	700	701	702	750	8	00	801	802	850	900	901	9	950	1000	1001
	P,PR	•	•	•		•	•	•	•	•		•	•	•	•	•	•		•	•	•
SCZ4 (1)	PO,POR	•	•	•		•	•	•	•	•						•	•		•		
J3CZ4 (1)																					

ventucassa	IOIIIIa																				
Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
CHF17	P,PR	•	•	•	•																
CHF1/	PPC	•			•																
CUESS	P,PO,POR,PR						•														
CHF22	PPC								•												
CUEDO	P,PO,POR,PR									•											
CHF32	PPC									•			•								
CUEAD	P,PO,POR,PR													•	•		•		•	•	•
CHF42	PPC													•			•	•			•
Model	Ver	600	601	602	2 (550	700	701	702	750) 8	00	801	802	850	900	901	1 9	950	1000	1001
	P,PR	•							•				•	•	•	•				•	•
CHF62	PO,POR	•	•	•		•	•	•	•	•						•			•		
	PPC																				

Cabinet housing with fixed fins.

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
MZA100	P,PPC,PR	•	•	•	•																
MZA200	P,PPC,PR					•	•	•													
MZA300	P,PPC,PR									•		•	•								
MZA500	P,PPC,PR													•	•	•	•	•	•	•	•
Model	Ver	600	601	602	2 6	550	700	701	702	750) 8	00	801	802	850	900	90	1	950	1000	1001
MZA800	P,PPC,PR	•	•	•			•	•	•			•		•	•						
MZA900	P,PPC,PR															•			•	•	•

Cabinet housing with adjustable fins.

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
MZU100	P,PPC,PR	•	•		•																
MZU200	P,PPC,PR						•	•													
MZU300	P,PPC,PR									•		•	•								
MZU500	P,PPC,PR													•	•	•	•	•	•	•	•
Model	Ver	600	601	602	2 6	550	700	701	702	750) 8	00	801	802	850	900	90	1 9	950	1000	1001
MZU800	P,PPC,PR	•		•					•					•							
MZU900	P,PPC,PR															•				•	

Wall mounting and duct type installation accessories

Lower intake grille

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
CA17	P,PR	•	•	•	•																-
GA17	PPC	•			•																
CARR	P,PO,POR,PR					•	•	•	•												
GA22	PPC																				
CASS	P,PO,POR,PR									•		•	•								
GA32	PPC									•			•								
CMA	P,PO,POR,PR													•	•	•	•		•	•	•
GA42	PPC																				

Model	Ver	600	601	602	650	700	701	702	750		00	801	802	850	900	901		950	1000	1001
	P,PR	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•
GA62	PO,POR	•	•	•	•	•	•	•	•						•	•		•		
	PPC	•			•	•			•		•			•	•			•	•	
ntake grille	es with fixed louv	ers and	d filter																	
Model	Ver	100	101		150 200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
GAF17	P,PR	•	•	•	•															
	PPC P,PO,POR,PR	•			•	•														
GAF22	PPC				<u>:</u>	•	•	÷			-									
CAFAA	P,PO,POR,PR											•								
GAF32	PPC											•								
GAF42	P,PO,POR,PR												•	•	•	•	•	•	•	•
	PPC												•			•	•			•
Model	Ver	600	601	602	650	700	701	702	750	8	00	801	802	850	900	901		950	1000	1001
	P,PR	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•
GAF62	PO,POR PPC	•	•	•	<u>:</u>	•	•	•	<u> </u>						•	•		•		
	rrc	•			•	•			<u> </u>		•			<u> </u>	•			•	•	
Delivery gri	lles with adjusta	ble lou	vers																	
Model	Ver	100	101	102	150 200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
GM17	P,PR	•	•	•	•															
	PPC P,PO,POR,PR	•	-	-	•			-	-							-				-
GM22	PPC				•	•	•	·-												
	P,PO,POR,PR										•									
GM32	PPC																			
GM42	P,PO,POR,PR												•	•	•	•	•	•	•	•
divi12	PPC												•			•	•			•
Model	Ver	600	601	602	650	700	701	702	750	8	00	801	802	850	900	901		950	1000	1001
	P,PR	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	٠
GM62	PO,POR	•	•	•	•	•	•	•	•						•	•		•		
	PPC	•			•	•			<u> </u>		•			•	•			•	•	
Intake plen	um in sheet meta	al comp	lete w	ith con	nectors f	or circ	ular ch	annels	5											
Model	Ver	100	101		150 200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
PA17	P,PR	•	•	•	•															
	PPC P,PO,POR,PR	•			•															
PA22	PPC				·			·												
D122	P,PO,POR,PR																			
PA32	PPC								•			•								
PA42	P,PO,POR,PR												•	•	•	•	٠	•	•	•
	PPC												•			•	•			•
Model	Ver	600	601	602	650	700	701	702	750	8	00	801	802	850	900	901		950	1000	1001
	P,PR	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•
PA62	PO,POR PPC	•	•	•	•	•	•	•	•						•	•		•		
	PPL	<u> </u>			•	•			•		•			•	•			•	•	
Intake plen	um providing red	overy	and de	livery	on the sa	me sid	e										_			
Intake plen	Ver	overy 100	and de 101		on the sa 150 200	201	e 202	250	300	301	302	350	400	401	402	450	500	501	502	550
Model	Ver P,PR	100			150 200			250	300	301	302	350	400	401	402	450	500	501	502	550
Model	Ver P,PR PPC	100	101	102	150 200 •	201	202		300	301	302	350	400	401	402	450	500	501	502	550
Model PA17F	Ver P,PR PPC P,PO,POR,PR	100	101	102	150 200			250	300	301	302	350	400	401	402	450	500	501	502	550
Model PA17F PA22F	Ver P,PR PPC P,PO,POR,PR PPC	100	101	102	150 200 •	201	202	•	300	301	302	350	400	401	402	450	500	501	502	550
	Ver P,PR PPC P,PO,POR,PR	100	101	102	150 200	201	202	•					400	401	402	450	500	501	502	550
Model PA17F PA22F PA32F	Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR	100	101	102	150 200	201	202	•	•			•	400	401	402	450	500	501	502	550
Model PA17F PA22F PA32F	Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC PPC	100	101	102	150 200	201	202	•	•			•								
Model PA17F PA22F	Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR	100	101	102	150 200	201	202	•	•	•		•	•			•	•			•
Model PA17F PA22F PA32F PA42F Model	Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR	100	101	102	150 200			•	•		•	•	•	•	•	•	•	•	•	•
Model PA17F PA22F PA32F PA42F	Ver	100	101	102	150 200			702	750					. 850	. 900		•	950		

www.aermec.com

PATE PA	Model	enum with circula Ver	100	101	102 1	50 200	201	202	250	300	301 3	350	400	401	402	450	500	501	502	550
Property												550			.,,_				202	330
Property	PM17		•			•														
PRINCE P	OM22	P,PO,POR,PR					•	•	•											
PROPERTY OF THE CONTROL OF THE CONTR	TIVIZZ					•			•											
PROTOCOLOR PROTO	PM32									•	•									
Heldele Ver 608 601 602 659 700 701 702 738 800 801 802 859 800 901 950 1000 1	moz									•		•								
Marcel M	PM42												•	•	•	•		•	•	•
PR		PPC											•			•	•			•
PRINCE P	Model		600	601	602	650	700	701	702	750	800	801	802	850	900	901	! !	950	1000	1001
First Straight delivery coupling Straig			•	•	•	•	•	٠	•	•	•	•	•	•	•	•		•	•	•
Straight delivery coupling	PM62		•	•	•	•	•	•	•	•					•	•		•		
Medel		PPC	•			•	•			•	•			•	•			•	•	
Medel	Straight del	ivery coupling																		
PR			100	101	102 1	50 200	201	202	250	300	301 3	102 350	400	401	402	450	500	501	502	550
Proportion Pro							201	202		300	301 3	702 330	100	-101	102	130	300	- 501	302	
PROPORE PROP	RD17																			
PPC	0022	P,PO,POR,PR						•	•											
Marcia	KUZZ	PPC				•			•											
PPT	מחמ	P,PO,POR,PR								•	•									
Model Ver 600 601 602 650 700 701 702 750 800 801 802 850 900 901 950 1000 1	NU3Z									•		•								
Model Ver 600 601 602 659 700 701 702 750 800 801 802 850 900 901 950 1000 100	RD42												•	•	•	•	•	•	•	•
PR		PPC											•			•	•			•
Straight suction coupling	Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	!	950	1000	1001
Straight suction coupling Model Ver		P,PR	•	•	•	•	•	•	•				•	•	•				•	•
Model Ver 100 101 102 150 200 201 202 250 300 301 302 350 401 402 450 500 501 502 501 502 501 502 501 502 501 502 501 502 50	RD62		•	•	•	•	•	•	•	•					•	•		•		
Model Ver 100 101 102 150 200 201 202 250 300 301 302 350 400 401 402 450 500 501 502 500 501 502 500		PPC	•			•	•			•	•			•	•			•	•	
Model Ver 100 101 102 150 200 201 202 250 300 301 302 350 400 401 402 450 500 501 502 500 501 502 500	Causiala a co	tion counling																		
PROPORTR			100	101	102 1	F0 300	201	202	350	300	201 7	250	400	401	402	450	500		503	
PROPORT PROP	Model		100	101	102 1					300	301 3	302 350	400	401	402	450	500	501	502	550
RDM22	RDA22		-				•	•		-										
Model Ver 600 601 602 650 700 701 702 750 800 801 802 850 900 901 950 1000 1						•			•											
PR	RDA32																			
Model Ver 600 601 602 650 700 701 702 750 800 801 802 850 900 901 950 1000 1													•					•		
Model Ver 600 601 602 650 700 701 702 750 800 801 802 850 900 901 950 1000 1	RDA42												•							
RDA62 P.P.R	Model		600	601	602	650	700	701	702	750	900	901	902	050	000	001)E0	1000	1001
POPOR	Model																			
PPC	RDA62																			
Model Ver 100 101 102 150 200 201 202 250 300 301 302 350 400 401 402 450 500 501 502 558			•								•							•	•	
Model Ver 100 101 102 150 200 201 202 250 300 301 302 350 400 401 402 450 500 501 502 550 501 502 550 501 502 550 501 502 550 501 502 550 501 502 550 501 502 503 50																				
RP17		coupling.																		
PPC	Model		100	101	102 1	50 200	201	202	250	300	301 3	350	400	401	402	450	500	501	502	550
PPC	RP17		•	•	•	•														
PPC			•																	
PPC	RP22						•	•					-							
PPC						•			•											
PPO-POR-PR	RP32										•									
PPC										•		•								
Note	RP42																			•
P.P.R P. P. P. P. P. P.	Madel				/03	(50	700	704	703	756	000	004		050	000				1000	
POPOR POPO	Model																			
PPC			•								•	•		•					•	•
PO° suction coupling. Model Ver 100 101 102 150 200 201 202 250 300 301 302 350 400 401 402 450 500 501 502 55	DD67				•	•														
Node Ver 100 101 102 150 200 201 202 250 300 301 302 350 400 401 402 450 500 501 502 550 502	RP62	PO,POR		<u> </u>																
RPA22 PPO,POR,PR	RP62	PO,POR				•	•													
PPC		PO,POR PPC				•	•													
PPC	90° suction	PO,POR PPC coupling.	•		102 1			202	250	300	301 3	302 350	400	401	402	450	500	501	502	550
PPC RPA42 PPC	90° suction Model	PO,POR PPC coupling. Ver	•		102 1	50 200	201			300	301 3	302 350	400	401	402	450	500	501	502	550
PPC	RP62 90° suction Model RPA22	PO,POR PPC coupling. Ver P,PO,POR,PR	•		102 1	50 200	201		•	300	301 3	350 350	400	401	402	450	500	501	502	550
PPC	90° suction Model RPA22	PO,POR PPC coupling. Ver P,PO,POR,PR PPC	•		102 1	50 200	201		•	-			400	401	402	450	500	501	502	550
Model	90° suction Model	PO,POR PPC coupling. Ver <u>P,PO,POR,PR</u> PPC <u>P,PO,POR,PR</u>	•		102 1	50 200	201		•	•			400	401	402	450	500	501	502	550
PAPA62 PO,POR • <th< td=""><td>90° suction Model RPA22</td><td>PO,POR PPC coupling. Ver PO,POR,PRPPCPPO,POR,PRPPCPPO,POR,PRPPCPPO,POR,PR</td><td>•</td><td></td><td>102 1</td><td>50 200</td><td>201</td><td></td><td>•</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	90° suction Model RPA22	PO,POR PPC coupling. Ver PO,POR,PRPPCPPO,POR,PRPPCPPO,POR,PRPPCPPO,POR,PR	•		102 1	50 200	201		•	•										
PAPA62 PO,POR • <th< td=""><td>90° suction Model RPA22</td><td>PO,POR PPC coupling. Ver PO,POR,PRPPCPPO,POR,PRPPCPPO,POR,PRPPCPPO,POR,PR</td><td>•</td><td></td><td>102 1</td><td>50 200</td><td>201</td><td></td><td>•</td><td>•</td><td></td><td></td><td>•</td><td></td><td></td><td>•</td><td>•</td><td></td><td></td><td></td></th<>	90° suction Model RPA22	PO,POR PPC coupling. Ver PO,POR,PRPPCPPO,POR,PRPPCPPO,POR,PRPPCPPO,POR,PR	•		102 1	50 200	201		•	•			•			•	•			
RPA62 PO,POR • • • • • • • • • • • •	90° suction Model RPA22 RPA32	PO,POR PPC coupling. Ver P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC	100	101		50 200	201	•	•	•	•		•	•	•	•	•	•	•	
	90° suction Model RPA22	PO,POR PPC coupling. Ver P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver	100	101	602	50 200	201	701	702	750	800	801	802	. 850	900	901	•			1001
	90° suction Model RPA22 RPA32 RPA42	PO,POR PPC coupling. Ver P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR	100	601	602	50 200	700	701	702	750	800	801	802	. 850	900	901	•			1001

Accessories for ducting

Plenum	with	motorised	damners
rienuni	WILLI	IIIOLOIISEU	uaiiibeis.

	motorised dan																				
Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
MZC220	PO,POR PO,POR					•	•	•	•												
MZC320 MZC530										•	•	•	•								
	PO,POR													<u> </u>	<u> </u>	<u> </u>		÷	<u> </u>	<u> </u>	<u> </u>
Model	Ver	600	601	602	650)	700	701	702	750		00	801	802	850	900	901		950	1000	1001
MZC830	PO,POR	<u> </u>	•	•	•		•	•	•	•		•	•	•	•	•	<u>·</u>		•		
Straight intak	ce connection v	with rec	tangu	lar flar	ige.																
Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
RDA000V	PO,POR					•	٠	•	•												
RDA100V	PO,POR									•	•	•	•								
RDA200V	PO,POR													•	•	<u>·</u>	•	•	•	•	•
Model	Ver	600	601	602	650)	700	701	702	750	8	00	801	802	850	900	901		950	1000	1001
RDA300V	PO,POR	•	•	•	•		•	•	•	•						•			•		
Intake plenur	n with rectang	ular fla	nae.																		
Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
RPA000V	PO,POR								•												
RPA100V	PO,POR									•	•	•	•								
RPA200V	PO,POR													•	•	•	•	•	•	•	•
Model	Ver	600	601	602	650		700	701	702	750	R	00	801	802	850	900	901		950	1000	1001
RPA300V	PO,POR	•	•	•	•		•	•	•				001			•			•		
Suction plans	ım with plastic	circula	r flanc	05																	
Model Model	ım witn piastic Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
PA000V	PO,POR	.00				•	•	•		500	241	302	330	100		.72	.50	200	301	302	
PA100V	PO,POR																				
PA200V	PO,POR													•							
Model	Ver	600	601	602	650		700	701	702	750		00	801	802	850	900	901		950	1000	1001
PA300V	PO,POR	•	•	. 002	030				. 702	/30		00	001	002	000	900	901		•	1000	1001
	. 0,1 0.1																				
Internally ins	ulated delivery	/ plenui	m with	circula	ar flan	ges.															
Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
PM000V	PO,POR					•	•	•	•												
PM100V	PO,POR									•	•	•	•								
PM200V	PO,POR													•	•	<u>·</u>	•	•	•	•	•
Model	Ver	600	601	602	650)	700	701	702	750	8	00	801	802	850	900	901		950	1000	1001
PM300V	PO,POR	•	•	•	•		•	•	•	•						•	•		•		
Internally ins	ulated delivery	/ plenui	m with	rectar	ngular	flan	ge.														
Model	Ver	100	101	102		200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
RPM000V	PO,POR								•												
RPM100V	PO,POR									•			•								
RPM200V	PO,POR													•	•		•	•	•	•	
Model	Ver	600	601	602	650)	700	701	702	750	8	00	801	802	850	900	901		950	1000	1001
RPM300V	PO,POR	•	•	•	•		•	•	•	•						•			•		
Straight dolin	ery coupling in	a anlyni	nicod c	hoot m	otal																
Model	Ver	1 <u>garvar</u> 100	101	102		200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
		100	171	102	130				. 230	300	301	302	330	700	701	704	7,70	500	301	302	330
RDM000V	PO POR							-	-												
RDM000V RDM100V	PO,POR PO.POR									•	•	•	•								
RDM100V	PO,POR									•	•	•	•	•							
RDM100V RDM200V	PO,POR PO,POR	/^^	/01	(02	/		700	704	702					•				•			1004
RDM100V RDM200V Model	PO,POR PO,POR Ver	600	601	602)	700	701	702	750		00	801	802	850	900	901	•	950	1000	1001
RDM100V RDM200V Model RDM300V	PO,POR PO,POR Ver PO,POR	•	•	•	•		•	701	702					802				•		1000	1001
RDM100V RDM200V Model RDM300V Straight disch	PO,POR PO,POR Ver PO,POR narge internall	y insula	ted, w	ith circ	ular fl	ange	es.	•	•	750	8	00	801		850	900	901		950		
RDM100V RDM200V Model RDM300V Straight disch	PO,POR PO,POR Ver PO,POR narge internally	•	•	ith circ	ular fl	ange 200	es. 201	202	250	750			801	802		900	901	500	950		1001 550
RDM100V RDM200V Model RDM300V Straight disch Model RDMC000V	PO,POR PO,POR Ver PO,POR narge internall; Ver PO,POR	y insula	ted, w	ith circ	ular fl	ange	es.	•	•	750	301	302	801 350		850	900	901		950		
RDM100V RDM200V Model RDM300V Straight disch Model RDMC000V RDMC100V	PO,POR PO,POR Ver PO,POR narge internall Ver PO,POR PO,POR	y insula	ted, w	ith circ	ular fl	ange 200	es. 201	202	250	750	8	00	801	400	850 401	900	901	500	950 • 501	502	
RDM100V RDM200V Model RDM300V Straight disch Model RDMC000V RDMC100V RDMC200V	PO,POR PO,POR Ver PO,POR narge internal! Ver PO,POR PO,POR PO,POR	y insula	ited, w 101	ith circ	ular fl	ange 200	201	202	250	750 •	301	302	350	400	401	900	901 • 450	500	950 • 501	502	550
RDM100V RDM200V Model RDM300V Straight disch Model RDMC000V RDMC100V	PO,POR PO,POR Ver PO,POR narge internall Ver PO,POR PO,POR	y insula	ted, w	ith circ	ular fl	ange 200	es. 201	202	250	750	301	302	801 350	400	850 401	900	901	500	950 • 501	502	

PERFORMANCE DATA FOR UNITS WITHOUT HEAD (EUROVENT CERTIFICATE FC-H)

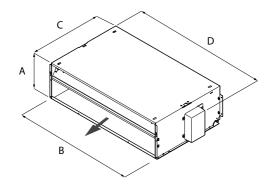
2-ріре		FC	CZ100I	P	FCZ	150P		FCZ20	10P	F	CZ250	P	FC	Z300P		FCZ	350P	F	CZ400	P	F	Z450	P	F	CZ500	OP	F	CZ550)P
		1	2	3	1	2 :	3 1	2	3	1	2	3	1	2	3	1 .	2 3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	N I	H L	. M	Н	L	М	Н	L	М	Н	L	И Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C/6	50 °C (1)																												
Heating capacity	kW	1,45	2,00	2,40	1,55 2,	19 2,	65 2,0)2 2,9	5 3,70	2,20	3,18	4,05	3,47	1,46 5	,50 3,	77 4,	92 6,15	4,32	5,74	7,15	4,57	6,29	7,82	5,27	7,31	8,50	5,82	8,34	9,7
Water flow rate system side	l/h	125	172	206	136 1		32 17			_		_			_	30 4		379	503	627	_			462	641	745	_	731	85.
Pressure drop system side	kPa	4	7	9			2 6		18	7	15	23			18		4 20	9	16	24	6	11	16	12	21	28	10	20	26
Heating performance 45 °C/4				- 1														-											
Heating capacity	kW	0.72	0.99	1.19	0,77 1,	09 1.	31 1,0	0 1.4	5 1,84	1.09	1.58	2.01	1.72	7.21 2	73 1.	87 2.	44 3,06	2.14	2,85	3.55	2.27	3.12	3.88	2.62	3.63	4,22	2.89	4,14	4.8
Water flow rate system side	I/h		-,	207	134 1		29 17			190					_		25 531	373	495	617	394				631	734	-	720	
Pressure drop system side	kPa	4	7	10			2 6			8	15	22			18 8		4 20	10	16	24	6	11	16	12	21	28	10	20	26
Fan	Ni u		,	10		' '	_ 0	- 12	10		15			12		, ,	1 20	10	10		0	•	10	12	21	20	1 10	20	20
Туре	type	Cer	ntrifug	al	Centr	ifunal	Т	Centrif	ınal	(e	ntrifuq	al	Cen	trifugal		Centr	ifunal	Ce	ntrifuc	ıal	Cer	ntrifug	al	Cei	ntrifuo	nal	(e	ntrifuo	nal
Fan motor	type	_	nchrono	-	Asynch	-)	_	synchro	J	_	nchron	-		hronou	_		ronous	_	nchron	-		chron	\rightarrow		nchror		_	nchror	
Number	no.	Asyli	1	Jus	Asylici		3 7	3yılıcılı 1	nious	Asyı	1	ous	nayiii	2	13 /		2	nsy	2	ous	лэуі	2	ous	лэуі	2	ious	risyl	2	ious
Air flow rate	m³/h	110	-	200	110 1		00 14		290	140	220	290	260		50 26		50 450	330	460	600	330		600	400		720	400		720
	m /n W	_		200	19 2		5 2				29	33			_			30		600		400			52		_		
Input power	VV	19 V1	29 V2	35 V3			_		33 V3	25 V1	<u>29</u> V2	33 V3			14 2 /3 V		3 44 2 V3	V1	43 V2	57 V3	30 V1	43 V2	57 V3	38 V1	V2	76 V3	38 V1	52 V2	76
Electrical wiring		V1	٧Z	V۵	V1 V	2 V	۷ د	ı V2	٧3	VI	٧Z	V۵	VI	٧٧ /	/3 V	ı V	Z V3	VI	٧Z	٧3	VI	٧Z	V۵	VI	٧Z	V۵	11	٧Z	V:
Fan coil sound data (3)	ID(A)	T24.0	20.0	45.0	24.0. 2		- 0 25	0 16		35.0	46.0	54 A	240	110 1	م م ا ء		10.400	27.0	44.0	F4 0	27.0	44.0	54 A	42.0			T 42.0	F4.0	
Sound power level	dB(A)				31,0 3		-			_	_	_					1,0 48,0	-		-	- , -	44,0	. , .	_	_	56,0	_	51,0	
Sound pressure level	dB(A)	23,0	30,0	3/,0	23,0 30),0 3	/,0 2/	,0 38,	3 43,0	2/,0	38,0	43,0	26,0	33,0 4	0,0 26	,0 3:	3,0 40,0	29,0	36,0	43,0	29,0	36,0	43,0	34,0	43,0	48,0	34,0	43,0	48,
Finned pack heat exchanger							_											_									_		
Water content main heat	1		0,4		0	.5		0,5			0,7			0,8		1	,0		1,0			1,4			1,0			1,4	
exchanger		<u> </u>	٠,٠																.,,								\perp		
Diametre hydraulic fittings																													
Main heat exchanger	Ø	Ш.	1/2"		1,	2"		1/2	"		1/2"			3/4"		3,	4"		3/4"			3/4"			3/4"		Щ	3/4"	
		F	CZ600)P	F	CZ650)P	-	CZ700	P	I	CZ75()P	F	CZ800	P	FC	Z850	P	F	CZ90)P		FCZ9	50P		FC	Z1000	P)P
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2		3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	٨	Λ	Н	L	М	Н
Heating performance 70 °C/6	60 °C (1)																												
Heating capacity	kW	([0	0 10	10,0	0 7,19	9,15	11 50	0 10	9,80			11 20	42.50	9,80	10 00	12 0	11 20									- 40	2 52	15 24	17,0
Water flow rate system side	1.0	6,50	8,10	10,0			11,50	8,10	2,00	11,00	9,10	11,30	12,50	7,00	10,00	12,0	7 1 1,30	12,35	14,00	10,77	13,35	15,14	4 11,2	0 14,	42 17	/,10 i	12,53	15,24	
Pressure drop system side	l/h	570	710	877		802	1008	-	860	11,00 964	9,10 798	991	1096	-	947	1052	-		14,00	10,77 945	13,35		-		,42 17 64 1	-	1101		149
i icoouic uiop oyotciii oiuc	kPa	-			631			-			-			-			-							12	64 1.	-			149 38
	kPa	570	710	877	631	802	1008	710	860	964	798	991	1096	859	947	1052	991	1083	1227	945	1171	1328	982	12	64 1.	500	1101	1337	
Heating performance 45 °C/4	kPa 40 °C (2)	570	710	877 26	631	802	1008	710	860	964	798 10	991 15	1096	859	947	1052 32	991	1083	1227	945	1171	1328	16	2	64 1. 4	500	1101	1337	38
Heating performance 45 °C / 4 Heating capacity	kPa 40 °C (2) kW	570 12 3,32	710 18 4,03	877 26 4,97	631 14 7 3,57	802 21 4,55	1008 31 5,72	710 17 4,03	860 24 4,87	964 29 5,47	798 10 4,52	991 15 5,62	1096 18 6,21	859 22 4,87	947 27 5,37	1052 32 5,97	991 17 5,62	1083 20 6,14	1227 25 6,96	945 12 5,35	1171 17 6,64	1328 22 7,53	3 982 16 3 5,57	2.	64 1: 4 :	33 33,50	1101 22 6,24	1337 32 7,58	38 8,4
Heating performance 45 °C / 4 Heating capacity Water flow rate system side	kPa 40 °C (2) kW I/h	570 12 3,32 561	710 18 4,03 699	877 26 4,97 863	631 14 7 3,57 621	802 21 4,55 790	1008 31 5,72 993	710 17 4,03 699	860 24 4,87 846	964 29 5,47 950	798 10 4,52 786	991 15 5,62 975	1096 18 6,21 1079	859 22 4,87 846	947 27 5,37 932	1052 32 5,97 1036	991 17 5,62 975	1083 20 6,14 1066	1227 25 6,96 1209	945 12 5,35 930	1171 17 6,64 1152	7,53 1307	3 982 16 3 5,57 7 967	2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	64 1: 4 : 17 8 45 14	33 3,50 476	1101 22 6,24 1084	1337 32 7,58 1316	38 8,4 146
Heating performance 45 °C / 4 Heating capacity Water flow rate system side Pressure drop system side	kPa 40 °C (2) kW	570 12 3,32	710 18 4,03	877 26 4,97	631 14 7 3,57 621	802 21 4,55	1008 31 5,72	710 17 4,03	860 24 4,87	964 29 5,47	798 10 4,52	991 15 5,62	1096 18 6,21	859 22 4,87	947 27 5,37	1052 32 5,97	991 17 5,62	1083 20 6,14	1227 25 6,96	945 12 5,35	1171 17 6,64	1328 22 7,53	3 982 16 3 5,57	2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	64 1: 4 : 17 8 45 14	33 33,50	1101 22 6,24	1337 32 7,58	38 8,4
Heating performance 45 °C / 4 Heating capacity Water flow rate system side Pressure drop system side Fan	kPa 40 °C (2) kW I/h kPa	570 12 3,32 561 12	710 18 4,03 699 18	877 26 4,97 863 26	7 3,57 621 14	802 21 4,55 790 20	1008 31 5,72 993 31	710 17 4,03 699 16	860 24 4,87 846 24	964 29 5,47 950 29	798 10 4,52 786 10	991 15 5,62 975 14	1096 18 6,21 1079 18	859 22 4,87 846 22	947 27 5,37 932 26	1052 32 5,97 1036 32	991 17 5,62 975 17	1083 20 6,14 1066 20	1227 25 6,96 1209 25	945 12 5,35 930 12	1171 17 6,64 1152	7,53 1307 22	3 982 16 3 5,55 7 967 15	7 7,7	64 1: 4 : 17 8 45 14 4 :	33 3,50 476 33	1101 22 6,24 1084 22	1337 32 7,58 1316 31	38 8,4 146 38
Heating performance 45 °C / 4 Heating capacity Water flow rate system side Pressure drop system side Fan Type	kPa 40 °C (2) kW I/h kPa type	3,32 561 12	710 18 4,03 699 18	877 26 4,97 863 26	7 3,57 621 14	802 21 4,55 790 20	1008 31 5,72 993 31	710 17 4,03 699 16	860 24 4,87 846 24	964 29 5,47 950 29	798 10 4,52 786 10	991 15 5,62 975 14	1096 18 6,21 1079 18	859 22 4,87 846 22	947 27 5,37 932 26	1052 32 5,97 1036 32	991 17 5,62 975 17	1083 20 6,14 1066 20	1227 25 6,96 1209 25	945 12 5,35 930 12	1171 17 6,64 1152 17	7,53 1307 22 gal	8 982 16 3 5,55 7 967 15	2 120 7 7,7 7 120 Centri	64 1: 4 : 17 8 45 14 4 : ifugal	33 3,50 476 33	1101 22 6,24 1084 22	1337 32 7,58 1316 31	38 8,44 146 38 al
Heating performance 45 °C / 4 Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor	kPa 40 °C (2) kW I/h kPa type type	3,32 561 12	710 18 4,03 699 18 entrifug	877 26 4,97 863 26	7 3,57 621 14	802 21 4,55 790 20 entrifugachror	1008 31 5,72 993 31	710 17 4,03 699 16	860 24 4,87 846 24 entrifug	964 29 5,47 950 29	798 10 4,52 786 10	991 15 5,62 975 14 entrifu	1096 18 6,21 1079 18	859 22 4,87 846 22	947 27 5,37 932 26 entrifue	1052 32 5,97 1036 32	991 17 5,62 975 17	1083 20 6,14 1066 20 ntrifug	1227 25 6,96 1209 25	945 12 5,35 930 12	1171 17 6,64 1152 17 entrifu	7,53 1307 22 gal	8 982 16 3 5,55 7 967 15	2 12 2 2 2 2 2 Centri	64 1: 4 17 8 45 14 4 ifugal	33 3,50 476 33	1101 22 6,24 1084 22	1337 32 7,58 1316 31 htrifug	38 8,44 146 38 al
Heating performance 45 °C / 4 Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number	kPa 40 °C (2) kW I/h kPa type type no.	570 12 3,32 561 12 Ce Asy	710 18 4,03 699 18 entrifug vnchror	877 26 4,97 863 26 gal	7 3,57 6 621 14 C6 Asy	802 21 4,55 790 20 entrifugunchror	1008 31 5,72 993 31 gal	710 17 4,03 699 16	860 24 4,87 846 24 entrifug	964 29 5,47 950 29 al	798 10 4,52 786 10	991 15 5,62 975 14 entrifu	1096 18 6,21 1079 18 gal	859 22 4,87 846 22	947 27 5,37 932 26 entrifue	1052 32 5,97 1036 32 gal	991 17 5,62 975 17 Cer Asyr	1083 20 6,14 1066 20 ntrifug	1227 25 6,96 1209 25 al	945 12 5,35 930 12	1171 17 6,64 1152 17 entrifu	7,53 1307 22 gal nous	8 982 16 3 5,57 7 967 15	2 12 2 2 2 2 Centric synch	64 1: 4 :- 17 8 45 1- 4 :- ifugal ironou	33 3,50 476 33	1101 22 6,24 1084 22 Cen	7,58 1316 31 atrifugachrono	38 8,44 146 38 al
Heating performance 45 °C / 4 Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate	kPa 40 °C (2) kW I/h kPa type type no. m³/h	570 12 3,32 561 12 Ce Asy	710 18 4,03 699 18 entrifug rnchror 3 720	8777 26 4,977 8633 26 anous 920	7 3,57 6 621 14 Ce Asy	802 21 4,55 790 20 entrifug nchror 3 720	1008 31 5,72 993 31 gal nous	710 17 4,03 699 16 Co Asy	860 24 4,87 846 24 entrifug rnchron 3 930	964 29 5,47 950 29 al ous	798 10 4,52 786 10	991 15 5,62 975 14 entrifu	1096 18 6,21 1079 18 gal nous	859 22 4,87 846 22 (a Asy)	947 27 5,37 932 26 entrifue rnchror 3 1120	1052 32 5,97 1036 32 1300s	991 17 5,62 975 17 Cer Asyr	1083 20 6,14 1066 20 ntrifug ichron 3 1120	1227 25 6,96 1209 25 al ous	945 12 5,35 930 12 Co Asy	1171 17 6,64 1152 17 entrifu ynchro 3 930	1328 22 7,53 1307 22 gal nous	8 982 16 3 5,55 7 967 15 A	! 12 ¹ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	64 1: 4 : 17 8 45 14 4 : ifugal ironou 3	33 3,50 476 33	1101 22 6,24 1084 22 Cen Asyn	1337 32 7,58 1316 31 atrifugachrono 3	38 8,44 146 38 al ous
Heating performance 45 °C / 4 Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power	kPa 40 °C (2) kW I/h kPa type type no.	3,32 561 12 Ce Asy 520 38	710 18 4,03 699 18 entrifug rnchror 3 720 60	877 26 4,97 863 26 920 91	7 3,57 6 621 14 Ce Asy 0 520 38	802 21 4,55 790 20 ntrifug nchror 3 720 60	1008 31 5,72 993 31 gal nous	710 17 4,03 699 16 (a As)	860 24 4,87 846 24 entrifug enchron 3 930 80	964 29 5,47 950 29 al ous 1140 106	798 10 4,52 786 10 Co Asy	991 15 5,62 975 14 entrifu 3 930 80	1096 18 6,21 1079 18 gal nous	859 22 4,87 846 22 (a As) 900 80	947 27 5,37 932 26 entrifue rnchror 3 1120 100	1052 32 5,97 1036 32 1300 131	991 17 5,62 975 17 Cer Asyr 900 80	1083 20 6,14 1066 20 ntrifug 1120 100	1227 25 6,96 1209 25 al ous	945 12 5,35 930 12 Co Asy 700 59	1171 17 6,64 1152 17 17 entrifu 3 930 80	7,53 1307 22 1307 22 1140 106	8 982 16 3 5,55 7 967 15 A	2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	64 1: 44 :: 117 8 45 1- 44 :: 16 ifugal 17 on 1	333 33,50 476 333 33 1140	6,24 1084 22 Cen Asyn	1337 32 77,58 1316 31 31 1120 100	38 8,44 146 38 al ous
Heating performance 45 °C / 4 Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring	kPa 40 °C (2) kW I/h kPa type type no. m³/h	570 12 3,32 561 12 Ce Asy	710 18 4,03 699 18 entrifug rnchror 3 720	8777 26 4,977 8633 26 anous 920	7 3,57 6 621 14 Ce Asy	802 21 4,55 790 20 entrifug nchror 3 720	1008 31 5,72 993 31 gal nous	710 17 4,03 699 16 Co Asy	860 24 4,87 846 24 entrifug rnchron 3 930	964 29 5,47 950 29 al ous	798 10 4,52 786 10	991 15 5,62 975 14 entrifu	1096 18 6,21 1079 18 gal nous	859 22 4,87 846 22 (a Asy)	947 27 5,37 932 26 entrifue rnchror 3 1120	1052 32 5,97 1036 32 1300s	991 17 5,62 975 17 Cer Asyr	1083 20 6,14 1066 20 ntrifug ichron 3 1120	1227 25 6,96 1209 25 al ous	945 12 5,35 930 12 Co Asy	1171 17 6,64 1152 17 entrifu ynchro 3 930	1328 22 7,53 1307 22 gal nous	8 982 16 3 5,55 7 967 15 A	! 12 ¹ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	64 1: 44 :: 117 8 45 1- 44 :: 16 ifugal 17 on 1	33 3,50 476 33	1101 22 6,24 1084 22 Cen Asyn	1337 32 7,58 1316 31 atrifugachrono 3	38 8,44 146 38 al ous
Heating performance 45 °C / 4 Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Fan coil sound data (3)	kPa 40 °C (2) kW I/h kPa type type no. m³/h W	570 12 3,32 561 12 Ce Asy 520 38 V1	710 18 4,03 699 18 entrifug rnchror 3 720 60 V2	877 26 4,97 863 26 gal nous 920 91 V3	7 3,57 6 621 14 Ce Asy 0 520 38 V1	802 21 4,55 790 20 nntrifug nnchror 3 720 60 V2	1008 31 5,72 993 31 anous 920 91 V3	710 17 4,03 699 16 Co Asy 700 59 V1	4,87 846 24 entrifug enchron 3 930 80 V2	964 29 5,47 950 29 al ous 1140 V3	798 10 4,52 786 10 Co Asy 700 59 V1	991 15 5,62 975 14 entrifu 3 930 80 V2	1096 18 6,21 1079 18 gal nous 1140 V3	859 22 4,87 846 22 (a Asy) 900 80 V1	947 27 5,37 932 26 entrifug rnchror 3 1120 V2	1052 32 5,97 1036 32 gal gal 1300us	991 17 5,62 975 17 Cer Asyr 900 80 V1	1083 20 6,14 1066 20 httrifug ichron 3 1120 100 V2	1227 25 6,96 1209 25 al ous 1300 V3	945 12 5,35 930 12 (a Asy 700 59 V1	1171 17 6,64 1152 17 entrifu ynchro 3 930 80 V2	1328 22 7,53 1307 22 gal nous 1140 V3	3 9823 3 9823 3 5,53 5 5,53 15 A A A	2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	64 1: 4 117 8 45 1- 4 14 15 16 16 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	333 3,50 476 333 1140 1106 V3	1101 22 22 66,24 1084 22 Cen Asyn 900 80 V1	1337 32 77,58 1316 31 1120 100 V2	38 8,44 146 38 al ous 130 131 V3
Heating performance 45 °C / 4 Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Fan coil sound data (3) Sound power level	kPa 40 °C (2) kW I/h kPa type type no. m³/h W	570 12 3,32 561 12 Ce Asy V1	710 18 4,03 699 18 entrifug (nchror 3 720 60 V2	8777 26 4,977 26 863 26 gal nous 920 91 V3	7 3,57 6 621 14 Ce Asy 0 520 38 V1	802 21 4,55 790 20 ntrifuy nchror 3 720 60 V2	1008 31 5,72 993 31 anous 920 91 V3	710 17 4,03 699 16 C(Asy) 700 59 V1	860 24 4,87 846 24 entrifug mchron 3 930 80 V2	964 29 5,47 950 29 1140 V3	798 10 4,52 786 10 Co Asy 700 59 V1	991 15 5,62 975 14 entrifu enchroi 3 930 V2	1096 18 6,21 1079 18 gal nous 1140 V3	4,87 846 22 (4,87 846 22 (4,87 846 22 (4,87 846 22 (4,87 846 22 (4,87 846 846 846 846 846 846 846 846 846 846	947 27 5,37 932 26 entrifug ynchror 3 1120 V2	1052 32 5,97 1036 32 1300 131 V3	991 17 5,62 6 975 17 Cer Asyr 900 80 V1	1083 20 6,14 1066 20 ntrifug ichron 3 1120 100 V2	1227 25 6,96 1209 25 1300 131 V3	945 12 5,35 930 12 Co Asy 700 59 V1	1171 17 6,64 1152 17 17 entrifu vnchro 3 930 V2	1328 22 7,53 1307 22 gal nous 1140 V3	3 9822 3 9822 3 5,557 967 15 A A V1	2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	64 1.17 8 45 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	33 33,50 476 33 1140 1106 V3	1101 22 22 66,24 11084 22 Cern Asynn 900 80 V1	1337 32 7,58 1316 31 1120 100 V2	38 8,41 146 38 al ous 130 V3
Heating performance 45 °C / 4 Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Fan coil sound data (3) Sound power level Sound pressure level	kPa 40 °C (2) kW I/h kPa type type no. m³/h W	570 12 3,32 561 12 Ce Asy V1	710 18 4,03 699 18 entrifug (nchror 3 720 60 V2	8777 26 4,977 26 863 26 gal nous 920 91 V3	7 3,57 6 621 14 Ce Asy 0 520 38 V1	802 21 4,55 790 20 ntrifuy nchror 3 720 60 V2	1008 31 5,72 993 31 anous 920 91 V3	710 17 4,03 699 16 C(Asy) 700 59 V1	860 24 4,87 846 24 entrifug mchron 3 930 80 V2	964 29 5,47 950 29 1140 V3	798 10 4,52 786 10 Co Asy 700 59 V1	991 15 5,62 975 14 entrifu enchroi 3 930 V2	1096 18 6,21 1079 18 gal nous 1140 V3	4,87 846 22 (4,87 846 22 (4,87 846 22 (4,87 846 22 (4,87 846 22 (4,87 846 846 846 846 846 846 846 846 846 846	947 27 5,37 932 26 entrifug ynchror 3 1120 V2	1052 32 5,97 1036 32 1300 131 V3	991 17 5,62 975 17 Cer Asyr 900 80 V1	1083 20 6,14 1066 20 ntrifug ichron 3 1120 100 V2	1227 25 6,96 1209 25 1300 131 V3	945 12 5,35 930 12 Co Asy 700 59 V1	1171 17 6,64 1152 17 17 entrifu vnchro 3 930 V2	1328 22 7,53 1307 22 gal nous 1140 V3	3 9823 3 9823 3 5,53 5 5,53 15 A A A	2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	64 1.17 8 45 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	33 33,50 476 33 1140 1106 V3	1101 22 22 66,24 1084 22 Cen Asyn 900 80 V1	1337 32 7,58 1316 31 1120 100 V2	38 8,4 146 38 al ous 130 V3
Heating performance 45 °C / 4 Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Fan coil sound data (3) Sound power level Sound pressure level Finned pack heat exchanger	kPa 40 °C (2) kW I/h kPa type type no. m³/h W	570 12 3,32 561 12 Ce Asy V1	710 18 4,03 699 18 entrifug (nchror 3 720 60 V2	8777 26 4,977 26 863 26 gal nous 920 91 V3	7 3,57 6 621 14 Ce Asy 0 520 38 V1	802 21 4,55 790 20 ntrifuy nchror 3 720 60 V2	1008 31 5,72 993 31 anous 920 91 V3	710 17 4,03 699 16 C(Asy) 700 59 V1	860 24 4,87 846 24 entrifug mchron 3 930 80 V2	964 29 5,47 950 29 1140 V3	798 10 4,52 786 10 Co Asy 700 59 V1	991 15 5,62 975 14 entrifu enchroi 3 930 V2	1096 18 6,21 1079 18 gal nous 1140 V3	4,87 846 22 (4,87 846 22 (4,87 846 22 (4,87 846 22 (4,87 846 22 (4,87 846 846 846 846 846 846 846 846 846 846	947 27 5,37 932 26 entrifug ynchror 3 1120 V2	1052 32 5,97 1036 32 1300 131 V3	991 17 5,62 6 975 17 Cer Asyr 900 80 V1	1083 20 6,14 1066 20 ntrifug ichron 3 1120 100 V2	1227 25 6,96 1209 25 1300 131 V3	945 12 5,35 930 12 Co Asy 700 59 V1	1171 17 6,64 1152 17 17 entrifu vnchro 3 930 V2	1328 22 7,53 1307 22 gal nous 1140 V3	3 9822 3 9822 3 5,557 967 15 A A V1	2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	64 1.17 8 45 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	33 33,50 476 33 1140 1106 V3	1101 22 22 66,24 1084 22 Cen Asyn 900 80 V1	1337 32 7,58 1316 31 1120 100 V2	38 8,41 146 38 al ous 130 V3
Heating performance 45 °C / 4 Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Fan coil sound data (3) Sound power level Sound pressure level Finned pack heat exchanger Water content main heat	kPa 40 °C (2) kW I/h kPa type type no. m³/h W	570 12 3,32 561 12 Ce Asy V1	710 18 4,03 699 18 entrifug rnchror 3 720 60 V2 51,0 43,0	8777 26 4,977 26 863 26 gal nous 920 91 V3	7 3,57 6 621 14 Ce Asy 0 520 38 V1	802 21 4,55 790 20 nttrifug nchror 3 720 60 V2 51,0 43,0	1008 31 5,72 993 31 anous 920 91 V3	710 17 4,03 699 16 C(Asy) 700 59 V1	860 24 4,87 846 24 entrifug 3 930 80 V2	964 29 5,47 950 29 1140 V3	798 10 4,52 786 10 Co Asy 700 59 V1	991 15 5,62 975 14 entrifu 3 930 80 V2 57,0 49,0	1096 18 6,21 1079 18 gal nous 1140 V3	4,87 846 22 (4,87 846 22 (4,87 846 22 (4,87 846 22 (4,87 846 22 (4,87 846 846 846 846 846 846 846 846 846 846	947 27 5,37 932 26 entrifug 100 V2 61,0 53,0	1052 32 5,97 1036 32 1300 131 V3	991 17 5,62 6 975 17 Cer Asyr 900 80 V1	1083 20 6,14 1066 20 httrifug 1120 100 V2	1227 25 6,96 1209 25 1300 131 V3	945 12 5,35 930 12 Co Asy 700 59 V1	1171 17 6,64 1152 17 17 entrifu 3 930 80 V2 57,0 49,0	1328 22 7,53 1307 22 gal nous 1140 V3	3 9822 3 9822 3 5,557 967 15 A A V1	2 12/ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	64 1! 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	33 33,50 476 33 1140 1106 V3	11101 22 66,24 11084 22 Cerr Asyn 900 80 V1	1337 32 7,58 1316 31 1120 100 V2	38 8,41 146 38 al ous 130 V3
Heating performance 45 °C / 4 Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Fan coil sound data (3) Sound power level Sound pressure level Finned pack heat exchanger Water content main heat exchanger	kPa 40 °C (2) kW I/h kPa type type no. m³/h W dB(A) dB(A)	570 12 3,32 561 12 Ce Asy V1	710 18 4,03 699 18 entrifug (nchror 3 720 60 V2	8777 26 4,977 26 863 26 gal nous 920 91 V3	7 3,57 6 621 14 Ce Asy 0 520 38 V1	802 21 4,55 790 20 ntrifuy nchror 3 720 60 V2	1008 31 5,72 993 31 anous 920 91 V3	710 17 4,03 699 16 C(Asy) 700 59 V1	860 24 4,87 846 24 entrifug mchron 3 930 80 V2	964 29 5,47 950 29 1140 V3	798 10 4,52 786 10 Co Asy 700 59 V1	991 15 5,62 975 14 entrifu enchroi 3 930 V2	1096 18 6,21 1079 18 gal nous 1140 V3	4,87 846 22 (4,87 846 22 (4,87 846 22 (4,87 846 22 (4,87 846 22 (4,87 846 846 846 846 846 846 846 846 846 846	947 27 5,37 932 26 entrifug ynchror 3 1120 V2	1052 32 5,97 1036 32 1300 131 V3	991 17 5,62 6 975 17 Cer Asyr 900 80 V1	1083 20 6,14 1066 20 ntrifug ichron 3 1120 100 V2	1227 25 6,96 1209 25 1300 131 V3	945 12 5,35 930 12 Co Asy 700 59 V1	1171 17 6,64 1152 17 17 entrifu vnchro 3 930 V2	1328 22 7,53 1307 22 gal nous 1140 V3	3 9822 3 9822 3 5,557 967 15 A A V1	2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	64 1! 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	33 33,50 476 33 1140 1106 V3	11101 22 66,24 11084 22 Cerr Asyn 900 80 V1	1337 32 7,58 1316 31 1120 100 V2	38 8,41 146 38 al ous 130 V3
Heating performance 45 °C / 4 Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Fan coil sound data (3) Sound power level Sound pressure level Finned pack heat exchanger Water content main heat	kPa 40 °C (2) kW I/h kPa type type no. m³/h W dB(A) dB(A)	570 12 3,32 561 12 Ce Asy V1	710 18 4,03 699 18 entrifug rnchror 3 720 60 V2 51,0 43,0	8777 26 4,977 26 863 26 gal nous 920 91 V3	7 3,57 6 621 14 Ce Asy 0 520 38 V1	802 21 4,55 790 20 nttrifug nchror 3 720 60 V2 51,0 43,0	1008 31 5,72 993 31 anous 920 91 V3	710 17 4,03 699 16 C(Asy) 700 59 V1	860 24 4,87 846 24 entrifug 3 930 80 V2	964 29 5,47 950 29 1140 V3	798 10 4,52 786 10 Co Asy 700 59 V1	991 15 5,62 975 14 entrifu 3 930 80 V2 57,0 49,0	1096 18 6,21 1079 18 gal nous 1140 V3 62,0 54,0	4,87 846 22 (4,87 846 22 (4,87 846 22 (4,87 846 22 (4,87 846 22 (4,87 846 846 846 846 846 846 846 846 846 846	947 27 5,37 932 26 entrifug 100 V2 61,0 53,0	1052 32 5,97 1036 32 1300 131 V3	991 17	1083 20 6,14 1066 20 httrifug 1120 100 V2	1227 25 6,96 1209 25 1300 131 V3	945 12 5,35 930 12 Co Asy 700 59 V1	1171 17 6,64 1152 17 17 entrifu 3 930 80 V2 57,0 49,0	1328 22 7,53 1307 22 gal nous 1140 V3 62,0 54,0	3 9822 3 9822 3 5,557 967 15 A A V1	2 12/ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	17 8 45 14 17 8 18 18 18 18 18 18 18 18 18 18 18 18 1	33 33,50 476 33 1140 1106 V3	1101 22 6,24 1084 22 Cen Asyn 900 80 V1	1337 32 7,58 1316 31 1120 100 V2	38 8,41 146 38 al ous 130 V3

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

			FCZ201I	P		FCZ301F	P		FCZ401I	•		FCZ501F)		FCZ601F)		FCZ701I	•		FCZ901	þ
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 65 °C/	55 °C (1)							•														
Heating capacity	kW	1,02	1,35	1,60	1,80	2,18	2,56	2,21	2,65	3,12	2,59	3,34	3,73	2,96	3,67	4,36	3,66	4,29	4,94	4,73	5,63	5,72
Water flow rate system side	I/h	89	118	140	158	191	224	186	232	273	227	293	327	259	321	381	320	375	437	414	492	501
Pressure drop system side	kPa	4	8	10	16	23	30	4	6	8	6	8	10	8	12	16	11	14	18	8	12	12
Cooling performance 7 °C / 12	2°€																					
Cooling capacity	kW	0,89	1,28	1,60	1,68	2,17	2,65	2,20	2,92	3,60	2,68	3,69	4,25	3,22	3,90	4,65	3,92	4,89	5,50	4,29	5,00	6,91
Sensible cooling capacity	kW	0,71	1,05	1,33	1,26	1,65	2,04	1,59	2,14	2,67	1,94	2,73	3,18	2,56	3,17	3,92	2,99	3,76	4,30	2,97	3,78	5,68
Water flow rate system side	l/h	153	221	275	288	374	456	379	503	619	460	634	731	554	671	800	675	841	946	738	860	1189
Pressure drop system side	kPa	6	12	18	8	13	18	10	16	24	13	22	29	14	19	26	16	24	30	10	12	22
Fan																						
Туре	type	(entrifug	al	(entrifuga	al	(Centrifuga	al	(Centrifuga	al	(entrifuga	al	(Centrifuga	al	(entrifug	al
Fan motor	type	As	ynchrono	ous	As	ynchrono	ous	As	ynchrono	ous	As	ynchrono	ous	As	ynchrono	ous	As	ynchrono	ous	As	ynchron	ous
Number	no.		1			2			2			2			3			3			3	
Air flow rate	m³/h	140	220	-	260	350	-	330	460	-	400	600	-	520	720	-	700	930	-	700	930	-
Input power	W	25	29	33	25	33	44	30	43	57	38	52	76	38	60	91	59	80	106	59	80	106
Electrical wiring		V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3
Fan coil sound data (2)																						
Sound power level	dB(A)	35,0	46,0	51,0	34,0	41,0	48,0	37,0	44,0	51,0	42,0	51,0	56,0	42,0	51,0	57,0	50,0	57,0	62,0	51,0	57,0	62,0
Sound pressure level	dB(A)	27,0	38,0	43,0	26,0	33,0	40,0	29,0	36,0	43,0	34,0	43,0	48,0	34,0	43,0	49,0	42,0	49,0	54,0	43,0	49,0	54,0
Finned pack heat exchanger								•														
Water content main heat			0.5			0.0			1.0			1.0			1.7			1.7			1.0	
exchanger	ı		0,5			0,8			1,0			1,0			1,2			1,2			1,8	
Water content secondary heat exchanger	I		0,2			0,3			0,3			0,3			0,4			0,4			0,7	

⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
(2) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

PERFORMANCE DATA FOR UNITS WITH HEAD (EUROVENT CERTIFICATE FCP-H)


2-pipe							_														
		FCZ200P		+	FCZ250P		_	FCZ300P		_	CZ350P			CZ400P		_	CZ450P		_	CZ500P	
	2 L	4 M	6 H	2 L	4 M	6 H	1 L	4 M	6 H	1 L	4 M	6 H	1 L	3 M	6 H	1 L	3 M	6 H	1 L	5 M	6 H
Heating performance 70 °C / 60 °C (IVI	П	l r	IVI	П	L	IVI	П	L	IVI	П	L	IVI	п	L	IVI	П	L	IVI	п
Heating capacity kV		3,00	3,32	2,29	3,24	3,60	3,50	5,03	5,45	3,80	5,59	6,10	4,49	6,02	6,74	4,79	6,62	7,40	5,27	7,22	7,59
Water flow rate system side 1/1		258	285	197	279	310	301	433	469	327	481	524	386	517	580	412	569	637	453	621	652
Pressure drop system side kP		12	15	9	16	19	8	15	18	9	18	21	11	18	22	7	12	15	12	21	23
Heating performance 45 °C / 40 °C (2	_	12	IJ	7	10	17	0	IJ	10)	10	21	11	10		1	12	. IJ	12		
Heating capacity kV		1,49	1,65	1,14	1,61	1,79	1,74	2,50	2,71	1,89	2,78	3,03	2,23	2,99	3,35	2,38	3,29	3,68	2,62	3,59	3,77
Water flow rate system side 1/h		224	248	196	277	308	299	430	466	325	478	521	383	514	576	409	566	633	451	617	648
Pressure drop system side kP		12	15	9	16	19	8	15	18	9	18	21	11	18	22	7	12	15	12	21	23
Cooling performance 7 °C / 12 °C	' '	12	13		10			- 13	- 10		10			- 10		,	12	- 13	12		
Cooling capacity kV	0,93	1,30	1,44	1,11	1,59	1,74	1,70	2,40	2,63	1,91	2,77	3,00	2,29	3,06	3,41	2,51	3,37	3,79	2,68	3,65	3,82
Sensible cooling capacity kV		1,14	1,18	0,83	1,23	1,36	1,27	1,86	2,03	1,34	1,99	2,16	1,66	2,24	2,52	1,76	2,42	2,73	1,94	2,70	2,83
Water flow rate system side 1/h		224	248	191	273	299	292	413	452	328	476	516	394	526	586	432	580	652	461	628	657
Pressure drop system side kP	_	13	15	9	18	21	8	16	18	11	22	25	11	18	22	11	16	20	13	22	24
Fan				,																	
Type typ		Centrifug	al	(entrifuga	al	(entrifuga	1	(entrifuga	al	(entrifuga	1	(entrifuga	al	(entrifuga	al
Fan motor typ	<u> </u>	synchron	-	_	ynchrono	-		ynchrono		_	ynchrono			ynchrono		_	ynchrono			ynchrono	
Number no		1		1.0	1			2	-		2	-		2	-		2			2	-
Air flow rate m ³ /	_	226	254	148	226	254	263	404	446	263	404	446	346	487	559	346	487	559	400	592	627
High static pressure Pa	21	50	63	21	50	63	21	50	61	21	50	61	25	-	66	25	-	66	22	50	56
Input power W	28	41	74	28	41	74	38	55	78	38	55	78	53	63	102	53	63	102	49	80	627
Electrical wiring	V2	V4	V6	V2	V4	V6	V1	V4	V6	V1	V4	V6	V1	V3	V6	V1	V3	V6	V1	V5	V6
Duct type fan coil sound data (3)																					
Sound power level (inlet + dB(A) 41,0	56,0	59,0	41,0	56,0	59,0	39,0	51,0	54,0	39,0	51,0	54,0	44,0	54,0	55,0	44,0	54,0	55,0	45,0	55,0	57,0
radiated) Sound power level (outlet) dB(52,0	55,0	37,0	52,0	55,0	35,0	47,0	49,0	35,0	47,0	49,0	40,0	50,0	52,0	40,0	50,0	52,0	41,0	51,0	53,0
Finned pack heat exchanger	, 5.70	32,0	33/0	3.70	32,0	33,0	33,0	,0	.,,,	33,0	,0	.,,,,	.0,0	30,0	32,0	.0,0	30,0	32,0	,.	3.70	35,0
Water content main heat																					
exchanger		0,5			0,7			0,8			1,0			1,0			1,4			1,0	
Diametre hydraulic fittings																					
Main heat exchanger Ø		1/2"			1/2"			3/4"			3/4"			3/4"			3/4"			3/4"	
Main heat exchanger Ø		1/2" FCZ550P	0	 	1/2" FCZ600P	0		3/4" FCZ650P	0		3/4" CZ700P	0	F	3/4" CZ750P	0	ı	3/4" CZ900P	0	F	3/4" CZ950P	0
Main heat exchanger Ø	1 L		6 H	1 L		7 H	1 1 L		0 7 H	2 L		0 7 H	2 L		7 H	2 L		0 7 H	2 L		7 H
	L	FCZ550P	6	1	F CZ600P 4	7	1	F CZ650P 4	7	2	CZ700P	7	2	CZ750P	7	2	CZ900P	7	2	CZ950P	7
Main heat exchanger Heating performance 70 °C/60 °C (Heating capacity kV) 	FCZ550P	6	1	F CZ600P 4	7	1	F CZ650P 4	7	2	CZ700P	7	2	CZ750P	7	2	CZ900P	7	2	CZ950P	7
Heating performance 70 °C/60 °C('	L) 5,81	FCZ550P 5 M	6 H 8,67	1 L	FCZ600P 4 M 8,55	7 H	1 L	FCZ650P 4 M	7 H 11,51	2 L 8,77	5 M	7 H	2 L	5 M	7 H	2 L	5 M	7 H	2 L	5 M	7 H
Heating performance 70 °C/60 °C('	5,81 500	5 M 8,25	6 H	1 L	F CZ600P 4 M	7 H	1 L	F CZ650P 4 M	7 H	L L	5 M	7 H	2 L	5 M	7 H	2 L	5 M	7 H	2 L	5 M	7 H
Heating performance 70 °C/60 °C(' Heating capacity kV Water flow rate system side kP Pressure drop system side kP	5,81 500	FCZ550P 5 M 8,25 709	6 H 8,67 746	1 L 6,86 590	FCZ600P 4 M 8,55 735	7 H 10,00 860	7,63 656	9,72 836	7 H 11,51 990	2 L 8,77 754	5 M 10,10 868	7 H 10,52 905	2 L 10,02 862	5 M 11,65 1002	7 H 12,09 1040	2 L 11,81 1016	5 M 13,80 1187	7 H 14,45 1242	2 L 12,43 1069	5 M 15,07 1296	7 H 16,00 1375
Heating performance 70 °C/60 °C(' Heating capacity kV Water flow rate system side I/I	5,81 500 1 10	5 M 8,25 709	6 H 8,67 746 21	1 L 6,86 590	FCZ600P 4 M 8,55 735	7 H 10,00 860 26	7,63 656	9,72 836	7 H 11,51 990	2 L 8,77 754	5 M 10,10 868	7 H 10,52 905	2 L 10,02 862	5 M 11,65 1002	7 H 12,09 1040	2 L 11,81 1016	5 M 13,80 1187	7 H 14,45 1242 20	2 L 12,43 1069	5 M 15,07 1296 26	7 H 16,00 1375 29
Heating performance 70 °C / 60 °C (Heating capacity kV Water flow rate system side kP Pressure drop system side kP Heating performance 45 °C / 40 °C (5,81 500 10 10 2,89	FCZ550P 5 M 8,25 709	6 H 8,67 746	1 L 6,86 590 12	8,55 735 20	7 H 10,00 860	7,63 656 15	9,72 836 23	7 H 11,51 990 31	2 L 8,77 754 19	5 M 10,10 868 25	7 H 10,52 905 27	2 L 10,02 862 12	5 M 11,65 1002 15	7 H 12,09 1040 16	2 L 11,81 1016 14	5 M 13,80 1187 18	7 H 14,45 1242	2 L 12,43 1069 19	5 M 15,07 1296	7 H 16,00 1375
Heating performance 70 °C / 60 °C (** Heating capacity kV Water flow rate system side kP Pressure drop system side kP Heating performance 45 °C / 40 °C (** Heating capacity kV	5,81 500 1 10) 2,89 497	5 M 8,25 709 19	6 H 8,67 746 21	1 L 6,86 590 12	8,55 735 20	7 H 10,00 860 26	7,63 656 15	9,72 836 23	7 H 11,51 990 31	2 L 8,77 754 19	5 M 10,10 868 25 5,02	7 H 10,52 905 27	2 L 10,02 862 12	5 M 11,65 1002 15 5,79	7 H 12,09 1040 16	2 L 11,81 1016 14	5 M 13,80 1187 18	7 H 14,45 1242 20	2 L 12,43 1069 19	5 M 15,07 1296 26	7 H 16,00 1375 29
Heating performance 70 °C/60 °C(' Heating capacity kV Water flow rate system side kP Pressure drop system side kP Heating performance 45 °C/40 °C(' Heating capacity kV Water flow rate system side kP Pressure drop system side kP	5,81 500 1 10) 2,89 497	5 M 8,25 709 19 4,10 705	6 H 8,67 746 21 4,31 741	1 L 6,86 590 12 3,41 586	8,55 735 20 4,25	7 H 10,00 860 26 4,97 855	7,63 656 15 3,79 652	9,72 836 23 4,83 831	7 H 11,51 990 31 5,72 984	2 L 8,77 754 19 4,36 750	5 M 10,10 868 25 5,02 863	7 H 10,52 905 27 5,23 899	2 L 10,02 862 12 4,98 856	5 M 11,65 1002 15 5,79 996	7 H 12,09 1040 16 6,01 1034	2 L 11,81 1016 14 5,87 1009	5 M 13,80 1187 18 6,86 1180	7 H 14,45 1242 20 7,18 1235	2 L 12,43 1069 19 6,18 1063	5 M 15,07 1296 26 7,49 1288	7 H 16,00 1375 29 7,95 1367
Heating performance 70 °C/60 °C('Heating capacity kV Water flow rate system side kP Heating performance 45 °C/40 °C('Z Heating capacity kV Water flow rate system side l/I	L 5,81 500 10) 2,89 497 10	5 M 8,25 709 19 4,10 705	6 H 8,67 746 21 4,31 741	1 L 6,86 590 12 3,41 586	8,55 735 20 4,25	7 H 10,00 860 26 4,97 855	7,63 656 15 3,79 652	9,72 836 23 4,83 831	7 H 11,51 990 31 5,72 984 31	2 L 8,77 754 19 4,36 750	5 M 10,10 868 25 5,02 863	7 H 10,52 905 27 5,23 899	2 L 10,02 862 12 4,98 856	5 M 11,65 1002 15 5,79 996	7 H 12,09 1040 16 6,01 1034	2 L 11,81 1016 14 5,87 1009	5 M 13,80 1187 18 6,86 1180	7 H 14,45 1242 20 7,18 1235	2 L 12,43 1069 19 6,18 1063	5 M 15,07 1296 26 7,49 1288	7 H 16,00 1375 29 7,95 1367
Heating performance 70 °C/60 °C(' Heating capacity kV Water flow rate system side kP Pressure drop system side kP Heating performance 45 °C/40 °C(' Heating capacity kV Water flow rate system side kP Pressure drop system side kP Cooling performance 7 °C/12 °C	L 5,81 500 10 10) 2,89 497 10	FCZ550P 5 M 8,25 709 19 4,10 705 19	6 H 8,67 746 21 4,31 741 21	1 L 6,86 590 12 3,41 586 13	8,55 735 20 4,25 731	7 H 10,00 860 26 4,97 855 26	7,63 656 15 3,79 652	9,72 836 23 4,83 831 23	7 H 11,51 990 31 5,72 984	2 L 8,77 754 19 4,36 750	FCZ700P 5 M 10,10 868 25 5,02 863 25	7 H 10,52 905 27 5,23 899 27	2 L 10,02 862 12 4,98 856 12	5 M 11,65 1002 15 5,79 996 15	7 H 12,09 1040 16 6,01 1034 16	2 L 11,81 1016 14 5,87 1009 14	5 M 13,80 1187 18 6,86 1180 18	7 H 14,45 1242 20 7,18 1235 20	2 L 12,43 1069 19 6,18 1063 19	15,07 1296 26 7,49 1288 26	7 H 16,00 1375 29 7,95 1367 29
Heating performance 70 °C / 60 °C ('Heating capacity kV Water flow rate system side kP Heating performance 45 °C / 40 °C ('Heating capacity kV Water flow rate system side kP Cooling performance 7 °C / 12 °C (Cooling capacity kV	L) 5,81 500 1 10) 2,89 497 1 10	FCZ550P 5 M 8,25 709 19 4,10 705 19	6 H 8,67 746 21 4,31 741 21	6,86 590 12 3,41 586 13	8,55 735 20 4,25 731 20	7 H 10,00 860 26 4,97 855 26	7,63 656 15 3,79 652 15	9,72 836 23 4,83 831 23	7 H 11,51 990 31 5,72 984 31	2 L 8,77 754 19 4,36 750 19	FCZ700P 5 M 10,10 868 25 5,02 863 25 4,97	7 H 10,52 905 27 5,23 899 27	2 L 10,02 862 12 4,98 856 12	5 M 11,65 1002 15 5,79 996 15	7 H 12,09 1040 16 6,01 1034 16	2 L 11,81 1016 14 5,87 1009 14	5 M 13,80 1187 18 6,86 1180 18	7 H 14,45 1242 20 7,18 1235 20 5,95	2 L 12,43 1069 19 6,18 1063 19	15,07 1296 26 7,49 1288 26	7 H 16,00 1375 29 7,95 1367 29 8,07
Heating performance 70 °C / 60 °C ('Heating capacity kV Water flow rate system side kP Heating performance 45 °C / 40 °C ('Heating capacity kV Water flow rate system side kP Cooling performance 7 °C / 12 °C (Cooling capacity kV Sensible cooling capacity kV Sensible cooling capacity kV	L) 5,81 500 1 10) 2,89 497 1 10 2,91 2,07 500	FCZ550P 5 M 8,25 709 19 4,10 705 19 4,08 2,94	6 H 8,67 746 21 4,31 741 21 4,28 3,09	1 L 6,86 590 12 3,41 586 13 3,37 2,70	8,55 735 20 4,25 731 20 4,08 3,34	7 H 10,00 860 26 4,97 855 26 4,65 3,92	7,63 656 15 3,79 652 15 4,15 2,93	9,72 836 23 4,83 831 23 5,02 3,60	7 H 11,51 990 31 5,72 984 31 5,67 4,12	2 L 8,77 754 19 4,36 750 19 4,24 3,24	FCZ700P 5 M 10,10 868 25 5,02 863 25 4,97 3,83	7 H 10,52 905 27 5,23 899 27 5,18 4,02	2 L 10,02 862 12 4,98 856 12 4,69 3,53	5 M 11,65 1002 15 5,79 996 15 5,53 4,20	7 H 12,09 1040 16 6,01 1034 16 5,80 4,41	2 L 11,81 1016 14 5,87 1009 14 4,38 3,11	5 M 13,80 1187 18 6,86 1180 18 5,33 4,11	7 H 14,45 1242 20 7,18 1235 20 5,95 4,73	2 L 12,43 1069 19 6,18 1063 19 6,35 4,20	5 M 15,07 1296 26 7,49 1288 26 7,62 5,08	7 H 16,00 1375 29 7,95 1367 29 8,07 5,40
Heating performance 70 °C / 60 °C ('Heating capacity kV Water flow rate system side kP Heating performance 45 °C / 40 °C ('Heating capacity kV Water flow rate system side kP Cooling performance 7 °C / 12 °C (Cooling capacity kV Sensible cooling capacity kV Water flow rate system side kP Cooling reperformance 7 °C / 12 °C (Cooling capacity kV Sensible cooling capacity kV Water flow rate system side l/K	L) 5,81 500 1 10) 2,89 497 1 10 2,91 2,07 500	FCZ550P 5 M 8,25 709 19 4,10 705 19 4,08 2,94 702	6 H 8,67 746 21 4,31 741 21 4,28 3,09 736	1 L 6,86 590 12 3,41 586 13 3,37 2,70 580	FCZ600P 4 M 8,55 735 20 4,25 731 20 4,08 3,34 702	7 H 10,00 860 26 4,97 855 26 4,65 3,92 800	1 L 7,63 656 15 3,79 652 15 4,15 2,93 715	9,72 836 23 4,83 831 23 5,02 3,60 863	7 H 11,51 990 31 5,72 984 31 5,67 4,12	2 L 8,77 754 19 4,36 750 19 4,24 3,24 731	FCZ700P 5 M 10,10 868 25 5,02 863 25 4,97 3,83 855	7 H 10,52 905 27 5,23 899 27 5,18 4,02 892	2 L 10,02 862 12 4,98 856 12 4,69 3,53 807	5 M 11,65 1002 15 5,79 996 15 5,53 4,20 951	7 H 12,09 1040 16 6,01 1034 16 5,80 4,41 997	2 L 11,81 1016 14 5,87 1009 14 4,38 3,11 753	5 M 13,80 1187 18 6,86 1180 18 5,33 4,11 917	7 H 14,45 1242 20 7,18 1235 20 5,95 4,73 1023	2 L 12,43 1069 19 6,18 1063 19 6,35 4,20 1092	5 M 15,07 1296 26 7,49 1288 26 7,62 5,08 1310	7 H 16,00 1375 29 7,95 1367 29 8,07 5,40 1388
Heating performance 70 °C / 60 °C ('Heating capacity kV Water flow rate system side kP Heating performance 45 °C / 40 °C ('Heating capacity kV Water flow rate system side kP Cooling performance 7 °C / 12 °C (Cooling capacity kV Sensible cooling capacity kV Water flow rate system side kP Cooling capacity kV Sensible cooling capacity kV Water flow rate system side l/R Pressure drop system side kP Ressure drop system side kP	L) 5,81 500 10) 2,89 497 10 2,91 2,07 500 12	FCZ550P 5 M 8,25 709 19 4,10 705 19 4,08 2,94 702	6 H 8,67 746 21 4,31 741 21 4,28 3,09 736 23	1 L 6,86 590 12 3,41 586 13 3,37 2,70 580 15	FCZ600P 4 M 8,55 735 20 4,25 731 20 4,08 3,34 702	7 H 10,00 860 26 4,97 855 26 4,65 3,92 800 26	7,63 656 15 3,79 652 15 4,15 2,93 715	9,72 836 23 4,83 831 23 5,02 3,60 863	7 H 11,51 990 31 5,72 984 31 5,67 4,12 975 28	2 L 8,77 754 19 4,36 750 19 4,24 3,24 731 20	FCZ700P 5 M 10,10 868 25 5,02 863 25 4,97 3,83 855	7 H 10,52 905 27 5,23 899 27 5,18 4,02 892 28	2 L 10,02 862 12 4,98 856 12 4,69 3,53 807 12	5 M 11,65 1002 15 5,79 996 15 5,53 4,20 951	7 H 12,09 1040 16 6,01 1034 16 5,80 4,41 997	2 L 11,81 1016 14 5,87 1009 14 4,38 3,11 753 10	5 M 13,80 1187 18 6,86 1180 18 5,33 4,11 917	7 H 14,45 1242 20 7,18 1235 20 5,95 4,73 1023 17	2 L 12,43 1069 19 6,18 1063 19 6,35 4,20 1092 18	5 M 15,07 1296 26 7,49 1288 26 7,62 5,08 1310	7 H 16,00 1375 29 7,95 1367 29 8,07 5,40 1388 27
Heating performance 70 °C / 60 °C ('Heating capacity kV Water flow rate system side kP Heating performance 45 °C / 40 °C ('Heating capacity kV Water flow rate system side kP Cooling performance 7 °C / 12 °C (Cooling capacity kV Sensible cooling capacity kV Water flow rate system side kP Fan kV Sensible kP Ressure drop system side kP Res	L) 5,81 500 1 10) 2,89 497 1 10 2,91 2,07 500 1 12	FCZ550P 5 M 8,25 709 19 4,10 705 19 4,08 2,94 702 21	6 H 8,67 746 21 4,31 741 21 4,28 3,09 736 23	1 L 6,86 590 12 3,41 586 13 3,37 2,70 580 15	FCZ600P 4 M 8,55 735 20 4,25 731 20 4,08 3,34 702 21	7 H 10,00 860 26 4,97 855 26 4,65 3,92 800 26	7,63 656 15 3,79 652 15 4,15 2,93 715 16	FCZ650P 4 M 9,72 836 23 4,83 831 23 5,02 3,60 863 23	7 H 11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 731 20	FCZ700P 5 M 10,10 868 25 5,02 863 25 4,97 3,83 855 26	7 H 10,52 905 27 5,23 899 27 5,18 4,02 892 28	2 L 10,02 862 12 4,98 856 12 4,69 3,53 807 12	5 M 11,65 1002 15 5,79 996 15 5,53 4,20 951 16	7 H 12,09 1040 16 6,01 1034 16 5,80 4,41 997	2 L 11,81 1016 14 5,87 1009 14 4,38 3,11 753	5 M 13,80 1187 18 6,86 1180 18 5,33 4,11 917	7 H 14,45 1242 20 7,18 1235 20 5,95 4,73 1023 17	2 L 12,43 1069 19 6,18 1063 19 6,35 4,20 1092 18	5 M 15,07 1296 26 7,49 1288 26 7,62 5,08 1310 24	7 H 16,00 1375 29 7,95 1367 29 8,07 5,40 1388 27
Heating performance 70 °C / 60 °C ('Heating capacity kV Water flow rate system side kP Heating performance 45 °C / 40 °C ('Heating capacity kV Water flow rate system side kP Cooling performance 7 °C / 12 °C Cooling capacity kV Sensible cooling capacity kV Water flow rate system side kP Fan Type type	L) 5,81 500 10) 2,89 497 10 2,91 2,07 500 12	FCZ550P 5 M 8,25 709 19 4,10 705 19 4,08 2,94 702 21	6 H 8,67 746 21 4,31 741 21 4,28 3,09 736 23	1 L 6,86 590 12 3,41 586 13 3,37 2,70 580 15	FCZ600P 4 M 8,55 735 20 4,25 731 20 4,08 3,34 702 21	7 H 10,00 860 26 4,97 855 26 4,65 3,92 800 26	7,63 656 15 3,79 652 15 4,15 2,93 715 16	9,72 836 23 4,83 831 23 5,02 3,60 863 23	7 H 11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 731 20	FCZ700P 5 M 10,10 868 25 5,02 863 25 4,97 3,83 855 26	7 H 10,52 905 27 5,23 899 27 5,18 4,02 892 28	2 L 10,02 862 12 4,98 856 12 4,69 3,53 807 12	5 M 11,65 1002 15 5,79 996 15 5,53 4,20 951 16	7 H 12,09 1040 16 6,01 1034 16 5,80 4,41 997	2 L 11,81 1016 14 5,87 1009 14 4,38 3,11 753	5 M 13,80 1187 18 6,86 1180 18 5,33 4,11 917 14	7 H 14,45 1242 20 7,18 1235 20 5,95 4,73 1023 17	2 L 12,43 1069 19 6,18 1063 19 6,35 4,20 1092 18	5 M 15,07 1296 26 7,49 1288 26 7,62 5,08 1310 24	7 H 16,00 1375 29 7,95 1367 29 8,07 5,40 1388 27
Heating performance 70 °C / 60 °C ('Heating capacity kV Water flow rate system side kP Heating performance 45 °C / 40 °C ('Heating capacity kV Water flow rate system side kP Cooling performance 7 °C / 12 °C Cooling capacity kV Sensible cooling capacity kV Water flow rate system side kP Cooling capacity kV Sensible cooling capacity kV Sensible cooling capacity kV Water flow rate system side kP ressure drop system side kP Fan Type type Tan motor type	L) ' 5,81 500 1 10) ' 2,89 497 1 10 2,91 2,07 500 12 A	FCZSSOP 5 M 8,25 709 19 4,10 705 19 4,08 2,94 702 21 Centrifug	6 H 8,67 746 21 4,31 741 21 4,28 3,09 736 23	1 L 6,86 590 12 3,41 586 13 3,37 2,70 580 15	FCZ600P 4 M 8,55 20 4,25 731 20 4,08 3,34 702 21	7 H 10,00 860 26 4,97 855 26 4,65 3,92 800 26	7,63 656 15 3,79 652 15 4,15 2,93 715 16	9,72 836 23 4,83 831 23 5,02 3,60 863 23	7 H 11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 731 20	FCZ700P 5 M 10,10 868 25 5,02 863 25 4,97 3,83 855 26	7 H 10,52 905 27 5,23 899 27 5,18 4,02 892 28	2 L 10,02 862 12 4,98 856 12 4,69 3,53 807 12	5 M 11,65 1002 15 5,79 996 15 5,53 4,20 951 16	7 H 12,09 1040 16 6,01 1034 16 5,80 4,41 997	2 L 11,81 1016 14 5,87 1009 14 4,38 3,11 753	5 M 13,80 1187 18 6,86 1180 18 5,33 4,11 917 14	7 H 14,45 1242 20 7,18 1235 20 5,95 4,73 1023 17	2 L 12,43 1069 19 6,18 1063 19 6,35 4,20 1092 18	5 M 15,07 1296 26 7,49 1288 26 7,62 5,08 1310 24 entrifuga	7 H 16,00 1375 29 7,95 1367 29 8,07 5,40 1388 27
Heating performance 70 °C / 60 °C (°C + Heating capacity	L) ' 5,81 500 1 10) ' 2,89 497 1 10 2,91 2,07 500 12 A	FCZSSOP 5 M. 8,25 709 19 4,10 705 19 4,08 2,94 702 21 Centrifug Centrifug 2	8,67 746 21 4,31 741 21 4,28 3,09 736 23	1 L 6,86 590 12 3,41 586 13 3,37 2,70 580 15 C As	FCZ600P 4 M 8,55 20 4,25 731 20 4,08 3,34 702 21 Zientrifugy ynchronod 3	7 H 10,00 860 26 4,97 855 26 4,65 3,92 800 26	7,63 656 15 3,79 652 15 4,15 2,93 715 16	FCZ650P 4 M 9,72 836 23 4,83 831 23 5,02 3,60 863 23 23 23 23	7 H 11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 731 20	FCZ700P 5 M 10,10 868 25 5,02 863 25 4,97 3,83 855 26 eentrifugayynchroncd 3	7 H 10,52 905 27 5,23 899 27 5,18 4,02 892 28	2 L 10,02 862 12 4,98 856 12 4,69 3,53 807 12	11,65 M 11,65 1002 15 5,79 996 15 5,53 4,20 951 16	7 H 12,09 1040 16 6,01 1034 16 5,80 4,41 997 17	2 L 11,81 1016 14 5,87 1009 14 4,38 3,11 753 10	5 M 13,80 1187 18 6,86 1180 18 5,33 4,11 917 14 entrifugazynchrono 3	7 H 14,45 1242 20 7,18 1235 20 5,95 4,73 1023 17	2 L 12,43 1069 19 6,18 1063 19 6,35 4,20 1092 18	5 M 15,07 1296 26 7,49 1288 26 5,08 1310 24 entrifuga; ynchronod 3	7 H 16,00 1375 29 7,95 1367 29 8,07 5,40 1388 27
Heating performance 70 °C / 60 °C ('Heating capacity kV Water flow rate system side kP Heating performance 45 °C / 40 °C ('Abeating performance 7 °C / 12 °C ('Abeating performance 7 °C / 12 °C ('Abeating performance 45 °C / 40 °C ('A	L) 5,81 500 10) 2,89 497 10 2,91 2,07 500 12 2 2 A	FCZSSOP 5 M. 8,25 709 19 4,10 705 19 4,08 2,94 702 21 Centrifug synchronic 2 592	8,67 746 21 4,31 741 21 4,28 3,09 736 23	1 L 6,86 590 12 3,41 586 13 3,37 2,70 580 15 C As	FCZ600P 4 M 8,55 20 4,25 731 20 4,08 3,34 702 21 Centrifuggy ynchronod 3 770	7 H 10,00 860 26 4,97 855 26 4,65 3,92 800 26	7,63 656 15 3,79 652 15 4,15 2,93 715 16	FCZ650P 4 M 9,72 836 23 4,83 831 23 5,02 3,60 863 23 23 23 23 23 23 23	7 H 11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 731 20	FCZ700P 5 M 10,10 868 25 5,02 863 25 4,97 3,83 855 26 centrifuga ynchronc 3 978	7 H 10,52 905 27 5,23 899 27 5,18 4,02 892 28	2 L 10,02 862 12 4,98 856 12 4,69 3,53 807 12 C Ass	5 M 11,65 1002 15 5,79 996 15 5,53 4,20 951 16 entrifuga ynchrono 3 978	7 H 12,09 1040 16 6,01 1034 16 5,80 4,41 997 17	2 L 11,81 1016 14 5,87 1009 14 4,38 3,11 753 10	5 M 13,80 1187 18 6,86 1180 18 5,33 4,11 917 14 entrifuga ynchrono 3 978	7 H 14,45 1242 20 7,18 1235 20 5,95 4,73 1023 17	2 L 12,43 1069 19 6,18 1063 19 6,35 4,20 1092 18	5 M 15,07 1296 26 7,49 1288 26 7,62 5,08 1310 24 entrifuga ynchronoc 3 978	7 H 16,00 1375 29 7,95 1367 29 8,07 5,40 1388 27
Heating performance 70 °C / 60 °C (°C Heating capacity kV Water flow rate system side kP Heating performance 45 °C / 40 °C (°C Gooling performance 7 °C / 12 °C (°C Gooling performance 7 °C / 12 °C (°C Gooling performance 7 °C / 12 °C (°C Heating performance 45 °C / 40 °C (°C / 40 °C (°C / 40 °C) °C / 40 °C (°C / 40 °C) °C / 40 °C (°C / 40 °C) °C / 40 °C (°C / 40 °C) °C / 40 °C (°C / 40 °C) °C / 40 °C (°C / 40 °C) °C / 40 °C (°C / 40 °C) °C / 40 °C (°C / 40 °C) °C / 40 °C (°C / 40 °C) °C / 40 °C	L) 5,81 500 10) 2,89 497 10 2,91 2,07 500 12 2 2 2 A 11 400 22	FCZSSOP 5 M 8,25 709 19 4,10 705 19 4,08 2,94 702 21 Centrifug 2 592 50	8,67 746 21 4,31 741 21 4,28 3,09 736 23	1 L 6,86 590 12 3,41 586 13 3,37 2,70 580 15 C As	FCZ600P 4 M 8,55 20 4,25 731 20 4,08 3,34 702 21 21 21 21 21 21 21 21 21 2	7 H 10,00 860 26 4,97 855 26 4,65 3,92 800 26	7,63 656 15 3,79 652 15 4,15 2,93 715 16	9,72 836 23 4,83 831 23 5,02 3,60 863 23 23 23 23 23 27 770 50	7 H 11,51 990 31 5,72 984 31 5,67 4,12 975 28	2 L 8,77 754 19 4,36 750 19 4,24 3,24 731 20	FCZ700P 5 M 10,10 868 25 5,02 863 25 4,97 3,83 855 26 entrifuga ynchrono 3 978 50	7 H 10,52 905 27 5,23 899 27 5,18 4,02 892 28	2 L 10,02 862 12 4,98 856 12 4,69 3,53 807 12 C Ass	5 M 11,65 1002 15 5,79 996 15 5,53 4,20 951 16 entrifuga ynchrono 3 978 50	7 H 12,09 1040 16 6,01 1034 16 5,80 4,41 997 17	2 L 11,81 1016 14 5,87 1009 14 4,38 3,11 753 10	5 M 13,80 1187 18 18 18 18 18 18 18 19 17 14 14 14 14 15 16 17 18 18 19 17 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	7 H 14,45 1242 20 7,18 1235 20 5,95 4,73 1023 17	2 L 12,43 1069 19 6,18 1063 19 6,35 4,20 1092 18	5 M 15,07 1296 26 7,49 1288 26 5,08 1310 24 entrifug2y ynchronc 3 978 50	7 H 16,00 1375 29 7,95 1367 29 8,07 5,40 1388 27
Heating performance 70 °C / 60 °C (°Heating capacity kV Water flow rate system side kP Heating performance 45 °C / 40 °C (°C Heating performance 45 °C / 40 °C (°C Heating capacity kV Water flow rate system side kP Pressure drop system side kP Cooling performance 7 °C / 12 °C Cooling capacity kV Water flow rate system side l/I Sensible cooling capacity kV Water flow rate system side kP Pressure drop system side kP Fan Type typ Fan motor typ Number no Air flow rate m³ High static pressure Pa Input power W	L) 5,81 500 10) 2,89 497 10 2,91 2,07 500 12 2 2 49	FCZSSOP 5 M 8,25 709 19 4,10 705 19 4,08 2,94 702 21 Centrifug synchron 2 592 50 80	8,67 746 21 4,31 741 21 4,28 3,09 736 23 627 56 627	1 L 6,86 590 12 3,41 586 13 3,37 2,70 580 15 C As	FCZ600P 4 M 8,55 20 4,25 731 20 4,08 3,34 702 21 21 Entrifuggy ynchronod 3 770 50 89	7 H 10,00 860 26 4,97 855 26 4,65 3,92 800 26 26 3920 71	7,63 656 15 3,79 652 15 4,15 2,93 715 16	FCZ650PH 4 M 9,72 836 23 4,83 831 23 5,02 3,60 863 23 23 r770 50 89	7 H 11,51 990 31 5,72 984 31 5,67 4,12 975 28	2 L 8,77 754 19 4,36 750 19 4,24 3,24 731 20 (As 32 92	FCZ700P 5 M 10,10 868 25 5,02 863 25 4,97 3,83 855 26 centrifuga ynchronc 3 978 50 117	7 H 10,52 905 27 5,23 899 27 5,18 4,02 892 28 1050 58 138	2 L 10,02 862 12 4,98 856 12 4,69 3,53 807 12 C Ass 32 92	5 M 11,65 1002 15 5,79 996 15 5,53 4,20 951 16 entrifuga ynchrono 3 978 50 117	7 H 12,09 1040 16 6,01 1034 16 5,80 4,41 997 17	2 L 11,81 1016 14 5,87 1009 14 4,38 3,11 753 10 (C As	5 M 13,80 1187 18 18 6,86 1180 18 5,33 4,11 917 14 entrifuga ynchrono 3 978 50 117	7 H 14,45 1242 20 7,18 1235 20 5,95 4,73 1023 17	2 L 12,43 1069 19 6,18 1063 19 6,35 4,20 1092 18 C Ass 32 92	5 M 15,07 1296 26 26 1288 26 26 27,62 29 1288 29 1288 29 1288 1310 24 24 25 15 15 15 15 15 15 15 15 15 15 15 15 15	7 H 16,00 1375 29 7,95 1367 29 8,07 5,40 1388 27 1050 58
Heating performance 70 °C / 60 °C ('Heating capacity	L) 5,81 500 10) 2,89 497 10 2,91 2,07 500 12 2 49 V1	FCZSSOP 5 M 8,25 709 19 4,10 705 19 4,08 2,94 702 21 Centrifug 2 592 50 80 V5	8,67 746 21 4,31 741 21 4,28 3,09 736 23 627 V6	1 L 6,86 590 12 3,41 586 13 3,37 2,70 580 15 C As 567 27 666 V1	FCZ600P 4 M 8,55 735 20 4,25 731 20 4,08 3,34 702 21 Centrifug: 3 770 50 89 V4	7 H 10,00 860 26 4,97 855 26 4,65 3,92 800 26 26 920 71 118 V7	7,63 656 15 3,79 652 15 4,15 2,93 715 16 (As	FCZ650P 4 M 9,72 836 23 831 23 5,02 3,60 863 23 23 23 23 23 23 23 23 24 25 26 27 27 28 29 29 29 29 29 29 29 29 29 29	7 H 11,51 990 31 5,72 984 31 5,67 4,12 975 28 11 us	2 L 8,77 754 19 4,36 750 19 4,24 3,24 731 20 (As 785 32 92 V2	FCZ700P 5 M 10,10 868 25 5,02 863 25 4,97 3,83 855 26 Exertifuga ynchrono 3 978 50 117 V5	7 H 10,52 905 27 5,23 899 27 5,18 4,02 892 28 1050 58 138 V7	2 L 10,02 862 12 4,98 856 12 4,69 3,53 807 12 C As 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5,79 996 15 5,53 4,20 951 16 entrifuga ynchrono 3 978 50 117	7 H 12,09 1040 16 6,01 1034 16 5,80 4,41 997 17 1050 58 138 V7	2 L 11,81 1016 14 5,87 1009 14 4,38 3,11 753 10 C As 785 32 92 V2	5 M 13,80 1187 18 18 6,86 1180 18 5,33 4,11 917 14 entrifuga 978 50 117 V5	7 H 14,45 1242 20 7,18 1235 20 5,95 4,73 1023 17 1050 58 138 V7	2 L 12,43 1069 19 6,18 1063 19 6,35 4,20 1092 18 C Asy 785 32 92	5 M 15,07 1296 26 7,49 1288 26 7,62 5,08 1310 24 entrifuga 978 50 117 V5	7 H 16,00 1375 29 7,95 1367 29 8,07 5,40 1388 27 1050 58 138 V7
Heating performance 70 °C / 60 °C ('Heating capacity kV Water flow rate system side l/M Pressure drop system side kP Heating performance 45 °C / 40 °C (Z Heating performance 45 °C / 40 °C (Z Heating performance 7 °C / 12 °C (Z Heating performance 1 Meating performance 1 Meati	L) ' 5,81 500 1 10) ' 2,89 497 1 10 2,91 2,07 500 1 12 2 49 V1	FCZ550P 5 M 8,25 709 19 4,10 705 19 4,08 2,94 702 21 Centrifug synchrone 2 592 50 80 V5	8,67 746 21 4,31 741 21 4,28 3,09 736 23 627 V6	1 L 6,86 590 12 3,41 586 13 580 15 C As	FCZ600P 4 M 8,55 20 4,25 731 20 4,08 3,34 702 21 21 50 89 V4 56,0	7 H 10,00 860 26 4,97 855 26 4,65 3,92 800 26 21 118 V7	7,63 656 15 3,79 652 15 4,15 2,93 715 16 66 V1	FCZ650P 4 M 9,72 836 23 4,83 831 23 5,02 3,60 863 23 23 770 50 89 V4	7 H 11,51 990 31 5,72 984 31 5,67 4,12 975 28 Il us	2 L 8,77 754 19 4,36 750 19 4,24 3,24 731 20 (As 785 32 92 V2	FCZ700P 5 M 10,10 868 25 5,02 863 25 4,97 3,83 855 26 4,97 7,07 117 V5	7 H 10,52 905 27 5,23 899 27 5,18 4,02 892 28 1050 58 138 V7	2 L 10,02 862 12 4,98 856 12 4,69 3,53 807 12 C As 785 32 92 V2	5 M 11,65 1002 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	7 H 12,09 1040 16 6,01 1034 16 5,80 4,41 1997 17 11 us	2 L 11,81 1016 14 5,87 1009 14 4,38 3,11 753 10 C As 785 32 92 V2	5 M 13,80 1187 18 18 18 18 18 18 19 17 14 14 19 17 17 17 17 17 17 17 17 17 17 17 17 17	7 H 14,45 1242 20 7,18 1235 20 5,95 4,73 1023 17 1050 58 138 V7	2 L 12,43 1069 19 6,18 1063 19 6,35 4,20 1092 18 C Asy 785 32 92 V2	5 M 15,07 1296 26 1288 26 1288 26 1310 24 1288 50 117 V5 60,0 0	7 H 16,00 1375 29 7,95 1367 29 8,07 5,40 1388 27 1050 58 138 V7
Heating performance 70 °C / 60 °C ('Heating capacity kV Water flow rate system side l/M Pressure drop system side kP Heating performance 45 °C / 40 °C (Z Heating performance 45 °C / 40 °C (Z Heating performance 7 °C / 12 °C (Z Heating performance 1 Meating performance 1 Meati	L) ' 5,81 500 1 10) ' 2,89 497 1 10 2,91 2,07 500 1 12 2 49 V1	FCZSSOP 5 M 8,25 709 19 4,10 705 19 4,08 2,94 702 21 Centrifug 2 592 50 80 V5	8,67 746 21 4,31 741 21 4,28 3,09 736 23 627 V6	1 L 6,86 590 12 3,41 586 13 3,37 2,70 580 15 C As 567 27 666 V1	FCZ600P 4 M 8,55 735 20 4,25 731 20 4,08 3,34 702 21 Centrifug: 3 770 50 89 V4	7 H 10,00 860 26 4,97 855 26 4,65 3,92 800 26 26 920 71 118 V7	7,63 656 15 3,79 652 15 4,15 2,93 715 16 (As	FCZ650P 4 M 9,72 836 23 831 23 5,02 3,60 863 23 23 23 23 23 23 23 23 24 25 26 27 27 28 29 29 29 29 29 29 29 29 29 29	7 H 11,51 990 31 5,72 984 31 5,67 4,12 975 28 11 us	2 L 8,77 754 19 4,36 750 19 4,24 3,24 731 20 (As 785 32 92 V2	FCZ700P 5 M 10,10 868 25 5,02 863 25 4,97 3,83 855 26 Exertifuga ynchrono 3 978 50 117 V5	7 H 10,52 905 27 5,23 899 27 5,18 4,02 892 28 1050 58 138 V7	2 L 10,02 862 12 4,98 856 12 4,69 3,53 807 12 C As 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5,79 996 15 5,53 4,20 951 16 entrifuga ynchrono 3 978 50 117	7 H 12,09 1040 16 6,01 1034 16 5,80 4,41 997 17 1050 58 138 V7	2 L 11,81 1016 14 5,87 1009 14 4,38 3,11 753 10 C As 785 32 92 V2	5 M 13,80 1187 18 18 6,86 1180 18 5,33 4,11 917 14 entrifuga 978 50 117 V5	7 H 14,45 1242 20 7,18 1235 20 5,95 4,73 1023 17 1050 58 138 V7	2 L 12,43 1069 19 6,18 1063 19 6,35 4,20 1092 18 C Asy 785 32 92	5 M 15,07 1296 26 7,49 1288 26 7,62 5,08 1310 24 entrifuga 978 50 117 V5	7 H 16,00 1375 29 7,95 1367 29 8,07 5,40 1388 27 1050 58 138 V7
Heating performance 70 °C / 60 °C ('Heating capacity kV Water flow rate system side l/M Pressure drop system side kP Heating performance 45 °C / 40 °C (Z Heating performance 45 °C / 40 °C (Z Heating performance 7 °C / 12 °C (Z Heating performance 4 °C / 12 °C / 12 °C (Z Heating performance 4 °C / 12 °C /	L) ' 5,81 500 1 10) ' 2,89 497 1 10 2,91 2,07 500 1 12 2 49 V1	FCZSSOP 5 M 8,25 709 19 4,10 705 19 4,08 2,94 702 21 Centrifug 592 50 80 V5 55,0 51,0	8,67 746 21 4,31 741 21 4,28 3,09 736 23 627 V6	1 L 6,86 590 12 3,41 586 13 580 15 C As	FCZ600P 4 M 8,55 20 4,25 731 20 4,08 3,34 702 21 Centrifugi 3 770 50 89 V4 56,0 54,0	7 H 10,00 860 26 4,97 855 26 4,65 3,92 800 26 21 118 V7	7,63 656 15 3,79 652 15 4,15 2,93 715 16 66 V1	FCZ650P 4 M 9,72 836 23 4,83 831 23 5,02 3,60 863 23 23 Final Park Park Park Park Park Park Park Park	7 H 11,51 990 31 5,72 984 31 5,67 4,12 975 28 Il us	2 L 8,77 754 19 4,36 750 19 4,24 3,24 731 20 (As 785 32 92 V2	FCZ700P 5 M 10,10 868 25 5,02 863 25 4,97 3,83 855 26 Fentrifuga 978 50 117 V5 60,0	7 H 10,52 905 27 5,23 899 27 5,18 4,02 892 28 1050 58 138 V7	2 L 10,02 862 12 4,98 856 12 4,69 3,53 807 12 C As 785 32 92 V2	5,79 996 15 5,53 4,20 951 16 entrifuga ynchrono 3 978 50 117 V5	7 H 12,09 1040 16 6,01 1034 16 5,80 4,41 1997 17 11 us	2 L 11,81 1016 14 5,87 1009 14 4,38 3,11 753 10 C As 785 32 92 V2	5 M 13,80 1187 18 18 6,86 1180 18 5,33 4,11 917 14 entrifuga ynchrono 3 978 50 117 V5 60,0 59,0	7 H 14,45 1242 20 7,18 1235 20 5,95 4,73 1023 17 1050 58 138 V7	2 L 12,43 1069 19 6,18 1063 19 6,35 4,20 1092 18 C Asy 785 32 92 V2	52950P 5 M 15,07 1296 26 7,49 1288 26 7,62 5,08 1310 24 entrifuga ynchrone 3 978 50 117 V5 60,0	7 H 16,00 1375 29 7,95 1367 29 8,07 5,40 1388 27 1050 58 138 V7
Heating performance 70 °C / 60 °C ('Heating capacity kV Water flow rate system side l/M Pressure drop system side kP Heating performance 45 °C / 40 °C ('A Heating performance 45 °C / 40 °C ('A Heating performance 7 °C / 12 °C (Cooling performance 7 °C / 12 °C (Cooling capacity kV Water flow rate system side l/M Water flow rate system side l/M Pressure drop system side kP Fan Type type Tan motor type Tan moto	L) ' 5,81 500 1 10) ' 2,89 497 1 10 2,91 2,07 500 1 12 2 49 V1	FCZ550P 5 M 8,25 709 19 4,10 705 19 4,08 2,94 702 21 Centrifug synchrone 2 592 50 80 V5	8,67 746 21 4,31 741 21 4,28 3,09 736 23 627 V6	1 L 6,86 590 12 3,41 586 13 580 15 C As	FCZ600P 4 M 8,55 20 4,25 731 20 4,08 3,34 702 21 21 50 89 V4 56,0	7 H 10,00 860 26 4,97 855 26 4,65 3,92 800 26 21 118 V7	7,63 656 15 3,79 652 15 4,15 2,93 715 16 66 V1	FCZ650P 4 M 9,72 836 23 4,83 831 23 5,02 3,60 863 23 23 770 50 89 V4	7 H 11,51 990 31 5,72 984 31 5,67 4,12 975 28 Il us	2 L 8,77 754 19 4,36 750 19 4,24 3,24 731 20 (As 785 32 92 V2	FCZ700P 5 M 10,10 868 25 5,02 863 25 4,97 3,83 855 26 4,97 7,07 117 V5	7 H 10,52 905 27 5,23 899 27 5,18 4,02 892 28 1050 58 138 V7	2 L 10,02 862 12 4,98 856 12 4,69 3,53 807 12 C As 785 32 92 V2	5 M 11,65 1002 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	7 H 12,09 1040 16 6,01 1034 16 5,80 4,41 1997 17 11 us	2 L 11,81 1016 14 5,87 1009 14 4,38 3,11 753 10 C As 785 32 92 V2	5 M 13,80 1187 18 18 18 18 18 18 19 17 14 14 19 17 17 17 17 17 17 17 17 17 17 17 17 17	7 H 14,45 1242 20 7,18 1235 20 5,95 4,73 1023 17 1050 58 138 V7	2 L 12,43 1069 19 6,18 1063 19 6,35 4,20 1092 18 C Asy 785 32 92 V2	5 M 15,07 1296 26 1288 26 1288 26 1310 24 1288 50 117 V5 60,0 0	7 H 16,00 1375 29 7,95 1367 29 8,07 5,40 1388 27 1050 58 138 V7
Heating performance 70 °C / 60 °C ('Heating capacity kV Water flow rate system side l/M Pressure drop system side kP Heating performance 45 °C / 40 °C (Z Heating performance 45 °C / 40 °C (Z Heating performance 7 °C / 12 °C (Z Heating performance 4 °C / 12 °C / 12 °C (Z Heating performance 4 °C / 12 °C /	L) ' 5,81 500 1 10) ' 2,89 497 1 10 2,91 2,07 500 1 12 2 49 V1	FCZSSOP 5 M 8,25 709 19 4,10 705 19 4,08 2,94 702 21 Centrifug 592 50 80 V5 55,0 51,0	8,67 746 21 4,31 741 21 4,28 3,09 736 23 627 V6	1 L 6,86 590 12 3,41 586 13 580 15 C As	FCZ600P 4 M 8,55 20 4,25 731 20 4,08 3,34 702 21 Centrifugi 3 770 50 89 V4 56,0 54,0	7 H 10,00 860 26 4,97 855 26 4,65 3,92 800 26 21 118 V7	7,63 656 15 3,79 652 15 4,15 2,93 715 16 66 V1	FCZ650P 4 M 9,72 836 23 4,83 831 23 5,02 3,60 863 23 23 Final Park Park Park Park Park Park Park Park	7 H 11,51 990 31 5,72 984 31 5,67 4,12 975 28 Il us	2 L 8,77 754 19 4,36 750 19 4,24 3,24 731 20 (As 785 32 92 V2	FCZ700P 5 M 10,10 868 25 5,02 863 25 4,97 3,83 855 26 Fentrifuga 978 50 117 V5 60,0	7 H 10,52 905 27 5,23 899 27 5,18 4,02 892 28 1050 58 138 V7	2 L 10,02 862 12 4,98 856 12 4,69 3,53 807 12 C As 785 32 92 V2	5,79 996 15 5,53 4,20 951 16 entrifuga ynchrono 3 978 50 117 V5	7 H 12,09 1040 16 6,01 1034 16 5,80 4,41 1997 17 11 us	2 L 11,81 1016 14 5,87 1009 14 4,38 3,11 753 10 C As 785 32 92 V2	5 M 13,80 1187 18 18 6,86 1180 18 5,33 4,11 917 14 entrifuga ynchrono 3 978 50 117 V5 60,0 59,0	7 H 14,45 1242 20 7,18 1235 20 5,95 4,73 1023 17 1050 58 138 V7	2 L 12,43 1069 19 6,18 1063 19 6,35 4,20 1092 18 C Asy 785 32 92 V2	52950P 5 M 15,07 1296 26 7,49 1288 26 7,62 5,08 1310 24 entrifuga ynchrone 3 978 50 117 V5 60,0	7 H 16,00 1375 29 7,95 1367 29 8,07 5,40 1388 27 1050 58 138 V7

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

		I	CZ201P	0		CZ301P	0		FCZ401P	0	ı	CZ501P	0	F	CZ601P	0	ı	FCZ701P	0		CZ901P	0
		2	4	6	1	4	6	1	3	6	1	5	6	1	4	7	2	5	7	2	5	7
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 65 °C/5	55 °C (1)																					
Heating capacity	kW	1,06	1,37	1,48	1,82	2,39	2,55	2,19	2,75	2,99	2,59	3,30	3,34	3,13	3,85	4,35	4,13	4,40	4,60	5,16	5,71	5,77
Water flow rate system side	l/h	93	120	130	159	210	223	192	240	262	226	290	301	274	336	381	361	385	403	452	500	504
Pressure drop system side	kPa	5	8	9	8	12	14	5	7	8	6	9	9	9	13	16	16	15	17	10	12	12
Cooling performance 7 °C / 12	°C																					
Cooling capacity	kW	0,93	1,30	1,44	1,70	2,40	2,63	2,29	3,06	3,41	2,68	3,65	3,82	3,37	4,08	4,65	4,24	4,97	5,18	4,38	5,33	5,95
Sensible cooling capacity	kW	0,74	1,14	1,18	1,27	1,86	2,03	1,66	2,24	2,52	1,94	2,70	2,83	2,70	3,34	3,92	3,24	3,83	4,02	3,11	4,11	4,73
Water flow rate system side	l/h	160	224	248	292	413	452	394	526	586	461	628	657	580	702	800	729	855	28	753	917	1023
Pressure drop system side	kPa	8	13	15	8	16	18	11	18	22	13	22	24	15	21	26	20	26	28	10	14	17
Fan																						
Туре	type	(entrifuga	al	(entrifuga	al	(Centrifuga	ıl	(entrifuga	al	(entrifuga	ıl	(Centrifug	al	(entrifuga	al
Fan motor	type	As	ynchrono	us	As	ynchrono	us	As	ynchrono	us	As	ynchrono	ous	As	ynchrono	us	As	ynchrono	ous	As	ynchrono	JUS
Number	no.		1			2			2			2			3			3			3	
Air flow rate	m³/h	148	226	254	263	404	446	346	487	559	400	592	627	567	770	920	785	978	1050	785	978	1050
High static pressure	Pa	21	50	63	21	50	61	25	50	66	22	50	56	27	50	71	32	50	58	32	50	58
Input power	W	28	41	74	38	55	78	53	63	102	49	80	627	66	89	118	92	117	138	92	117	138
Electrical wiring		V2	V4	V6	V1	V4	V6	V1	V3	V6	V1	V5	V6	V1	V4	V7	V2	V5	V7	V2	V5	V7
Duct type fan coil sound data	(2)																					
Sound power level (inlet + radiated)	dB(A)	41,0	56,0	59,0	39,0	51,0	54,0	44,0	54,0	55,0	45,0	55,0	57,0	46,0	56,0	61,0	54,0	60,0	62,0	54,0	60,0	62,0
Sound power level (outlet)	dB(A)	37,0	52,0	55,0	35,0	47,0	49,0	40,0	50,0	52,0	41,0	51,0	53,0	44,0	54,0	60,0	52,0	59,0	61,0	52,0	59,0	61,0
Finned pack heat exchanger																						
Water content main heat exchanger	I		0,5			0,8			1,0			1,0			1,2			1,2			1,8	
Water content secondary heat exchanger	1		0,2			0,3			0,3			0,3			0,4			0,4			0,7	
Diametre hydraulic fittings																						
Main heat exchanger	Ø		1/2"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"	
Secondary heat exchanger	Ø		1/2"			1/2"			1/2"			1/2"			1/2"			1/2"			1/2"	

⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
(2) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

		FCZ101P	FCZ102P	FCZ201P	FCZ202P	FCZ301P	FCZ302P	FCZ401P	FCZ402P	FCZ501P	FCZ502P
Dimensions and weights											
A	mm	216	216	216	216	216	216	216	216	216	216
В	mm	412	412	522	522	753	753	973	973	973	973
C	mm	453	453	453	453	453	453	453	453	453	453
D	mm	452	452	562	562	793	793	1013	1013	1013	1013
Net weight	kg	12,0	13,0	13,0	14,0	15,0	16,0	21,0	22,0	23,0	24,0

		FCZ601P	FCZ602P	FCZ701P	FCZ702P	FCZ801P	FCZ802P	FCZ901P	FCZ1001P
Dimensions and weights									
A	mm	216	216	216	216	216	216	216	216
В	mm	1122	1122	1122	1122	1122	1122	1122	1122
C	mm	453	453	453	453	453	453	558	558
D	mm	1147	1147	1147	1147	1147	1147	1147	1147
Net weight	kg	30,0	31,0	30,0	31,0	30,0	31,0	32,0	32,0

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

FCZIP

Fan coil unit for ducted installations

Cooling capacity 0,89 ÷ 8,60 kW Heating capacity 2,02 ÷ 17,02 kW

- Electric saving equal to 50% with respect to a fan coil with 3-speed motor
- Suitable for duct-type installations too
- Total comfort: reduced variations in temperature and relative humidity
- Vertical and horizontal installation
- Very quiet

DESCRIPTION

fan coil can be installed in any 2/4 pipe system and operates with any heat generator even at low temperatures, and thanks to varied versions and settings, it is easy to pick the ideal solution for any need.

FEATURES

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low poice.

Their characteristics permit energy savings compared to conventional fans. They are statically and dynamically balanced and directly coupled to the motor shaft.

The Brushless electric motor with 0-100% continuous speed variation, which allows precise adaptation to the real demands of the internal environment without temperature fluctuations.

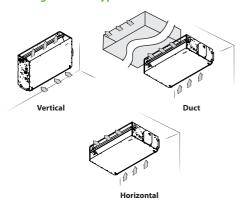
Finned pack heat exchanger

With copper pipes and aluminium louvers, the standard or oversized heat exchanger and the possible secondary heat exchanger have female gas water connections on the left side and the manifolds have air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Reversibility of the water connections during installation only for units with a standard or boosted main heat exchanger, or standard with BV accessory. Not reversible in all other configurations. In any case, units with the coil water connections on the right are available at the time of ordering.

Condensate drip


Provided standard in plastic and fixed to the interior structure; with external condensate discharge.

Air filter

Air filter class Coarse 25% for all versions easy to pull out and clean.

VERSIONS

Flush-mounting and duct-type versions

In the standard configuration there is no useful static pressure available. If necessary for canaled installations, you must act on the engine dip switches, for more details refer to the technical documentation.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Field	Description
1,2,3,4	FCZI
5,6,7	Size 200, 201, 202, 250, 300, 301, 302, 350, 400, 401, 402, 450, 500, 501, 502, 550, 700, 701, 702, 750, 900, 901, 950
8	main heat exchanger

Field	d	Description
9		Secondary heat exchanger
10		Version
	Р	Flush-mounting
	PR	Flush-mounting with water connections on right-hand side

SIZE AVAILABLE FOR VERSION

Size		200	201	202	250	300	301	302	350	400	401	402	450
Versions produced (by size)													
Versions available (by size)	P,PR	•	•	•	•	•	•	•	•	•	•	•	•
		500	501	502	550	700	701	702	750	900	901	950	
Versions produced (by size)													
Versions available (by size)	P,PR	•	•	•	•	•	•	•	•	•	•	•	

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. **PRO503:** Wall box for AER503IR and VMF-E4 thermostats.

PXAI: Thermostat on the machine for controlling the fan coils (both with asynchronous and brushless motors), complete with water and air probes to be positioned in the relative seats, and a plastic support to fix it on the side of the unit. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, purifier devices (Cold Plasma and germicidal lamp), or radiant plate.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF system

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi

connection, DI24 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, DI24 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, DI24CP, is also available as a separate accessory in our catalog.

VMF-E19I: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (MFTAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Water valves

VCZ_X: 3-way valve kit for single-coil fan coil, RH connections, (VCZ_X4R) or LH (VCZ_X4L) for 4-pipe systems. With totally separate "heating" and "cooling" circuits. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings. X4L version for fan coils with LH connections, and X4R for fan coils with RH connections. 230V~50Hz power supply.

VCZ41: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZ4124: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZ42: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZ4224: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZ43: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZ4324: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCF44 - 45 - for secondary heat exchanger: The 3-way motorised valve kit for the secondary coil heat only. The kit consists of a valve with its insulating shell, actuator and relevant water fittings; it is suitable to be installed on the fan coils with right and left water connections.

VCZD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

(Heating only) additional coil

BV: Hot water heat exchanger with 1 row.

Installation accessories

AMP: Wall mounting kit

DSC: Condensate drainage device.

BC: Condensate drip.

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing. **Ventilcassaforma:** Galvanised sheet metal template. It makes it possible to obtain directly in the wall a space for housing the fan coil.

MZA: Cabinet housing with fixed fins.

MZU: Cabinet housing with adjustable fins.

GA: Intake grid with fixed louvers

GAF: Intake grid with filter and fixed louvers

GM: Flow grid with adjustable louvers.

PA: Intake plenum in galvanised sheet metal, complete with suction couplings for circular-section ducts.

PAF: Intake plenum providing recovery and delivery on the same side, for all installations where the machine needs to be positioned outside the air conditioned rooms to minimise the noise levels and facilitate maintenance.

PM: Galvanised sheet steel flow plenum, externally insulated, equipped with plastic flow fittings for ducts and circular sections.

RD: Straight delivery coupling for canalisation.

RDA: Straight suction coupling for canalisation.

RP: 90° delivery coupling. RPA: 90° suction coupling.

Accessories for ducting

MZC: Plenum with motorised dampers.

RDA_V: Straight intake connection with rectangular flange.

RPA_V: Suction plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

RDA_C: Straight intake connection with circular flanges.

PA_V: Suction plenum with circular plastic flanges; both sides have a circular push-out Ø 150mm that can be removed.

PM_V: Internally insulated delivery plenum with circular flanges; both sides have a circular push-out Ø 150mm that can be removed.

RPM_V: Internally insulated delivery plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

RDM_V: Straight delivery coupling in galvanised sheet metal.

RDM_C: Straight discharge internally insulated, with circular flanges.

ACCESSORIES COMPATIBILITY

Control panels

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
AER503IR (1)	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PR0503	P,PR						•							•		•					•		•	•
PXAI	P,PR	•	•			•	•		•	•	•		•			•					•		•	•
SA5 (2)	P,PR		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SW3 (2)	P,PR		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SW5 (2)	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
TX (3)	P,PR		•	•		•	•	•		•	•			•	•		•	•			•	•		•

⁽¹⁾ Wall-mount installation

VMF system

For more information about VMF system, refer to the dedicated documentation.

VMF system

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
DI24	P,PR																							
VMF-E19I (1)	P,PR	•											•											
VMF-E3	P,PR	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•
VMF-E4DX	P,PR	•				•							•			•					•		•	
VMF-E4X	P,PR																						•	•
VMF-IR	P,PR	•	•	•		•				•			•	•			•			•	•			•
VMF-SW	P,PR																							•
VMF-SW1	P,PR	•	•				•	•	•				•	•	•					•	•	•	•	•
VMHI	P,PR										•										•			•

⁽¹⁾ Mandatory accessory.

Water valves

Valve Kit for 4 pipe systems

Model	Ver	200 2	01 202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
VCZ1X4L (1)	P,PR	•		•																			
VCZ1X4R (1)	P,PR																						
VCZ2X4L (1)	P,PR				•															•			
VCZ2X4R (1)	P,PR				•			•	•			•	•			•	•			•			
VCZ3X4L (1)	P,PR																						•

⁽²⁾ Probe for AERSO3IR-TX thermostats, if fitted.
(3) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
VCZ3X4R (1)	P,PR																							•

(1) The valves can be combined with the units if there is a control panel for managing them.

3 way valve kit

200	201	202	250	300	301	302	350	400	401	402	450
VCZ41	VCZ41	VCZ41	VCZ41	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42
VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224
	VCF44	VCF44			VCF44	VCF44			VCF44	VCF44	
-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-
VCF44				VCF44				VCF44			
VCF4424	-	-	-	VCF4424	-	-	-	VCF4424	-	-	-
500	501	502	550	700	701	702	750	900	901	950	
VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ43	VCZ43	VCZ43	
VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4324	VCZ4324	VCZ4324	
	VCF44	VCF44			VCF44	VCF44			VCF45		
-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-	-	VCF4524	-	
VCF44				VCF44				VCF45			
VCF4424	-	-	-	VCF4424	-	-	-	VCF4524	-	-	
	VCZ41 VCZ4124 - VCF44 VCF4424 500 VCZ42 VCZ4224 - VCF44	VCZ41 VCZ4124 VCZ4124 VCZ4124 VCF44 VCF4424 VCF4424 - S00 S01 VCZ42 VCZ42 VCZ42 VCZ4224 VCF44 VCF4424	VCZ41 VCZ41 VCZ4124 VCZ4124 VCZ4124 VCZ4124 VCF44 VCF44 VCF4424 VCF4424 VCF4424 VCF4424 VCF4424 - - 500 501 502 VCZ42 VCZ42 VCZ42 VCZ4224 VCZ4224 VCZ4224 VCF44 VCF44 VCF4424 VCF44 VCF4424 VCF4424	VCZ41 VCZ41 VCZ41 VCZ4124 VCZ4124 VCZ4124 VCZ4124 VCZ4124 VCF44 VCF44 VCF4424 VCF4424 VCF4424 VCF4424 VCF4424 VCF4424 SOO SO1 SO2 SSO VCZ42 VCZ42 VCZ42 VCZ42 VCZ4224 VCZ4224 VCZ4224 VCZ4224 VCF44 VCF44 VCF4424 VCF4424 VCF44 VCF4424 VCF4424 VCF4424	VCZ41 VCZ41 VCZ41 VCZ42 VCZ4124 VCZ4124 VCZ4124 VCZ4224 VCF44 VCF44 VCF4424 VCF4424 VCF44 VCF4424 VCF4424 VCF4424 VCF44 VCF4424 VCF4424 VCF4424 S00 501 502 550 700 VCZ42 VCZ42 VCZ42 VCZ42 VCZ42 VCZ4224 VCZ4224 VCZ4224 VCZ4224 VCZ4224 VCF44 VCF442 VCF4424 VCF4424 VCF4424 VCF44 VCF4424 VCF4424 VCF4424 VCF444	VCZ41 VCZ41 VCZ41 VCZ42 VCZ42 VCZ42 VCZ42 VCZ4224 VCF4424 VCZ4224 VCZ422 VCZ422 VCZ422 VCZ4224 VCZ4224	VCZ41 VCZ41 VCZ41 VCZ42 VCZ42 VCZ42 VCZ42 VCZ42 VCZ4224 VCF442 VCF4424 VCZ4224 VCZ4224	VCZ41 VCZ41 VCZ41 VCZ42 VCZ42 VCZ42 VCZ42 VCZ42 VCZ42 VCZ4224 VCZ422 VCZ422 VCZ422 VCZ422 VCZ4224 VCZ4224	VCZ41 VCZ41 VCZ41 VCZ42 VCZ42 VCZ42 VCZ42 VCZ42 VCZ42 VCZ42 VCZ42 VCZ42 VCZ4224 VCZ422 VCZ422 VCZ422 VCZ422 VCZ422 VCZ422 VCZ4224 VCZ	VCZ41 VCZ41 VCZ41 VCZ41 VCZ42 VCZ4224 V	VCZ41 VCZ41 VCZ41 VCZ42 VCZ424 VCZ424 VCZ424 VCZ4224 VCZ4

VCF41 - 42 - 43; VCF44 - 45 (230V ~50Hz) VCF4124 - 4224 - 4324; VCF4424 - 4524 (24V)

2 way valve kit

,												
	200	201	202	250	300	301	302	350	400	401	402	450
Main sell	VCZD1	VCZD1	VCZD1	VCZD1	VCZD2							
Main coil	VCZD124	VCZD124	VCZD124	VCZD124	VCZD224							
Carandamirail		VCFD4	VCFD4			VCFD4	VCFD4			VCFD4	VCFD4	
Secondary coil	-	VCFD424	VCFD424	-	-	VCFD424	VCFD424	-	-	VCFD424	VCFD424	-
A J J'4' I 11 // DW//	VCFD4				VCFD4				VCFD4			
Additional coil "BV"	VCFD424	-	-	-	VCFD424	-	-	-	VCFD424	-	-	-
	500	501	502	550	700	701	702	750	900	901	950	
Main sail	VCZD2	VCZD3	VCZD3	VCZD3								
Main coil	VCZD224	VCZD324	VCZD324	VCZD324								
C		VCFD4	VCFD4			VCFD4	VCFD4			VCFD4		
Secondary coil	-	VCFD424	VCFD424	-	-	VCFD424	VCFD424	-	-	VCFD424	-	
A J 424 L 21 #DV#	VCFD4				VCFD4				VCFD4			
Additional coil "BV"	VCFD424	-	-	-	VCFD424	-	-	-	VCFD424	-	-	

VCZD1 - 2 - 3; VCFD4 (230V~50Hz) VCZD124 - 224 - 324; VCF424 (24V)

Combined Adjustment and Balancing Valve Kit

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
VJP060 (1)	P,PR	•	•	•	•	•	•	•	•															
VJP060M (2)	P,PR	•			•	•	•	•	•															
VJP090 (1)	P,PR												•	•		•	•							
VJP090M (2)	P,PR									•	•	•	•	•		•	•							
VJP150 (1)	P,PR																	•		•	•		•	•
VJP150M (2)	P,PR																				•			•

(1) 230V~50Hz (2) 24V

(Heating only) additional coil

Heating only additional coil

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
BV122 (1)	P,PR	•																						
BV132 (1)	P,PR					•																		
BV142 (1)	P,PR													•										
BV162 (1)	P,PR																							
BVZ800 (1)	P,PR																	•						

(1) Not available for sizes with oversized main coil.

Installation accessories

Wall mounting kit

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
AMP20	P,PR	•			•	•			•		•	•	•	•	•	•	•							
AMPZ	P,PR																							

Condensate drip

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
BCZ4 (1)	P,PR	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
BCZ5 (2)	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9
BCZ6 (2) 1) For vertical install	P,PR																					•	<u>·</u>	
2) For horizontal inst																								
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9.
BC8 (1)	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
BC9 (1)	P,PR																						•	
1) For horizontal inst	tallation																							
Condensate re																								
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9
DSCZ4 (1)	P,PR	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	<u> </u>	•	•	•	<u>·</u>	<u> </u>	
DSCZ4 due to space contact the head of		ne unit, the	VCZ1-2	2-3-4 X4	L/R valv	es cann	ot be mo	ounted t	ogether	with th	ie amp/	AMPZ ac	cessorie	s, with	all the c	ondensa	ite colle	ction tra	ys. With	the VM	IF-E19/E	19I the	rmostat	ts, pl
Ventilcassafor																								_
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9
CHF22	P,PR	•	•	•	•																			
CHF32	P,PR					•	•	•	•															
CHF42	P,PR									•	•	•	•	•	•	•	٠							
THF62	P,PR																	•	•	•	•	•	•	
Cabinet housi	ng with fixed	fins.																						
Nodel	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9
MZA200	P,PR				•																			_
MZA300	P,PR								•															
MZA500	P,PR												•	•										
MZA800	P,PR																		•	•	•			
ΛZA900	P,PR																							
ahinet housi	ng with adjus	table fi	inc																					
lodel	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	- 9
MZU100	P,PR	•	•		•																			
1ZU300	P,PR																							
MZU500	P,PR																							
MZU800	P,PR																					-		
MZU900	P,PR																						•	
ower intake o	grille Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	000	901	9
Model GA22	P,PR		201	- 202		300	301	302	330	400	401	402	430	300	301	502	330	/00	701	702	/30	900	901	
		•	•	<u> </u>	•																			
iA32	P,PR					•	•	•	•															
5A42	P,PR									•	•	•	•	•	•	•	•							
GA62	P,PR																	<u> </u>		•	•	<u> </u>	<u> </u>	
ntake grilles v	with fixed lou	vers an	d filt	er																				
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9
AF22	P,PR	•	•	•	•																			
AF32	P,PR					•	•	•	•															
AF42	P,PR									•	•	•	•	•	•	•	•							
AF62	P,PR																	<u> </u>	•	•	•	•	•	
Delivery grille	s with adjust	able lou	uvers	5																				
Nodel	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9
M22	P,PR	•	•	•	•																			
iM32	P,PR					•	•	•	•															
iM42	P,PR									•	•					•	•							_
M62	P,PR																	•	•	•	•		•	
ntake plenum	n in sheet met	al com	plete	with	conn	ecto	rs for	circu	lar ch	anne	els													
lodel	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	
A22	P,PR	•	•	•	•																			
A32	P,PR																							
A42	P,PR									•	•		•	•		•	•							
A62	P,PR																	•	•	•	•	•	•	
ntake plenum	n providing re	covery	and	deliv	ery o	n the	same	side																
lodel	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9
A22F	P,PR	•	•	•	•																			
A32F	P,PR								•															
A42F	P,PR												•		•									
'A42F 'A62F	P,PR P,PR									•	•	•	•	•	•	•	•		•	•	•		_	

Model	um with circul Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
M22	P,PR					300	301	302	330	400	401	402	450	300	301	302	330	/00	/01	/02	/30	900	901	930
		•	•	•	•																			
M32	P,PR					•	•	•	•															
M42	P,PR									•	•	•	•	•	•	•	•							
M62	P,PR		-															<u> </u>	<u> </u>	<u> </u>	•	<u> </u>	<u> </u>	_
traight deliv	ery coupling																							
Model .	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
D22	P,PR	•	•	•	•																			
RD32	P,PR																							
RD42	P,PR												•											
RD62	P,PR																							
	,																							
traight sucti	on coupling																							
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
RDA22	P,PR	•	•	٠	•																			
RDA32	P,PR					•	•	•	•															
RDA42	P,PR									•	•	•	•	•	•	•	•							
RDA62	P,PR																	•	•	•	•	•	•	
00° d ali																								
00° delivery c		300	301	302	350	300	301	202	350	100	40-	402	450	FA4	F04			700	704	702	754	000	004	
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9.
RP22	P,PR	•	•	•	•																			
RP32	P,PR					•	•	•	•															
RP42	P,PR									•	•	•	•	•	•	•	•							
RP62	P,PR																	•	•	•	•	•	•	_
90° suction co	unlina.																							
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
RPA22	P,PR			- 202		300	301	302	330	700	701	702	7,70	300	301	302	330	700	701	702	730	700	701	
RPA32	P,PR								•															
RPA42	P,PR					<u> </u>	•	<u> </u>	<u> </u>															
(PA4)										•	•	•	•	•	•	•	•							
RPA62 Accessories	P,PR	mpers.																•	•	•	•	•	•	
RPA62 Accessories to Plenum with in Model	P,PR for ducting motorised dar Ver	mpers.	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9:
RPA62 Accessories of the properties of the prop	P,PR for ducting motorised dar Ver P,PR		201	202	250	300	301	302	350	400	401	402	450	500	501	502	550		701			900		95
RPA62 Accessories of Plenum with 1 Model MZC220	P,PR for ducting motorised dar Ver P,PR P,PR	200				300	301	302	350	400	401	402	450	500	501	502	550		701			900		95
RPA62 Accessories	P,PR for ducting motorised dar Ver P,PR	200								400	401	402	450	500	501	502	550		701			900		95
Accessories of Plenum with I Model MZC220 MZC320 MZC530	P,PR for ducting motorised dar Ver P,PR P,PR	200									401								701			900		95
Accessories of Plenum with 1 Model MZC220 MZC320 MZC330 MZC330 MZC830	P.PR for ducting motorised dar Ver P.PR P.PR P.PR P.PR	200	•	•	•	•					401							700	701			900	901	95
Accessories to Plenum with a Model MZC220 MZC320 MZC330 MZC830 Straight intak	P.PR for ducting motorised dar Ver P.PR P.PR P.PR P.PR P.PR	200 ·	ectan	gular	flang	, je.	•	•	•	•	•	•	•	•	•	•	•	700	•	702	750	•	901	•
Accessories (Plenum with I Model MZC220 MZC320 MZC330 MZC830 MZC830 Straight intak	P.PR for ducting motorised dar Ver P.PR P.PR P.PR P.PR P.PR Ver e connection Ver	200 with re	ectang	gular	flang	, je.					401							700	701			900	901	_
Accessories of Plenum with 1 Model MZC220 MZC320 MZC330 MZC830 MZC830 Straight intak Model RDA0000V	P.PR for ducting motorised dar Ver P.PR P.PR P.PR P.PR P.PR Ver P.PR	200 ·	ectan	gular	flang	je.	301	302	350	•	•	•	•	•	•	•	•	700	•	702	750	•	901	_
Accessories of Plenum with In Model MZC220 MZC320 MZC330 MZC830 MZC830 Straight intak Model RDA000V RDA100V	P,PR for ducting motorised dar Ver P,PR P,PR P,PR P,PR Ver connection Ver P,PR P,PR P,PR	200 with re	ectang	gular	flang	, je.	•	•	•	•	•	•	•	•	501	•	550	700	•	702	750	•	901	•
Accessories of Plenum with In Model MZC220 MZC320 MZC330 MZC830 Straight intak Model RDA000V RDA100V RDA100V	P,PR for ducting motorised dar Ver P,PR P,PR P,PR P,PR Ver connection Ver P,PR P,PR P,PR P,PR P,PR P,PR P,PR P,P	200 with re	ectang	gular	flang	je.	301	302	350	•	•	•	•	•	•	•	•	700	701	702	750	900	901	95
Accessories of Plenum with In Model MZC220 MZC320 MZC330 MZC830 Straight intak Model RDA000V RDA100V RDA100V	P,PR for ducting motorised dar Ver P,PR P,PR P,PR P,PR Ver connection Ver P,PR P,PR P,PR	200 with re	ectang	gular	flang	je.	301	302	350	400	401	402	450	500	501	502	550	700	•	702	750	•	901	95
RPA62 Accessories of Plenum with I Model MZC220 MZC320 MZC330 MZC330 MZC830 Straight intak Model RDA000V RDA100V RDA100V RDA300V	P,PR for ducting motorised dar Ver P,PR P,PR P,PR P,PR P,PR P,PR P,PR P,P	200 with re 200	201	gular 202	flang	je.	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
RPA62 Accessories to Plenum with a Model RDA000V RDA100V RDA300V Intake plenum	P.PR for ducting motorised dar Ver P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	with re	ectang 201	gular 202	flance 250	ge. 300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
RPA62 Accessories of Plenum with a Model MZC220 MZC320 MZC330 MZC330 MZC830 Straight intak Model RDA000V RDA100V RDA100V RDA300V Intake plenum Model	P,PR for ducting motorised dar Ver P,PR P,P	200 with re 200	201	gular 202	flang 250	je.	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
RPA62 Accessories (Plenum with I Model MZC220 MZC320 MZC320 MZC330 MZC830 Straight intak Model RDA000V RDA100V RDA200V RDA300V Intake plenum Model RPA000V	P,PR for ducting motorised dar Ver P,PR	with re	201 ange.	gular 202	flance 250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
RPA62 Accessories of Plenum with I Model MZC220 MZC320 MZC320 MZC330 MZC330 Straight intak Model RDA000V RDA100V RDA200V RDA300V Intake plenum Model RPA000V RPA100V RPA100V RPA100V	P,PR for ducting motorised dar Ver P,PR P,PR P,PR P,PR P,PR P,PR P,PR P,P	with re	201 ange.	gular 202	flang 250	ge. 300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
RPA62 Accessories (Plenum with I Model MZC220 MZC320 MZC320 MZC330 MZC330 Straight intak Model RDA000V RDA100V RDA200V RDA300V Intake plenum Model RPA000V RPA100V RPA100V RPA100V RPA100V RPA100V RPA100V RPA100V RPA100V	P,PR for ducting motorised dar Ver P,PR	with re	201 ange.	gular 202	flang 250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
RPA62 Accessories (Plenum with I Model MZC220 MZC320 MZC320 MZC330 MZC330 Straight intak Model RDA000V RDA100V RDA200V RDA300V Intake plenum Model RPA000V RPA100V RPA100V RPA100V RPA100V RPA100V RPA100V RPA100V RPA100V	P,PR for ducting motorised dar Ver P,PR P,PR P,PR P,PR P,PR P,PR P,PR P,P	with re	201 ange.	gular 202	flang 250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
RPA62 Accessories of Plenum with Info Model MZC220 MZC320 MZC320 MZC330 MZC830 Straight intak Model RDA000V RDA100V RDA300V RDA300V RPA100V RPA100V RPA300V RPA300V RPA300V RPA300V RPA300V RPA300V RPA300V RPA300V RPA300V	P,PR for ducting motorised dar Ver P,PR P,PR P,PR P,PR P,PR P,PR P,PR P,P	with re 200 . gular fl 200 .	ectang 201 ange. 201	gular 202	flang 250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
RPA62 Accessories of Plenum with in Model MZC220 MZC320 MZC330 MZC830 Straight intak Model RDA000V RDA100V RDA300V Intake plenum Model RPA000V RPA100V	P.PR for ducting motorised dar Ver P.PR P.P	with re	201 ·	. 202	flang 250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
RPA62 Accessories of Plenum with in Model MZC220 MZC320 MZC320 MZC330 MZC830 Straight intak Model RDA000V RDA300V RDA300V RDA300V RTAKE plenum Model RPA000V RPA100V	P.PR for ducting motorised dar Ver P.PR	with re 200 . gular fl 200 .	ectang 201 ange. 201	gular 202	flang 250	300	301	302	350	400	401	. 402	450	500	501	502	550	700	701	702	750	900	901	95
RPA62 Accessories of Plenum with in Model MZC220 MZC320 MZC320 MZC330 MZC830 Straight intak Model RDA000V RDA300V RDA300V RDA300V RTAKE plenum Model RPA000V RPA100V	P.PR for ducting motorised dar Ver P.PR P.P	with re 200 . gular fl 200 .	ectange 201	202 · · · · · · · · · · · · · · · · · ·	flang 250	300	301	302	350	400	401	. 402	450	500	501	502	550	700	701	702	750	900	901	95
RPA62 Accessories of Plenum with in Model MZC220 MZC320 MZC330 MZC830 Straight intak Model RDA000V RDA100V RDA300V Intake plenum Model RPA000V RPA300V	P.PR for ducting motorised dar Ver P.PR	with re 200 . gular fl 200 .	ectange 201	202 · · · · · · · · · · · · · · · · · ·	flang 250	300 · · · · · · · · · · · · · · · · · ·	301	302	350	400	401	. 402	450	500	501	502	550	700	701	702	750	900	901	99
RPA62 Accessories of Plenum with in Model MZC220 MZC320 MZC330 MZC830 Straight intak Model RDA000V RDA100V RDA300V Intake plenum Model RPA000V RPA300V	P.PR for ducting motorised dar Ver P.PR	with re 200 . gular fl 200 .	ectange 201	202 · · · · · · · · · · · · · · · · · ·	flang 250	300 · · · · · · · · · · · · · · · · · ·	301	302	350	400	401	402	450	500	501	. 502 . 502	550	700	701	702	750	900	901	9:
RPA62 Accessories (Plenum with I Model MZC220 MZC320 MZC330 MZC330 MZC830 Straight intak Model RDA000V RDA100V RDA100V RPA100V	P.PR for ducting motorised dar Ver P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	with re 200 . gular fl 200 .	ange.	202 · · · · · · · · · · · · · · · · · ·	250 · · · · · · · · · · · · · · · · · · ·	300 · · · · · · · · · · · · · · · · · ·	301	302	350	400	401	402	450	500	501	. 502 . 502	550	700 - 700 - 700	701	702 	750 	900	901 - 901 - 901	9:
RPA62 Accessories (Plenum with I Model MZC220 MZC320 MZC330 MZC330 Straight intak Model RDA000V RDA100V RDA300V Intake plenum Model RPA000V RPA100V RPA300V SPA100V RPA300V Suction plenu Model RA000V RPA300V RPA300V RPA300V RA300V	P.PR for ducting motorised dar Ver P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	with re 200 . gular fl 200 . c circul 200 .	ange.	202 · · · · · · · · · · · · · · · · · ·	250 · · · · · · · · · · · · · · · · · · ·	300	301	302	350	400	401	402	450	500 500	. 501 . 501			700 	701	702 	750	900	901	99
RPA62 Accessories i Plenum with I Model MZC220 MZC330 MZC330 MZC830 Straight intak Model RDA000V RDA100V RDA300V Intake plenum Model RPA000V RPA100V	P.PR for ducting motorised dar Ver P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	with re 200 . gular fl 200 . c circul 200 .	ange.	. 202	250 · · · · · · · · · · · · · · · · · · ·	300 · · · · · · · · · · · · · · · · · ·	301	302	350	400	401	402	450	500	501	. 502 . 502	550	700 - 700 - 700	701	702 	750 	900	901 - 901 - 901	95
RPA62 Accessories i Plenum with I Model MZC220 MZC320 MZC330 MZC330 Straight intak Model RDA000V RDA100V RDA200V RDA300V Intake plenum Model RPA000V RPA100V RPA100V RPA300V Suction plenu Model PA000V RPA300V RPA300V RPA300V RPA300V RPA300V RPA300V RPA300V RPA300V RPA300V RAMADON RAM	P.PR for ducting motorised dar Ver P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	with re 200 . gular fl 200 . c circul 200 .	ange.	202 · · · · · · · · · · · · · · · · · ·	250 · · · · · · · · · · · · · · · · · · ·	300	301	302	350	400	401	402	450	500 500	. 501 . 501			700 	701	702 	750	900	901	95
RPA62 Accessories i Plenum with I Model MZC220 MZC330 MZC330 MZC330 MZC830 Straight intak Model RDA000V RDA100V RDA100V RDA200V RDA300V Intake plenum Model RPA000V RPA100V RPA100V RPA100V RPA100V RPA100V RPA100V RPA100V Internally inst Model PM000V PM100V PM100V	P.PR for ducting motorised dar Ver P.PR	with re 200 . gular fl 200 . c circul 200 .	ange. 201 . ar fla 201 .	. 202	250 · · · · · · · · · · · · · · · · · · ·	300	301	302	350	400	401	402	450	500 - 500 -	. 501 . 501			700 	701	702 	750	900	901	95
RPA62 Accessories (Plenum with I Model MZC220 MZC330 MZC330 MZC330 MZC830 Straight intak Model RDA000V RDA100V RDA200V RDA300V Intake plenum Model RPA000V RPA100V RPA300V Suction plenu Model PA000V PA100V PA300V PA300V	P.PR for ducting motorised dar Ver P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	with re 200 . gular fl 200 . c circul 200 .	ange. 201 . ar fla 201 .	. 202	250 · · · · · · · · · · · · · · · · · · ·	300	301 . 301 . 301 .	302	350	400	401	402	450	500 - 500 -	. 501 . 501			700 	701	702 	750	900	901	95

Internally insulated delivery plenum with rectangular flange.

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
RPM000V	P,PR	•	•	•	•																			
RPM100V	P,PR					•	•	•	•															
RPM200V	P,PR									•				•		•	•							
RPM300V	P,PR																							
	ery coupling																							
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
RDM000V	P,PR	•	•	•	•																			
RDM100V	P,PR					•	•	•	•															
RDM200V	P,PR									•	•	•	•	•	•	•	•							
RDM300V	P,PR																			•	•			•
Straight discl Model	harge internal Ver	ly insul	ated, 201	with	circu 250	lar fl	ange: 301	s. 302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
RDMC000V	P,PR	•	•	•	•																			
	P.PR					•	•																	
RDMC100V	1,111																							
RDMC100V RDMC200V	P,PR									•		•	•	•	•	•	•							

PERFORMANCE DATA FOR UNITS WITHOUT HEAD (EUROVENT CERTIFICATE FC-H)

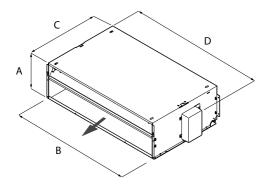
			FCZI200I	P		FCZI250I			FCZI300	P		FCZI350I	,		FCZI400I	P		FCZI450	P
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																			
Heating capacity	kW	2,02	2,95	3,70	2,20	3,18	4,05	3,47	4,46	5,50	3,77	4,92	6,15	4,32	5,74	7,15	4,57	6,29	7,82
Water flow rate system side	l/h	177	258	324	193	278	355	304	391	482	330	431	539	379	503	627	400	551	685
Pressure drop system side	kPa	6	12	18	7	15	23	7	12	18	8	14	20	9	16	24	6	11	16
Heating performance 45 °C / 40 °C (2)																			
Heating capacity	kW	1,00	1,46	1,84	1,09	1,58	2,01	1,72	2,21	2,73	1,87	2,44	3,06	2,14	2,85	3,55	2,27	3,12	3,88
Water flow rate system side	I/h	174	254	319	190	274	350	299	385	475	325	425	531	373	495	617	394	543	675
Pressure drop system side	kPa	6	12	18	8	15	22	8	12	18	8	14	20	10	16	24	6	11	16
Fan																			
Туре	type	(Centrifuga	al	(Centrifuga	ıl	(Centrifug	al	(Centrifuga	ıl	(Centrifuga	al	(Centrifuga	al
Fan motor	type		Inverter			Inverter			Inverter			Inverter			Inverter			Inverter	
Number	no.		1			1			2			2			2			2	
Air flow rate	m³/h	140	220	290	140	220	290	260	350	450	260	350	450	330	460	600	330	460	600
Input power	W	7	8	14	7	8	14	5	7	13	5	7	13	5	10	18	5	10	18
Signal 0-10V	%	44	68	90	44	68	90	52	70	90	52	70	90	49	68	90	49	68	90
Fan coil sound data (3)	W 7 8 14 7 8 14 5 7 13 5 7 13 5 10 18 5 10 6 9 9 14 68 90 52 70 90 52 70 90 49 68 90 49 68 90 49 68 90 44 68 90 52 70 90 52 70 90 49 68 90 40 68 90																		
Sound power level					_														51,0
Sound pressure level	dB(A)	27,0	38,0	43,0	27,0	38,0	43,0	26,0	33,0	40,0	26,0	33,0	40,0	29,0	36,0	43,0	29,0	36,0	43,0
Finned pack heat exchanger					1			1											
Water content main heat exchanger			0,5			0,7			0,8			1,0			1,0			1,4	
Diametre hydraulic fittings																			
Main heat exchanger	Ø		1/2"			1/2"			3/4"			3/4"			3/4"			3/4"	
			FCZI500I	<u> </u>		FCZI550I			FCZI700	<u> </u>		FCZI750I			FCZ19001	P		FCZI950	P
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)	114/																		
Heating capacity	kW	5,27	7,31	8,50	5,82	8,34	9,75	8,10	9,80	11,00	9,10	11,30	12,50	10,77	13,35	15,14	11,20	14,42	17,10
Heating capacity Water flow rate system side	l/h	5,27 462	7,31 641	8,50 745	5,82 510	8,34 731	9,75 855	8,10 710	9,80 860	11,00 964	9,10	11,30 991	12,50 1096	10,77 945	13,35 1171	15,14 1328	11,20	14,42 1264	17,10 1500
Heating capacity Water flow rate system side Pressure drop system side		5,27	7,31	8,50	5,82	8,34	9,75	8,10	9,80	11,00	9,10	11,30	12,50	10,77	13,35	15,14	11,20	14,42	17,10
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40 °C(2)	I/h kPa	5,27 462 12	7,31 641 21	8,50 745 28	5,82 510 10	8,34 731 20	9,75 855 26	8,10 710 17	9,80 860 24	11,00 964 29	9,10 798 10	11,30 991 15	12,50 1096 18	10,77 945 12	13,35 1171 17	15,14 1328 22	11,20 982 16	14,42 1264 24	17,10 1500 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40 °C (2) Heating capacity	I/h kPa kW	5,27 462 12 2,62	7,31 641 21 3,63	8,50 745 28 4,22	5,82 510 10	8,34 731 20 4,14	9,75 855 26 4,85	8,10 710 17	9,80 860 24 4,87	11,00 964 29 5,47	9,10 798 10 4,52	11,30 991 15 5,62	12,50 1096 18 6,21	10,77 945 12 5,35	13,35 1171 17 6,64	15,14 1328 22 7,53	11,20 982 16 5,57	14,42 1264 24 7,17	17,10 1500 33 8,50
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40 °C (2) Heating capacity Water flow rate system side	I/h kPa kW I/h	5,27 462 12 2,62 455	7,31 641 21 3,63 631	8,50 745 28 4,22 734	5,82 510 10 2,89 502	8,34 731 20 4,14 720	9,75 855 26 4,85 842	8,10 710 17 4,03 699	9,80 860 24 4,87 846	11,00 964 29 5,47 950	9,10 798 10 4,52 786	11,30 991 15 5,62 975	12,50 1096 18 6,21 1079	10,77 945 12 5,35 930	13,35 1171 17 6,64 1152	15,14 1328 22 7,53 1307	11,20 982 16 5,57 967	14,42 1264 24 7,17 1245	17,10 1500 33 8,50 1476
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40 °C (2) Heating capacity Water flow rate system side Pressure drop system side	I/h kPa kW	5,27 462 12 2,62	7,31 641 21 3,63	8,50 745 28 4,22	5,82 510 10	8,34 731 20 4,14	9,75 855 26 4,85	8,10 710 17	9,80 860 24 4,87	11,00 964 29 5,47	9,10 798 10 4,52	11,30 991 15 5,62	12,50 1096 18 6,21	10,77 945 12 5,35	13,35 1171 17 6,64	15,14 1328 22 7,53	11,20 982 16 5,57	14,42 1264 24 7,17	17,10 1500 33 8,50
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan	I/h kPa kW I/h kPa	5,27 462 12 2,62 455 12	7,31 641 21 3,63 631 21	8,50 745 28 4,22 734 28	5,82 510 10 2,89 502	8,34 731 20 4,14 720 20	9,75 855 26 4,85 842 26	8,10 710 17 4,03 699 16	9,80 860 24 4,87 846 24	11,00 964 29 5,47 950 29	9,10 798 10 4,52 786	11,30 991 15 5,62 975 14	12,50 1096 18 6,21 1079 18	10,77 945 12 5,35 930 12	13,35 1171 17 6,64 1152	15,14 1328 22 7,53 1307 22	11,20 982 16 5,57 967 15	14,42 1264 24 7,17 1245 24	17,10 1500 33 8,50 1476 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Type	I/h kPa kW I/h kPa	5,27 462 12 2,62 455 12	7,31 641 21 3,63 631 21	8,50 745 28 4,22 734 28	5,82 510 10 2,89 502	8,34 731 20 4,14 720 20	9,75 855 26 4,85 842 26	8,10 710 17 4,03 699 16	9,80 860 24 4,87 846 24	11,00 964 29 5,47 950 29	9,10 798 10 4,52 786	11,30 991 15 5,62 975 14	12,50 1096 18 6,21 1079 18	10,77 945 12 5,35 930 12	13,35 1171 17 6,64 1152 17	15,14 1328 22 7,53 1307 22	11,20 982 16 5,57 967 15	14,42 1264 24 7,17 1245 24	17,10 1500 33 8,50 1476 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40 °C(2) Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor	I/h kPa kW I/h kPa type	5,27 462 12 2,62 455 12	7,31 641 21 3,63 631 21 Centrifuga	8,50 745 28 4,22 734 28	5,82 510 10 2,89 502	8,34 731 20 4,14 720 20 Centrifuga Inverter	9,75 855 26 4,85 842 26	8,10 710 17 4,03 699 16	9,80 860 24 4,87 846 24 Centrifuga	11,00 964 29 5,47 950 29	9,10 798 10 4,52 786	11,30 991 15 5,62 975 14 Centrifuga	12,50 1096 18 6,21 1079 18	10,77 945 12 5,35 930 12	13,35 1171 17 6,64 1152 17 Centrifuga	15,14 1328 22 7,53 1307 22	11,20 982 16 5,57 967 15	14,42 1264 24 7,17 1245 24 Centrifuga Inverter	17,10 1500 33 8,50 1476 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40 °C(2) Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number	I/h kPa kW I/h kPa type type no.	5,27 462 12 2,62 455 12	7,31 641 21 3,63 631 21 Centrifuga Inverter 2	8,50 745 28 4,22 734 28	5,82 510 10 2,89 502 10	8,34 731 20 4,14 720 20 Centrifuga Inverter 2	9,75 855 26 4,85 842 26	8,10 710 17 4,03 699 16	9,80 860 24 4,87 846 24 Centrifug. Inverter	11,00 964 29 5,47 950 29	9,10 798 10 4,52 786 10	11,30 991 15 5,62 975 14 Centrifuga Inverter 3	12,50 1096 18 6,21 1079 18	10,77 945 12 5,35 930 12	13,35 1171 17 6,64 1152 17 Centrifuga Inverter 3	15,14 1328 22 7,53 1307 22	11,20 982 16 5,57 967 15	14,42 1264 24 7,17 1245 24 Centrifuga Inverter 3	17,10 1500 33 8,50 1476 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40 °C(2) Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate	l/h kPa kW l/h kPa type type no. m³/h	5,27 462 12 2,62 455 12	7,31 641 21 3,63 631 21 Centrifuga Inverter 2 600	8,50 745 28 4,22 734 28	5,82 510 10 2,89 502 10	8,34 731 20 4,14 720 20 Centrifuga Inverter 2 600	9,75 855 26 4,85 842 26	8,10 710 17 4,03 699 16	9,80 860 24 4,87 846 24 Centrifug. Inverter 3 930	11,00 964 29 5,47 950 29	9,10 798 10 4,52 786 10	11,30 991 15 5,62 975 14 Centrifuga Inverter 3 930	12,50 1096 18 6,21 1079 18	10,77 945 12 5,35 930 12	13,35 1171 17 6,64 1152 17 Centrifuga Inverter 3 930	15,14 1328 22 7,53 1307 22	11,20 982 16 5,57 967 15	14,42 1264 24 7,17 1245 24 Centrifuga Inverter 3 930	17,10 1500 33 8,50 1476 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/ 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power	l/h kPa kW l/h kPa type type no. m³/h W	5,27 462 12 2,62 455 12 (400 7	7,31 641 21 3,63 631 21 Centrifuga Inverter 2 600 18	8,50 745 28 4,22 734 28	5,82 510 10 2,89 502 10	8,34 731 20 4,14 720 20 Centrifuga Inverter 2 600 10	9,75 855 26 4,85 842 26	8,10 710 17 4,03 699 16	9,80 860 24 4,87 846 24 Centrifug Inverter 3 930 40	11,00 964 29 5,47 950 29 al	9,10 798 10 4,52 786 10	11,30 991 15 5,62 975 14 Centrifuga Inverter 3 930 40	12,50 1096 18 6,21 1079 18 1140 80	10,77 945 12 5,35 930 12	13,35 1171 17 6,64 1152 17 Centrifuga Inverter 3 930 40	15,14 1328 22 7,53 1307 22 al	11,20 982 16 5,57 967 15	14,42 1264 24 7,17 1245 24 Centrifuga Inverter 3 930 40	17,10 1500 33 8,50 1476 33 1140 80
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/ 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V	l/h kPa kW l/h kPa type type no. m³/h	5,27 462 12 2,62 455 12	7,31 641 21 3,63 631 21 Centrifuga Inverter 2 600	8,50 745 28 4,22 734 28	5,82 510 10 2,89 502 10	8,34 731 20 4,14 720 20 Centrifuga Inverter 2 600	9,75 855 26 4,85 842 26	8,10 710 17 4,03 699 16	9,80 860 24 4,87 846 24 Centrifug. Inverter 3 930	11,00 964 29 5,47 950 29	9,10 798 10 4,52 786 10	11,30 991 15 5,62 975 14 Centrifuga Inverter 3 930	12,50 1096 18 6,21 1079 18	10,77 945 12 5,35 930 12	13,35 1171 17 6,64 1152 17 Centrifuga Inverter 3 930	15,14 1328 22 7,53 1307 22	11,20 982 16 5,57 967 15	14,42 1264 24 7,17 1245 24 Centrifuga Inverter 3 930	17,10 1500 33 8,50 1476 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/ 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Fan coil sound data (3)	kW I/h kPa type type no. m³/h W	5,27 462 12 2,62 455 12 400 7 50	7,31 641 21 3,63 631 21 Centrifuga Inverter 2 600 18 74	8,50 745 28 4,22 734 28 al	5,82 510 10 2,89 502 10 400 4 50	8,34 731 20 4,14 720 20 Centrifuga Inverter 2 600 10 74	9,75 855 26 4,85 842 26 II	8,10 710 17 4,03 699 16	9,80 860 24 4,87 846 24 Centrifug Inverter 3 930 40 72	11,00 964 29 5,47 950 29 al	9,10 798 10 4,52 786 10 700 30 56	11,30 991 15 5,62 975 14 Centrifuga Inverter 3 930 40 72	12,50 1096 18 6,21 1079 18 11 1140 80 90	10,77 945 12 5,35 930 12 700 30 56	13,35 1171 17 6,64 1152 17 Centrifuga Inverter 3 930 40 72	15,14 1328 22 7,53 1307 22 al	11,20 982 16 5,57 967 15	14,42 1264 24 7,17 1245 24 Centrifuga Inverter 3 930 40 72	17,10 1500 33 8,50 1476 33 al
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/ 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Fan coil sound data (3) Sound power level	l/h kPa kW l/h kPa type type no. m³/h W %	5,27 462 12 2,62 455 12 400 7 50	7,31 641 21 3,63 631 21 Centrifuga Inverter 2 600 18 74	8,50 745 28 4,22 734 28 28 720 31 90	5,82 510 10 2,89 502 10 400 4 50	8,34 731 20 4,14 720 20 Centrifuga Inverter 2 600 10 74	9,75 855 26 4,85 842 26 720 19 90	8,10 710 17 4,03 699 16 700 30 56	9,80 860 24 4,87 846 24 24 Inverter 3 930 40 72	11,00 964 29 5,47 950 29 all 1140 80 90	9,10 798 10 4,52 786 10 700 30 56	11,30 991 15 5,62 975 14 14 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18	12,50 1096 18 6,21 1079 18 1140 80 90	10,77 945 12 5,35 930 12 (0 30 56	13,35 1171 17 6,64 1152 17 17 18 1930 40 72	15,14 1328 22 7,53 1307 22 21 1140 80 90	11,20 982 16 5,57 967 15	14,42 1264 24 7,17 1245 24 1Inverter 3 930 40 72	17,10 1500 33 8,50 1476 33 1140 80 90
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/ 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Fan coil sound data (3) Sound power level Sound pressure level	kW I/h kPa type type no. m³/h W	5,27 462 12 2,62 455 12 400 7 50	7,31 641 21 3,63 631 21 Centrifuga Inverter 2 600 18 74	8,50 745 28 4,22 734 28 al	5,82 510 10 2,89 502 10 400 4 50	8,34 731 20 4,14 720 20 Centrifuga Inverter 2 600 10 74	9,75 855 26 4,85 842 26 II	8,10 710 17 4,03 699 16	9,80 860 24 4,87 846 24 Centrifug Inverter 3 930 40 72	11,00 964 29 5,47 950 29 al	9,10 798 10 4,52 786 10 700 30 56	11,30 991 15 5,62 975 14 Centrifuga Inverter 3 930 40 72	12,50 1096 18 6,21 1079 18 11 1140 80 90	10,77 945 12 5,35 930 12 700 30 56	13,35 1171 17 6,64 1152 17 Centrifuga Inverter 3 930 40 72	15,14 1328 22 7,53 1307 22 al	11,20 982 16 5,57 967 15	14,42 1264 24 7,17 1245 24 Centrifuga Inverter 3 930 40 72	17,10 1500 33 8,50 1476 33 al
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Fan coil sound data (3) Sound power level Sound pressure level Finned pack heat exchanger	l/h kPa kW l/h kPa type type no. m³/h W % dB(A) dB(A)	5,27 462 12 2,62 455 12 400 7 50	7,31 641 21 3,63 631 21 Centrifuga Inverter 2 600 18 74 51,0 43,0	8,50 745 28 4,22 734 28 28 720 31 90	5,82 510 10 2,89 502 10 400 4 50	8,34 731 20 4,14 720 20 Centrifuga Inverter 2 600 10 74 51,0 43,0	9,75 855 26 4,85 842 26 720 19 90	8,10 710 17 4,03 699 16 700 30 56	9,80 860 24 4,87 846 24 Centrifug Inverter 3 930 40 72 57,0 49,0	11,00 964 29 5,47 950 29 all 1140 80 90	9,10 798 10 4,52 786 10 700 30 56	11,30 991 15 5,62 975 14 Centrifuga Inverter 3 930 40 72 57,0 49,0	12,50 1096 18 6,21 1079 18 1140 80 90	10,77 945 12 5,35 930 12 (0 30 56	13,35 1171 17 6,64 1152 17 Centrifuga Inverter 3 930 40 72 57,0 49,0	15,14 1328 22 7,53 1307 22 21 1140 80 90	11,20 982 16 5,57 967 15	14,42 1264 24 7,17 1245 24 Centrifugg 1nverter 3 930 40 72 57,0 49,0	17,10 1500 33 8,50 1476 33 1140 80 90
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Fan coil sound data (3) Sound power level Sound pressure level Finned pack heat exchanger Water content main heat exchanger	l/h kPa kW l/h kPa type type no. m³/h W %	5,27 462 12 2,62 455 12 400 7 50	7,31 641 21 3,63 631 21 Centrifuga Inverter 2 600 18 74	8,50 745 28 4,22 734 28 28 720 31 90	5,82 510 10 2,89 502 10 400 4 50	8,34 731 20 4,14 720 20 Centrifuga Inverter 2 600 10 74	9,75 855 26 4,85 842 26 720 19 90	8,10 710 17 4,03 699 16 700 30 56	9,80 860 24 4,87 846 24 24 Inverter 3 930 40 72	11,00 964 29 5,47 950 29 all 1140 80 90	9,10 798 10 4,52 786 10 700 30 56	11,30 991 15 5,62 975 14 14 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18	12,50 1096 18 6,21 1079 18 1140 80 90	10,77 945 12 5,35 930 12 (0 30 56	13,35 1171 17 6,64 1152 17 17 18 1930 40 72	15,14 1328 22 7,53 1307 22 21 1140 80 90	11,20 982 16 5,57 967 15	14,42 1264 24 7,17 1245 24 1Inverter 3 930 40 72	17,10 1500 33 8,50 1476 33 al
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Fan coil sound data (3) Sound power level Sound pressure level Finned pack heat exchanger	l/h kPa kW l/h kPa type type no. m³/h W % dB(A) dB(A)	5,27 462 12 2,62 455 12 400 7 50	7,31 641 21 3,63 631 21 Centrifuga Inverter 2 600 18 74 51,0 43,0	8,50 745 28 4,22 734 28 28 720 31 90	5,82 510 10 2,89 502 10 400 4 50	8,34 731 20 4,14 720 20 Centrifuga Inverter 2 600 10 74 51,0 43,0	9,75 855 26 4,85 842 26 720 19 90	8,10 710 17 4,03 699 16 700 30 56	9,80 860 24 4,87 846 24 Centrifug Inverter 3 930 40 72 57,0 49,0	11,00 964 29 5,47 950 29 all 1140 80 90	9,10 798 10 4,52 786 10 700 30 56	11,30 991 15 5,62 975 14 Centrifuga Inverter 3 930 40 72 57,0 49,0	12,50 1096 18 6,21 1079 18 1140 80 90	10,77 945 12 5,35 930 12 (0 30 56	13,35 1171 17 6,64 1152 17 Centrifuga Inverter 3 930 40 72 57,0 49,0	15,14 1328 22 7,53 1307 22 21 1140 80 90	11,20 982 16 5,57 967 15	14,42 1264 24 7,17 1245 24 Centrifugg 1nverter 3 930 40 72 57,0 49,0	17,10 1500 33 8,50 1476 33 al

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45°C/40°C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

			FCZI201F			FCZI301P			FCZI401P			FCZI501P			FCZI701P)		FCZI901P	<i>-</i>
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	M	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 65 °C/!	55 °C (1)																		
Heating capacity	kW	1,02	1,35	1,60	1,80	2,18	2,56	2,21	2,65	3,12	2,59	3,34	3,73	3,66	4,29	4,94	4,73	5,63	5,72
Water flow rate system side	l/h	89	118	140	158	191	224	186	232	273	227	293	327	320	375	437	414	492	501
Pressure drop system side	kPa	4	8	10	16	23	30	4	6	8	6	8	10	11	14	18	8	12	12
Cooling performance 7 °C / 12	°C																		
Cooling capacity	kW	0,89	1,28	1,60	1,68	2,17	2,65	2,20	2,92	3,60	2,68	3,69	4,25	3,92	4,89	5,50	4,29	5,00	6,91
Sensible cooling capacity	kW	0,71	1,05	1,33	1,26	1,65	2,04	1,59	2,14	2,67	1,94	2,73	3,18	2,99	3,76	4,30	2,97	3,78	5,68
Water flow rate system side	l/h	153	221	275	288	374	456	379	503	619	460	634	731	675	841	946	738	860	1189
Pressure drop system side	kPa	6	12	18	8	13	18	10	16	24	13	22	29	16	24	30	10	12	22
Fan																			
Туре	type									Centr	ifugal								
Fan motor	type									Inve	rter								
Number	no.		1			2			2			2			3			3	
Air flow rate	m³/h	140	220	290	260	350	450	330	460	600	400	600	720	700	930	1140	700	930	1140
Input power	W	7	8	14	5	7	13	5	10	18	7	16	31	30	40	80	30	40	80
Signal 0-10V	%	44	68	90	52	70	90	49	68	90	50	74	90	56	72	90	56	72	90
Fan coil sound data (2)																			
Sound power level	dB(A)	35,0	46,0	51,0	34,0	41,0	48,0	37,0	44,0	51,0	42,0	51,0	56,0	50,0	57,0	62,0	51,0	57,0	62,0
Sound pressure level	dB(A)	27,0	38,0	43,0	26,0	33,0	40,0	29,0	36,0	43,0	34,0	43,0	48,0	42,0	49,0	54,0	43,0	49,0	54,0
Finned pack heat exchanger																			
Water content main heat	1		0,5			0,8			1,0			1,0			1,2			1,8	
exchanger	'		0,5			0,0			1,0			1,0			1,2			1,0	
Water content secondary heat			0.2			0,3			0,3			0,3			0.4			0,7	
exchanger	'		U,Z			0,3			0,5			0,5			U, T			0,7	
Diametre hydraulic fittings																			
Main heat exchanger	Ø		1/2"			3/4"			3/4"			3/4"			3/4"			3/4"	
Secondary heat exchanger	Ø									1/	2"								

⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
(2) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

PERFORMANCE DATA FOR UNITS WITH HEAD (EUROVENT CERTIFICATE FCP-H)


2-pipe		E	CZ1200	nD	-	CZ1250)D		CZ1300	nD	-	CZ135	np	-	CZ1400	D	E /	CZ1450	D.	E	CZ1500	nD	1 6	CZ155(nD
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1)	3	1	2	3	1	2	3
		Ĺ		 H	Ĺ	M	 H	i		 H	Ĺ	M	 H	Ĺ		 H	Ĺ	M	 H	Ĺ		 H	t	M	 H
Heating performance 70 °C / 60 °C (1)																									
Heating capacity	kW	1,81	3,16	3,34	2,01	3,40	3,62	3,08	4,83	5,23	3,32	5,43	5,83	3,96	5,85	6,34	4,10	6,44	6,96	5,39	7,28	7,63	5,92	8,37	8,71
Water flow rate system side	I/h	156	272	287	173	292	311	265	415	450	285	467	502	341	503	545	353	554	599	464	626	656	509	720	749
Pressure drop system side	kPa	6	13	16	7	17	19	7	14	16	7	17	19	9	17	19	5	12	13	12	22	23	11	20	21
Heating performance 45 °C / 40 °C (2)																									
Heating capacity	kW	0,90	1,57	1,66	1,00	1,69	1,80	1,53	2,40	2,60	1,65	2,70	2,90	1,97	2,91	3,15	2,04	3,20	3,46	2,68	3,62	3,79	2,94	4,16	4,33
Water flow rate system side	I/h	155	270	288	172	291	308	263	413	447	284	464	499	339	501	542	351	550	595	461	623	652	506	715	745
Pressure drop system side	kPa	6	13	16	7	17	19	7	14	16	7	17	19	9	17	19	5	12	13	12	22	23	11	20	21
Cooling performance 7 °C / 12 °C																									
Cooling capacity	kW	0,80	1,37	1,45	0,95	1,67	1,76	1,40		2,53	_	2,70	2,88	2,03		3,21			3,55	2,73	3,68	3,84	2,97		4,31
Sensible cooling capacity	kW	0,63	1,13	1,20	0,70	1,29	1,37	1,10	1,82	1,94	1,15	1,94	2,07	1,45	2,18	2,36	1,54		2,56	1,98	2,73	2,85	2,11	2,98	3,12
Water flow rate system side	I/h	138	236	249	163	287	303	241	409	435	285	464	495	349	512	552	382	564	610	469	633	660	511	714	741
Pressure drop system side	kPa	5	13	16	8	17	19	7	14	16	9	17	19	9	17	19	8	12	13	13	22	23	12	20	21
Fan																									
Туре	type					_							Centr	ifugal											
Fan motor	type				_								Inve	rter											
Number	no.	L.	1		L.	1		ļ.,	2			2		-	2			2		<u> </u>	2		<u> </u>	2	
Air flow rate	m³/h	123	240	257	123	240	257	225	390	424	225	390	424	300	470	515	300	470	515	410	600	630	410	600	630
High static pressure	Pa	13	50	57	13	50	57	16	50	59	16	50	53	20	50	60	20	50	56	23	50	55	23	50	55
Input power	W	7	27	31	7	27	31	10	11	40	10	30	40	14	38	48	14	38	48	18	50	60	18	50	60
Signal 0-10V	%	43	84	90	43	84	90	48	83	90	48	83	90	52	82	90	52	82	90	58	85	90	58	85	90
Duct type fan coil sound data (3)	15/11							1												T			T		
Sound power level (inlet + radiated)	dB(A)	37,0	57,0	59,0	37,0		59,0	36,0	50,0	53,0	36,0	50,0		43,0	53,0					45,0	56,0	57,0	- / -	56,0	- , -
Sound power level (outlet)	dB(A)	33,0	53,0	55,0	33,0	53,0	55,0	32,0	47,0	49,0	32,0	47,0	49,0	39,0	49,0	52,0	39,0	49,0	52,0	42,0	52,0	52,0	42,0	52,0	52,0
Finned pack heat exchanger			0.5					1	• • •			10			1.0						1.0		1		
Water content main heat exchanger	<u> </u>		0,5			0,7			0,8			1,0			1,0			1,4			1,0			1,4	
Diametre hydraulic fittings	ď		1 /2//			1 /2//		1	2/4//			2/4//		ı	2/4//			2/4//			2/4//		1	2/4//	
Main heat exchanger	Ø		1/2"			1/2"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"	
					700P					FCZI	750P					FCZI						FCZ	1950P		
			•		2 VI		3 H		1		<u>?</u> //		3 H	-	1 L				3 H		1 I		2 M		3 H
Heating performance 70 °C / 60 °C (1)																					_				
Heating capacity	kW	_					00	T		0	52	10	,15		F0	- 11	45								,66
Water flow rate system side	IVA.	5,	33	8,	34	8,	δŏ	6,	17	9,	12			0,	58	11,	15	11,	,87	6,	68	11	1,63	12	
Water now rate system side	I/h		33 68		34 32		88 79	<u> </u>	17 41		35		90	<u> </u>	58 66	9!		11, 10		-	68 74		1,63 000)88
Pressure drop system side		40			32	7		5			35	8	90 12	5			58		21	5		1(10)88 19
	I/h	40	68	7.	32	7	79	5	41	83	35	8		5	66	95	58	10	21	5	74	1(000	10	
Pressure drop system side	I/h	4(68	7.	32	7	79	5.	41	83	1	8		5	66	95	3	10	21 4	5	74	10	000	1(
Pressure drop system side Heating performance 45 °C / 40 °C (2)	I/h kPa	2,	68 8	7.	32 7	7:	79 !0	2,	41 5	83	1	5	12	5	5 5 27	95	58 3 54	10	21 4 90	5	74 6 32	5	000	6,	19
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity	I/h kPa kW	2,	68 8 67	7: 1 4,	32 7 15	4,	79 20 40	2,	41 5 46	83	35 1 69 06	5,	00	3,	5 5 27	95 1 5,	58 3 54 53	10 1 5,	21 4 90	3,	74 6 32	5	000 17 78	1(6,	19 29
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side	I/h kPa kW I/h kPa	2,	68 8 67 60	7: 1 4,	32 7 15 20	4,	79 10 40 67	2,	41 5 46 18	83 1 4,	35 1 69 06	5,	00 60	3,	55 27 52	9 <u>5</u> 1 5,	58 3 54 53	10 1 5,	21 4 90 115	3,	74 6 32 71	5	000 17 7,78	1(6,	.29 .082
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity	l/h kPa kW l/h kPa	2,	68 8 67 60 8	7, 1 4, 7,	32 7 15 20	4,	79 10 40 67	2,	41 5 46 18 3	83 1 4,, 80 1	35 1 69 06 1	5,	00 60	3,	55 27 52 55	9 <u>5</u> 1 5,	58 3 54 53 3	10 1 5,	90 115 4	3,	74 6 32 71 6	5 9	0000 17 7,78 994 17	10 6, 10 1	29 082 19
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity	l/h kPa kW l/h kPa kW	2,	68 8 67 60 8 20	7. 1 4, 7. 1	32 7 15 20 8	4, 70 2 4, 70 2	79 40 40 67 70 30 20	2,	46 18 3 60	83 1 4, 80 1 4, 3,	35 1 69 06 1 41	5 8 4 3 3	00 60 12 70	3,	55 27 52 55	95 1 5, 95 1 4,	58 3 54 53 3 3 80 60	5, 10	21 4 90 15 4	3,	74 6 32 71 6	55 99 66 33	0000 17 7,78 094 17 6,00	10 6, 10 1 6, 4,	29 082 19 46
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side	I/h kPa kW I/h kPa kW V/h kPa	2,	68 8 67 60 8 20	7. 1 4, 7. 1 4, 3,	32 7 15 20 8 00 00	4, 7, 2, 4, 7, 2, 4, 3,	79 20 40 67 20 30 20	2,	41 5 46 18 3	83 1 4,, 80 1	35 1 69 06 1 41	5, 88 4, 3, 8	00 60 12 70 50	3,	55 27 52 5 81	95 1 5,,, 95 1 4,,, 3,,,	58 3 54 53 3 3 80 60	10 1 5,/ 10 1 5,/ 3,/	21 4 90 15 4	3, 55	74 6 32 71 6	5 9 6 3	0000 117 7,78 994 117 7,00 94 032	10 6, 10 1 6, 4,	29 082 19 46 27
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity	l/h kPa kW l/h kPa kW	2, 40 8 2, 1,	68 8 67 60 8 20	7. 1 4, 7. 1 4, 3,	32 7 15 20 8	4, 7, 2, 4, 7, 2, 4, 3,	79 40 40 67 70 30 20	2, 4	46 18 3 60	83 1 4, 80 1 4, 3,	69 06 1 41 30	5, 88 4, 3, 8	00 60 12 70	3, 5, 5, 2, 2, 4,	55 27 52 5 81	95 1 5, 95 1 4,	58 3 54 53 3 3 80 60	5,, 10 1 5,, 10 5,, 3,, 89	90 115 4 20 90	3, 55 6	74 6 32 71 6 58 33	5 9 6 3	0000 17 7,78 094 17 6,00	10 6, 10 1 6, 4,	29 082 19 46
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side	I/h kPa kW I/h kPa kW V/h kPa	2, 40 8 2, 1,	68 8 67 60 8 20 71	7. 1 4, 7. 1 4, 3,	32 7 15 20 8 00 00	4, 7, 2, 4, 7, 2, 4, 3,	79 20 40 67 20 30 20	2, 4	41 5 46 18 3 60 90	83 1 4,4 80 1 4, 3,	69 06 1 41 30	5, 88 4, 3, 8	00 60 12 70 50 18	3, 5, 5, 2, 2, 4,	55 27 52 55 81 10	95 1 5,,, 95 1 4,,, 3,,,	58 3 54 53 3 3 80 60	5,, 10 1 5,, 10 5,, 3,, 89	90 115 4 20 90	3, 55 6	74 6 32 71 6 58 33 16	5 9 6 3	0000 117 7,78 994 117 7,00 94 032	10 6, 10 1 6, 4,	29 082 19 46 27
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan	I/h kPa kW I/h kPa kW V/h kPa	2, 40 8 2, 1,	68 8 67 60 8 20 71	7. 1 4, 7. 1 4, 3,	32 7 15 20 8 00 00	4, 7, 2, 4, 7, 2, 4, 3,	79 20 40 67 20 30 20	2, 4	41 5 46 18 3 60 90	83 1 4,4 80 1 4, 3,	69 06 1 41 30	5, 88 4, 3, 8	00 60 12 70 50 18	3, 5, 5, 2, 2, 4,	55 27 52 55 81 10	95 1 5,,, 95 1 4,,, 3,,,	58 3 54 53 3 3 80 60	5,, 10 1 5,, 10 5,, 3,, 89	90 115 4 20 90	3, 55 6	74 6 32 71 6 58 33 16	5 9 6 3	0000 117 7,78 994 117 7,00 94 032	10 6, 10 1 6, 4,	29 082 19 46 27
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side	I/h kPa kW I/h kPa kW W I/h kPa	2, 40 8 2, 1,	68 8 67 60 8 20 71	7. 7. 1 1 4, 7. 1 4, 3, 3, 66 1	32 7 115 220 8 8 000 000 888 8	4, 7, 2, 4, 7, 2, 4, 3,	79 20 40 67 20 30 20	2, 4	41 5 46 18 3 60 90	83. 1 1 4,4,80 1 1 4,70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35 1 1 669 06 1 1 41 41 41 1	5, 88 4, 3, 8	00 60 12 70 .50 18 12	3, 5, 5, 2, 2, 4,	55 27 52 55 81 10	9.5 5, 5, 5, 9.5 1 1 1 4, 4, 4, 8 8 2 1 1	53 53 53 33 33 33 55 65 65 65 65 65 65 65 65 65 65 65 65	5,, 10 1 5,, 10 5,, 3,, 89	90 115 4 20 90	3, 55 6	74 6 32 71 6 58 33 16	5 9 6 6 6 3 3 10 10 10 10 10 10 10 10 10 10 10 10 10	0000 117 17,78 1094 117 17,00 117 100 117	10 6, 10 1 6, 4,	29 082 19 46 27
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number	kW I/h kPa kW I/h kPa kW L/h kPa type type no.	2, 44	668 667 660 660 220 771 778 77	7.7.1 1 4,4,7.1 1 4,4,666	32 7 7 15 220 8 8 000 000 000 888 8	4, 4, 7, 2 4, 3, 7, 7, 2	779 00 440 4667 00 330 220 339 00	2,4	446 446 118 3 3 660 990 447	8:3 1 1 4,4,4,80 1 1 4,7,70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35 11 10 669 006 11 11 41 13 13 13	5, 8 4, 3, 8 8	00 660 12 70 550 118 12	3, 3, 5, 5, 2, 4, 4, 4, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	666 55 227 2352 55 881 110 333 55	9.50 9.50 1 1 5.70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	554 533 333 560 555 333	100 11 5,5,5 100 11 5,7 3,7 89	221 4 990 1115 4 220 990 944 4	3,3,3,55	774 66 332 771 66 558 333 116 77	5 9 6 6 3 3 10	0000 117 17,78 1994 117 17,000 194 0032 117	6,6,10 10 10 10 10 10 10 10 10 10 10 10 10 1	19 1082 19 19 111 111 19
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate	kW I/h kPa kW I/h kPa kW kW I/h kPa type type no. m³/h	2, 444 2 2, 1, 1, 333	668 667 660 660 20 771 778 77	7. 7. 1 4, 4, 7. 1 1 4, 3, 66 1	77 715 115 220 88 80 00 00 00 888 88 88	4, 7, 7, 2 4, 3, 3, 7, 7, 2	779 200 440 4667 200 330 220 339 200	2, 4	446 446 118 33 3 47 44	833 833 844 847 847 847 847 847 847 847 847 847	55 55 56 56 56 56 56 56 56 56 56 56 56 5	5 5 8 8 6 7 7 7	00 60 12 70 550 18 12	3,, 51 2, 2, 4: ifugal erter 4:	666 55 55 55 55 55 55 55 55 55 55 55 55	9.5 5,5,9 9.5 1 1 4,4,4,4 8.8 1	33 33 33 33 33 33 33 33 33 33 33	100 11 5,79 100 10 10 10 10 10 10 10 10 10 10 10 10	990 1115 4 220 990 94 4	3,3,5 (1) (1) (3) (4) (4) (4)	774 66 332 7771 66 558 333 116 77	5 9 6 6 3 1 10	0000 117 17,78 1994 117 17 17 17 17 18 19 19 17 17 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	100 6, 100 11 11 11 11 11 11 11 11 11 11 11 11	29 082 19 46 2.27 1111 19
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h Pa	2, 44 2, 1, 1, 3, 3, 3, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	668 88 667 660 88 88 220 771 778 77	7. 7. 1 4, 7. 1 4, 3, 3, 66 6 1	77 115 120 88 80 000 000 000 888 88 88	4, 7, 7, 2 4, 7, 7, 2 4, 7, 7, 2 7, 7, 2	779 40 40 40 667 70 80 80 80 80 80 80 80 80 80 8	2, 4 4 4 4 4 1	41 46 46 18 3 3 3 46 60 99 47 4	833 44, 810 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35 11 1669 660 11 11 141 1380 11 138 1380 10	5, 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000 660 122 770 550 118 122 Centrr Inves	3, 3, 5) 2, 2, 4, 4, 4, 5; ifugal erter 4, 1	666 55 227 252 255 255 255 255 255	9.55, 5, 5, 9.55	33 33 33 33 33 33 33 33 33 33 33 34 36 36 36 36 36 36 36 36 36 36 36 36 36	100 11 5,7 100 11 5,7 889 11	221 4 990 1115 4 4 220 990 994 4	3,3,55000000000000000000000000000000000	774 66 332 771 66 558 333 116 77	10 5 5 9 9 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0000 117 17 17 18 1994 117 117 117 117 117 117 117 117 117 11	100 6, 100 11 11 11 11 11 11 11 11 11 11 11 11	29 29 29 29 29 30 46 2.27 111 119 99 99
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fran Type Fan motor Number Air flow rate High static pressure Input power	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h Pa	2, 44 8 2, 1, 33, 33, 44 11 2	68 8 8 8 667 660 660 8 8 8 7 7 7 7 8 7 7 7 7 8 7 7 7 7 8 7	7. 7. 1 1 4, 7. 1 1 4, 7. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77 115 220 88 000 000 000 888 88 88 80 100 101 101	7, 2 4, 4, 7, 2 2, 4, 4, 3, 3, 7, 2 7, 6, 7	779 40 40 67 00 330 220 339 00 00 00 00 00 00 00 00 00 0	2, 44 2, 1, 44 41 12	446 446 446 448 448 448 448 448 448 448	833 44, 811 11 11 11 11 11 11 11 11 11 11 11 11	335 11 669 666 11 441 441 330 550 11	55,888,888,888,888,888,888,888,888,888,	000 000 060 12 70 550 118 12 Centr Inves	3, 3, 5 1 2 2, 2 2, 4 4 1 1 1 2 2	227 227 252 255 281 110 283 383 55	955 5,75 95 1 1 4,75 8,3 7 7 5 6	554 533 33 554 533 33 555 560 575 575 575 575 575 575 575 575 575 57	100 11 5, 100 11 5,, 3,, 88 88 11	90 90 115 4 4 220 990 990 94 4 4	33, 35: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	774 66 332 771 66 558 333 116 77	10 10 10 10 10 10 10 10 10 10 10 10 10 1	7,78 7,78 117 7,78 117 117 117 117 117 117 117 117 117 1	10 6, 6, 10 11 11 11 11 11 11 11 11 11 11 11 11	29 29 29 29 46 27 111 19 99 90 90 78
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Input power Signal 0-10V	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h Pa	2, 44 8 2, 1, 33, 33, 44 11 2	668 88 667 660 88 88 220 771 778 77	7. 7. 1 4, 7. 1 4, 3, 3, 66 6 1	77 115 220 88 000 000 000 888 88 88 80 100 101 101	7, 2 4, 4, 7, 2 2, 4, 4, 3, 3, 7, 2 7, 6, 7	779 40 40 40 667 70 80 80 80 80 80 80 80 80 80 8	2, 44 2, 1, 44 41 12	41 46 46 18 3 3 3 46 60 99 47 4	833 44, 810 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	335 11 669 666 11 441 441 330 550 11	55,888,888,888,888,888,888,888,888,888,	000 660 122 770 550 118 122 Centrr Inves	3, 3, 5 1 2 2, 2 2, 4 4 1 1 1 2 2	666 55 227 252 255 255 255 255 255	9.55, 5, 5, 9.55	554 533 33 554 533 33 555 560 575 575 575 575 575 575 575 575 575 57	100 11 5, 100 11 5,, 3,, 88 88 11	221 4 990 1115 4 4 220 990 994 4	33, 35: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	774 66 332 771 66 558 333 116 77	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0000 117 17 17 18 1994 117 117 117 117 117 117 117 117 117 11	10 6, 6, 10 11 11 11 11 11 11 11 11 11 11 11 11	29 29 29 29 29 30 46 2.27 111 119 99 99
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Input power Signal 0-10V Duct type fan coil sound data (3)	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h Pa W	2, 44 4(1 1 2 2 4	668 88 88 88 88 88 88 88 88 88 88 88 88	7. 1 1 4, 4, 7. 1 1 4, 4, 3, 3, 66 1 1 7. 5 5 6 6 8	332 77 115 220 88 000 000 000 888 88 88 33 360 60 111	7, 2 4, 4, 7, 2 4, 3, 3, 7, 7, 2 7, 6 6, 7, 7, 9	779 100 40 40 40 67 100 330 220 339 100 100 100 100 100 100 100 10	2, 4, 1, 4, 1, 1, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	446 446 18 18 3 3 3 47 47 4 4	83 4, 4, 80 1 4, 7, 7, 66 88	33 33 33 33 30 00 11 22	5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000 660 122 70 550 118 112 Centr Inves	3, 5 2, 2, 4	27 27 27 27 28 28 33 33 55 55 55 55 55 55 55 55 55 55 55	9.5. 5,- 9.5. 1 4,- 4,- 3,- 1 1 - - - - - - - - - - - - -	568 568 568 560 560 560 560 660 660 660 660	100 11 5,7 100 11 5,7 89 11	221 4 990 115 4 4 220 990 994 4 4	3, 55 (d) 33, 22, 44(d) 11 1 2 2 4	74 66 332 3771 66 558 333 316 77	110 55 99 66 33 110 77	78 78 7994 117 117 117 117 117 117 117 117 117 11	10 10 10 10 10 10 10 10 10 10 10 10 10 1	29 082 09 46 27 1111 19 99 99 88 90
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Input power Signal 0-10V Duct type fan coil sound data (3) Sound power level (inlet + radiated)	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h Pa W %	2, 44(1, 3, 2, 1, 3, 3, 3, 4, 4, 1, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	668 88 667 660 88 88 220 771 778 77 77 111 166	7. 7. 1 4,4,4,7. 1 1 4,4,4,7. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	332 77 115 220 88 000 000 000 888 88 88 13 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	7, 7, 2 4,4, 4, 7, 2 4,4, 7, 7, 2 2, 2, 2, 2, 2, 3, 3, 7, 7, 7, 7, 9, 9	79 10 40 40 40 67 10 330 220 339 10 10 10 10 10 10 10 10 10 10	2, 4 4 1 1 2 4 4	446 446 18 33 660 990 447 44	83.3 44, 881 11 44, 44, 77.3 77.3 55.6 66.8 88.8	85 11 1669 166 11 41 41 88 80 00 11 12 2	77 (6.5)	000 660 122 70 550 118 122 Centry Inves	3, 5, 5, 2, 2, 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	55 55 55 55 55 55 55 55 55 55 55 55 55	9.55 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	58 58 53 54 53 53 53 50 50 50 50 51 51 51 51 51 51 51 51 51 51	100 11 5,7 100 11 11 12 79 66 77 79 9	221 4 4 990 115 4 4 220 990 994 4 4	3, 3, 55 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	74 66 332 771 66 58 333 116 77	10 5 9 6 6 3 3 10 10 10 10 10 10 10 10 10 10 10 10 10	78 78 78 7994 117 70 70 70 70 70 70 70 70 70 70 70 70 70	100 100 100 100 100 100 100 100 100 100	29 082 9 46 2.27 1111 19 99 99 60 60 88 800
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Input power Signal 0-10V Duct type fan coil sound data (3) Sound power level (inlet + radiated) Sound power level (outlet)	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h Pa W	2, 44(1, 3, 2, 1, 3, 3, 3, 4, 4, 1, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	668 88 88 88 88 88 88 88 88 88 88 88 88	7. 7. 1 4,4,4,7. 1 1 4,4,4,7. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	332 77 115 220 88 000 000 000 888 88 88 33 360 60 111	7, 7, 2 4,4, 4, 7, 2 4,4, 7, 7, 2 2, 2, 2, 2, 2, 3, 3, 7, 7, 7, 7, 9, 9	779 100 40 40 40 67 100 330 220 339 100 100 100 100 100 100 100 10	2, 4 4 1 1 2 4 4	446 446 18 18 3 3 3 47 47 4 4	83 4, 4, 80 1 4, 7, 7, 66 88	85 11 1669 166 11 41 41 88 80 00 11 12 2	77 (6.5)	000 660 122 70 550 118 112 Centry Investigation	3, 3, 5, 5, 2, 2, 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	27 27 27 27 28 28 33 33 55 55 55 55 55 55 55 55 55 55 55	9.5. 5,- 9.5. 1 4,- 4,- 3,- 1 1 - - - - - - - - - - - - -	58 58 53 54 53 53 53 50 50 50 50 51 51 51 51 51 51 51 51 51 51	100 11 5,7 100 11 5,7 89 11	221 4 4 990 115 4 4 220 990 994 4 4	3, 3, 55 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	74 66 332 3771 66 558 333 316 77	10 5 9 6 6 3 3 10 10 10 10 10 10 10 10 10 10 10 10 10	78 78 7994 117 117 117 117 117 117 117 117 117 11	100 100 100 100 100 100 100 100 100 100	29 082 09 46 27 1111 19 99 99 88 90
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Input power Signal 0-10V Duct type fan coil sound data (3) Sound power level (inlet + radiated) Sound power level (outlet) Finned pack heat exchanger	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h Pa W %	2, 44(1, 3, 2, 1, 3, 3, 3, 4, 4, 1, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	668 88 667 660 88 88 220 771 778 77 77 111 166	7. 1 1 4, 4, 7. 1 1 4 4, 3 3, 66 6 8 8 55 5 5 5 5 5 5 5 5 5 5 7 1 1 1 1 1 1 1	332 77 115 220 88 80 00 00 00 888 88 88 111 122	7, 7, 2 4,4, 4, 7, 2 4,4, 7, 7, 2 2, 2, 2, 2, 2, 3, 3, 7, 7, 7, 7, 9, 9	79 10 40 40 40 67 10 330 220 339 10 10 10 10 10 10 10 10 10 10	2, 4 4 1 1 2 4 4	446 446 18 33 660 990 447 44	883 44, 880 11 44, 44, 77, 77, 56, 68, 88, 55, 51	85 11 1669 666 11 1441 880 00 11 12 2	77 (6.5)	000 660 122 70 550 118 122 Centry Inves	3, 3, 5, 5, 2, 2, 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	55 55 55 55 55 55 55 55 55 55 55 55 55	999 5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	558 558 553 553 553 553 553 553	100 11 5,7 100 11 11 12 79 66 77 79 9	221 4 4 990 115 4 4 220 990 994 4 4	3, 3, 55 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	74 66 332 771 66 58 333 116 77	55 99 66 33 110 77 24 48	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	100 100 100 100 100 100 100 100 100 100	29 082 9 46 2.27 1111 19 99 99 60 60 88 800
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Input power Signal 0-10V Duct type fan coil sound data (3) Sound power level (inlet + radiated) Sound power level (outlet) Finned pack heat exchanger Water content main heat exchanger	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h Pa W %	2, 44(1, 3, 2, 1, 3, 3, 3, 4, 4, 1, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	668 88 667 660 88 88 220 771 778 77 77 111 166	7. 1 1 4, 4, 7. 1 1 4 4, 3 3, 66 6 8 8 55 5 5 5 5 5 5 5 5 5 5 7 1 1 1 1 1 1 1	332 77 115 220 88 000 000 000 888 88 88 13 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	7, 7, 2 4,4, 4, 7, 2 4,4, 7, 7, 2 2, 2, 2, 2, 2, 3, 3, 7, 7, 7, 7, 9, 9	79 10 40 40 40 67 10 330 220 339 10 10 10 10 10 10 10 10 10 10	2, 4 4 1 1 2 4 4	446 446 18 33 660 990 447 44	883 44, 880 11 44, 44, 77, 77, 56, 68, 88, 55, 51	85 11 1669 166 11 41 41 88 80 00 11 12 2	77 (6.5)	000 660 122 70 550 118 122 Centry Inves	3, 3, 5, 5, 2, 2, 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	55 55 55 55 55 55 55 55 55 55 55 55 55	9.55 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	558 558 553 553 553 553 553 553	100 11 5,7 100 11 11 12 79 66 77 79 9	221 4 4 990 115 4 4 220 990 994 4 4	3, 3, 55 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	74 66 332 771 66 58 333 116 77	55 99 66 33 110 77 24 48	78 78 78 7994 117 70 70 70 70 70 70 70 70 70 70 70 70 70	100 100 100 100 100 100 100 100 100 100	29 082 9 46 2.27 1111 19 99 99 60 60 88 800
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Input power Signal 0-10V Duct type fan coil sound data (3) Sound power level (inlet + radiated) Sound power level (outlet) Finned pack heat exchanger Water content main heat exchanger Diametre hydraulic fittings	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h Pa W % dB(A) dB(A)	2, 44(1, 3, 2, 1, 3, 3, 3, 4, 4, 1, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	668 88 667 660 88 88 220 771 778 77 77 111 166	7. 1 1 4, 4, 7. 1 1 4 4, 3 3, 66 6 8 8 55 5 5 5 5 5 5 5 5 5 5 7 1 1 1 1 1 1 1	332 77 115 220 88 80 00 00 00 888 88 88 111 122	7, 7, 2 4,4, 4, 7, 2 4,4, 7, 7, 2 2, 2, 2, 2, 2, 3, 3, 7, 7, 7, 7, 9, 9	79 10 40 40 40 67 10 330 220 339 10 10 10 10 10 10 10 10 10 10	2, 4 4 1 1 2 4 4	446 446 18 33 660 990 447 44	883 44, 880 11 44, 44, 77, 77, 56, 68, 88, 55, 51	85 11 1669 666 11 1441 880 00 11 12 2	77 (6.5)	000 660 770 550 118 112 Centre Investigation of the control	3,, 5, 5, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	55 55 55 55 55 55 55 55 55 55 55 55 55	999 5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	558 558 553 553 553 553 553 553	100 11 5,7 100 11 11 12 79 66 77 79 9	221 4 4 990 115 4 4 220 990 994 4 4	3, 3, 55 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	74 66 332 771 66 58 333 116 77	55 99 66 33 110 77 24 48	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	100 100 100 100 100 100 100 100 100 100	29 082 9 46 2.27 1111 19 99 99 60 60 88 800
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Input power Signal 0-10V Duct type fan coil sound data (3) Sound power level (inlet + radiated) Sound power level (outlet) Finned pack heat exchanger Water content main heat exchanger	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h Pa W %	2, 44(1, 3, 2, 1, 3, 3, 3, 4, 4, 1, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	668 88 667 660 88 88 220 771 778 77 77 111 166	7. 1 1 4, 4, 7. 1 1 4 4, 3 3, 66 6 8 8 55 5 5 5 5 5 5 5 5 5 5 7 1 1 1 1 1 1 1	332 77 115 220 88 80 00 00 00 888 88 88 111 122	7, 7, 2 4,4, 4, 7, 2 4,4, 7, 7, 2 2, 2, 2, 2, 2, 3, 3, 7, 7, 7, 7, 9, 9	79 10 40 40 40 67 10 330 220 339 10 10 10 10 10 10 10 10 10 10	2, 4 4 1 1 2 4 4	446 446 18 33 660 990 447 44	883 44, 880 11 44, 44, 77, 77, 56, 68, 88, 55, 51	85 11 1669 666 11 1880 650 11 11 22	77 (6.5)	000 660 770 550 118 112 Centre Investigation of the control	3, 3, 5, 5, 2, 2, 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	55 55 55 55 55 55 55 55 55 55 55 55 55	999 5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	558 558 553 553 553 553 553 553	100 11 5,7 100 11 11 12 79 66 77 79 9	221 4 4 990 115 4 4 220 990 994 4 4	3, 3, 55 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	74 66 332 771 66 58 333 116 77	55 99 66 33 110 77 24 48	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	100 100 100 100 100 100 100 100 100 100	29 082 9 46 2.27 1111 19 99 99 60 60 88 800

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

			FCZI201	P		FCZI301I	P		FCZI401I	P		FCZI501I	•		FCZI701	•		FCZI901	P
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 65 °C / 55 °C (1)																			
Heating capacity	kW	0,94	1,42	1,49	1,60	2,34	2,47	1,99	2,69	2,85	2,62	3,59	3,45	2,99	3,70	3,92	3,17	5,09	5,47
Water flow rate system side	I/h	81	122	128	138	201	212	171	231	245	225	309	297	257	318	337	273	438	470
Pressure drop system side	kPa	4	9	9	6	12	13	4	7	8	6	9	9	8	12	13	4	10	11
Cooling performance 7 °C / 12 °C																			
Cooling capacity	kW	0,80	1,37	1,45	1,40	2,38	2,53	2,03	2,98	3,21	2,73	3,68	3,84	2,20	4,00	4,30	2,80	4,80	5,24
Sensible cooling capacity	kW	0,63	1,13	1,20	1,10	1,82	1,94	1,45	2,18	2,36	1,98	2,73	2,85	1,71	3,00	3,20	2,10	3,60	3,90
Water flow rate system side	l/h	138	236	249	241	409	435	349	512	552	469	633	660	378	688	739	482	825	901
Pressure drop system side	kPa	5	14	16	7	15	17	9	13	20	13	23	25	6	18	20	5	12	13
Fan																			
Туре	type									Centr	ifugal								
Fan motor	type									Inve	erter								
Number	no.		1			2			2			2			3			3	
Air flow rate	m³/h	123	240	257	225	390	424	300	470	515	410	600	630	405	730	799	405	730	799
High static pressure	Pa	13	50	57	16	50	59	20	50	60	23	50	55	15	50	60	15	50	60
Input power	W	7	27	31	10	31	40	14	38	58	18	50	60	21	61	78	21	61	78
Signal 0-10V	%	43	84	90	48	83	90	52	82	90	58	85	90	46	82	90	45	84	90
Duct type fan coil sound data (2)																			
Sound power level (inlet + radiated)	dB(A)	37,0	57,0	59,0	36,0	50,0	53,0	43,0	53,0	55,0	45,0	56,0	57,0	41,0	55,0	58,0	41,0	55,0	58,0
Sound power level (outlet)	dB(A)	33,0	53,0	55,0	32,0	47,0	49,0	39,0	49,0	52,0	42,0	52,0	52,0	36,0	51,0	54,0	36,0	51,0	54,0
Finned pack heat exchanger																			
Water content main heat exchanger			0,5			0,8			1,0			1,0			1,2			1,8	
Water content secondary heat exchanger			0,2			0,3			0,3			0,3			0,4			0,7	
Diametre hydraulic fittings																			
Main heat exchanger	Ø		1/2"			3/4"			3/4"			3/4"			3/4"			3/4"	
Secondary heat exchanger	Ø									1/	/2"								

⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
(2) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

		FCZI200P	FCZI200PAF	FCZI250P	FCZI250PAF	FCZI300P	FCZI300PAF
Dimensions and weights		I CEIZOOI	I CEIZOOI AI	I CEIZJUI	I CEIZJUI AI	TCEISOOI	I CZISOUI AI
\	mm	216		216		216	
В	mm	522	_	522	_	753	
<u>, </u>	mm	453		453	-	453	
D	mm	562	_	562	_	793	-
Net weight	kg	12,0	_	14,0	-	14,0	
net weight	ng .	FCZI350P	FCZI400P	FCZI400PAF	FCZI450P	FCZI500P	FCZI500PAF
Dimensions and weights		rczissur	FCZ1400P	FC21400PAF	r(Z1430P	rcziour	FCZIDUUPAF
\ \	mm	216	216	-	216	216	-
В	mm	753	973	-	973	973	-
[mm	453	453	_	453	453	-
D	mm	793	1013	-	1013	1013	-
Net weight	kg	16,0	20,0	-	22,0	23,0	-
		FCZI550P	FCZI550PAF	FCZI700P	FCZI700PAF	FCZI750P	FCZ1750PAF
Dimensions and weights							
A	mm	216	-	216	-	216	-
В	mm	973	-	1122	-	1122	-
C	mm	453	-	453	-	453	-
D	mm	1013	-	1147	-	1147	-
Net weight	kg	24,0	-	29,0	-	31,0	-
		FCZI900P	FCZ1900PAF	FCZ	1950P	FCZ1950PAF	Pre_acc
Dimensions and weights							
A	mm	216	-		216	-	-
В	mm	1122	-		122	-	-
C	mm	558	-		558	-	-
D	mm	1147	-	1	147	-	-
Net weight	kg	32,0	-	3	2,0	-	-
		FCZI201P	FCZ1202P	FCZI301P	FCZI302P	FCZI401P	FCZI402P
Dimensions and weights							
A	mm	216	216	216	216	216	216
В	mm	522	522	753	753	973	973
D .							
C	mm	453	453	453	453	453	453
C D	mm mm	562	562	793	793	1013	1013
C D	mm						
C D Net weight	mm mm	562	562	793 15,0	793	1013	1013
C D Net weight Dimensions and weights	mm mm kg	562 13,0 FCZI501P	562 14,0 FCZ1502P	793 15,0 FCZ	793 16,0 I701P	1013 21,0 FCZI702P	1013 22,0 FCZI901P
C D Net weight Dimensions and weights A	mm mm kg mm	562 13,0 FCZI501P	562 14,0 FCZI502P	793 15,0 FCZ	793 16,0 I701P	1013 21,0 FCZI702P	1013 22,0 FCZI901P
C D Net weight Dimensions and weights A	mm mm kg mm	562 13,0 FCZI501P 216 973	562 14,0 FCZI502P 216 973	793 15,0 FCZ	793 16,0 1701P	1013 21,0 FCZI702P 216 1122	1013 22,0 FCZI901P 216 1122
C D Net weight Dimensions and weights A B C	mm mm kg mm	562 13,0 FCZI501P 216 973 453	562 14,0 FCZI502P 216 973 453	793 15,0 FCZ	793 16,0 1701P 216 1122 153	1013 21,0 FCZI702P 216 1122 453	1013 22,0 FCZI901P 216 1122 558
D Net weight Dimensions and weights A B C D Net weight	mm mm kg mm	562 13,0 FCZI501P 216 973	562 14,0 FCZI502P 216 973	793 15,0 FCZ	793 16,0 1701P	1013 21,0 FCZI702P 216 1122	1013 22,0 FCZI901P 216 1122

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

- Very quiet
- Ideal for residential or office solutions
- Version with Coldplasma Air purifier

DESCRIPTION

Monobloc duct type fan coils for heating and/or cooling small and medium-sized environments for civil and commercial use.

It can be installed on 2-pipe systems and combined with any heat generator even at low temperatures. Choosing the optimal solution for any requirement is easy thanks to the various versions available and to the possibility of horizontal or vertical installation, depending on the version.

VERSIONS

 ${\bf P}$ Without shell, vertical and horizontal installation, lower intake, without commands

PAF Without shell, vertical and horizontal installation, front intake, without commands

FEATURES

Ventilation group

Comprised of a dual intake centrifugal fan that is particularly silent, statically and dynamically balanced and directly coupled to the motor shaft.

The electric motor is single-phase multi-speed (3 selectable), mounted on anti-vibration supports and with a permanently inserted capacitor.

Heat exchanger coil

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.

Condensate drip

Provided standard in plastic and fixed to the interior structure; with external condensate discharge.

Air filter

The fan coil units are equipped with a standard air filter. For specific details, please refer to the unit's documentation.

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. **PRO503:** Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualiet).

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

WMT16: Electronic thermostat with thermostated ventilation.

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

DI24: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, DI24 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, DI24 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, DI24CP, is also available as a separate accessory in our catalog.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (MFTAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-LON: Expansion allowing the thermostat to interface with BMS systems that use the LON protocol.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Common accessories

DSC: Condensate drainage device.

VCH: 3-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VCHD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings.

BC: Condensate drip.

Ventilcassaforma: Galvanised sheet metal template. It makes it possible to obtain directly in the wall a space for housing the fan coil.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Omnia ULP

Field	d	Description
1,2,	3	ULI
4,5		Size 11, 16, 26, 36
6		Version
	Р	Without shell, vertical and horizontal installation, lower intake, without commands $% \left(1\right) =\left(1\right) \left(1$
	PAF	Without shell, vertical and horizontal installation, front intake, without commands

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories - Omnia ULP

Model	Ver	11	16	26	36
AER503IR (1)	P,PAF	•	•	•	•
PR0503	P,PAF	•	•	•	•
SA5 (2)	P,PAF	•	•	•	•
SIT3 (3)	P,PAF	•	•	•	•
SIT5 (4)	P,PAF	•	•	•	•
SW5 (2)	P,PAF	•	•	•	•
TX (5)	P,PAF	•	•	•	•
WMT10 (5)	P,PAF	•	•	•	•
WMT16 (5)	P,PAF		•	•	•

- (1) Wall-mount installation
- (2) Probe for AER503IR-TX thermostats, if fitted.

- (3) Cards for AERSO3IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere.
 (4) Probe for AERSO3IR-TX thermostats, if fitted.
 (5) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

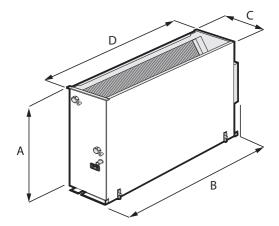
VMF system - Omnia UI P

Model	Ver	11	16	26	36
DI24	P,PAF	•	•	•	•
VMF-E19 (1)	P,PAF	•	•	•	•
VMF-E3	P,PAF	•	•	•	•
VMF-E4DX	P,PAF	•	•	•	•
VMF-E4X	P,PAF	•	•	•	•
VMF-IO	P,PAF	•	•	•	•
VMF-IR	P,PAF	•	•	•	•
VMF-LON	P,PAF	•	•	•	•
VMF-SW	P,PAF	•	•	•	•
/MF-SW1	P,PAF	•	•	•	•
/MHI	P,PAF	•	•	•	•

⁽¹⁾ Also the accessory VMF-SIT3V is mandatory if the unit exceeds 0.7 Amperes.

Condensate drip

Condensate drainage


Model	Ver	11	16	26	36
DSC5 (1)	P,PAF	•	•	•	•
(1) The accessory cannot be fi	it if the accessory BC10 or BC20 is installed.				
Model	Ver	11	16	26	36
VCH	P,PAF	•	•	•	•
2 way valve kit					
Model	Ver	11	16	26	36
VCHD	P,PAF	•	•	•	•

PERFORMANCE SPECIFICATIONS

z pipe			UL11P			UL16P	1		UL26P			UL36P	
		1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)	`												
Heating capacity	kW	1,06	1,46	2,01	1,54	2,12	2,91	2,89	3,83	4,62	3,63	4,87	5,94
Water flow rate system side	l/h	93	128	176	135	186	255	254	336	405	310	427	521
Pressure drop system side	kPa	1	1	2	1	2	4	5	8	11	7	13	18
Heating performance 45 °C / 40 °C (2)													
Heating capacity	kW	0,52	0,73	1,00	0,76	1,05	1,44	1,44	1,90	2,29	1,75	2,42	2,95
Water flow rate system side	l/h	92	126	174	133	183	251	249	331	399	305	420	513
Pressure drop system side	kPa	1	1	2	2	3	3	5	8	11	7	13	18
Cooling performance 7 °C / 12 °C													
Cooling capacity	kW	0,53	0,67	0,82	0,69	0,87	1,17	1,26	1,65	1,99	1,63	2,26	2,79
Sensible cooling capacity	kW	0,38	0,52	0,68	0,52	0,69	0,96	0,97	1,30	1,61	1,13	1,59	2,00
Water flow rate system side	l/h	94	117	145	122	153	206	220	289	349	286	394	487
Pressure drop system side	kPa	1	2	2	2	3	5	5	8	11	7	13	19
Fan													
Туре	type						Centr	ifugal					
Fan motor	type						Asynch	ronous					
Number	no.		1			1			2			2	
Air flow rate	m³/h	80	120	180	110	160	240	190	270	350	240	350	460
Input power	W	8	12	18	23	25	32	24	27	35	30	35	42
<u>Electrical wiring</u>		V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3
Diametre hydraulic fittings													
Main heat exchanger	Ø						1/	2"					
Finned pack heat exchanger													
Water content main heat exchanger	I		0,3			0,4			0,6			0,8	
Power supply													
Power supply							230V-	~50Hz					

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C (2) Room air temperature 20°C d.b.; Water (in/out) 45°C/40°C; EUROVENT

DIMENSIONS

		UL11P	UL11PAF	UL16P	UL16PAF	UL26P	UL26PAF	UL36P	UL36PAF
Dimensions and weights									
A	mm	465	-	465	-	465	-	465	-
В	mm	420	-	530	-	761	-	981	-
C	mm	171	-	171	-	171	-	171	-
D	mm	360	-	470	-	701	-	921	-
Net weight	kg	10,0	-	12,0	-	15,0	-	18,0	-

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

Fan coil unit for ducted installations

- Very quiet
- Ideal for residential or office solutions

DESCRIPTION

Monobloc duct type fan coils for heating and/or cooling small and medium-sized environments for civil and commercial use.

It can be installed on 2-pipe systems and combined with any heat generator even at low temperatures. Choosing the optimal solution for any requirement is easy thanks to the various versions available and to the possibility of horizontal or vertical installation, depending on the version.

VERSIONS

P Without shell, vertical and horizontal installation, lower intake, without commands

 $\mbox{\bf PAF}$ Without shell, vertical and horizontal installation, front intake, without commands

FEATURES

Ventilation group

Centrifugal fans constructed from anti-static plastic with an airfoil design engineered for high efficiency and low noise levels.

Their characteristics permit energy savings compared to conventional fans. They are statically and dynamically balanced and directly coupled to the motor shaft.

The Brushless electric motor with 0-100% continuous speed variation, which allows precise adaptation to the real demands of the internal environment without temperature fluctuations.

The air flow can be continuously changed through a 1-10 V signal, coming from adjustment and control commands Aermec or from independent adjustment systems.

This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors). The plastic augers are extractable for easy and efficient cleaning.

Finned pack heat exchanger

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.

Condensate drip

Provided standard in plastic and fixed to the interior structure; with external condensate discharge.

Air filter

The fan coil units are equipped with a standard air filter. For specific details, please refer to the unit's documentation.

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SA503: Wall-mountable ambient sensor, compatible with AER503IR.

 $\textbf{SW5:} \ water \ probe \ kit \ (L=15m) \ with \ probe-holder \ connection \ point, \ fixing \ clip \ and \ probe-holder \ from \ heat \ exchanger.$

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

127

VMF system

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, D124 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, D124 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, D124CP, is also available as a separate accessory in our catalog.

DI24CP: Complete flush-mounted interface plate with support for DI24, Vimar brand, Arké series, graphite gray color.

VMF-E19I: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-LON: Expansion allowing the thermostat to interface with BMS systems that use the LON protocol.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19l thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Common accessories

DSC: Condensate drainage device.

VCH: 3-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VCHD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings.

BC: Condensate drip.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Omnia ULP

Field		Description
Field	1	Description
1,2,	3	ULI
4,5		Size
4,3		16, 26, 36
6		Version
	Р	Without shell, vertical and horizontal installation, lower intake, without commands
	PAF	Without shell, vertical and horizontal installation, front intake, without commands

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories - Omnia ULP

Accessory	ULI16P	ULI16PAF	ULI26P	ULI26PAF	ULI36P	ULI36PAF
AER503IR	•	•	•	•	•	•
PR0503	•	•	•	•	•	•
SA5	•	•	•	•	•	
SA503	•	•	•	•	•	•
SW5	•	•	•	•	•	•
TX	•	•	•	•	•	

VMF system - Omnia ULP

Accessory	ULI16P	ULI16PAF	ULI26P	ULI26PAF	ULI36P	ULI36PAF
DI24	•	•	•	•	•	•
DI24CP	•	•	•	•	•	•
VMF-E19I	•	•	•	•	•	•
VMF-E3	•	•	•	•	•	•
VMF-E4DX	•		•	•	•	•
VMF-E4X	•	•	•	•	•	•
VMF-IO	•	•	•	•	•	•
VMF-IR	•	•	•		•	•
VMF-LON	•	•	•	•	•	•
VMF-SW	•	•	•	•	•	•
VMHI	•		•	•	•	

Condensate drip

Accessory	ULI16P	ULI16PAF	ULI26P	ULI26PAF	ULI36P
BC10	•	•	•	•	•
BC20	•	•	•	•	•

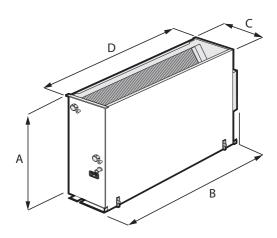
Condensate drainage

Accessory	ULI16P	ULI16PAF	ULI26P	ULI26PAF	ULI36P
DSC5 (1)	•	•	•	•	•

(1) The accessory cannot be fit if the accessory BC10 or BC20 is installed.

2 way valve kit

VCH


Accessory	ULI16P	ULI16PAF	ULI26P	ULI26PAF	ULI36P
VCHD	•	•	•	•	•
3 way valve kit					
Accessory	ULI16P	ULI16PAF	ULI26P	ULI26PAF	ULI36P

PERFORMANCE SPECIFICATIONS

2-pipe

			ULI16P		ULI26P			ULI36P		
		1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)										
Heating capacity	kW	1,54	2,12	2,91	2,89	3,83	4,62	3,53	4,87	5,94
Water flow rate system side	l/h	135	186	255	254	336	405	310	427	521
Pressure drop system side	kPa	1	2	4	5	8	11	3	5	7
Heating performance 45 °C / 40 °C (2)										
Heating capacity	kW	0,76	1,05	1,44	1,44	1,90	2,29	1,75	2,42	2,95
Water flow rate system side	l/h	133	183	251	249	331	399	305	420	513
Pressure drop system side	kPa	2	2	2	5	8	11	7	12	18
Cooling performance 7 °C / 12 °C										
Cooling capacity	kW	0,69	0,87	1,77	1,26	1,65	1,99	1,63	2,26	2,79
Sensible cooling capacity	kW	0,52	0,69	0,96	0,97	1,30	1,61	1,13	1,59	2,00
Water flow rate system side	l/h	122	153	206	220	289	349	286	394	487
Pressure drop system side	kPa	2	3	5	6	8	11	7	13	19
Fan										
Туре	type		Centrifugal			Centrifugal			Centrifugal	
Fan motor	type		Inverter			Inverter			Inverter	
Number	no.		1			2			2	
Air flow rate	m³/h	110	160	240	190	270	350	240	350	460
Input power	W	6	8	12	7	10	15	8	12	18
Diametre hydraulic fittings										
Main heat exchanger	Ø		1/2"			1/2"			1/2"	
Finned pack heat exchanger										
Water content main heat exchanger	1		0,4			0,6			0,8	
Power supply						-				
Power supply			230V~50Hz			230V~50Hz			230V~50Hz	

DIMENSIONS

Dimensions and weights

		ULI16P	ULI16PAF	ULI26P	ULI26PAF	ULI36P	ULI36PAF
Dimensions and weights							
A	mm	465	465	465	465	465	465
В	mm	530	530	761	761	981	981
C	mm	171	171	171	171	171	171
D	mm	470	470	701	701	921	921
Net weight	kg	12,0	12,0	15,0	15,0	18,0	18,0

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C (2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT

Omnia ULSI_P

Fan coils wall-mount installation

- Low operating temperature
- · Cooling, heating, and dehumidification

DESCRIPTION

The Omnia Slim P fan coils have been designed to meet the need to combine the typical features of a classic radiator - namely reduced depth and quiet operation - with the ability of a fan coil to air-condition rooms throughout the year.

Can be installed in 2-pipe systems and used in combination with any heat generator, even at low temperatures.

VERSIONS

P Inverter in ventilcassaforma

PR Inverter for ducted installation with right-hand connections

FEATURES

Ventilation group

These fan coils have extremely silent ventilation by using special tangential fans, which guarantees maximum acoustic comfort.

The electric motor is a new generation Brushless with built-in driver and IP66 protection rating, continuously variable speed

Finned pack heat exchanger

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections and the manifolds have air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The coil is reversible during selection.

Control

Both versions are supplied without on-board control, however, various thermostats or control panels are available as accessories to be installed on the wall

Mandatory ventilcassaforma ULS_CH accessory

Available in 5 sizes.

Made of galvanised and painted sheet metal, they provide a space for housing the heat exchanger directly in the wall.

Rationalising spaces according to the criteria of modern interior architecture and current energy-saving requirements.

ACCESSORIES

Control panels and dedicated accessories

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. **PRO503:** Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF Components

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, D124 in combination with the AerSuite APP (available for An-

droid and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, DI24 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, DI24CP, is also available as a separate accessory in our catalog.

VMF-485EXP: Not available for VMF-E6.

VMF-E19I: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E2S: User interface on the fan coil, with two selectors - one for temperature and the other for speed control. For operation, the installation of either the VMF-E19 or VMF-E19I accessory is required.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19l thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Common accessories

BCSV: Condensate collection tray, for valve kit.

DSC7: Condensate drainage device.

VCS2: 2-way motorised valve kit without insulating shell. The kit is made up of a valve, actuator and relative hydraulic fittings.

VCS3: 3-way motorised valve kit without insulating shell for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings.

ACCESSORIES COMPATIBILITY

Model	Ver	10	20	30	40	50
AER503IR (1)	P,PR	•	•	•	•	•
PR0503	P,PR	•	•	•	•	•
SA5 (2)	P,PR	•	•	•	•	•
SW5 (2)	P,PR	•	•	•	•	•
TX (3)	P,PR	•	•	•	•	•

- (1) Wall-mount installation.
- (2) Probe for AER503IR-TX thermostats, if fitted.
- (3) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

VMF system

Model	Ver	10	20	30	40	50
DI24	P,PR	•	•	•	•	•
KITSV (1)	P,PR	•	•	•	•	•
VMF-E19I (2)	P,PR	•	•	•	•	•
VMF-E2S (3)	P,PR	•	•	•	•	•
VMF-E3	P,PR	•	•	•	•	•
VMF-E4X	P,PR	•	•	•	•	•
VMF-IR	P,PR	•	•	•	•	•
VMHI	P,PR	•	•	•	•	•

- (1) Mandatory when the VMF-E19/19I thermostat is required.
- (2) Mandatory accessory.

 (3) Installation on the fan coil.
- (5) Histaliation on the land

3 way valve kit

Model	Ver	10	20	30	40	50
VCS3 (1)	P,PR	•	•	•	•	•

(1) Power supply 230V - Hydraulic connections Ø 1/2"

2 way valve kit

Model	Ver	10	20	30	40	50
VCS2 (1)	P,PR	•	•	•	•	•

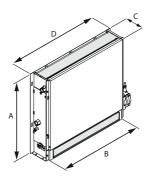
(1) Power supply 230V - Hydraulic connections Ø 1/2"

Condensate drip

Model	Ver	10	20	30	40	50
BCSV	P,PR	•	•	•	•	•

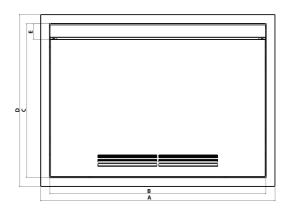
Condensate drainage

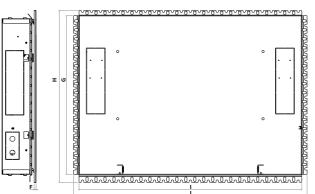
Model	Ver	10	20	30	40	50
DSC7	P.PR		•	•	•	•


PERFORMANCE SPECIFICATIONS

			ULSI10P			ULSI20P			ULSI30P			ULSI40P			ULSI50P	
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																
Heating capacity	kW	0,70	1,14	1,53	1,27	1,88	2,86	1,88	2,91	3,72	2,32	3,55	4,77	2,49	3,85	5,73
Water flow rate system side	l/h	61	100	134	111	165	251	165	254	326	203	311	418	218	337	501
Pressure drop system side	kPa	2	4	7	5	10	20	6	14	22	6	13	22	5	10	21
Heating performance 45 °C / 40 °C (2)																
Heating capacity	kW	0,35	0,57	0,76	0,63	0,94	1,43	0,94	1,45	1,85	1,15	1,77	2,38	1,24	1,92	2,85
Water flow rate system side	l/h	61	99	132	110	163	248	163	251	322	201	307	413	216	333	495
Pressure drop system side	kPa	2	4	7	5	9	20	6	14	22	6	13	22	5	10	21
Cooling performance 7 °C / 12 °C																
Cooling capacity	kW	0,37	0,60	0,80	0,67	0,98	1,50	0,98	1,52	1,95	1,22	1,86	2,50	1,30	2,02	3,00
Sensible cooling capacity	kW	0,25	0,42	0,57	0,46	0,68	1,08	0,68	1,06	1,39	0,84	1,30	1,79	0,90	1,40	2,15
Water flow rate system side	l/h	63	103	137	114	169	257	169	261	335	209	319	429	224	346	515
Pressure drop system side	kPa	3	6	10	7	13	28	9	19	30	9	18	30	7	14	29
Fan																
Туре	type		Tangential													
Fan motor	type		Inverter													
Number	no.		1			1			1			2			2	
Air flow rate	m³/h	46	82	134	78	128	241	109	188	301	126	218	370	127	225	427
Input power	W	5	8	10	6	9	15	7	12	17	7	14	20	7	13	21
Signal 0-10V	%	40	70	90	40	70	90	40	70	90	40	70	90	40	70	90
Fan coil sound data (3)																
Sound power level	dB(A)	39,0	47,0	51,0	39,0	47,0	51,0	40,0	48,0	53,0	41,0	49,0	54,0	42,0	52,0	56,0
Sound pressure level	dB(A)	31,0	39,0	43,0	31,0	39,0	43,0	32,0	40,0	45,0	33,0	41,0	46,0	34,0	44,0	48,0
Finned pack heat exchanger																
Water content main heat exchanger	1		0,5			0,9			1,2			1,5			1,8	
Diametre hydraulic fittings																
Main heat exchanger	Ø		1/2"			1/2"			1/2"			1/2"			1/2"	
Power supply																
Power supply			230V~50Hz	!		230V~50H	7		230V~50Hz	7	1	230V~50Hz	!		230V~50H	Z

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.


DIMENSIONS


ULSI_P

Size			10	20	30	40	50
Dimensions and weights							
A	P,PR	mm	130	130	130	130	130
В	P,PR	mm	745	940	1134	1328	1524
C	P,PR	mm	580	580	580	580	580
D	P,PR	mm	80	80	80	80	80
Empty weight	P,PR	kg	11	13	15	17	19

ULS_CH

M	

		ULS10CH	ULS20CH	ULS30CH	ULS40CH	ULS50CH
Dimonsions and waights		OLD IOCII	ULJZUCII	OLDOUGH	ULJ40CII	OLOGOCII
Dimensions and weights						
\	mm	818	1013	1206	1401	1596
3	mm	738	933	1126	1321	1516
	mm	665	665	665	665	665
)	mm	745	745	745	745	745
	mm	67	67	67	67	67
	mm	8	8	8	8	8
i	mm	672	672	672	672	672
l	mm	728	728	728	728	728
	mm	747	942	1135	1330	1525
	mm	793	988	1181	1376	1571
VI	mm	129	129	129	129	129

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577

www.aermec.com

VED 030-340

Fan coil unit for ducted installations

- Horizontal and vertical installation
- Large range of available static pressure
- Inspectable ventilation group

DESCRIPTION

Ducted fan coil, for heating, cooling and dehumidifying.

Designed to maintain the set temperature over time, ensuring very low sound levels.

Can be installed in any 2/4 pipe system and operates with any heat generator even at low temperatures.

Thanks to the availability of various options, with standard or increased coil, for horizontal or vertical installation, it is easy to choose the optimal solution for any need.

FEATURES

Case

Unit for internal installation.

Internally insulated structure with class 1 fire resistance and IP20 protection.

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise

 $Their characteristics \ permit \ energy \ savings \ compared \ to \ conventional \ fans.$

They are statically and dynamically balanced and directly coupled to the motor shaft.

The electric motor is single-phase multi-speed (3 selectable), mounted on anti-vibration supports and with a permanently inserted capacitor.

Fan housing in plastic material removable for easy and effective cleaning.

Finned pack heat exchanger

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air years.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.

Air filter

Coarse 25% Class air filter, easy to remove and clean.

Controls and Accessoires

There is a wide selection of controls and a huge choice of accessories, to meet every system requirement.

The unit is supplied with the delivery connection supplied.

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. **PRO503:** Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

WMT16: Electronic thermostat with thermostated ventilation.

WMT16CV: Electronic thermostat with continuous ventilation.

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF Components

DI24: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, DI24 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, DI24 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, DI24CP, is also available as a separate accessory in our catalog.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SIT3V: Relay interface board. Mandatory accessory on units where motor absorption exceeds 0.7 A. The relay interface board is supplied with a 2A fuse to protect the fan coil. If the fan coil absorbs more than 2A and up to 4A, the fuse inside must be replaced with a 4A fuse supplied.

VMF-SW: Water probe (L=2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Valves and additional water coil

BV: Hot water heat exchanger with 1 row.

VCF X: 3-way valve kit for fan coils with single heat exchanger and hydraulic connections on the left side, for installation in 4-pipe systems. The kit is composed by 2 insulated 3-way valves and 4 connections complete with electrothermal actuators, insulating shells for the valves and with hydraulic fittings. 230V power supply. Hydraulic connections: Valve body Ø G 3/4" Male; Valve side connection pipes Ø G 3/4" Female; Unit side connection pipes Ø G 3/4" Male.

VCF41 - 42 - 43 - for main heat exchanger: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCF44 - 45 - for secondary heat exchanger: The 3-way motorised valve kit for the secondary coil heat only. The kit consists of a valve with its insulating shell, actuator and relevant water fittings; it is suitable to be installed on the fan coils with right and left water connections.

VCFD: Motorized 2-way valve kit without insulating shell, can be installed on the main or secondary battery or a battery that is only warm. The kit is made up of a valve, actuator and relative hydraulic fittings. It can be installed on fan coils with connections on the right and on the left.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components.

The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

Installation accessories

AMP: Wall mounting kit

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing. **DSC:** Condensate drainage device.

Accessories for intake

GA: Intake grid with fixed louvers

GAF: Intake grid with filter and fixed louvers

SE_X: External air shutter with manual control.

RDA V: Straight intake connection with rectangular flange.

RDA_C: Straight intake connection with circular flanges.

RPA_V: Suction plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

PA_V: Suction plenum with circular plastic flanges; both sides have a circular push-out Ø 150mm that can be removed.

Delivery accessories

MZC: Plenum with motorised dampers.

MZCAC: Mandatory electrical system for connecting the MZC plenum with a fan coil fitted with an asynchronous motor.

MZCACV: Electrical system with relay interface board. Mandatory accessory on units where motor absorption exceeds 0.7 A. The relay interface board is supplied with a 2A fuse to protect the fan coil. If the fan coil absorbs more than 2A and up to 4A, the fuse inside must be replaced with a 4A fuse supplied.

GM: Flow grid with adjustable louvers.

PM_V: Internally insulated delivery plenum with circular flanges; both sides have a circular push-out Ø 150mm that can be removed.

RPM V: Internally insulated delivery plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

RDM_C: Straight discharge internally insulated, with circular flanges.

RDM_V: Straight delivery coupling in galvanised sheet metal.

KFV: Circular flanges kit for plenum.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Model	Ver	030	040	130	140	230	240	330	340
AER503IR (1)		•	•	•	•	•	•	•	•
PR0503		•	•	•	•	•	•	•	•
SA5 (2)				•	•	•	•	•	•
SIT3 (3)		•	•	•	•	•	•	•	•
SIT5 (4)	•	•	•	•	•	•	•	•	•
SW3 (2)		•	•	•	•	•	•	•	•
SW5 (2)		•	•	•	•	•	•	•	•
TX (5)				•	•	•	•	•	•
WMT10 (5)		•	•	•	•	•	•	•	
WMT16 (5)	•	•	•	•	•	•	•	•	•
WMT16CV (5)		•	•	•	•	•	•	•	•

⁽¹⁾ Wall-mount installation.

Probe for AER503IR-TX thermostats, if fitted.

(3) Cards for AER503IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere. (4) Probe for AER503IR-TX thermostats, if fitted.

(5) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

VMF system

Model	Ver	030	040	130	140	230	240	330	340
DI24		•	•	•	•	•	•	•	•
VMF-E19 (1)		•	•	•	•	•	•	•	•
VMF-E3		•	•	•	•	•	•	•	•
VMF-E4DX		•	•	•	•	•	•	•	•
VMF-E4X		•	•	•	•	•	•	•	•
VMF-IO		•	•	•	•	•	•	•	•
VMF-IR		•	•	•	•	•	•	•	•
VMF-SIT3V (2)								•	•
VMF-SW		•	•	•	•	•	•	•	•
VMF-SW1		•	•	•	•	•	•	•	•
VMHI		•	•	•	•	•	•	•	•

⁽¹⁾ Also the accessory VMF-SIT3V is mandatory if the unit exceeds 0.7 Amperes.

(2) For the selection, consult the documentation for the thermostat and the fan coil.

(Heating	only)	additional	coil

Ver	030	040	130	140	230	240	330	340
	BV030 (1)	-	BV130 (1)	-	BV230 (1)	-	BV162 (1)	-

(1) Not available for sizes with oversized main coil.

The accessory cannot be fitted on the configurations indicated with -

Water valves

Valve Kit for 4 pipe systems with main coil

Accessory	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
VCF3X4L	•	•	•		•		•	•
VCF3X4LS				•		•		
VCF3X4R	•	•	•		•		•	•
VCF3X4RS				•				

3 way valve kit

	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
3 way valve kit								
Main heat exchanger	VCF43-VCF4324	VCF43-VCF4324	VCF43-VCF4324	VCF43S-VCF4324S	VCF43-VCF4324	VCF43S-VCF4324S	VCF43-VCF4324	VCF43-VCF4324
Additional coil "BV"	VCF45-VCF4524	-	VCF45-VFC4524	-	VCF45-VCF4524	-	VCF45-VCF4524	-

VCF43 - 45 Power supply 230V, VCF4324-4524 Power supply 24V - Hydraulic connections Ø 3/4"

2 way valve kit

	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
2 way valve kit								
Main heat exchanger	VCFD3-VCFD324							
Additional coil "BV"	VCFD4-VCFD424	-	VCFD4-VCFD424	-	VCFD4-VCFD424	-	VCFD4-VCFD424	-

VCFD3 Power supply 230V, VCFD324 Power supply 24V - Hydraulic connections Ø 3/4" VCFD4 Power supply 230V, VCFD424 Power supply 24V - Hydraulic connections Ø 1/2"; For additional coil (heating only) BV.

Combined adjustment and balancing valve cold side

Accessory	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
VJP060	•	•	•	•				
VJP060M	•	•	•	•				
VJP090					•	•	•	•
VJP090M					•	•	•	•
VJP150							•	•
VJP150M							•	•

Installation accessories

Accessory	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
AMP	•	•	•	•	•	•	•	•

Condensate drip

Accessory	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
BCZ4	•	•	•	•	•	•	•	•
BCZ6	•	•	•	•	•	•	•	•
Accessory	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
BC9	•	•	•	•	•	•	•	•

BCZ4 For vertical installation.

BCZ6 For horizontal installation. BC9 For horizontal installation.

Condensate recirculation device

Accessory	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
DSC4	•	•	•	•	•	•	•	•
DSCZ4	•	•	•	•	•	•	•	•

Accessories for intake

Intake grids

Ver	030	040	130	140	230	240	330	340
	GA22	GA22	GA32	GA32	GA42	GA42	GA62	GA62

140

GAF32

230

GAF42

240

GAF42

330

GAF62

340

GAF62

130

GAF32

040

GAF22

GAF22

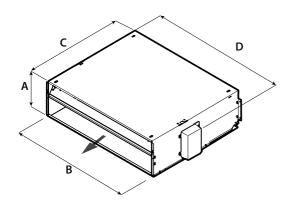
Intake grid with filter and fixed louvers 030

External air shutter with n	nanual control							
Ver	030	040	130	140	230	240	330	340
	SE20X	SE20X	SE30X	SE30X	SE40X	SE40X	SE80X	SE80X

Intaka straight with roctangular flanges

IIIta	ke straight with rectan	igulai ilaliges							
	Ver	030	040	130	140	230	240	330	340
		RDA000V	RDA000V	RDA100V	RDA100V	RDA200V	RDA200V	RDA300V	RDA300V

Ver	030	040	130	140	230	240	330	340
	RDAC000V	RDAC000V	RDAC100V	RDAC100V	RDAC200V	RDAC200V	RDAC300V	RDAC300V
stako plonum with	rectangular flanges							
Ver	030	040	130	140	230	240	330	340
	RPA000V	RPA000V	RPA100V	RPA100V	RPA200V	RPA200V	RPA300V	RPA300V
		NEMOUUV	NEWTOON	NEWTOON	NFAZUUV	NFAZUUV	VLWOODA	NEWOODA
ntake plenum with		040	120	140	220	340	220	340
Ver	030 PA000V	040	130 PA100V	140 PA100V	230 PA200V	240 PA200V	330	340 PA300V
•	PAUUUV	PA000V	PATOUV	PATOUV	PAZUUV	PAZUUV	PA300V	PASUUV
Delivery accessor								
lenum with motor	-driven dampers							
Ver	030	040	130	140	230	240	330	340
	MZC220	MZC220	MZC320	MZC320	MZC530	MZC530	MZC830	MZC830
Electrical system wi	th relays							
Ver	030 040	130	140		230	240	330	340
	MZCACV (1) MZCACV (1)	MZCACV (1)	MZCACV (1)		MZCACV (1)	MZCACV (1)	MZCACV (1)	MZCACV (1)
lectric plant Ver	030 040	130	140		230	240	330	340
	030 040 MZCAC MZCAC	130 MZCAC	140 MZCAC		230 MZCAC	240 MZCAC	330 MZCAC	340 MZCAC
Ver	MZCAC MZCAC							
Ver	MZCAC MZCAC			140				
Ver low grid with adju	MZCAC MZCAC stable louvers	MZCAC	MZCAC	140 GM32	MZCAC	MZCAC	MZCAC	MZCAC
Ver low grid with adju Ver	MZCAC MZCAC stable louvers 030 GM22	MZCAC 040 GM22	MZCAC 130		MZCAC 230	MZCAC 240	MZCAC 330	MZCAC
Ver Flow grid with adju Ver Delivery plenum int	MZCAC MZCAC stable louvers 030 GM22 sernally insulated, with	MZCAC 040 GM22 circular flanges	MZCAC 130 GM32	GM32	230 GM42	MZCAC 240 GM42	MZCAC 330 GM62	MZCAC 340 GM62
Ver low grid with adju Ver	MZCAC MZCAC stable louvers 030 GM22 cernally insulated, with 030	040 GM22 circular flanges 040	130 GM32	GM32	230 GM42	MZCAC 240 GM42 240	MZCAC 330 GM62 330	MZCAC 340 GM62
Ver low grid with adju Ver Delivery plenum int	MZCAC MZCAC stable louvers 030 GM22 cernally insulated, with 030 PM000V	040 GM22 circular flanges 040 PM000V	130 GM32 130 PM100V	GM32	230 GM42	MZCAC 240 GM42	MZCAC 330 GM62	340 GM62
Ver low grid with adju Ver Pelivery plenum int Ver Delivery plenum int	stable louvers 030 GM22 cernally insulated, with 030 PM000V cernally insulated, with	040 GM22 circular flanges 040 PM000V	130 GM32 130 PM100V	GM32 140 PM100V	230 GM42 230 PM200V	MZCAC 240 GM42 240 PM200V	330 GM62 330 PM300V	MZCAC 340 GM62 340 PM300V
Ver Flow grid with adju Ver Delivery plenum int Ver Delivery plenum int	mZCAC MZCAC stable louvers 030 GM22 cernally insulated, with 030 PM000V cernally insulated, with 030	040 GM22 circular flanges 040 PM000V rectangular flang	130 GM32 130 PM100V es 130	GM32 140 PM100V	230 GM42 230 PM200V	240 GM42 240 PM200V	330 GM62 330 PM300V	MZCAC 340 GM62 340 PM300V
Ver Flow grid with adju Ver Delivery plenum int Ver Delivery plenum int Ver	mZCAC MZCAC stable louvers 030 GM22 cernally insulated, with 030 PM000V cernally insulated, with 030 RPM000V	040 GM22 circular flanges 040 PM000V rectangular flang 040 RPM000V	130 GM32 130 PM100V	GM32 140 PM100V	230 GM42 230 PM200V	MZCAC 240 GM42 240 PM200V	330 GM62 330 PM300V	MZCAC 340 GM62 340 PM300V
Ver Flow grid with adju Ver Delivery plenum int Ver Delivery plenum int Ver	mZCAC MZCAC stable louvers 030 GM22 cernally insulated, with 030 PM000V cernally insulated, with 030 RPM000V cernally insulated, with	040 GM22 circular flanges 040 PM000V rectangular flang 040 RPM000V	130 GM32 130 PM100V es 130 RPM100V	140 PM100V 140 RPM100V	230 GM42 230 PM200V 230 RPM200V	240 GM42 240 PM200V 240 RPM200V	330 GM62 330 PM300V 330 RPM300V	340 GM62 340 PM300V 340 RPM300V
Ver Flow grid with adju Ver Delivery plenum int Ver Delivery plenum int Ver	mZCAC MZCAC stable louvers 030 GM22 cernally insulated, with 030 PM000V cernally insulated, with 030 RPM000V cernally insulated, with 030 RPM000V	040 GM22 circular flanges 040 PM000V rectangular flang 040 RPM000V circular flanges	130 GM32 130 PM100V es 130 RPM100V	140 PM100V 140 RPM100V	230 GM42 230 PM200V 230 RPM200V	240 GM42 240 PM200V 240 RPM200V	330 GM62 330 PM300V 330 RPM300V	340 GM62 340 PM300V 340 RPM300V
Ver Flow grid with adju Ver Delivery plenum int Ver Delivery plenum int Ver Delivery straight int Ver	stable louvers 030 GM22 cernally insulated, with 030 PM000V cernally insulated, with 030 RPM000V cernally insulated, with 030 RPM000V	040 GM22 circular flanges 040 PM000V rectangular flang 040 RPM000V	130 GM32 130 PM100V es 130 RPM100V	140 PM100V 140 RPM100V	230 GM42 230 PM200V 230 RPM200V	240 GM42 240 PM200V 240 RPM200V	330 GM62 330 PM300V 330 RPM300V	340 GM62 340 PM300V 340 RPM300V
Ver Flow grid with adju Ver Delivery plenum int Ver Delivery straight int Ver Straight delivery co	stable louvers 030 GM22 cernally insulated, with 030 PM000V cernally insulated, with 030 RPM000V cernally insulated, with 030 RPM000V cernally insulated, with 030 RDMC000V	040 GM22 circular flanges 040 PM000V rectangular flang 040 RPM000V circular flanges 040 RDMC000V	130 GM32 130 PM100V es 130 RPM100V	140 PM100V 140 RPM100V 140 RPM100V	230 GM42 230 PM200V 230 RPM200V 230 RPM200V	240 GM42 240 PM200V 240 RPM200V 240 RPM200V	330 GM62 330 PM300V 330 RPM300V 330 RPM300V	340 GM62 340 PM300V 340 RPM300V 340 RDMC300V
Pelivery plenum into Ver Delivery plenum into Ver Delivery plenum into Ver Delivery straight into Ver Straight delivery co	stable louvers 030 GM22 cernally insulated, with 030 PM000V cernally insulated, with 030 RPM000V cernally insulated, with 030 RPM000V cernally insulated, with 030 RDMC000V	040 GM22 circular flanges 040 PM000V rectangular flang 040 RPM000V circular flanges 040 RDMC000V	130 GM32 130 PM100V es 130 RPM100V 130 RDMC100V	140 PM100V 140 RPM100V 140 RDMC100V	230 GM42 230 PM200V 230 RPM200V 230 RPM200V	240 GM42 240 PM200V 240 RPM200V 240 RDMC200V	330 GM62 330 PM300V 330 RPM300V 330 RDMC300V	340 GM62 340 PM300V 340 RPM300V 340 RDMC300V
Ver Flow grid with adju Ver Delivery plenum int Ver Delivery straight int Ver Straight delivery co	stable louvers 030 GM22 cernally insulated, with 030 PM000V cernally insulated, with 030 RPM000V cernally insulated, with 030 RPM000V cernally insulated, with 030 RDMC000V	040 GM22 circular flanges 040 PM000V rectangular flang 040 RPM000V circular flanges 040 RDMC000V	130 GM32 130 PM100V es 130 RPM100V	140 PM100V 140 RPM100V 140 RPM100V	230 GM42 230 PM200V 230 RPM200V 230 RPM200V	240 GM42 240 PM200V 240 RPM200V 240 RPM200V	330 GM62 330 PM300V 330 RPM300V 330 RPM300V	340 GM62 340 PM300V 340 RPM300V 340 RDMC300V
Ver Flow grid with adjuver Ver Delivery plenum into Ver Delivery straight into Ver Ver Straight delivery co	stable louvers 030 GM22 cernally insulated, with 030 PM000V cernally insulated, with 030 RPM000V ternally insulated, with 030 RPM000V ternally insulated, with 030 RDMC000V	040 GM22 circular flanges 040 PM000V rectangular flang 040 RPM000V circular flanges 040 RDMC000V	130 GM32 130 PM100V es 130 RPM100V 130 RDMC100V	140 PM100V 140 RPM100V 140 RDMC100V	230 GM42 230 PM200V 230 RPM200V 230 RPM200V	240 GM42 240 PM200V 240 RPM200V 240 RDMC200V	330 GM62 330 PM300V 330 RPM300V 330 RDMC300V	340 GM62 340 PM300V 340 RPM300V 340 RDMC300
Ver Flow grid with adju Ver Delivery plenum int Ver Delivery straight int Ver Straight delivery co	stable louvers 030 GM22 cernally insulated, with 030 PM000V cernally insulated, with 030 RPM000V ternally insulated, with 030 RPM000V ternally insulated, with 030 RDMC000V	040 GM22 circular flanges 040 PM000V rectangular flang 040 RPM000V circular flanges 040 RDMC000V	130 GM32 130 PM100V es 130 RPM100V 130 RDMC100V	140 PM100V 140 RPM100V 140 RDMC100V	230 GM42 230 PM200V 230 RPM200V 230 RPM200V	240 GM42 240 PM200V 240 RPM200V 240 RDMC200V	330 GM62 330 PM300V 330 RPM300V 330 RDMC300V	340 GM62 340 PM300V 340 RPM300V 340 RDMC300


PERFORMANCE SPECIFICATIONS

2-pipe

		1	VED03	0		VED04	0	1	/ED13)	1	VED14	0	١	VED23	0	١	VED24	0	1	/ED33	0	,	VED340	0
		1	4	6	1	4	6	1	4	6	1	4	6	1	3	6	1	3	6	1	3	7	1	3	7
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																									
Heating capacity	kW	1,82	3,37	3,69	2,37	3,57	3,92	4,40	5,83	6,29	4,52	6,09	6,58	5,35	6,50	7,16	5,80	7,14	7,91	7,81	9,34	10,51	8,31	10,02	10,95
Water flow rate system side	I/h	160	296	323	207	313	343	386	512	552	396	534	577	469	570	628	509	626	694	685	819	921	729	878	960
Pressure drop system side	kPa	3	7	9	4	10	12	13	22	26	9	16	18	27	30	37	18	26	32	9	13	16	22	28	32
Heating performance 45 °C / 40 °C (2)																									
Heating capacity	kW	0,90	1,67	1,83	1,18	1,77	1,94	2,18	2,90	3,12	2,24	3,02	3,27	2,66	3,23	3,56	2,88	3,55	3,93	3,88	4,64	5,22	3,98	4,98	5,44
Water flow rate system side	I/h	157	291	318	204	208	338	380	504	543	390	526	568	462	561	618	501	616	683	674	807	907	718	865	945
Pressure drop system side	kPa	3	8	9	5	11	13	15	24	28	10	16	19	26	29	36	18	27	32	10	14	17	13	20	23
Cooling performance 7 °C / 12 °C																									
Cooling capacity	kW	0,97	1,41	1,56	1,10	1,68	1,84	2,05	2,74	2,91	2,24	3,00	3,22	2,55	3,07	3,33	2,86	3,57	3,93	3,62	4,35	4,90	3,92	4,72	5,26
Sensible cooling capacity	kW	0,73	1,07	1,18	0,79	1,19	1,29	1,41	1,89	2,01	1,58	2,14	2,30	1,96	2,38	2,61	2,16	2,65	2,92	2,74	3,26	3,63	2,89	3,50	3,89
Water flow rate system side	l/h	170	250	279	193	296	327	358	480	515	390	525	566	445	538	588	499	624	691	633	760	860	685	824	922
Pressure drop system side	kPa	3	7	9	5	12	14	15	27	31	11	20	23	25	36	44	16	31	37	10	14	18	16	21	26
Fan																									
Туре	type												Centr	ifugal											
Fan motor	type												Asynch	ronous											
Number	no.		1			1			2			2			2			2			3			3	
Air flow rate	m³/h	161	256	285	160	249	277	287	397	433	280	386	420	417	524	590	406	509	570	572	704	805	563	685	775
High static pressure	Pa	21	50	61	21	50	61	26	50	60	26	50	60	32	50	64	32	50	63	33	50	66	34	50	64
Input power	W	23	38	59	23	38	58	34	53	76	34	52	75	43	57	93	43	57	92	63	75	104	63	74	107
Electrical wiring		٧1	٧4	۷6	٧1	٧4	٧6	٧1	٧4	٧6	٧1	٧4	V6	V1	V3	٧6	V1	V3	V6	V1	٧3	٧7	V1	V3	٧7
Duct type fan coil sound data (3)																									
Sound power level (inlet + radiated)	dB(A)	44,0	52,0	54,0	44,0	52,0	54,0	47,0	53,0	55,0	47,0	53,0	55,0	49,0	54,0	57,0	49,0	54,0	57,0	49,0	55,0	58,0	49,0	55,0	58,0
Sound power level (outlet)	dB(A)	40,0	48,0	50,0	40,0	48,0	50,0	42,0	48,0	50,0	42,0	48,0	50,0	44,0	49,0	52,0	44,0	49,0	52,0	45,0	51,0	54,0	45,0	51,0	54,0
Finned pack heat exchanger																									
Water content main heat exchanger			0,7			1,0			1,1			1,5			1,5			2,1			1,8			2,3	
Diametre hydraulic fittings																									
Main heat exchanger	Ø												3/	4"											
Power supply																									
Power supply													230V-	~50Hz											

(1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

		VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
Dimensions and weights									
A	mm	217	217	217	217	217	217	217	217
В	mm	550	550	781	781	1001	1001	1122	1122
C	mm	560	560	560	560	560	560	560	560
D	mm	576	576	807	807	1027	1027	1148	1148

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

VED 030I-340I

Fan coil unit for ducted installations

- · Horizontal and vertical installation
- Large range of available static pressure
- Inspectable ventilation group
- Total comfort: reduced temperature and humidity oscillations
- Electricity savings of 50% compared with a fan coil with multi-speed motor

DESCRIPTION

Ducted fan coil, for heating, cooling and dehumidifying.

Designed to maintain the set temperature over time, ensuring very low sound levels.

Can be installed in any 2/4 pipe system and operates with any heat generator even at low temperatures.

Thanks to the availability of various options, with standard or increased coil, for horizontal or vertical installation, it is easy to choose the optimal solution for any need.

FEATURES

Case

Unit for internal installation.

Internally insulated structure with class 1 fire resistance and IP20 protection.

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise

Brushless motor with continuous speed variation 0-100%.

Inverter motor allows precise adaptation to the real indoor environment requirements without temperature oscillations.

The air flow can be continuously changed through a 1-10 V signal, coming from adjustment and control commands Aermec or from independent adjustment systems.

This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors).

Finned pack heat exchanger

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.

Air filter

Air filter Class G3, for easy removal and cleaning.

Controls and Accessoires

There is a wide selection of controls and a huge choice of accessories, to meet every system requirement.

The unit is supplied with the delivery connection supplied.

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. **SA5:** air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

SWAI: External air or water temperature probe.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT21: Electronic thermostat for inverter fancoils.

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF Components

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, D124 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, D124 is compatible with switch plates from major brands available on the market. For more information, please refer to our documen-

tation. However, a switch plate with its graphite gray support, DI24CP, is also available as a separate accessory in our catalog.

VMF-E19I: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19l thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Valves and additional water coil

BV: Hot water heat exchanger with 1 row.

VCF_X: 3-way valve kit for fan coils with single heat exchanger and hydraulic connections on the left side, for installation in 4-pipe systems. The kit is composed by 2 insulated 3-way valves and 4 connections complete with electrothermal actuators, insulating shells for the valves and with hydraulic fittings. 230V power supply. Hydraulic connections: Valve body Ø G 3/4" Male; Valve side connection pipes Ø G 3/4" Female; Unit side connection pipes Ø G 3/4" Male.

VCF41 - 42 - 43 - for main heat exchanger: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCF44 - 45 - for secondary heat exchanger: The 3-way motorised valve kit for the secondary coil heat only. The kit consists of a valve with its insulating shell, actuator and relevant water fittings; it is suitable to be installed on the fan coils with right and left water connections.

VCFD: Motorized 2-way valve kit without insulating shell, can be installed on the main or secondary battery or a battery that is only warm. The kit is made up of a valve, actuator and relative hydraulic fittings. It can be installed on fan coils with connections on the right and on the left.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

Installation accessories

AMP: Wall mounting kit

BC: Condensate drip.

DSC: Condensate drainage device.

Accessories for intake

GA: Intake grid with fixed louvers

GAF: Intake grid with filter and fixed louvers

SE_X: External air shutter with manual control.

RDA_V: Straight intake connection with rectangular flange.

RDA_C: Straight intake connection with circular flanges.

RPA_V: Suction plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

PA_V: Suction plenum with circular plastic flanges; both sides have a circular push-out Ø 150mm that can be removed.

Delivery accessories

GM: Flow grid with adjustable louvers.

MZC: Plenum with motorised dampers.

PM_V: Internally insulated delivery plenum with circular flanges; both sides have a circular push-out Ø 150mm that can be removed.

RPM_V: Internally insulated delivery plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

RDM_C: Straight discharge internally insulated, with circular flanges.

RDM_V: Straight delivery coupling in galvanised sheet metal.

KFV: Circular flanges kit for plenum.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Accessory	VED030I	VED040I	VED130I	VED140I	VED230I	VED240I	VED330I	VED340I
AER503IR	•	•	•	•	•	•	•	•
PR0503	•		•	•	•	•	•	•
SA5	•	•	•	•	•	•	•	•
SW3	•	•	•	•	•	•	•	•
SW5	•	•	•	•	•	•	•	•
SWAI	•	•	•		•	•	•	•
TX	•	•	•	•	•	•	•	•
WMT21	•	•		•			•	

VMF system

Accessory	VED030I	VED040I	VED130I	VED140I	VED230I	VED240I	VED330I	VED340I
D124	•	•	•	•	•	•	•	•
VMF-E19I	•	•	•	•	•	•	•	•
VMF-E3	•	•	•	•	•	•	•	•
VMF-E4DX	•	•	•	•	•	•	•	•
VMF-E4X	•	•	•	•	•	•	•	•
VMF-IO	•	•	•	•	•	•	•	•
VMF-IR	•		•		•	•	•	•
VMF-LON	•	•	•	•	•	•	•	•
VMF-SW	•	•	•	•	•	•	•	•
VMF-SW1		•	•		•			•
VMHI	•	•	•	•	•	•	•	•

(Heating only) additional coil

<u> </u>									
	Ver	030	040	130	140	230	240	330	340
	1	BV030	-	BV130	-	BV230	-	BV162	-

Water valves

Valve Kit for 4 pipe systems with main coil

Accessory	VED030I	VED040I	VED130I	VED140I	VED230I	VED240I	VED330I	VED340I
VCF3X4L	•	•	•		•		•	•
VCF3X4LS				•		•		
VCF3X4R	•	•	•		•		•	•
VCF3X4RS				•		•		

3 way valve kit

	VED030I	VED040I	VED130I	VED140I	VED230I	VED240I	VED330I	VED340I
3 way valve kit								
Main heat exchanger	VCF43-VCF4324	VCF43-VCF4324	VCF43-VCF4324	VCF43S-VCF4324S	VCF43-VCF4324	VCF43S-VCF4324S	VCF43-VCF4324	VCF43-VCF4324
Additional coil "BV"	VCF45-VCF4524	-	VCF45-VFC4524	-	VCF45-VCF4524	-	VCF45-VCF4524	-

VCF43 - 45 Power supply 230V, VCF4324-4524 Power supply 24V - Hydraulic connections Ø 3/4"

2 way valve kit

	VED030I	VED040I	VED130I	VED140I	VED230I	VED240I	VED330I	VED340I
2 way valve kit								
Main heat exchanger	VCFD3-VCFD324							
Additional coil "BV"	VCFD4-VCFD424	-	VCFD4-VCFD424	-	VCFD4-VCFD424	-	VCFD4-VCFD424	-

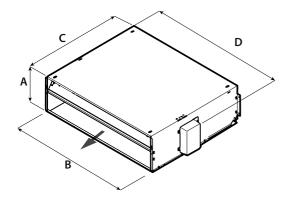
VCFD3 Power supply 230V, VCFD324 Power supply 24V - Hydraulic connections Ø 3/4" VCFD4 Power supply 230V, VCFD424 Power supply 24V - Hydraulic connections Ø 1/2"; For additional coil (heating only) BV.

Combined adjustment and balancing valve cold side

Model	Ver	030	040	130	140	230	240	330	340
VJP060 (1)		•	•	•	•				
VJP060M (2)	I	•	•	•	•				
VJP090 (1)	ı					•	•	•	•
VJP090M (2)	1						•		•

Model	Ver	030	040 1	130	140	230 240	330	340
/JP150 (1)	I						•	•
'JP150M (2)	<u> </u>						•	•
1) 230V~50Hz								
.) 24V IP060 - 090 - 150 (230V~50Hz); VJP060	0M-090M-150M (24V)							
	(= ,							
nstallation accessories								
Vall mounting accessories								
Accessory	VED030I	VED040I	VED130I	VE	D140I	VED230I	VED240I	VED340I
MP	•	•	•		•	•	•	•
Condensate drip								
•	VED030I	VED040I	VED130I	VED140I	VED230I	VED240I	VED330I	VED340I
Accessory BCZ4	•	•	•	•	•	VED240I	•	•
3CZ6	•	•	•	•	•	•	•	•
ccessory	VED030I	VED040I	VED130I	VED140I	VED230I	VED240I	VED330I	VED340I
(9	•	•	•	•	•	•	•	•
CZ4 For vertical installation. CZ6 For horizontal installation. C9 For horizontal installation.								
Condensate drainage								
Ver	030	040	130	140	230	240	330	340
	DSC4	DSC4	DSC4	DSC4	DSC4	DSC4	DSC4	DSC4
·								-24.
Accessories for intake								
ntake grids								
Ver	030	040	130	140	230	240	330	340
	GA22	GA22	GA32	GA32	GA42	GA42	GA62	GA62
•	W. 122	<u>.</u>	2102	3.02		W. 14	5.102	5.102
ntake grid with filter and t	fixed louvers							
Ver	030	040	130	140	230	240	330	340
	GAF22	GAF22	GAF32	GAF32	GAF42	GAF42	GAF62	GAF62
	_							
xternal air shutter with m								
Ver	030	040	130	140	230	240	330	340
	SE20X (1)	SE20X (1)	SE30X (1)	SE30X (1)	SE40X (1)	SE40X (1)	SE80X (1)	SE80X (1)
1) The SE accessories must be combined	with the design and struct	ural feet.						
ntake straight with rectan	gular flanges							
Ver	030	040	130	140	230	240	330	340
	RDA000V	RDA000V	RDA100V	RDA100V	RDA200V	RDA200V	RDA300V	RDA300V
ntake straight internally i	nsulated, with circ	ular flanges						
Ver	030	040	130	140	230	240	330	340
1	RDAC000V	RDAC000V	RDAC100V	RDAC100V	RDAC200V	RDAC200V	RDAC300V	RDAC300V
ntake plenum with rectan			420	***	200	2/2	334	3
Ver	030	040	130	140	230	240	330	340
	RPA000V	RPA000V	RPA100V	RPA100V	RPA200V	RPA200V	RPA300V	RPA300V
ntake plenum with circula	r flanges							
Ver	030	040	130	140	230	240	330	340
	PA000V	PAOOOV	PA100V	PA100V	PA200V	PA200V	PA300V	PA300V
	1110001				1712001	1712004	17,5001	1713001
Delivery accessories								
Outlet grille with adjustab	le louvers							
Ver	030	040	130	140	230	240	330	340
ver	GM22	GM22	GM32	GM32	GM42	GM42	GM62	GM62
I	UIVILL	JITIZZ	UNIJZ	UITIJE	UIVITA	UIVITA	UNIOZ	UIVIUZ
lenum with motor-driven	dampers							
Ver	030	040	130	140	230	240	330	340
<u> </u>	MZC220	MZC220	MZC320	MZC320	MZC530	MZC530	MZC830	MZC830
	'							
Delivery plenum internally	insulated, with ci	ircular flanges						
Ver	030	040	130	140	230	240	330	340
	PM000V	PM000V	PM100V	PM100V	PM200V	PM200V	PM300V	PM300V
		ectangular flan	noc					
elivery plenum internally		-ctungular man	ges					
Delivery plenum internally Ver	030 RPM000V	040 RPM000V	130 RPM100V	140 RPM100V	230 RPM200V	240 RPM200V	330 RPM300V	340 RPM300V

Delivery straight	internally incul	ated with cir	cular flances
Delivery Straight	internally insul	ated, with cir	cular flandes


Ver	030	040	130	140	230	240	330	340
	I RDMC000V RDMC000V		RDMC100V	RDMC100V	RDMC200V	RDMC200V	RDMC300V	RDMC300V
traight delivery coupling								
Ver	030 040		130	140	230	240	330	340
I	I RDM000V RDM000V		RDM100V	RDM100V	RDM200V	RDM200V	RDM300V	RDM300V
ircular flanges kit for plenum								
ccessory	VED030I	VED040I	VED130I	VEC)140l	VED230I	VED240I	VED340I
FV10	•	•	•		•	•	•	•

PERFORMANCE SPECIFICATIONS

2-pipe		VED030I		VED040I			VED130I		VED140I		VED230I			VED240I			VED330I			VED340I				
	-			-		<u> </u>	1		_	١	_	_	1		_	١			VEDSSU		_	1	ED340	<u>"-</u>
	++	5	7	1	5			5		<u> </u>	5	7	<u> </u>	5		<u> </u>	_5_		<u> </u>	5		<u> </u>		
	L	M	Н	L	M	Н	L	М	Н	L	M	Н	L	М	Н	L	М	Н	L	М	Н	L	М	H
Heating performance 70 °C / 60 °C (1)			2 40	I		2.02													- 04				40.00	40.05
Heating capacity kV	- /-	- , -	3,69	2,37	3,57	3,92	4,40	5,83	6,29	4,52	6,09	6,58	5,35		7,16	5,80		7,91	7,81		10,51	8,31	10,08	
Water flow rate system side 1/1			323	207	313	343	386	512	552	396	534	577	469	570	628	509	626	694	685	819	921	729	878	960
Pressure drop system side kP	3	7	9	4	10	12	13	22	26	9	16	18	27	30	37	18	26	32	9	13	16	22	28	32
Heating performance 45 °C / 40 °C (2)													_						_					
Heating capacity kV	- 7		1,83	1,17	1,77	1,94	2,18	2,90	3,12	2,24	3,02		2,66	3,23	3,56	2,88		3,93	3,88	4,64	5,22	3,98		5,44
Water flow rate system side I/I	_	291	318	204	308	338	380	504	543	390	526	568	462	561	618	501	616	683	674	807	907	718	865	945
Pressure drop system side kP	3	8	9	5	11	13	15	24	28	10	16	19	26	29	36	18	27	32	10	14	17	13	20	23
Cooling performance 7 °C / 12 °C																								
Cooling capacity kV	0,98	1,42	1,58	1,11	1,69	1,86	2,06	2,76	2,95	2,25	3,02	3,25	2,57	3,09	3,37	2,88	3,59	3,97	3,62	4,36	4,91	3,95	4,72	5,27
Sensible cooling capacity kV	0,74	1,08	1,20	0,80	1,20	1,31	1,42	1,91	2,05	1,59	2,16	2,32	1,98	2,40	2,65	2,18	2,67	2,96	2,77	3,27	3,64	2,92	3,51	3,90
Water flow rate system side I/I	170	250	279	193	296	327	358	480	515	390	525	566	445	538	588	499	624	691	633	760	860	680	811	906
Pressure drop system side kP	3	7	9	5	12	14	15	27	41	11	20	23	25	36	44	16	31	37	10	14	18	16	21	26
Fan																								
Туре typ	e											Centr	ifugal											
Fan motor typ	2											Inve	rter											
Number no		1			1			2			2			2			2			3			3	
Air flow rate m ³ /	h 161	256	285	160	249	277	287	397	434	280	386	420	417	524	590	406	509	570	572	704	805	563	685	775
High static pressure Pa	21	50	61	21	50	61	26	50	60	26	50	60	32	50	64	32	50	63	33	50	66	34	50	64
Input power W	12	29	36	12	29	36	17	33	45	17	33	45	24	40	53	24	40	53	35	60	86	35	60	86
Signal 0-10V %	54	80	90	54	80	90	58	82	90	58	82	90	66	80	90	62	80	90	62	78	90	66	84	90
Duct type fan coil sound data (3)																								
Sound power level (inlet + radiated) dB(A) 44,0	52,0	54,0	44,0	52,0	54,0	47,0	53,0	55,0	47,0	53,0	55,0	49,0	54,0	57,0	49,0	54,0	57,0	49,0	55,0	58,0	49,0	55,0	58,0
Sound power level (outlet) dB(A) 40,0	48,0	50,0	40,0	48,0	50,0	42,0	48,0	50,0	42,0	48,0	50,0	44,0	49,0	52,0	44,0	49,0	52,0	45,0	51,0	54,0	45,0	51,0	54,0
Diametre hydraulic fittings																								
Type typ	e											Gas	5 - F											
Main heat exchanger												3/	4"											
Power supply																								
Power supply												230V	~50Hz											

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

		VED030I	VED040I	VED130I	VED140I	VED230I	VED240I	VED330I	VED340I
Dimensions and weights									
A	mm	217	217	217	217	217	217	217	217
В	mm	550	550	781	781	1001	1001	1122	1122
С	mm	584	584	584	584	584	584	584	584
D	mm	576	576	807	807	1027	1027	1148	1148

VED 430-741

Fan coil unit for ducted installations

- · Horizontal and vertical installation
- Ventilation group to 5 speed
- Large range of available static pressure
- Inspectable ventilation group

DESCRIPTION

Ducted fan coil, for heating, cooling and dehumidifying.

Designed to maintain the set temperature over time, ensuring very low sound levels.

Can be installed in any 2/4 pipe system and operates with any heat generator even at low temperatures.

Thanks to the availability of various options, with standard or increased coil, for horizontal or vertical installation, it is easy to choose the optimal solution for any need.

FEATURES

Case

Unit for internal installation.

Internally insulated structure with class 1 fire resistance and IP20 protection.

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise

Their characteristics permit energy savings compared to conventional fans. They are statically and dynamically balanced and directly coupled to the motor shaft.

The electric motor is single-phase multi-speed (3 selectable), mounted on anti-vibration supports and with a permanently inserted capacitor.

Fan housing in plastic material removable for easy and effective cleaning.

Heat exchanger coil

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.

Air filter

Air filter Class G3, for easy removal and cleaning.

Controls and Accessoires

There is a wide selection of controls and a huge choice of accessories, to meet every system requirement.

The unit is supplied with the delivery connection supplied.

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan

speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

WMT16: Electronic thermostat with thermostated ventilation.

WMT16CV: Electronic thermostat with continuous ventilation.

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF system

D124: Fush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, D124 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, D124 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, D124CP, is also available as a separate accessory in our catalog.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-MOD: Expansion board for the management of modulating valves.

VMF-SIT3V: Relay interface board. Mandatory accessory on units where motor absorption exceeds 0.7 A. The relay interface board is supplied with a 2A fuse to protect the fan coil. If the fan coil absorbs more than 2A and up to 4A, the fuse inside must be replaced with a 4A fuse supplied.

VMF-SW: Water probe (L=2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19l thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Water valves

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

VCT: These are 3-way ball valves made of bronze, with female/female connections \emptyset 1/2". That can be servo-activated via servo commands. The valves do not have fittings and pipes for water connections, which are the installer's responsibility.

VCT: These are 3-way ball valves made of bronze, with female/female connections \emptyset 1/2". That can be servo-activated via servo commands. The valves do not have fittings and pipes for water connections, which are the installer's responsibility.

VCTK: The VCT series valves can be combined with the actuators On-Off 230V. The actuator must be selected according to the type of system/adjustment provided.

VCTKM: The VCT series valves can be combined with the actuators 24V modulating. The actuator must be selected according to the type of system/ adjustment provided.

VCF45C - 47C - 47CS - for main heat exchanger: 3-way motorised valve kit for the main heat exchanger. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCF45H - 47H - for heating only heat exchanger: Motorized 3-way valve kit for hot only coil. The kit consists of a 3-way 4-way valve, the actuator and its hydraulic fittings, it is suitable for installation on both fan coil units with hydraulic connections on the right and left.

VCF25C - 25CS - for main coil: 2-way motorized valve kit for main coil. The kit consists of a valve with its insulating shell, the actuator and the relative hydraulic fittings, it is suitable for installation on both fan coil units with hydraulic connections on the right and left.

VCF25H - for heating only coil: 2-way motorized valve kit for hot only coil. The kit consists of a valve, actuator and relative hydraulic fittings, it is suitable for installation on both fan coils with hydraulic connections on the right and left.

BCV: Condensate drip.

Installation accessories

MZC: Plenum with motorised dampers.

RDA_V: Straight intake connection with rectangular flange.

RPA_V: Suction plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

PA_V: Suction plenum with circular plastic flanges; both sides have a circular push-out Ø 150mm that can be removed.

PM_V: Internally insulated delivery plenum with circular flanges; both sides have a circular push-out Ø 150mm that can be removed.

RPM_V: Internally insulated delivery plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

KFV: Circular flanges kit for plenum.

MZCACV: Electrical system with relay interface board. Mandatory accessory on units where motor absorption exceeds 0.7 A. The relay interface board is supplied with a 2A fuse to protect the fan coil. If the fan coil absorbs more than 2A and up to 4A, the fuse inside must be replaced with a 4A fuse supplied

MZCAC: Mandatory electrical system for connecting the MZC plenum with a fan coil fitted with an asynchronous motor.

Configurator

Field	Description
1,2,3	VED
4,5,6	Size 430, 432, 440, 441, 530, 532, 540, 541, 630, 632, 640, 641, 730, 732, 740, 741
7	main heat exchanger
8	Secondary heat exchanger

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Model	Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
AER503IR (1)			•		•	•	•	•	•	•	•	•	•	•	•	•	•
PR0503		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•
SA5 (2)		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SIT3 (3)		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SIT5 (4)		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SW3 (2)		•	•	•	•	•	•	•		•	•	•			•	•	•
SW5 (2)		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
TX (5)		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•
WMT10 (5)		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
WMT16 (5)		•		•		•		•		•		•		•		•	
WMT16CV (5)		•		•	•			•	•	•		•	•	•			•

- Wall-mount installation.
 Probe for AER503IR-TX thermostats, if fitted.
 Cards for AER503IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere.
 Probe for AER503IR-TX thermostats, if fitted.
 Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

VMF system

Model	Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
DI24													•				
VMF-E19 (1)		•				•				•			•	•	•		
VMF-E3		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•
VMF-E4DX		•								•					•		
VMF-E4X		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
VMF-IO																	
VMF-IR		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•
VMF-MOD			•	•	•	•	•	•	•	•	•	•	•	•		•	•
VMF-SIT3V (2)		•			•				•	•				•			•
VMF-SW		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•
VMF-SW1																	
VMHI					•							•	•				

- (1) Also the accessory VMF-SIT3V is mandatory if the unit exceeds 0.7 Amperes.
 (2) For the selection, consult the documentation for the thermostat and the fan coil.

Water valves

3 way valve kit

	VED430	VED432	VED440	VED441	VED530	VED532	VED540	VED541
3 way valve kit	'							
Main heat exchanger	VCF45C	VCF45C	VCF45C	VCF45C	VCF45C	VCF45C	VCF45C	VCF45C
	VED630	VED632	VED640	VED641	VED730	VED732	VED740	VED741
3 way valve kit	,							
Main heat exchanger	VCF47C	VCF47C	VCF47CS	VCF47CS	VCF47C	VCF47C	VCF47CS	VCF47CS
	VED430	VED432	VED440	VED441	VED530	VED532	VED540	VED541
3 way valve kit	'							
Main heat exchanger	VCF45C	VCF45C	VCF45C	VCF45C	VCF45C	VCF45C	VCF45C	VCF45C
Secondary heat exchanger for four pipes	-	VCF45H	-	VCF45H	-	VCF45H	-	VCF45H
	VED630	VED632	VED640	VED641	VED730	VED732	VED740	VED741
3 way valve kit								
Main heat exchanger	VCF47C	VCF47C	VCF47CS	VCF47CS	VCF47C	VCF47C	VCF47CS	VCF47CS
Secondary heat exchanger for four pipes	-	VCF47H	-	VCF47H	-	VCF47H	-	VCF47H

230V power supply - Hydraulic connection Ø 3/4"

2 way valve kit

	VED430	VED432	VED440	VED441	VED530	VED532	VED540	VED541
2 way valve kit	'							
Main heat exchanger	VCF25C	VCF25C	VCF25C	VCF25C	VCF25C	VCF25C	VCF25C	VCF25C
	VED630	VED632	VED640	VED641	VED730	VED732	VED740	VED741
2 way valve kit								
Main heat exchanger	VCF25C	VCF25C	VCF25CS	VCF25CS	VCF25C	VCF25C	VCF25CS	VCF25CS

				VED430	VE	D432	VED44	0	VED441	VE	D530	VED5	32	VED540	V	ED541
2 way valve kit																
Main heat exchanger				VCF25C	_	TF25C	VCF25	[VCF25C	V	F25C	VCF2		VCF25C	_	CF25C
Secondary heat exchanger for four pipes				-	VC	.F25H	-		VCF25H		-	VCF25	SH	-	V	CF25H
				VED630	VE	D632	VED64	0	VED641	VE	D730	VED7	32	VED740	V	D741
2 way valve kit				VCESEC		רזני	VCFac	·c	VCENECS	W	רזנר	VCEN		VCENECS	\//	רזנינ
Main heat exchanger Secondary heat exchanger for four pipes				VCF25C		CF25C CF25H	VCF250	.3	VCF25CS VCF25H	VC	F25C -	VCF25		VCF25CS		CF25CS CF25H
•					- 10	.1 2 3 1 1		-	VCIZJII			VCIZ	/11			CIZJII
230V power supply - Hydrauli			4"													
2-way globe valves actuato	r exclude															
Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
3-way globe valves actuato	VCT102 or exclude	VCT102	VCT102	VCT102	VCT102	VCT102	VCT102	VCT102	VCT202	VCT202	VCT202	VCT202	VCT202	VCT202	VCT202	VCT202
Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
	VCT103	VCT103	VCT103	VCT103	VCT103	VCT103	VCT103	VCT103	VCT203	VCT203	VCT203	VCT203	VCT203	VCT203	VCT403	VCT403
Actuator 230V																
Ver	430	432	440 VCTV	441 VCTV	530	532	540	541	630	632	640	641	730	732	740	741
•	VCTK	VCTK	VCTK	VCTK	VCTK	VCTK	VCTK	VCTK	VCTK	VCTK	VCTK	VCTK	VCTK	VCTK	VCTK	VCTK
Actuator 24V																
Ver	430	432	440	441 VCTVM	530	532	540	541 VCTVA	630	632	640	641 VCTVM	730	732	740	741
•	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM
Combined adjustment and	balancin	g valve	cold sid	le												
Model		er	430	432	440	441 53	0 532	540	541	630	632	640 (541 7:	30 732	740	741
VJP150 (1)			•	•	•			•	•							
VJP150M (2)			•		•			•	•							
VJP270M (2)																
(=)																
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibili signed air flow in a four-pip	•				vith the	e de-										
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibili signed air flow in a four-pip Accessories for intake Intake straight with rectand	oe installa gular flan	ges	to be ve	erified.												
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibili signed air flow in a four-pip Accessories for intake	pe installa gular flan 430	ges 432	440	erified. 441	530	532	540 PDA/50V	541	630 PDA670V	632 PDA670V	640 PDA670V	641 PDA670V	730 PDA670V	732 PDA670V	740 PDA670V	741
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibili signed air flow in a four-pip Accessories for intake Intake straight with rectand	oe installa gular flan	ges 432	to be ve	erified.	530	532	540 RDA450V	541 RDA450V		632 RDA670V	640 RDA670V				740 RDA670V	
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibili signed air flow in a four-pip Accessories for intake Intake straight with rectand	gular flan 430 RDA450V	ges 432 RDA450V	440	erified. 441	530	532										
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibili signed air flow in a four-pip Accessories for intake Intake straight with rectang Ver	gular flan 430 RDA450V gular flan 430	ges 432 RDA450V ges 432	440 RDA450V	441 RDA450V	530 RDA450V	532 RDA450V	RDA450V 540	RDA450V 541	RDA670V 630	RDA670V 632	RDA670V	RDA670V 641	RDA670V	RDA670V 732	RDA670V 740	RDA670V
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibili signed air flow in a four-pip Accessories for intake Intake straight with rectang Ver	gular flan 430 RDA450V	ges 432 RDA450V ges	440 RDA450V	441 RDA450V	530 RDA450V	532 RDA450V	RDA450V	RDA450V	RDA670V	RDA670V	RDA670V	RDA670V	RDA670V	RDA670V	RDA670V	RDA670V
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibili signed air flow in a four-pip Accessories for intake Intake straight with rectang Ver	gular flan 430 RDA450V gular flan 430 RPA450V	ges 432 RDA450V ges 432	440 RDA450V	441 RDA450V	530 RDA450V	532 RDA450V	RDA450V 540	RDA450V 541	RDA670V 630	RDA670V 632	RDA670V	RDA670V 641	RDA670V	RDA670V 732	RDA670V 740	RDA670V
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibili signed air flow in a four-pip Accessories for intake Intake straight with rectang Ver Intake plenum with rectang	gular flan 430 RDA450V gular flan 430 RPA450V r flanges 430	ges 432 RDA450V ges 432 RPA450V	440 RDA450V 440 RPA450V	441 RDA450V 441 RPA450V	530 RDA450V 530 RPA450V	532 RPA450V	540 RPA450V	541 RPA450V	630 RPA670V	632 RPA670V	640 RPA670V	641 RPA670V	730 RPA670V	732 RPA670V	740 RPA670V	741 RPA670V
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibilisigned air flow in a four-pip Accessories for intake Intake straight with rectang Ver Intake plenum with rectang Ver Intake plenum with rectang	gular flan 430 RDA450V gular flan 430 RPA450V	ges 432 RDA450V ges 432 RPA450V	440 RDA450V 440 RPA450V	441 RDA450V 441 RPA450V	530 RDA450V 530 RPA450V	532 RPA450V	540 RPA450V	541 RPA450V	630 RPA670V	632 RPA670V	RDA670V 640 RPA670V	RDA670V 641 RPA670V	730 RPA670V	732 RPA670V	740 RPA670V	741 RPA670V
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibilisigned air flow in a four-pip Accessories for intake Intake straight with rectang Ver Intake plenum with rectang Ver Intake plenum with circular Ver Comparison of the compatibility of the comp	gular flan 430 RDA450V gular flan 430 RPA450V	432 RDA450V ges 432 RPA450V 432 PA450V	440 RDA450V 440 RPA450V 440 PA450V	441 RDA450V 441 RPA450V 441 PA450V	530 RDA450V 530 RPA450V 530 PA450V	532 RPA450V	540 RPA450V	541 RPA450V	630 RPA670V	632 RPA670V	640 RPA670V	641 RPA670V	730 RPA670V	732 RPA670V	740 RPA670V	741 RPA670V
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibilisigned air flow in a four-pip Accessories for intake Intake straight with rectang Ver Intake plenum with rectang Ver Intake plenum with circular Ver Delivery accessories Delivery plenum internally	gular flan 430 RDA450V gular flan 430 RPA450V r flanges 430 PA450V	432 RDA450V ges 432 RPA450V 432 PA450V	440 RDA450V 440 RPA450V 440 PA450V	441 RDA450V 441 RPA450V 441 PA450V	530 RDA450V 530 RPA450V 530 PA450V	532 RDA450V 532 RPA450V 532 PA450V	540 RPA450V 540 RPA450V 540 PA450V	541 RPA450V 541 PA450V	630 RPA670V 630 PA670V	632 RPA670V 632 PA670V	640 RPA670V 640 PA670V	641 RPA670V 641 PA670V	730 RPA670V 730 PA670V	732 RPA670V 732 PA670V	740 RPA670V 740 PA670V	741 RPA670V 741 PA670V
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibilisigned air flow in a four-pip Accessories for intake Intake straight with rectang Ver Intake plenum with rectang Ver Intake plenum with circular Ver Comparison of the compatibility of the comp	gular flan 430 RDA450V gular flan 430 RPA450V r flanges 430 PA450V	432 RDA450V ges 432 RPA450V 432 PA450V	440 RDA450V 440 RPA450V 440 PA450V ectang 440	441 RDA450V 441 RPA450V 441 PA450V	530 RDA450V 530 RPA450V 530 PA450V	532 RDA450V 532 RPA450V 532 PA450V	540 RPA450V 540 PA450V 540	541 RPA450V 541 PA450V 541 PA450V	630 RPA670V 630 PA670V	632 RPA670V 632 PA670V	640 RPA670V 640 PA670V	641 RPA670V 641 PA670V	730 RPA670V 730 PA670V	732 RPA670V 732 PA670V	740 RPA670V 740 PA670V	741 RPA670V 741 PA670V
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibilisigned air flow in a four-pip Accessories for intake Intake straight with rectang Ver Intake plenum with rectang Ver Intake plenum with circular Ver Delivery accessories Delivery plenum internally Ver	gular flan 430 RDA450V gular flan 430 RPA450V r flanges 430 PA450V insulatec 430 RPM450V	### ### ### ### ### ### ### ### ### ##	440 RDA450V 440 RPA450V 440 PA450V ectang 440 RPM450V	441 RPA450V 441 RPA450V 441 PA450V 441 PA450V	530 RDA450V 530 RPA450V 530 PA450V nges 530 RPM450V	532 RDA450V 532 RPA450V 532 PA450V	540 RPA450V 540 PA450V 540	541 RPA450V 541 PA450V 541 PA450V	630 RPA670V 630 PA670V	632 RPA670V 632 PA670V	640 RPA670V 640 PA670V	641 RPA670V 641 PA670V	730 RPA670V 730 PA670V	732 RPA670V 732 PA670V	740 RPA670V 740 PA670V	741 RPA670V 741 PA670V
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibilisigned air flow in a four-pip Accessories for intake Intake straight with rectang Ver Intake plenum with rectang Ver Intake plenum with circular Ver Delivery accessories Delivery plenum internally Ver Delivery plenum internally	gular flan 430 RDA450V gular flan 430 RPA450V r flanges 430 PA450V insulatec 430 RPM450V	### ### ### ### ### ### ### ### ### ##	440 RDA450V 440 RPA450V 440 PA450V ectang 440 RPM450V	441 RDA450V 441 RPA450V 441 PA450V 441 PA450V 441 PA450V	530 RDA450V 530 RPA450V 530 PA450V nges 530 RPM450V	532 RDA450V 532 RPA450V 532 PA450V	540 RPA450V 540 PA450V 540 PA450V	541 RPA450V 541 PA450V 541 RPM450V	630 RPA670V 630 PA670V 630 PA670V	632 RPA670V 632 PA670V 632 PA670V	640 RPA670V 640 PA670V 640 RPM670V	641 RPA670V 641 PA670V 641 RPM670V	730 RPA670V 730 PA670V 730 PA670V	732 RPA670V 732 PA670V 732 PA670V	740 RPA670V 740 PA670V 740 PA670V	741 RPA670V 741 PA670V 741 RPM670V
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibilisigned air flow in a four-pip Accessories for intake Intake straight with rectang Ver Intake plenum with rectang Ver Intake plenum with circular Ver Delivery accessories Delivery plenum internally Ver	gular flan 430 RDA450V gular flan 430 RPA450V r flanges 430 PA450V insulatec 430 RPM450V	### ### ### ### ### ### ### ### ### ##	440 RDA450V 440 RPA450V 440 PA450V ectang 440 RPM450V	441 RPA450V 441 RPA450V 441 PA450V 441 PA450V	530 RDA450V 530 RPA450V 530 PA450V nges 530 RPM450V	532 RDA450V 532 RPA450V 532 PA450V	540 RPA450V 540 PA450V 540	541 RPA450V 541 PA450V 541 PA450V	630 RPA670V 630 PA670V	632 RPA670V 632 PA670V	640 RPA670V 640 PA670V	641 RPA670V 641 PA670V	730 RPA670V 730 PA670V	732 RPA670V 732 PA670V	740 RPA670V 740 PA670V	741 RPA670V 741 PA670V 741 RPM670V
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibilisigned air flow in a four-pip Accessories for intake Intake straight with rectang Ver Intake plenum with rectang Ver Intake plenum with circular Ver Delivery accessories Delivery plenum internally Ver Delivery plenum internally	gular flan 430 RDA450V gular flan 430 RPA450V gular flan 430 RPA450V r flanges 430 PA450V insulatec 430 PM450V	### ### ##############################	440 RDA450V 440 RPA450V 440 PA450V ectang 440 RPM450V	441 RDA450V 441 RPA450V 441 RPA450V 441 PA450V 441 RPM450V	530 RDA450V 530 RPA450V 530 PA450V nges 530 RPM450V	532 RDA450V 532 RPA450V 532 PA450V	540 RPA450V 540 PA450V 540 RPM450V 540 RPM450V	541 RPA450V 541 PA450V 541 RPM450V	630 RPA670V 630 PA670V 630 RPM670V	632 RPA670V 632 PA670V 632 RPM670V	640 RPA670V 640 PA670V 640 RPM670V	641 RPA670V 641 PA670V 641 RPM670V	730 RPA670V 730 PA670V 730 RPM670V	732 RPA670V 732 PA670V 732 RPM670V	740 RPA670V 740 PA670V 740 RPM670V	741 RPA670V 741 PA670V 741 RPM670V
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibilisigned air flow in a four-pip Accessories for intake Intake straight with rectang Ver Intake plenum with rectang Ver Intake plenum with circular Ver Delivery accessories Delivery plenum internally Ver Delivery plenum internally Ver	gular flan 430 RDA450V gular flan 430 RPA450V gular flan 430 RPA450V r flanges 430 PA450V insulatec 430 PM450V	### ### ##############################	440 RDA450V 440 RPA450V 440 PA450V ectang 440 RPM450V circular 440 PM450V	441 RDA450V 441 RPA450V 441 RPA450V 441 PA450V 441 RPM450V	530 RDA450V 530 RPA450V 530 PA450V nges 530 RPM450V	532 RDA450V 532 RPA450V 532 PA450V	540 RPA450V 540 PA450V 540 RPM450V 540 RPM450V	541 RPA450V 541 PA450V 541 RPM450V 541 PM450V	630 RPA670V 630 PA670V 630 RPM670V 630 PM670V	632 RPA670V 632 PA670V 632 RPM670V	640 RPA670V 640 PA670V 640 RPM670V	641 RPA670V 641 RPA670V 641 RPM670V 641 PM670V	730 RPA670V 730 PA670V 730 RPM670V	732 RPA670V 732 PA670V 732 RPM670V 732 PM670V	740 RPA670V 740 PA670V 740 RPM670V	741 RPA670V 741 PA670V 741 RPM670V
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibilisigned air flow in a four-pip Accessories for intake Intake straight with rectang Ver Intake plenum with rectang Ver Intake plenum with circular Ver Delivery accessories Delivery plenum internally Ver Circular flanges kit for plen	gular flan 430 RDA450V gular flan 430 RPA450V gular flan 430 RPA450V insulated 430 RPM450V insulated 430 PM450V	ges 432 RDA450V ges 432 RPA450V 432 PA450V 432 RPM450V 4, with r 432 RPM450V 4, with c 432 PM450V	440 RDA450V 440 RPA450V 440 PA450V ectang 440 RPM450V circular 440 PM450V	441 RDA450V 441 RPA450V 441 PA450V 441 PA450V 441 PA450V 441 PM450V	530 RDA450V 530 RPA450V 530 PA450V 530 PA450V 530 PA450V	532 RDA450V 532 RPA450V 532 PA450V 532 PRM450V	540 RPA450V 540 PA450V 540 RPM450V 540 RPM450V	541 RPA450V 541 PA450V 541 RPM450V 541 RPM450V	630 RPA670V 630 PA670V 630 RPM670V 630 PM670V	632 RPA670V 632 PA670V 632 RPM670V	640 RPA670V 640 PA670V 640 RPM670V 640 PM670V	641 RPA670V 641 PA670V 641 RPM670V	730 RPA670V 730 PA670V 730 RPM670V 730 RPM670V	732 RPA670V 732 PA670V 732 RPM670V 732 RPM670V	740 RPA670V 740 PA670V 740 RPM670V 740 RPM670V	741 RPA670V 741 RPM670V 741 RPM670V
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibilisigned air flow in a four-pip Accessories for intake Intake straight with rectang Ver Intake plenum with rectang Ver Intake plenum with circular Ver Delivery accessories Delivery plenum internally Ver Circular flanges kit for plen	gular flan 430 RDA450V gular flan 430 RPA450V r flanges 430 PA450V insulated 430 RPM450V insulated 430 PM450V	ges 432 RDA450V ges 432 RPA450V 432 PA450V 432 RPM450V 4, with r 432 RPM450V 4, with c 432 PM450V	440 RDA450V 440 RPA450V 440 PA450V ectang 440 RPM450V circular 440 PM450V	441 RDA450V 441 RPA450V 441 PA450V 441 PA450V 441 PA450V 441 RPM450V 441 PM450V	530 RDA450V 530 RPA450V 530 PA450V 530 PA450V 530 PA450V 530 PM450V	532 RDA450V 532 RPA450V 532 PA450V 532 PM450V	540 RPA450V 540 PA450V 540 RPM450V 540 RPM450V 540 PM450V	541 RPA450V 541 PA450V 541 RPM450V 541 PM450V	630 RPA670V 630 PA670V 630 RPM670V 630 PM670V	632 RPA670V 632 PA670V 632 RPM670V	640 RPA670V 640 PA670V 640 RPM670V 640 PM670V	641 RPA670V 641 RPA670V 641 RPM670V 641 PM670V	730 RPA670V 730 PA670V 730 RPM670V 730 RPM670V 730 730 PM670V	732 RPA670V 732 PA670V 732 RPM670V 732 PM670V	740 RPA670V 740 PA670V 740 RPM670V 740 RPM670V 740 PM670V	741 RPA670V 741 PA670V 741 RPM670V 741 PM670V
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibilisigned air flow in a four-pip Accessories for intake Intake straight with rectang Ver Intake plenum with rectang Ver Intake plenum with circular Ver Delivery accessories Delivery plenum internally Ver Circular flanges kit for plent Ver Condensate drip	gular flan 430 RDA450V gular flan 430 RPA450V r flanges 430 PA450V insulatec 430 PM450V um 430 KFV	ges 432 RDA450V ges 432 RPA450V 432 PA450V 432 RPM450V 432 RPM450V 432 RM450V	440 RDA450V 440 RPA450V 440 PA450V ectang 440 RPM450V circular 440 PM450V	441 RDA450V 441 RPA450V 441 PA450V 441 RPM450V 441 RPM450V 441 RM450V	530 RDA450V 530 RPA450V 530 PA450V 530 PA450V 530 PM450V 530 PM450V	532 RDA450V 532 RPA450V 532 PA450V 532 PM450V 532 PM450V	540 RPA450V 540 PA450V 540 RPM450V 540 RPM450V 540 RM50V	541 RPA450V 541 PA450V 541 RPM450V 541 RPM450V 541 RKFV	630 RPA670V 630 PA670V 630 RPM670V 630 RPM670V 630 KFV	632 RPA670V 632 PA670V 632 RPM670V 632 RPM670V 632 RM670V	640 RPA670V 640 PA670V 640 RPM670V 640 RPM670V 640 RM670V	641 RPA670V 641 RPA670V 641 RPM670V 641 RFM670V 641 KFV	730 RPA670V 730 PA670V 730 RPM670V 730 RPM670V 730 KFV	732 RPA670V 732 PA670V 732 RPM670V 732 RPM670V 732 RFM670V	740 RPA670V 740 PA670V 740 RPM670V 740 RPM670V 740 RM670V	741 RPA670V 741 RPA670V 741 RPM670V 741 RPM670V 741 RFM670V
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibilisigned air flow in a four-pip Accessories for intake Intake straight with rectang Ver Intake plenum with rectang Ver Intake plenum with circular Ver Delivery accessories Delivery plenum internally Ver Circular flanges kit for plent Ver Circular flanges kit for plent	gular flan 430 RDA450V gular flan 430 RPA450V r flanges 430 PA450V insulated 430 RPM450V insulated 430 PM450V	ges 432 RDA450V ges 432 RPA450V 432 PA450V 432 RPM450V 4, with r 432 RPM450V 4, with c 432 PM450V	440 RDA450V 440 RPA450V 440 PA450V ectang 440 RPM450V circular 440 PM450V	441 RDA450V 441 RPA450V 441 PA450V 441 PA450V 441 PA450V 441 RPM450V 441 PM450V	530 RDA450V 530 RPA450V 530 PA450V 530 PA450V 530 PA450V 530 PM450V	532 RDA450V 532 RPA450V 532 PA450V 532 PM450V	540 RPA450V 540 PA450V 540 RPM450V 540 RPM450V 540 PM450V	541 RPA450V 541 PA450V 541 RPM450V 541 PM450V	630 RPA670V 630 PA670V 630 RPM670V 630 PM670V	632 RPA670V 632 PA670V 632 RPM670V	640 RPA670V 640 PA670V 640 RPM670V 640 PM670V	641 RPA670V 641 PA670V 641 RPM670V 641	730 RPA670V 730 PA670V 730 RPM670V 730 RPM670V 730 730 PM670V	732 RPA670V 732 PA670V 732 RPM670V 732 PM670V	740 RPA670V 740 PA670V 740 RPM670V 740 RPM670V 740 PM670V	741 RPA670V 741 PA670V 741 RPM670V 741 PM670V
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibilisigned air flow in a four-pip Accessories for intake Intake straight with rectang Ver Intake plenum with rectang Ver Intake plenum with circular Ver Delivery accessories Delivery plenum internally Ver Circular flanges kit for plent Ver Condensate drip	gular flan 430 RDA450V gular flan 430 RPA450V r flanges 430 PA450V insulatec 430 PM450V um 430 KFV	ges 432 RDA450V ges 432 RPA450V 432 PA450V 432 RPM450V 432 RPM450V 432 RMFV	440 RDA450V 440 RPA450V 440 PA450V ectang 440 RPM450V circular 440 PM450V	441 RDA450V 441 RPA450V 441 PA450V 441 RPM450V 441 RPM450V 441 RM450V	530 RDA450V 530 RPA450V 530 PA450V 530 PA450V 530 PM450V 530 KFV	532 RDA450V 532 RPA450V 532 PA450V 532 PM450V 532 KFV	540 RPA450V 540 PA450V 540 RPM450V 540 RPM450V 540 KFV	541 RPA450V 541 PA450V 541 RPM450V 541 RM450V 541 KFV	630 RPA670V 630 PA670V 630 RPM670V 630 FM670V 630 KFV	632 RPA670V 632 PA670V 632 RPM670V 632 RM670V	640 RPA670V 640 PA670V 640 RPM670V 640 RPM670V 640 KFV	641 RPM670V 641 RPM670V 641 RPM670V 641 KFV	730 RPA670V 730 PA670V 730 RPM670V 730 RPM670V 730 KFV	732 RPA670V 732 PA670V 732 RPM670V 732 RPM670V 732 KFV	740 RPA670V 740 PA670V 740 RPM670V 740 RPM670V 740 FM670V 740 KFV	741 RPA670V 741 PA670V 741 RPM670V 741 KFV
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibilisigned air flow in a four-pip Accessories for intake Intake straight with rectang Ver Intake plenum with rectang Ver Intake plenum with circular Ver Delivery accessories Delivery plenum internally Ver Circular flanges kit for plent Ver Condensate drip Ver	gular flan 430 RDA450V gular flan 430 RPA450V r flanges 430 PA450V insulatec 430 PM450V um 430 KFV	ges 432 RDA450V ges 432 RPA450V 432 PA450V 432 RPM450V 432 PM450V 432 RM50V	440 RDA450V 440 RPA450V 440 PA450V ectang 440 RPM450V circular 440 PM450V	441 RDA450V 441 RPA450V 441 PA450V 441 RPM450V 441 RPM450V 441 RM450V	530 RDA450V 530 RPA450V 530 PA450V 530 PA450V 530 PM450V 530 KFV	532 RDA450V 532 RPA450V 532 PA450V 532 PM450V 532 KFV	540 RPA450V 540 PA450V 540 RPM450V 540 RPM450V 540 KFV	541 RPA450V 541 PA450V 541 RPM450V 541 RM450V 541 KFV	630 RPA670V 630 PA670V 630 RPM670V 630 FM670V 630 KFV	632 RPA670V 632 PA670V 632 RPM670V 632 RM670V	640 RPA670V 640 PA670V 640 RPM670V 640 RPM670V 640 KFV	641 RPM670V 641 RPM670V 641 RPM670V 641 KFV	730 RPA670V 730 PA670V 730 RPM670V 730 RPM670V 730 KFV	732 RPA670V 732 PA670V 732 RPM670V 732 RPM670V 732 KFV	740 RPA670V 740 PA670V 740 RPM670V 740 RPM670V 740 FM670V 740 KFV	741 RPM670V 741 RPM670V 741 RPM670V 741 RFV
(1) 230V~50Hz (2) 24V VJP/VJP_M the compatibilisigned air flow in a four-pip Accessories for intake Intake straight with rectang Ver Intake plenum with rectang Ver Delivery accessories Delivery plenum internally Ver Circular flanges kit for pleng Ver Condensate drip Ver MZC	gular flan 430 RDA450V gular flan 430 RPA450V r flanges 430 PA450V insulatec 430 PM450V um 430 KFV	ges 432 RDA450V ges 432 RPA450V 432 PA450V 432 RPM450V 432 RM450V 432 RM50V	440 RDA450V 440 RPA450V 440 PA450V ectang 440 RPM450V irrcular 440 PM450V 440 RFV 440 RFV	441 RDA450V 441 RPA450V 441 PA450V 441 RPM450V 441 RPM450V 441 RM450V	530 RDA450V 530 RPA450V 530 PA450V 530 PA450V 530 PM450V 530 KFV	532 RDA450V 532 RPA450V 532 PA450V 532 PM450V 532 KFV	540 RPA450V 540 PA450V 540 RPM450V 540 RPM450V 540 KFV	541 RPA450V 541 PA450V 541 RPM450V 541 RM450V 541 KFV	630 RPA670V 630 PA670V 630 RPM670V 630 FM670V 630 KFV	632 RPA670V 632 PA670V 632 RPM670V 632 RM670V	640 RPA670V 640 PA670V 640 RPM670V 640 RPM670V 640 KFV 640 BCV67	641 RPM670V 641 RPM670V 641 RPM670V 641 RFV 641 BCV67	730 RPA670V 730 PA670V 730 RPM670V 730 RPM670V 730 KFV	732 RPA670V 732 PA670V 732 RPM670V 732 RPM670V 732 KFV	740 RPA670V 740 PA670V 740 RPM670V 740 RPM670V 740 FM670V 740 KFV	741 RPA670V 741 RPM670V 741 RPM670V 741 RFW670V 741 KFV

Electric plant

Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
	MZCAC	-	-	-	-	-	-									

The accessory cannot be fitted on the configurations indicated with -

Electrical system with relays

Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
	-	-	-	-	-	-	-	-	-	-	MZCACV (1)					

⁽¹⁾ It is mandatory to use MZCACV if the intake of the unit combined with the MZC accessory exceeds 0.7 Ampere. The accessory cannot be fitted on the configurations indicated with -

PERFORMANCE SPECIFICATIONS

2-pipe

			VED43	0		VED44	0		VED53	0	1	VED54	0	1	VED63	0	1	VED64	0	1	VED73	0		VED74	0
		1	3	5	1	3	5	2	4	5	2	4	5	1	3	5	1	3	5	1	3	5	1	3	5
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	M	Н	L	М	Н	L	M	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																									
Heating capacity	kW	10,47	13,85	15,97	11,45	15,36	18,11	13,80	16,47	17,57	15,38	18,59	19,91	18,63	22,67	27,02	22,45	27,74	32,69	21,18	25,36	29,00	22,88	27,65	31,7
Water flow rate system side	l/h	918	1214	1401	1004	1347	1588	1210	1444	1541	1349	1630	1746	1634	1988	2369	1969	2433	2867	1857	2224	2543	2007	2425	278
Pressure drop system side	kPa	9	14	19	11	18	24	13	158	21	18	25	29	30	43	58	19	29	38	38	55	67	26	36	46
Heating performance 45 °C / 40 °C (2)																									
Heating capacity	kW	5,20	5,88	7,94	5,69	7,64	9,01	6,86	8,19	8,74	7,45	9,24	9,90	9,26	11,20	13,40	9,88	12,40	14,80	10,50	12,60	14,20	11,30	13,70	15,7
Water flow rate system side	I/h	894	1183	1366	979	1314	1550	1180	1409	1503	1281	1589	1703	1593	1926	2305	1699	2133	2546	1806	2167	2442	1944	2356	2700
Pressure drop system side	kPa	9	14	19	11	18	24	14	19	21	21	25	30	30	42	58	16	24	32	38	52	66	26	36	35
Cooling performance 7 °C / 12 °C																									
Cooling capacity	kW	4,54	5,98	6,72	5,21	6,88	7,79	5,99	7,16	7,49	7,26	8,31	8,70	8,67	10,43	12,19	10,20	12,50	14,80	10,17	11,92	13,48	11,73	13,95	15,7
Sensible cooling capacity	kW	3,40	4,54	5,13	3,65	4,86	5,51	4,55	5,48	5,75	4,87	5,90	6,18	7,00	8,48	9,96	7,02	8,62	10,30	8,25	9,71	11,07	8,11	9,69	10,9
Water flow rate system side	l/h	781	1029	1156	896	1183	1340	1030	1232	1288	1249	1429	1496	1491	1794	2097	1754	2150	2546	1749	2050	2319	2018	2399	2702
Pressure drop system side	kPa	8	13	17	10	17	22	12	19	21	19	25	28	26	36	48	24	34	47	35	46	58	27	37	45
Fan																									
Туре	type												Centri	fugal											
Fan motor	type												Asynch	ronous											
Number	no.		2			2			2			2			3			3			3			3	
Air flow rate	m³/h	790	1130	1350	780	1100	1340	1120	1400	1520	1100	1380	1500	1380	1800	2210	1567	2004	2440	1640	2040	2410	1600	2000	2350
High static pressure	Pa	24	50	72	-	50	63	32	50	70	32	50	56	30	50	75	30	50	75	32	50	69	32	50	64
Input power	W	137	175	228	135	178	222	175	232	270	172	230	267	220	271	340	220	293	340	234	285	371	234	285	371
Electrical wiring		V1	V3	V5	V1	V3	V5	V2	V4	V5	V2	V4	V5	٧1	V3	V5	٧1	V3	V5	V1	V3	V5	٧1	V3	V5
Duct type fan coil sound data (3)																									
Sound power level (inlet + radiated)	dB(A)	51,0	57,0		51,0			-			_				64,0	68,0		64,0				68,0	62,0	, .	
Sound power level (outlet)	dB(A)	47,0	53,0	57,0	47,0	53,0	57,0	49,0	55,0	58,0	49,0	55,0	58,0	57,0	60,0	64,0	57,0	60,0	64,0	58,0	62,0	64,0	58,0	62,0	64,0
Diametre hydraulic fittings																									
Туре	type													-											
Main heat exchanger	Ø												3/	4"											
Finned pack heat exchanger																									
Water content main heat exchanger	I		2,9			3,9			2,9			3,9			4,7			6,3			4,7			6,3	
Power supply																									
Power supply													230V-	~50Hz											

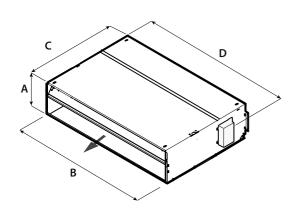
4-pipe

			VED441			VED541			VED641			VED741	
		1	3	5	2	4	5	1	3	5	1	3	5
		L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 65 °C / 55 °C (1)													
Heating capacity	kW	5,53	6,68	7,30	6,70	7,62	7,89	9,65	11,00	12,30	10,50	11,80	12,90
Water flow rate system side	l/h	475	574	627	576	655	678	829	946	1057	903	1014	1109
Pressure drop system side	kPa	14	20	23	20	25	26	15	19	24	18	22	25
Cooling performance 7 °C / 12 °C													
Cooling capacity	kW	5,35	7,05	8,00	7,46	8,56	8,94	10,40	12,70	15,20	11,90	14,20	16,10
Sensible cooling capacity	kW	3,79	5,03	5,74	5,07	6,14	6,42	7,26	8,92	10,70	8,37	9,96	11,30
Water flow rate system side	l/h	920	1212	1376	1283	1472	1537	1788	2184	2614	2046	2442	2769
Pressure drop system side	kPa	12	19	24	21	27	29	24	35	48	27	37	46
Fan													
Туре	type						Centr	ifugal					
Fan motor	type						Asynch	ronous					
Number	no.		2			2			3			3	
Air flow rate	m³/h	750	1060	1253	1060	1360	1453	1340	1730	2120	1600	2000	2358
High static pressure	Pa	25	50	70	32	50	57	30	50	75	32	50	69
Input power	W	121	175	215	170	229	265	224	264	341	224	288	373
Electrical wiring		V1	V3	V5	V2	V4	V5	V1	V3	V5	V1	V3	V5

For more information, please refer to the MZC plenum sheet.

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

			VED441			VED541			VED641			VED741	
Duct type fan coil sound data (2)													
Sound power level (inlet + radiated)	dB(A)	51,0	57,0	61,0	53,0	59,0	62,0	61,0	64,0	68,0	62,0	66,0	68,0
Sound power level (outlet)	dB(A)	47,0	53,0	57,0	49,0	55,0	58,0	57,0	60,0	64,0	58,0	62,0	64,0
Diametre hydraulic fittings													
Туре	type							-					
Main heat exchanger	Ø						3,	/4"					
Secondary heat exchanger	Ø						1,	/2"					
Finned pack heat exchanger	`							-					
Water content main heat exchanger	1		3,9			3,9			6,3			6,3	
Water content secondary heat exchanger	I		1,0			1,0			1,6			1,6	
Power supply													
Power supply							230V	~50Hz					


(1) Room air temperature 20°C d.b.; Water (in/out) 65°C/55°C; EUROVENT
(2) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

VED		'	From VED 4	30 to 741		
Fan speed	V1	V2	V3	V4	V5	
Motor connection	L5	L4	L3	12	L1	

The speed of associates may differ from the standard factory configuration.

For more information refer to the selection program and to to the dedicated documentation.

DIMENSIONS

		VED430	VED432	VED440	VED441	VED530	VED532	VED540	VED541
Dimensions and weights									
A	mm	300	300	300	300	300	300	300	300
В	mm	1133	1133	1133	1133	1133	1133	1133	1133
(mm	737	737	737	737	737	737	737	737
D	mm	1158	1158	1158	1158	1158	1158	1158	1158
Net weight	kg	41,0	46,0	43,0	46,0	42,0	47,0	47,0	47,0
		VED630	VED632	VED640	VED641	VED730	VED732	VED740	VED741
Dimensions and weights									
A	mm	351	351	351	351	351	351	351	351
В	mm	1533	1533	1533	1533	1533	1533	1533	1533
C	mm	789	789	789	789	789	789	789	789
D	mm	1558	1558	1558	1558	1558	1558	1558	1558
Net weight	kg	57,0	60,0	60,0	60,0	58,0	61,0	61,0	64,0
		VED430	VED432	VED440	VED441	VED530	VED532	VED540	VED541
Dimensions and weights									
A	mm	300	300	300	300	300	300	300	300
В	mm	1133	1133	1133	1133	1133	1133	1133	1133
C	mm	737	737	737	737	737	737	737	737
D	mm	1158	1158	1158	1158	1158	1158	1158	1158
Net weight	kg	41,0	46,0	43,0	46,0	42,0	47,0	47,0	47,0
		VED630	VED632	VED640	VED641	VED730	VED732	VED740	VED741
Dimensions and weights	'								
Α	mm	351	351	351	351	351	351	351	351
В	mm	1533	1533	1533	1533	1533	1533	1533	1533
C	mm	789	789	789	789	789	789	789	789
D	mm	1558	1558	1558	1558	1558	1558	1558	1558
U									

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.

Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

VED 530I-741I

Fan coil unit for ducted installations

- Horizontal and vertical installation
- Ventilation group to 5 speed
- Large range of available static pressure
- Inspectable ventilation group

DESCRIPTION

Ducted fan coil, for heating, cooling and dehumidifying.

Designed to maintain the set temperature over time, ensuring very low sound levels.

Can be installed in any 2/4 pipe system and operates with any heat generator even at low temperatures.

Thanks to the availability of various options, with standard or increased coil, for horizontal or vertical installation, it is easy to choose the optimal solution for any need.

FEATURES

Case

Unit for internal installation.

Internally insulated structure with class 1 fire resistance and IP20 protection.

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise

Brushless motor with continuous speed variation 0-100%.

Inverter motor allows precise adaptation to the real indoor environment requirements without temperature oscillations.

The air flow can be continuously changed through a 1-10 V signal, coming from adjustment and control commands Aermec or from independent adjustment systems.

This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors).

Heat exchanger coil

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.

Air filter

Air filter Class G3, for easy removal and cleaning.

Controls and Accessoires

There is a wide selection of controls and a huge choice of accessories, to meet every system requirement.

The unit is supplied with the delivery connection supplied.

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. **PRO503:** Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT21: Electronic thermostat for inverter fancoils.

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF system

The VMF-E19I accessory must be factory installed

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, D124 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, D124 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, D124CP, is also available as a separate accessory in our catalog.

VMF-E19I: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (MFTAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19l thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Water valves

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

VCF45C - **47C** - **47CS** - **for main heat exchanger:** 3-way motorised valve kit for the main heat exchanger. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCF45H - 47H - for heating only heat exchanger: Motorized 3-way valve kit for hot only coil. The kit consists of a 3-way 4-way valve, the actuator and its hydraulic fittings, it is suitable for installation on both fan coil units with hydraulic connections on the right and left.

VCF25C - 25CS - for main coil: 2-way motorized valve kit for main coil. The kit consists of a valve with its insulating shell, the actuator and the relative hydraulic fittings, it is suitable for installation on both fan coil units with hydraulic connections on the right and left.

VCF25H - for heating only coil: 2-way motorized valve kit for hot only coil. The kit consists of a valve, actuator and relative hydraulic fittings, it is suitable for installation on both fan coils with hydraulic connections on the right and left.

BCV: Condensate drip.

Installation accessories

MZC: Plenum with motorised dampers.

RDA_V: Straight intake connection with rectangular flange.

RPA_V: Suction plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

PA_V: Suction plenum with circular plastic flanges; both sides have a circular push-out Ø 150mm that can be removed.

PM_V: Internally insulated delivery plenum with circular flanges; both sides have a circular push-out Ø 150mm that can be removed.

RPM_V: Internally insulated delivery plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

Configurator

Field	Description
1,2,3	VED
4,5,6	Size 530. 532, 540, 541, 730, 732, 740, 741

KFV: Circular flanges kit for plenum.

MZCBC: Mandatory electrical system for connecting the MZC plenum with a fan coil fitted with a brushless motor.

Field	Description
7	main heat exchanger
8	Secondary heat exchanger
9	Fans

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Accessory	VED530I	VED532I	VED540I	VED541I	VED730I	VED732I	VED740I	VED741I
AER503IR (1)	•	•	•	•	•	•	•	•
PR0503	•	•	•	•	•	•	•	•
SA5 (2)	•	•	•	•	•	•	•	•
SW5 (2)	•	•	•	•	•	•	•	•
TX (3)	•	•	•	•	•	•	•	•
WMT21	•						•	

VMF system

Accessory	VED530I	VED532I	VED540I	VED541I	VED730I	VED732I	VED740I	VED741I
DI24	•	•	•	•	•	•	•	•
VMF-E19I (1)	•	•	•	•	•	•	•	•
VMF-E3	•	•	•	•	•	•	•	
VMF-E4DX	•	•	•	•	•	•	•	•
VMF-E4X	•	•	•	•	•	•	•	•
VMF-IO	•	•	•	•	•	•	•	•
VMF-IR	•	•	•	•	•	•	•	•
VMF-LON		•		•		•		•
VMF-SW	•	•	•	•	•	•	•	•
VMF-SW1	•	•	•	•	•	•	•	•
VMHI	•	•	•	•	•	•	•	•

⁽¹⁾ Mandatory accessory.

The VMF-E19I accessory must be factory installed

Water valves

3 way valve kit

	VED530I	VED532I	VED540I	VED541I	VED730I	VED732I	VED740I	VED741I
3 way valve kit								
Main heat exchanger	VCF45C	VCF45C	VCF45C	VCF45C	VCF47C	VCF47C	VCF47CS	VCF47CS
Secondary heat exchanger for four pipes	-	VCF45H	-	VCF45H	-	VCF47H	-	VCF47H

²³⁰V power supply - Hydraulic connection Ø 3/4"

2 way valve kit

	VED530I	VED532I	VED540I	VED541I	VED730I	VED732I	VED740I	VED741I
2 way valve kit								
Main heat exchanger	VCF25C	VCF25C	VCF25C	VCF25C	VCF25C	VCF25C	VCF25CS	VCF25CS
Secondary heat exchanger for four pipes	-	VCF25H	-	VCF25H	-	VCF25H	-	VCF25H

²³⁰V power supply - Hydraulic connection Ø 3/4"

2-way globe valves actuator excluded

Accessory	VED530I	VED532I	VED540I	VED541I	VED730I	VED732I	VED740I	VED741I
VCT102	•	•	•	•				
VCT202					•	•	•	•

Actuator 230V

Accessory	VED532I	VED540I	VED541I	VED730I	VED732I	VED740I	VED741I
VCTK	•	•	•	•	•	•	•

Actuator 24V

Actuator 2 17							
Accessory	VED532I	VED540I	VED541I	VED730I	VED732I	VED740I	VED741I
VCTKM	•	•	•	•	•	•	•

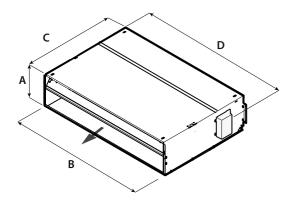
 ⁽¹⁾ Wall-mount installation.
 (2) Probe for AERSO3IR-TX thermostats, if fitted.
 (3) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

Accessory	VED5301	VED532I	VED540I	VED541I	VED730I	VED732I	VED740I	VED741I
JP150 (1)	•	•	•	•	120730.	120732.	7207 101	1207111
JP150M (2)	•	•	•	•				
JP270M (2)					•	•	•	
1) 230V~50Hz	1							
2) 24V								
VJP/VJP_M the compa	tibility of the hot w	ater valves w	ith the de-					
signed air flow in a fou	r-pipe installation is t	to be verified.						
Condensate drip								
Accessory	VED530I	VED532I	VED540I	VED541I	VED730I	VED732I	VED740I	VED741I
BCV45	•	•	•					
BCV67	,				•			•
	'							
Accessories for intak	e							
ntake plenum with rec	tangular flanges							
Accessory	VED530I	VED532I	VED540I	VED541I	VED730I	VED732I	VED740I	VED741I
RPA450V	•	•	•	•	120/301	¥ LU / J Z I	¥LU/TUI	110/711
RPA670V	<u> </u>				•	•	•	•
1110707								
ntake plenum with circ	cular flanges							
Accessory	VED530I	VED532I	VED540I	VED541I	VED730I	VED732I	VED740I	VED741I
PA450V	•	•	•					
PA670V Delivery accessories				•	•	•	•	•
PA670V Delivery accessories Delivery plenum intern Accessory	ally insulated, with r	ectangular flar VED532I	n ges VED540I	VED541I	• VED730I	VED732I	VED7401	VED7411
PA670V Delivery accessories Delivery plenum intern Accessory RPM450V	ally insulated, with r	ectangular flar	nges		VED730I	VED732I	VED7401	VED7411
PA670V Delivery accessories Delivery plenum intern Accessory RPM450V	ally insulated, with r	ectangular flar VED532I	n ges VED540I	VED541I				
Pa670V Delivery accessories Delivery plenum intern Accessory RPM450V RPM670V	ally insulated, with r VEDS30I •	ectangular flar VED532I •	veds401	VED541I	VED730I	VED732I	VED7401	VED7411
PA670V Delivery accessories Delivery plenum intern Accessory RPM450V RPM670V Delivery plenum intern	ally insulated, with r VED5301 •	ectangular flar VEDS32I • ircular flanges	nges VED540I •	VED541I	VED730I	VED732I	VED740I •	VED7411
PAG70V Delivery accessories Delivery plenum intern Accessory RPM450V RPM670V Delivery plenum intern Accessory	vely insulated, with relationship velocity in the velocity in	ectangular flar VED532I • ircular flanges VED532I	VED540I VED540I	VED5411 • VED5411	VED730I	VED732I	VED7401	VED7411
PAG70V Delivery accessories Delivery plenum intern Accessory RPM450V RPM670V Delivery plenum intern Accessory PM450V	ally insulated, with r VED5301 •	ectangular flar VEDS32I • ircular flanges	nges VED540I •	VED541I	VED730I • VED730I	VED732I • VED732I	VED740I • VED740I	VED7411 • VED7411
PAG70V Delivery accessories Delivery plenum intern Accessory RPM450V RPM670V Delivery plenum intern Accessory PM450V	vely insulated, with relationship velocity in the velocity in	ectangular flar VED532I • ircular flanges VED532I	VED540I VED540I	VED5411 • VED5411	VED730I	VED732I	VED740I •	VED7411
PA670V Delivery accessories Delivery plenum intern Accessory RPM450V RPM670V Delivery plenum intern Accessory PM450V PM670V	ved	ectangular flar VED532I • ircular flanges VED532I	VED540I VED540I	VED5411 • VED5411	VED730I • VED730I	VED732I • VED732I	VED740I • VED740I	VED7411 • VED7411
PA670V Delivery accessories Delivery plenum intern Accessory RPM450V Delivery plenum intern Accessory PM450V PM670V Circular flanges kit for p	ved	ectangular flar VED532I • ircular flanges VED532I	VED540I VED540I	VED5411 • VED5411	VED730I • VED730I	VED732I • VED732I	VED740I • VED740I	VED7411 • VED7411
PAG70V Delivery accessories Delivery plenum intern Accessory PMG70V Delivery plenum intern Accessory PMG70V Circular flanges kit for paccessory	vED530I vally insulated, with r VED530I vally insulated, with c VED530I velocity	ectangular flar VED532I • ircular flanges VED532I •	VED540I VED540I VED540I	VEDS411 • VEDS411 •	VED730I VED730I •	VED732I • VED732I •	VED740I • VED740I •	VED7411 • VED7411
PA670V Delivery accessories Delivery plenum intern Accessory RPM450V Delivery plenum intern Accessory PM450V PM670V Circular flanges kit for paccessory	ved	ectangular flar VED532I ircular flanges VED532I VED532I	VED540I • VED540I • VED540I	VED5411 • VED5411 • VED5411	VED730I VED730I VED730I	VED732I VED732I • VED732I	VED740I VED740I • VED740I	VED741I VED741I VED741I
PA670V Delivery accessories Delivery plenum intern Accessory RPM450V Delivery plenum intern Accessory PM450V PM670V Circular flanges kit for paccessory Accessory KFV	ved	ectangular flar VED532I ircular flanges VED532I VED532I	VED540I • VED540I • VED540I	VED5411 • VED5411 • VED5411	VED730I VED730I VED730I	VED732I VED732I • VED732I	VED740I VED740I • VED740I	VED741I VED741I VED741I
PAG70V Delivery accessories Delivery plenum intern Accessory RPM450V Delivery plenum intern Accessory PM450V PM670V Circular flanges kit for paccessory RCCCSSORY MAZC	ved solution with respect to the control of the con	ectangular flar VED532I ircular flanges VED532I VED532I	VED540I • VED540I • VED540I	VED5411 • VED5411 • VED5411	VED730I VED730I VED730I	VED732I VED732I • VED732I	VED740I VED740I • VED740I	VED741I VED741I VED741I
PA670V Delivery accessories Delivery plenum intern Accessory RPM450V Delivery plenum intern Accessory PM450V PM670V Circular flanges kit for paccessory KFV MZC Plenum with motor-dri	ven dampers	ectangular flar VED532I ircular flanges VED532I VED532I VED532I	VED540I VED540I VED540I VED540I	VED5411 VED5411 VED5411	VED730I VED730I VED730I VED730I	VED732I VED732I VED732I VED732I VED732I	VED740I VED740I VED740I VED740I .	VED741I VED741I VED741I VED741I
Pactory Delivery accessories Delivery plenum intern Accessory RPM450V Delivery plenum intern Accessory PM450V PM670V Circular flanges kit for paccessory KFV MZC Plenum with motor-dri Accessory	ven dampers	ectangular flar VED532I ircular flanges VED532I VED532I	VED540I • VED540I • VED540I • VED540I	VED5411 VED5411 VED5411 VED5411	VED730I VED730I VED730I	VED732I VED732I • VED732I	VED740I VED740I • VED740I	VED741I VED741I VED741I
PAG70V Delivery accessories Delivery plenum intern Accessory RPM450V Delivery plenum intern Accessory PM450V PM670V Circular flanges kit for p Accessory KFV MZC Plenum with motor-dri Accessory MZC5040	ven dampers	ectangular flar VED532I ircular flanges VED532I VED532I VED532I	VED540I VED540I VED540I VED540I	VED5411 VED5411 VED5411	VED730I VED730I VED730I VED730I	VED732I VED732I VED732I VED732I VED732I	VED740I . VED740I . VED740I . VED740I	VED741I VED741I VED741I VED741I
PA670V Delivery accessories Delivery plenum intern Accessory RPM450V Delivery plenum intern Accessory PM450V PM670V Circular flanges kit for paccessory KFV MZC Plenum with motor-dri Accessory MZC5040	ven dampers	ectangular flar VED532I ircular flanges VED532I VED532I VED532I	VED540I • VED540I • VED540I • VED540I	VED5411 VED5411 VED5411 VED5411	VED730I VED730I VED730I VED730I	VED732I VED732I VED732I VED732I VED732I	VED740I VED740I VED740I VED740I .	VED741I VED741I VED741I VED741I
Pactory Delivery accessories Delivery plenum intern Accessory RPM450V Delivery plenum intern Accessory PM450V PM670V Circular flanges kit for paccessory (FFV MZC Plenum with motor-dri Accessory MZC5040 MZC7050	ven dampers	ectangular flar VED532I ircular flanges VED532I VED532I VED532I	VED540I • VED540I • VED540I • VED540I	VED5411 VED5411 VED5411 VED5411	VED730I VED730I VED730I VED730I	VED732I VED732I VED732I VED732I VED732I	VED740I . VED740I . VED740I . VED740I	VED7411 VED7411 VED7411 VED7411
PA450V PA670V Delivery accessories Delivery plenum intern Accessory RPM450V RPM670V Delivery plenum intern Accessory PM450V PM670V Circular flanges kit for placessory KFV MZC Plenum with motor-dri Accessory MZC5040 MZC7050 Electric plant Accessory	ven dampers	ectangular flar VED532I ircular flanges VED532I VED532I VED532I	VED540I • VED540I • VED540I • VED540I	VED5411 • VED5411 • VED5411 • VED5411	VED730I VED730I VED730I VED730I	VED732I VED732I VED732I VED732I VED732I	VED740I . VED740I . VED740I . VED740I	VED7411 VED7411 VED7411 VED7411

PERFORMANCE SPECIFICATIONS

2-pipe

			VED530I			VED540I			VED730I			VED740I	
		1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)	•						-	•					
Heating capacity	kW	13,80	16,47	17,57	15,38	18,59	19,91	21,18	25,36	29,00	22,88	27,65	31,71
Water flow rate system side	l/h	1210	1444	1541	1349	1630	1746	1857	2224	2543	2007	2425	2781
Pressure drop system side	kPa	13	18	21	18	25	29	38	55	67	26	36	46
Heating performance 45 °C / 40 °C (2)													
Heating capacity	kW	6,86	8,19	8,74	7,65	9,24	9,90	10,53	12,61	14,22	11,34	27,65	15,81
Water flow rate system side	l/h	1180	1409	1503	1316	1589	1703	1811	2169	2446	1950	2425	2719
Pressure drop system side	kPa	14	19	21	21	25	30	38	52	66	26	36	46
Cooling performance 7 °C / 12 °C													
Cooling capacity	kW	6,05	7,25	7,39	7,31	8,40	8,70	10,25	11,96	13,48	11,81	13,99	15,71
Sensible cooling capacity	kW	4,61	5,57	6,02	4,93	5,99	6,18	8,33	9,75	11,07	8,19	9,73	10,95
Water flow rate system side	l/h	1041	1247	1271	1257	1445	1496	1763	2057	2319	2031	2406	2702
Pressure drop system side	kPa	12	19	21	19	25	28	35	46	58	27	37	45
Fan													
Type t	type						Centr	ifugal					
Fan motor t	type						Inve	erter					
	no.		2			2			3			3	
Air flow rate	n³/h	1120	1400	1520	1100	1380	1500	1640	2040	2410	1600	2000	2358
High static pressure	Pa	32	50	58	32	50	56	32	50	69	32	50	69
Input power	W	115	160	205	115	160	205	147	241	370	147	241	370
Signal 0-10V	%	66	76	62	62	76	90	62	76	90	62	76	90
Duct type fan coil sound data (3)													
Sound power level (inlet + radiated) d	IB(A)	53,0	59,0	62,0	53,0	59,0	62,0	62,0	66,0	68,0	62,0	66,0	68,0
Sound power level (outlet) d	IB(A)	49,0	55,0	58,0	49,0	55,0	58,0	58,0	62,0	64,0	58,0	62,0	64,0
Diametre hydraulic fittings							_						
Main heat exchanger	Ø	3/4"											
Power supply													
Power supply							230V	~50Hz					


4-pipe

			VED541I			VED741I	
		1	2	3	1	2	3
		L	М	Н	L	M	Н
Heating performance 65 °C / 55 °C (1)							
Heating capacity	kW	6,70	7,62	7,90	10,57	11,88	12,96
Water flow rate system side	l/h	584	666	692	925	1040	1133
Pressure drop system side	kPa	19	24	26	17	21	25
Cooling performance 7 °C / 12 °C							
Cooling capacity	kW	7,43	8,54	8,97	11,96	14,23	16,08
Sensible cooling capacity	kW	5,04	6,13	6,45	8,34	9,97	11,32
Water flow rate system side	l/h	1278	1469	1543	2057	2448	2766
Pressure drop system side	kPa	21	27	29	27	37	46
Fan							
Туре	type			Centr	ifugal		
Fan motor	type			Inve	erter		
Number	no.		2			3	
Air flow rate	m³/h	1060	1360	1460	1600	2000	2350
High static pressure	Pa	32	50	56	32	50	69
Input power	W	106	163	185	138	240	363
Signal 0-10V	%	66	84	90	64	78	90
Duct type fan coil sound data (2)							
Sound power level (inlet + radiated)	dB(A)	53,0	59,0	62,0	62,0	66,0	68,0
Sound power level (outlet)	dB(A)	49,0	55,0	58,0	58,0	62,0	64,0
Diametre hydraulic fittings							
Main heat exchanger	Ø	3/4"					
Secondary heat exchanger	Ø	1/2"					
Power supply							
Power supply			230V~50Hz				

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
(2) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

		VED530I	VED532I	VED540I	VED541I	VED730I	VED732I	VED740I	VED741I
Dimensions and weights	'								
A	mm	300	300	300	300	351	351	351	351
В	mm	1133	1133	1133	1133	1533	1533	1533	1533
C	mm	737	737	737	737	789	789	789	789
D	mm	1158	1158	1158	1158	1558	1558	1558	1558
Net weight	kg	42,0	47,0	47,0	47,0	58,0	58,0	61,0	61,0

Fan coil unit for ducted installations

- For district cooling applications
- · Horizontal and vertical installation
- Built-in sanitization system
- Large range of available static pressure

DESCRIPTION

The ducted range VDCA_D has been designed for air conditioning in environments where the installation of high-performance units with a wide range of useful head and compact dimensions is required.

Thanks to the availability of various versions and configurations, it's easy to choose the optimal solution for any requirement.

FEATURES

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low poise.

Their characteristics permit energy savings compared to conventional fans. They are statically and dynamically balanced and directly coupled to the motor shaft.

The electric motor is single-phase multi-speed (3 selectable), mounted on anti-vibration supports and with a permanently inserted capacitor.

Fan housing in plastic material removable for easy and effective cleaning.

Finned pack heat exchanger

The high-efficiency heat exchanger is designed to operate with a high temperature difference, typical of District Cooling solutions.

Controls and Accessoires

To facilitate and streamline installation operations on-site, we have made it possible through the configurator, and therefore at the ordering stage, to receive the unit with certain accessories already pre-installed in the factory.

With copper pipes and aluminum fins, the main heat exchanger has female gas hydraulic connections and is equipped with air vents.

The hydraulic connections can be inverted during installation.

Air filter

All fan coils come equipped with an easily removable and cleanable air filter. Various types of air filters are available through the configurator to meet different needs.

Control

The unit's electrical box is reversible, with the option of mounting it also on the same side of the water connections.

The standard equipment includes a single 10-pin control board as an interface for the electrical connections, the preparation for the VMF series thermostat fastener and the included supply of a DIN guide for the installation of a third-party control.

To facilitate and streamline installation operations on-site, we have made it possible through the configurator, and therefore at the ordering stage, to receive the unit with certain accessories already pre-installed in the factory. We redirect your attention to the configurator available on this datasheet or to the unit selection software.

We redirect your attention to the configurator available on this datasheet or to the unit selection software.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Field	Description
1,2,3,4	VDCA
5	Size
	1,2,3,5,7
6	main heat exchanger
0	Standard
7	Secondary heat exchanger
0	No present
1	Present
8	Configuration
D	High head
P	Low head
9	Installation
U	Universal
V	Only vertical
10	Position of connections
D	Water connections and electrical panel on the right
G	Water connections and electrical panel on the left
L	Hydraulic connections on the left and electric connections on the opposite side
R	Hydraulic connections on the right and electric connections on the opposite side
11	Use
V	With VMF system
W	Without control board
12	Device / accessoires
Н	Electric heater
I	loniser
P	Photocatalytic lamp
W	Without devices
13	Filter
В	Basic filter
М	Increased filter
P	Special for units with photocatalytic device
V	With washable mesh filter

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SA503: Wall-mountable ambient sensor, compatible with AER503IR.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW3: Water probe (L=2.5~m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: Water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

VMF-RIC: Thermostat interface for fan coil units

VMF Components

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate

and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, Dl24 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, Dl24 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, Dl24CP, is also available as a separate accessory in our catalog.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

 $\label{prop:wmf-lo:wmf} \textbf{VMF-IO:} \ \ \text{Manage the unit exclusively from a centralized VMF control panel without area control panel.}$

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19l thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Valves and additional water coil

BV: Hot water heat exchanger with 1 row.

VCF_X: 3-way valve kit for fan coils with single heat exchanger and hydraulic connections on the left side, for installation in 4-pipe systems. The kit is composed by 2 insulated 3-way valves and 4 connections complete with electrothermal actuators, insulating shells for the valves and with hydraulic fittings. 230V power supply. Hydraulic connections: Valve body Ø G 3/4" Male; Valve side connection pipes Ø G 3/4" Female; Unit side connection pipes Ø G 3/4" Male.

VCZ: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VDP: Combined adjustment and balancing valve, for 2 and 4 pipe systems to be installed outside the unit. It is comprised of a valve body without nipples with Ø 3/4 'M water connections, a 230 V powered actuator with On-Off function and a 5 m power supply cable. The valve is supplied without connections or hydraulic components.

VCT102: These are 3-way ball valves made of bronze, with female/female connections Ø 1/2". That can be servo-activated via servo commands. The valves do not have fittings and pipes for water connections, which are the installer's responsibility.

VCT103: These are 3-way ball valves made of bronze, with female/female connections Ø 1/2". That can be servo-activated via servo commands. The valves do not have fittings and pipes for water connections, which are the installer's responsibility.

VCTK: The VCT series valves can be combined with the actuators On-Off 230V. The actuator must be selected according to the type of system/adiustment provided.

VCTKM: The VCT series valves can be combined with the actuators 24V modulating. The actuator must be selected according to the type of system/ adjustment provided.

Installation accessories

AMP: Wall mounting kit

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing. **DSC:** Condensate drainage device.

Accessories for intake

RDA_V: Straight intake connection with rectangular flange.

RDA_C: Straight intake connection with circular flanges.

RPA_V: Suction plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

PA_V: Suction plenum with circular plastic flanges; both sides have a circular push-out Ø 150mm that can be removed.

MZC: Plenum with motorised dampers.

MZCACV: Electrical system with relay interface board. Mandatory accessory on units where motor absorption exceeds 0.7 A. The relay interface board is supplied with a 2A fuse to protect the fan coil. If the fan coil absorbs more than 2A and up to 4A, the fuse inside must be replaced with a 4A fuse sup-

MZCAC: Mandatory electrical system for connecting the MZC plenum with a fan coil fitted with an asynchronous motor.

KFV: Circular flanges kit for plenum.

GA: Intake grid with fixed louvers

GAF: Intake grid with filter and fixed louvers

GM: Flow grid with adjustable louvers.

Delivery accessories

PM_V: Internally insulated delivery plenum with circular flanges; both sides have a circular push-out Ø 150mm that can be removed.

RPM_V: Internally insulated delivery plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

RDM_V: Straight delivery coupling in galvanised sheet metal.

RDM_C: Straight discharge internally insulated, with circular flanges.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Accessory	VDCB100D	VDCB200D	VDCB300D	VDCB500D	VDCB700D
AER503IR (1)	•	•	•	•	•
F3VU	•	•	•	•	•
PR0503	•	•	•	•	•
SA5 (2)	•	•	•	•	•
SA503 (3)	•	•	•	•	•
SW3 (2)	•	•	•	•	•
SW5 (2)	•	•	•	•	•
TX (4)	•	•	•	•	•
VMF-RIC	•	•	•	•	•

- (1) Wall-mount installation.
- (2) Probe for AER503IR-TX thermostats, if fitted.
- (2) Tribe to McM3031-14 (telinibates). Hitted:
 (3) Thermostat probe for AERS03IR if available.
 (4) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

VMF system

VMF system

Accessory	VDCA100D	VDCA200D	VDCA300D	VDCA500D	VDCA700D
DI24	•	•	•	•	•
VMF-E19 (1)	•	•	•	•	•
VMF-E3	•	•	•	•	•
VMF-E4DX	•	•	•	•	•
VMF-E4X	•	•	•	•	•
VMF-I0	•	•	•	•	•
VMF-IR	•	•	•	•	•
VMF-SW	•	•	•	•	•
VMF-SW1	•	•	•	•	•
VMHI	•	•	•		•

⁽¹⁾ Also the accessory VMF-SIT3V is mandatory if the unit exceeds 0.7 Amperes.

(Heating only) additional heat exchanger

Accessory	VDCA100D	VDCA200D	VDCA300D
BV130 (1)	•		
BV162 (1)			•
BV230 (1)		•	

⁽¹⁾ Not available for sizes with oversized main coil

Water valves

Valve Kit for 4 pipe systems with main coil

Accessory	VDCA100D	VDCA200D	VDCA300D
VCF3X4L	•	•	•
VCF3X4R	•	•	•

3 way valve kit

•					
	VDCA100D	VDCA200D	VDCA300D	VDCA500D	VDCA700D
3 way valve kit	'				
Main heat exchanger	VCZ43 / VCZ4324	VCZ43 / VCZ4324	VCZ43 / VCZ4324	VCF45CS	VCF45CS
Secondary heat exchanger for					
four pipes	-	-	- -	-	<u>-</u>
Additional coil "BV"	VCF45 / VCF4524	VCF45 / VCF4524	VCF45 / VCF4524	-	-

VCZ43 - VCF45 - VCF45H - VCF47H Alimentazione 230V - VCZ4324 - VCF4524 Power supply 24V - Hydraulic connection Ø 3/4"

2 way valve kit

	VDCA100D	VDCA200D	VDCA300D
2 way valve kit			
Main heat exchanger	VCZD3 / VCZD324	VCZD3 / VCZD324	VCZD3 / VCZD324
Secondary heat exchanger for			
four pipes	-	-	-
Additional coil "BV"	VCFD4 / VCFD424	VCFD4/VCFD424	VCFD4/VCFD424

VCZD3 - VCFD4 Power supply 230V - VCZD324 - VCFD424 Power supply 24V

- Hydraulic connection Ø 3/4"

Combined adjustment and balancing valve cold side

Accessory	VDCA100D	VDCA200D	VDCA300D	VDCA500D	VDCA700D
VDP15	•	•	•	•	•
VDP15HF (1)	•	•	•	•	•
VDP15LF	•	•	•		
VDP20HF				•	•

(1) The compatibility of the valves with the unit must be checked using the project capacity. Select the appropriate valve based on the project water flow rate.

2-way globe valves actuator excluded

Accessory	VDCA500D	VDCA700D
VCT103	•	•
Accessory	VDCA500D	VDCA700D
VCT102	•	•
Accessory	VDCA500D	VDCA700D
VCTK	•	•
Accessory	VDCA500D	VDCA700D
VCTKM	•	•

Installation accessories

Installation accessories

Accessory	VDCA100D	VDCA200D	VDCA300D
AMP	•	•	•

Condensate drip

BCV67

Accessory	VDCA100D	VDCA200D	VDCA300D
BCZ4 (1)	•	•	•
BCZ6 (2)	•	•	•
(1) For vertical installation.(2) For horizontal installation.			
Accessory	VDCA100D	VDCA200D	VDCA300D
BC9 (1)	•	•	•
(1) For horizontal installation.			
Accessory	VDCA500D		VDCA700D
BCV45	•	·- -	•

Condensate recirculation device

Accessory	VDCA100D	VDCA200D	VDCA300D
DSCZ4 (1)	•	•	•

⁽¹⁾ DSCZ4 due to space problems inside the unit, the VCZ1-2-3-4 X4L/R valves cannot be mounted together with the amp/AMPZ accessories, with all the condensate collection trays. With the VMF-E19/E19I thermostats, please contact the head office.

Accessories for intake

RPM670V

	rectangular flanges				
ccessory	VDCA100D	VDCA200D	VDCA300D	VDCA500D	VDCA700D
DA100V	•				
DA200V		•			
DA300V			•		
DA450V				•	
DA670V					•
ntake straight inter	rnally insulated, with circula	r flanges			
ccessory	VDCA100D	-	VDCA200D	1	VDCA300D
DAC100V	•				
DAC200V			•		
DAC300V					•
	rectangular flanges				
ccessory	VDCA100D	VDCA200D	VDCA300D	VDCA500D	VDCA700D
PA100V	•				
PA200V		•			
PA300V			•		
PA450V				•	
PA670V					•
ntake plenum with				A	
ccessory	VDCA100D	VDCA200D	VDCA300D	VDCA500D	VDCA700D
A100V	•				
A200V		•			
PA300V			•		
PA450V				•	
A670V			,		•
Circular flanges kit f	or plenum				
Accessory	VDCA100D	VDCA200D	VDCA300D	VDCA500D	VDCA700D
(FV				•	•
(FV10	•	•	•		
ntake grids	,	,			
Accessory	VDCA100D		VDCA200D	1	VDCA300D
GA32	•				
5A42			•		
5A62	,				•
ntake grid with filte	er and fixed louvers				
ccessory	VDCA100D	,	VDCA200D		VDCA300D
SAF32	•				
SAF42			•		
iAF62					•
low grid with adjus	stable louvers				
ccessory	VDCA100D		VDCA200D		VDCA300D
iM32	•				
iM42	·		•		
iM62					•
Delivery accessori	ies				
	ernally insulated, with circu	ılar flanges			
Accessory	VDCA100D	VDCA200D	VDCA300D	VDCA500D	VDCA700D
M100V	•				
M200V		•			
M300V			•		
M450V				•	
M670V					•
elivery plenum int	ernally insulated, with rect	angular flanges			
ccessory	VDCA100D	VDCA200D	VDCA300D	VDCA500D	VDCA700D
PM100V	•				2111 000
		•			
PM200V					
			•		
RPM200V RPM300V RPM450V			•	•	

Straight delivery coupling

Accessory	VDCA100D	VDCA200D	VDCA300D
RDM100V	•		
RDM200V		•	
RDM300V			•

Delivery straight internally insulated, with circular flanges

Accessory	VDCA100D	VDCA200D	VDCA300D
RDMC100V	•		
RDMC200V		•	
RDMC300V			•

Plenum with motor-driven dampers

Accessory	VDCA100D	VDCA200D	VDCA300D	VDCA500D	VDCA700D
MZC320	•				
MZC5040				•	
MZC530		•			
MZC7050					•
MZC830			•		

Electrical system with relays

Accessory	VDCA500D	VDCA700D
MZCACV (1)	•	•

(1) It is mandatory to use MZCACV if the intake of the unit combined with the MZC accessory exceeds 0.7 Ampere.

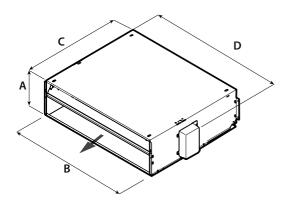
Electric plant

Accessorv	VDCA100D	VDCA200D	VDCA300D	VDCA500D	VDCA700D
Accessory	VDCATOOD	VDCA200D	V D C A J O O D	VDCA300D	VDCN/00D
MZCAC	•	•	•	•	•

PERFORMANCE SPECIFICATIONS

2-pipe

2 рірс			VI	CA10	0D				CA20	 0D			VI	CA30	0D)CA50	0D			VI	DCA70	0D	_
		1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
		UL	L	М	Н	НН	UL	L	М	Н	НН	UL	L	М	Н	НН	UL	L	М	Н	НН	UL	L	М	Н	НН
Heating performances 45 °C / 35 °C (1)																										
Heating capacity	kW	1,57	1,79	2,58	2,81	4,03	2,74	2,95	3,80	4,08	5,34	3,46	4,15	5,46	5,69	6,66	4,44	5,15	7,02	8,21	10,11	8,25	10,00	12,63	14,62	16,67
Water flow rate system side	l/h	136	156	224	244	350	238	256	330	354	463	300	360	474	494	578	386	447	609	713	877	716	868	1096	1269	1447
Pressure drop system side	kPa	7	9	17	19	37	23	26	40	46	74	11	16	26	28	37	6	8	14	18	26	9	13	20	26	33
Cooling performance 5.5 °C / 14.5 °C (2)																										
Cooling capacity	kW	1,21	1,38	1,98	2,16	3,10	2,11	2,27	2,92	3,13	4,10	2,66	3,19	4,20	4,38	5,12	3,42	3,96	5,40	6,31	7,77	6,34	7,69	9,71	11,23	12,81
Sensible cooling capacity	kW	0,90	1,03	1,51	1,65	2,46	1,52	1,64	2,16	2,33	3,15	2,00	2,43	3,28	3,44	4,11	2,44	2,81	3,77	4,39	5,44	4,98	5,88	7,20	8,19	9,27
Water flow rate system side	I/h	115	132	190	207	296	202	217	279	299	392	254	305	401	418	489	327	378	516	603	743	606	735	928	1074	1225
Pressure drop system side	kPa	6	7	14	17	32	19	22	35	39	64	10	13	22	24	32	5	7	12	16	23	8	11	17	22	28
Cooling performances 9 °C / 18 °C (3)																										
Cooling capacity	kW	0,79	0,91	1,30	1,42	2,04	1,39	1,49	1,92	2,06	2,69	1,75	2,09	2,76	2,88	3,36	2,24	2,60	3,55	4,15	5,10	4,17	5,05	6,38	7,38	8,42
Sensible cooling capacity	kW	0,75	0,86	1,27	1,39	2,04	1,27	1,38	1,81	1,95	2,64	1,68	2,04	2,75	2,88	3,36	2,05	2,36	3,16	3,69	4,56	4,17	4,93	6,04	6,88	7,78
Water flow rate system side	l/h	76	86	125	136	195	132	142	183	197	257	167	200	264	275	321	214	249	339	396	488	398	483	610	705	805
Pressure drop system side	kPa	3	3	7	8	15	9	10	16	19	30	5	6	10	11	15	2	3	6	7	11	4	5	8	10	13
Fan																										
Туре	type		Ce	entrifu	gal			Ce	entrifu	gal			Ce	entrifu	gal			Ce	entrifu	gal			(entrifu	gal	
Fan motor	type		Asy	nchro	nous			Asy	nchror	nous			Asy	nchro	nous			Asy	nchror	nous			Asy	nchror	10US	
Number	no.			2					2					3					2					3		
Air flow rate	m³/h	260	288	398	435	680	400	436	585	635	870	500	606	840	886	1100	800	911		1393	1700	1400	1621	2017	2380	2800
High static pressure	Pa	32	26	50	60	24	34	28	50	59	30	45	26	50	56	37	50	29	50	67	35	63	32	50	70	44_
Input power	W	33	34	52	75	85	43	44	67	95	107	54	61	87	98	120	137	144	198	259	282	217	233	285	371	408
<u>Electrical wiring</u>		1	_1_	4	6	6	1	_1_	_4	6	6	1	_1_	4	6	_7_	1	_1_	3	5	5	1	_1_	3	5	5
Duct type fan coil sound data (4)																										
Sound power level (inlet + radiated)	dB(A)	47,0	46,0	53,0								-					-	51,0				-				
Sound power level (outlet)	dB(A)	45,0	44,0	50,0	52,0	54,0	48,0	48,0	55,0	56,0	59,0	52,0	50,0	57,0	58,0	60,0	48,0	47,0	53,0	59,0	57,0	58,0	58,0	62,0	64,0	63,0
Diametre hydraulic fittings																										
Main heat exchanger	Ø			3/4"					3/4"					3/4"					3/4"					3/4"		
Power supply																						_				
Power supply			23	0V~50	OHz			23	OV~50)Hz			23	0V~50)Hz			23	0V~50)Hz			23	0V~50	Иz	


Eurovent certified speed: H,M,L

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 45 °C/35 °C;
(2) Room air temperature 24°C d.b./18°C w.b.; Water (in/out) 5.5 °C/14.5 °C; EUROVENT
(3) Room air temperature 26°C d.b./18.6°C w.b.; Water (in/out) 9 °C/18 °C; EUROVENT
(4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

Only for units configured with electric heater (field 12 of the configurator, option H)

		VDCA100D	VDCA200D	VDCA300D	VDCA500D	VDCA700D
Electric heater						
Number	no.	1	1	1	1	1
Heating power	kW	1310	1970	2190	2920	4000

DIMENSIONS

		VDCA100D	VDCA200D	VDCA300D	VDCA500D	VDCA700D
Dimensions and weights						
A	mm	217	217	217	300	351
В	mm	781	1001	1122	1133	1153
C	mm	584	584	584	737	789
D	mm	807	1027	1148	1158	1558

Fan coil unit for ducted installations

- For district cooling applications
- · Horizontal and vertical installation
- Built-in sanitization system
- Large range of available static pressure

DESCRIPTION

The ducted range VDCB has been designed for air conditioning in environments where the installation of high-performance units with a wide range of useful head and compact dimensions is required.

Thanks to the availability of various versions and configurations, it's easy to choose the optimal solution for any requirement.

FEATURES

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low poise.

Their characteristics permit energy savings compared to conventional fans. They are statically and dynamically balanced and directly coupled to the motor shaft.

The Brushless electric motor with 0-100% continuous speed variation, which allows precise adaptation to the real demands of the internal environment without temperature fluctuations.

The air flow can be continuously changed through a 1-10 V signal, coming from adjustment and control commands Aermec or from independent adjustment systems.

This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors).

The plastic augers are extractable for easy and efficient cleaning.

Finned pack heat exchanger

The high-efficiency heat exchanger is designed to operate with a high temperature difference, typical of District Cooling solutions.

With copper pipes and aluminum fins, the main heat exchanger has female gas hydraulic connections and is equipped with air vents.

The hydraulic connections can be inverted during installation.

Air filter

All fan coils come equipped with an easily removable and cleanable air filter. Various types of air filters are available through the configurator to meet different needs.

Controls and Accessoires

The unit's electrical box is reversible, with the option of mounting it also on the same side of the water connections.

The standard equipment includes a single 10-pin control board as an interface for the electrical connections, the preparation for the VMF series thermostat fastener and the included supply of a DIN guide for the installation of a third-party control.

To facilitate and streamline installation operations on-site, we have made it possible through the configurator, and therefore at the ordering stage, to receive the unit with certain accessories already pre-installed in the factory. We redirect your attention to the configurator available on this datasheet or to the unit selection software.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Field	Description
1,2,3,4	VDCB
5	Size 1, 2, 3, 5, 7
6	main heat exchanger Standard
0	
7	Secondary heat exchanger
0	No present
1	Present
8	Configuration
D	Low head
P	High head
9	Installation
U	Universal
V	Only vertical
10	Position of connections
D	Water connections and electrical panel on the right
G	Water connections and electrical panel on the left
L	Hydraulic connections on the left and electric connections on the opposite side
R	Hydraulic connections on the right and electric connections on the opposite side
11	Use
V	With VMF system
W	Without control board
12	Device / accessoires
Н	Electric heater
I	loniser
P	Photocatalytic lamp
W	Without devices
13	Filter
M	With increased filter
P	Special for units with photocatalytic device
S	With basic filter
	With washable mesh filter

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. **F3VU:** interface board to receive 3 separate voltage commands (corresponding to 3 speeds) and converting them into three analog voltages in the range of 0-10V.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SA503: Wall-mountable ambient sensor, compatible with AER503IR.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualiet)

VMF-RIC: Thermostat interface for fan coil units

VMF Components

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, D124 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, D124 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, D124CP, is also available as a separate accessory in our catalog.

VMF-E19I: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (MFTAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1.C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMF-SW1: Additional water probe (L=2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Valves and additional finned-pack heat exchanger for water

BV: Hot water heat exchanger with 1 row.

VCF_X: 3-way valve kit for fan coils with single heat exchanger and hydraulic connections on the left side, for installation in 4-pipe systems. The kit is composed by 2 insulated 3-way valves and 4 connections complete with electrothermal actuators, insulating shells for the valves and with hydraulic fittings. 230V power supply. Hydraulic connections: Valve body Ø G 3/4" Male; Valve side connection pipes Ø G 3/4" Female; Unit side connection pipes Ø G 3/4" Male.

VCZ: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can

be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VDP: Combined adjustment and balancing valve, for 2 and 4 pipe systems to be installed outside the unit. It is comprised of a valve body without nipples with Ø 3/4'M water connections, a 230 V powered actuator with On-Off function and a 5 m power supply cable. The valve is supplied without connections or hydraulic components.

VCT102: These are 3-way ball valves made of bronze, with female/female connections \emptyset 1/2". That can be servo-activated via servo commands. The valves do not have fittings and pipes for water connections, which are the installer's responsibility.

VCT103: These are 3-way ball valves made of bronze, with female/female connections \emptyset 1/2". That can be servo-activated via servo commands. The valves do not have fittings and pipes for water connections, which are the installer's responsibility.

VCTK: The VCT series valves can be combined with the actuators On-Off 230V. The actuator must be selected according to the type of system/adjustment provided.

VCTKM: The VCT series valves can be combined with the actuators 24V modulating. The actuator must be selected according to the type of system/ adjustment provided.

Installation accessories

AMP: Wall mounting kit

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing. **DSC:** Condensate drainage device.

Accessories for intake

RDA_V: Straight intake connection with rectangular flange.

RDA_C: Straight intake connection with circular flanges.

RPA_V: Suction plenum with rectangular flange; both sides have a circular push-out \emptyset 150mm that can be removed.

PA_V: Suction plenum with circular plastic flanges; both sides have a circular push-out Ø 150mm that can be removed.

MZC: Plenum with motorised dampers.

KFV: Circular flanges kit for plenum.

GA: Intake grid with fixed louvers

GAF: Intake grid with filter and fixed louvers

GM: Flow grid with adjustable louvers.

Delivery accessories

PM_V: Internally insulated delivery plenum with circular flanges; both sides have a circular push-out Ø 150mm that can be removed.

RPM_V: Internally insulated delivery plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

RDM_V: Straight delivery coupling in galvanised sheet metal.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Accessory	VDCB100D	VDCB200D	VDCB300D	VDCB500D	VDCB700D
AER503IR (1)	•	•	•	•	•
F3VU	•	•	•	•	•
PR0503	•	•	•	•	•
SA5 (2)	•	•	•	•	•
SA503 (3)	•	•	•	•	•
SW3 (2)	•	•	•	•	•
SW5 (2)	•	•	•	•	•
TX (4)	•	•	•	•	•
VMF-RIC	•	•	•	•	•

- (1) Wall-mount installation.
 (2) Probe for AERSO3IR-TX thermostats, if fitted.
 (3) Thermostat probe for AERSO3IR if available.
 (4) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

VMF system

To manage and control a VMF system, it is mandatory to include the VMF-E19I accessory on board the fan coil unit.

VMF system

Accessory	VDCB100D	VDCB200D	VDCB300D	VDCB500D	VDCB700D
DI24	•	•	•	•	•
VMF-E19I (1)	•	•	•	•	•
VMF-E3	•		•	•	•
VMF-E4DX	•	•	•	•	•
VMF-E4X	•	•	•	•	•
VMF-IO	•	•	•	•	•
VMF-IR	•	•	•	•	•
VMF-SW	•	•	•	•	•
VMF-SW1	•	•	•	•	•
VMHI	•	•	•	•	•

(1) Mandatory accessory.

(Heating only) additional coil

Accessory	VDCB100D	VDCB200D	VDCB300D
BV130 (1)	•		
BV162 (1)			•
BV230 (1)		•	

⁽¹⁾ Not available for sizes with oversized main coil.

Water valves

3 way valve kit

	VDCB100D	VDCB200D	VDCB300D	VDCB500D	VDCB700D
3 way valve kit	,				
Main heat exchanger	VCZ43 / VCZ4324	VCZ43 / VCZ4324	VCZ43 / VCZ4324	VCF45CS	VCF45CS
Secondary heat exchanger for					_
four pipes	-	-	-	-	-
Additional coil "BV"	VCF45 / VCF4524	VCF45 / VCF4524	VCF45 / VCF4524	=	-

VCZ43 - VCF45 - VCF45H - VCF47H Alimentazione 230V - VCZ4324 - VCF4524 Power supply 24V - Hydraulic connection Ø 3/4"

2 way valve kit

	VDCB100D	VDCB200D	VDCB300D	VDCB500D	VDCB700D
2 way valve kit					
Main heat exchanger	VCZD3 / VCZD324	VCZD3 / VCZD324	VCZD3 / VCZD324	-	-
Secondary heat exchanger for					_
four pipes	-	-	-	-	-
Additional coil "BV"	VCFD4 / VCFD424	VCFD4/VCFD424	VCFD4 / VCFD424	-	-

VCFD3 Power supply 230V, VCFD324 Power supply 24V - Hydraulic connections Ø 3/4" VCFD4 Power supply 230V, VCFD424 Power supply 24V - Hydraulic connections Ø 1/2"; For additional coil (heating only) BV.

Combined adjustment and balancing valve cold side

Accessory	VDCB100D	VDCB200D	VDCB300D	VDCB500D	VDCB700D
VDP15	•	•	•	•	•
VDP15HF (1)	•	•	•	•	•
VDP15LF	•	•	•		
VDP20HF				•	•

⁽¹⁾ The compatibility of the valves with the unit must be checked using the project capacity. Select the appropriate valve based on the project water flow rate.

2-way globe valves actuator excluded

Accessory	VDCB500D	VDCB700D
VCT103	•	•

ccessory CT102		VDCB500D	VDCB700D							
ccessory		VDCB500D	1	VDCB700D						
CTK		•		•						
ccessory		VDCB500D		VDCB700D						
CTKM		•		•						
nstallation accesso	rios									
stallation accessorie										
ccessory	VDCB100	<u> </u>	VDCB200D		VDCB300D					
МР	•		•		•					
ondensate drip										
cessory	VDCB100	D	VDCB200D		VDCB300D					
Z4 (1)	•		•		•					
Z6 (2)	•		•		•					
For vertical installation.										
For horizontal installation.	VDCD400	D	MUCDOVOD		VDCB200D					
ccessory 9 (1)	VDCB100		VDCB200D		VDCB300D					
	•		•		•					
For horizontal installation.		1/2 42								
cessory		VDCB500D	1	VDCB700D						
V45		•								
CV67				•						
ondensate recirculati	ion device									
cessory	VDCB100D	VDCB101D	VDCB200D	VDCB300D	VDCB301D					
GCZ4	ANCDIOON				•					
ccessories for intal	·	VDCB200D	VDCB300D	VDCB500D	VDCB700D					
ccessories for intal ntake straight with re	ke ectangular flanges VDCB100D									
ccessories for intal ntake straight with re ccessory DA100V	ke cctangular flanges									
Accessories for intal ntake straight with re ccessory DA100V DA200V	ke ectangular flanges VDCB100D	VDCB200D								
ccessories for intal ntake straight with re ccessory DA100V DA200V DA300V	ke ectangular flanges VDCB100D	VDCB200D	VDCB300D							
accessories for intal ntake straight with re ccessory DA100V DA200V DA300V DA450V DA670V	ke ectangular flanges VDCB100D	VDCB200D	VDCB300D	VDCB500D						
ccessories for intal ntake straight with re ccessory DA100V DA200V DA300V DA50V DA670V	ke ectangular flanges VDCB100D	VDCB200D	VDCB300D	VDCB500D	VDCB700D					
ccessories for intal ntake straight with re ccessory DA100V DA200V DA300V DA450V DA670V	ke ectangular flanges VDCB100D · ally insulated, with circular fla	VDCB200D	VDCB300D	VDCB500D	VDCB700D					
ccessories for intal ntake straight with re ccessory DA100V DA200V DA300V DA50V DA670V	ke ectangular flanges VDCB100D	VDCB200D	VDCB300D	VDCB500D	VDCB700D					
ccessories for intal stake straight with re ccessory JA100V JA200V JA450V JA670V stake straight interna ccessory	ke ectangular flanges VDCB100D · ally insulated, with circular fla	VDCB200D	VDCB300D	VDCB500D	VDCB700D					
ccessories for intal ntake straight with re ccessory DA100V DA200V DA300V DA450V DA670V ntake straight interna ccessory DAC100V DAC200V	ke ectangular flanges VDCB100D · ally insulated, with circular fla	VDCB200D	VDCB300D • VDCB200D	VDCB500D	VDCB700D					
ccessories for intal stake straight with re ccessory DA100V DA200V DA200V DA300V DA450V DA670V atake straight interna ccessory DAC100V DAC300V DAC300V	ke ectangular flanges VDCB100D ally insulated, with circular fla	VDCB200D	VDCB300D • VDCB200D	VDCB500D	VDCB700D • VDCB300D					
ccessories for intal stake straight with re ccessory DA100V DA200V DA300V DA450V DA670V Stake straight interna ccessory DA(100V DA(200V DA(200	ke ectangular flanges VDCB100D ally insulated, with circular fla VDCB100D ctangular flanges	VDCB200D . anges	VDCB300D VDCB200D •	VDCB500D	VDCB700D • VDCB300D					
ccessories for intal stake straight with re ccessory DA100V DA200V DA300V DA450V DA670V stake straight interna ccessory DA(100V DA(200V DA(300V DA(30	ke ectangular flanges VDCB100D ally insulated, with circular fla	VDCB200D	VDCB300D • VDCB200D	VDCB500D	VDCB700D • VDCB300D					
ccessories for intal stake straight with re ccessory DA100V DA200V DA300V DA450V DA670V stake straight interna ccessory DAC100V DAC300V DAC300V DAC300V DAC400V DAC400V DAC50V DAC50V DAC50V DAC50V DAC50V DAC60V D	ke ectangular flanges VDCB100D hally insulated, with circular fla VDCB100D ctangular flanges VDCB100D	VDCB200D . anges	VDCB300D VDCB200D •	VDCB500D	VDCB700D • VDCB300D					
ccessories for intal stake straight with re ccessory DA100V DA200V DA300V DA450V DA670V stake straight interna ccessory DAC100V DAC200V DAC300V DAC300V DAC400V DAC400V DAC50V	ke ectangular flanges VDCB100D hally insulated, with circular fla VDCB100D ctangular flanges VDCB100D	VDCB200D . anges VDCB200D	VDCB300D VDCB200D •	VDCB500D	VDCB700D • VDCB300D					
ccessories for intal atake straight with re ccessory DA100V DA300V DA300V DA450V DA670V atake straight interna ccessory DAC100V DAC300V	ke ectangular flanges VDCB100D hally insulated, with circular fla VDCB100D ctangular flanges VDCB100D	VDCB200D . anges VDCB200D	VDCB300D VDCB200D VDCB300D	VDCB500D	VDCB700D • VDCB300D					
ccessories for intal stake straight with re ccessory DA100V DA200V DA300V DA450V DA670V DA670V DA6200V	ke ectangular flanges VDCB100D hally insulated, with circular fla VDCB100D ctangular flanges VDCB100D	VDCB200D . anges VDCB200D	VDCB300D VDCB200D VDCB300D	VDCB500D VDCB500D	VDCB700D • VDCB300D					
ccessories for intal take straight with re cessory A100V A200V A300V A670V take straight interna cessory AC100V AC200V AC300V take plenum with re cessory A100V A200V	ke ectangular flanges VDCB100D ally insulated, with circular fla VDCB100D ctangular flanges VDCB100D	VDCB200D . anges VDCB200D	VDCB300D VDCB200D VDCB300D	VDCB500D VDCB500D	VDCB700D VDCB300D VDCB700D					
ccessories for intal take straight with re cessory A100V A200V A4300V A450V A670V take straight interna cessory AC100V AC200V AC300V take plenum with re cessory A100V A200V A300V take plenum with re cessory A100V A200V A200V A100V A200V A100V A200V A100V	ke ectangular flanges VDCB100D ally insulated, with circular fla VDCB100D ctangular flanges VDCB100D crcular flanges	VDCB200D . inges VDCB200D .	VDCB300D VDCB200D VDCB300D	VDCB500D VDCB500D	VDCB700D VDCB300D VDCB700D					
ccessories for intal take straight with re cessory A100V A200V A300V A670V take straight interna cessory AC100V AC200V AC300V take plenum with re cessory A100V A200V	ke ectangular flanges VDCB100D ally insulated, with circular fla VDCB100D ctangular flanges VDCB100D	VDCB200D . anges VDCB200D	VDCB300D VDCB200D VDCB300D	VDCB500D VDCB500D	VDCB700D VDCB300D VDCB700D					
ccessories for intal itake straight with re cessory A100V A200V A300V A450V A6670V Itake straight interna cessory A4(200V	ke ectangular flanges VDCB100D ally insulated, with circular fla VDCB100D ctangular flanges VDCB100D .	VDCB200D . inges VDCB200D .	VDCB300D VDCB200D VDCB300D	VDCB500D VDCB500D	VDCB700D VDCB300D VDCB700D					
ccessories for intal itake straight with re cessory A100V A200V A450V A670V Itake straight interna ccessory A(100V A(200V A(300V Itake plenum with re ccessory A100V A450V A4670V Itake plenum with re ccessory A100V A450V	ke ectangular flanges VDCB100D ally insulated, with circular fla VDCB100D ctangular flanges VDCB100D .	VDCB200D VDCB200D VDCB200D VDCB200D	VDCB300D VDCB200D VDCB300D	VDCB500D VDCB500D	VDCB700D VDCB300D VDCB700D					
ccessories for intal itake straight with re cessory A100V A200V A450V A670V Itake straight interna ccessory A(100V A(200V A(300V Itake plenum with re ccessory A100V A200V	ke ectangular flanges VDCB100D ally insulated, with circular fla VDCB100D ctangular flanges VDCB100D .	VDCB200D VDCB200D VDCB200D VDCB200D	VDCB300D VDCB200D VDCB300D VDCB300D	VDCB500D VDCB500D	VDCB700D VDCB300D VDCB700D					
ccessories for intale straight with recessory DA100V DA200V DA450V DA670V DA6670V DA667	ke ectangular flanges VDCB100D ally insulated, with circular fla VDCB100D ctangular flanges VDCB100D .	VDCB200D VDCB200D VDCB200D VDCB200D	VDCB300D VDCB200D VDCB300D VDCB300D	VDCB500D VDCB500D VDCB500D	VDCB700D VDCB300D VDCB700D					
ccessories for intale straight with recessory DA100V DA200V DA450V DA670V DA670V DA670V DA6200V DA6200V	ke ectangular flanges VDCB100D ally insulated, with circular fla VDCB100D ctangular flanges VDCB100D .	VDCB200D VDCB200D VDCB200D VDCB200D	VDCB300D VDCB200D VDCB300D VDCB300D	VDCB500D VDCB500D VDCB500D	VDCB700D VDCB300D VDCB700D VDCB700D					
ccessories for intal stake straight with re cessory A100V A200V A300V A670V A6	ke ectangular flanges VDCB100D ally insulated, with circular fla VDCB100D ctangular flanges VDCB100D rcular flanges VDCB100D v	VDCB200D VDCB200D VDCB200D VDCB200D	VDCB300D VDCB300D VDCB300D VDCB300D	VDCB500D VDCB500D VDCB500D	VDCB700D VDCB300D VDCB700D VDCB700D					
ccessories for intale atake straight with recessory DA100V DA200V DA450V DA670V Atake straight internatives of the control of	ke ectangular flanges VDCB100D ally insulated, with circular fla VDCB100D ctangular flanges VDCB100D .	VDCB200D VDCB200D VDCB200D VDCB200D	VDCB300D VDCB200D VDCB300D VDCB300D	VDCB500D VDCB500D VDCB500D	VDCB700D VDCB300D VDCB700D VDCB700D					
ccessories for intal ntake straight with re ccessory DA100V DA200V DA300V DA450V DA670V ntake straight interna	ke ectangular flanges VDCB100D ally insulated, with circular fla VDCB100D ctangular flanges VDCB100D rcular flanges VDCB100D v	VDCB200D VDCB200D VDCB200D VDCB200D	VDCB300D VDCB300D VDCB300D VDCB300D	VDCB500D VDCB500D VDCB500D	VDCB700D VDCB300D VDCB700D VDCB700D					

Accessory	VDCB100D	'	VDCB200D	'	VDCB300D
GAF32	•			'	
GAF42					
GAF62					•
Flow grid with adju	stable louvers				
Accessory	VDCB100D		VDCB200D	'	VDCB300D
GM32	•				
GM42			•		
GM62					•
Delivery accessor	ries				
Plenum with motor	-driven dampers				
Accessory	VDCB100D	VDCB200D	VDCB300D	VDCB500D	VDCB700D
MZC320	•				
MZC5040				•	
MZC530		•			
MZC7050					•
MZC830			•		
Delivery plenum in	ternally insulated, with circ	ular flanges			
Accessory	VDCB100D	VDCB200D	VDCB300D	VDCB500D	VDCB700D
PM100V	•				
PM200V		•			
PM300V			•		
PM450V				•	
PM670V					•
Delivery plenum in	ternally insulated, with rect	angular flanges			
Accessory	VDCB100D	VDCB200D	VDCB300D	VDCB500D	VDCB700D
RPM100V	•				
DDM200M		•			
RPM200V		<u>*</u>			
RPM200V RPM300V		•	•		

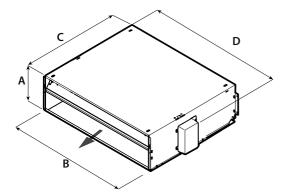
Accessory	ternally insulated, with circ VDCB100D	VDCB200D	VDCB300D	VDCB500D	VDCB700D
M100V	•	10002000	1000000	1000000	10 (07 000
M200V		•			
M300V			•		
M450V					
M670V			-		•
elivery nlenum in	ternally insulated, with rect	angular flanges			
ccessory	VDCB100D	VDCB200D	VDCB300D	VDCB500D	VDCB700D
PM100V	•				
PM200V		•			
PM300V			•		
PM450V				•	
PM670V					•
Delivery straight ir	stormally inculated with circ	ulau flammaa			
	iternally ilisulated, with the	ular flanges			
	VDCB100D	uiar Hanges	VDCB200D		VDCB300D
		uiar fianges	VDCB200D		VDCB300D
DMC100V	VDCB100D	ular Hanges	VDCB200D		VDCB300D
DMC100V DMC200V	VDCB100D	uiar nanges			VDCB300D
DMC100V DMC200V DMC300V	VDCB100D	uiar nanges			
DMC100V DMC200V DMC300V traight delivery c	VDCB100D	uiar nanges			
DMC100V DMC200V DMC300V traight delivery co	VDCB100D	uiar nanges	·		,
DMC100V DMC200V DMC300V traight delivery coccessory DM100V	VDCB100D Dupling VDCB100D	uiar nanges	·		,
DMC100V DMC200V DMC300V traight delivery coccessory DM100V DM200V	VDCB100D Dupling VDCB100D	uiar nanges	VDCB200D		,
RDMC100V RDMC200V RDMC300V Straight delivery co Accessory RDM100V RDM200V	VDCB100D Poupling VDCB100D VDCB100D	uiar nanges	VDCB200D		VDCB300D
Accessory RDMC100V RDMC200V RDMC300V Straight delivery co Accessory RDM100V RDM200V RDM200V Circular flanges kit	VDCB100D Poupling VDCB100D VDCB100D	VDCB200D	VDCB200D	VDCB500D	VDCB300D
DMC100V DMC200V DMC300V straight delivery coccessory DM100V DM200V DM300V Circular flanges kit	VDCB100D Pupling VDCB100D VDCB100D VDCB100D		VDCB200D	VDCB500D	VDCB300D

KFV10

PERFORMANCE SPECIFICATIONS

2-pipe

		VI	CB10	0D		VDCB200D				VDCB300D					VDCB500D					VDCB700D					
	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
	UL	L	М	Н	НН	UL	L	М	Н	НН	UL	L	М	Н	НН	UL	L	М	Н	НН	UL	L	М	Н	НН
Heating performances 45 °C / 35 °C (1)																									
Heating capacity kW	1,04	1,79	2,58	2,82	4,49	2,18	2,96	3,80	4,08	5,97	2,75	4,14	5,46	5,70	7,06	3,18	5,17	7,02	8,22	11,87	4,37	9,98	12,63	14,64	18,63
Water flow rate system side I/h	90	155	224	245	390	189	257	329	354	518	238	360	474	495	613	276	449	609	713	1030	379	866	1096	1271	1617
Pressure drop system side kPa	3	9	17	19	45	15	26	40	46	91	7	16	26	28	41	3	8	14	18	35	3	13	20	26	40
Cooling performance 5.5 °C / 14.5 °C (2)																									
Cooling capacity kW	0,80	1,37	1,98	2,17	3,45	1,67	2,27	2,92	3,13	4,59	2,11	3,18	4,20	4,38	5,43	2,44	3,97	5,40	6,31	9,12	3,35	7,67	9,71	11,25	14,32
Sensible cooling capacity kW	0,59	1,03	1,51	1,66	2,80	1,19	1,64	2,15	2,33	3,58	1,57	2,43	3,28	3,44	4,40	1,77	2,82	3,77	4,40	6,51	2,93	5,86	7,20	8,20	10,39
Water flow rate system side I/h	77	131	190	207	330	160	217	279	300	439	202	304	401	419	519	233	380	516	604	872	321	733	928	1075	1369
Pressure drop system side kPa	3	7	14	17	39	13	22	35	40	79	6	13	22	24	35	3	7	12	16	30	3	11	17	22	34
Cooling performances 9 °C / 18 °C (3)																									
Cooling capacity kW	0,53	0,90	1,30	1,42	2,27	1,10	1,49	1,92	2,06	3,02	1,39	2,09	2,76	2,88	3,57	1,60	2,61	3,55	4,15	5,99	2,20	5,04	6,38	7,39	9,41
Sensible cooling capacity kW	0,49	0,86	1,27	1,39	2,27	1,00	1,38	1,81	1,96	3,01	1,32	2,04	2,75	2,88	3,57	1,48	2,36	3,17	3,69	5,47	2,20	4,92	6,04	6,89	8,72
Water flow rate system side I/h	50	86	125	136	217	105	143	183	197	288	133	200	264	275	341	153	249	339	397	573	211	481	610	706	899
Pressure drop system side kPa	1	3	7	8	18	6	10	16	19	37	3	6	10	11	16	1	3	6	7	14	1	5	8	10	16
Fan																									
Type type	:	C	entrifu	gal			Ce	entrifu	gal			Ce	entrifu	gal			Ce	ntrifu	gal			(entrifu	gal	
Fan motor type	:		Inverte	r				Inverte	er				Inverte	r				nverte	r				Inverte	:r	
Number no.			2					2					3					2					3		
Air flow rate m ³ /	200	287	398	436	800	300	437	585	635	1000	400	606	840	888	1200	600	913	1204	1393	2000	1000	1617	2017	2384	3200
High static pressure Pa	9	26	50	60	43	6	28	50	59	34	3	26	50	56	16	9	29	50	67	19	5	32	50	70	79
Input power W	7	15	30	37	80	10	23	45	55	100	14	35	76	93	121	18	50	103	155	249	31	100	166	255	471
Signal 0-10V %	30	49	69	76	90	30	55	74	81	90	30	61	85	90	90	30	49	66	76	90	30	53	65	75	90
Duct type fan coil sound data (4)																									
Sound power level (inlet + radiated) dB(A	35,0	46,0	53,0	54,0	59,0	40,0	50,0	56,0	57,0	62,0	41,0	52,0	58,0	60,0	61,0	44,0	53,0	60,0	63,0	65,0	49,0	62,0	66,0	69,0	73,0
Sound power level (outlet) dB(A	33,0	44,0	50,0	52,0	57,0	37,0	48,0	55,0	56,0	60,0	39,0	50,0	57,0	58,0	60,0	40,0	51,0	57,0	60,0	64,0	43,0	56,0	62,0	66,0	69,0
Power supply																									
Power supply		23	0V~50)Hz			23	0V~50	OHz			23	0V~50)Hz			23	OV~50	Hz			23	0V~50	Иz	


Only for units configured with electric heater (field 12 of the configurator, option H)

		VDCB100D	VDCB200D	VDCB300D	VDCB500D	VDCB700D
Electric heater						
Number	no.	1	1	1	1	1
Heating power	kW	1310	1970	2190	2920	4000

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 45 °C/35 °C;
(2) Room air temperature 24°C d.b./18°C w.b.; Water (in/out) 5.5 °C/14.5 °C; EUROVENT
(3) Room air temperature 26°C d.b./18.6°C w.b.; Water (in/out) 9 °C/18 °C; EUROVENT
(4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

Eurovent certified speed: H,M,L

DIMENSIONS

		VDCB100D	VDCB200D	VDCB300D	VDCB500D	VDCB700D
Dimensions and weights	,					
A	mm	217	217	217	300	351
В	mm	781	1001	1122	1133	1153
С	mm	584	584	584	737	789
D	mm	807	1027	1148	1158	1558

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

MZC

Plenum with motor-driven dampers

- Multi-zone plenum for controlling air capacity
- Available for channelles on/off and inverter fan coils

DESCRIPTION

The plenum with motor-driven dampers is designed for residential and tertiary applications. It combines optimal ambient comfort with assured energy savings.

Modern plant increasingly require overall air conditioning using channelled systems. Thanks to the electronic control of the dampers, the MZC accessory regulates the room's comfort by adjusting the air flow to meet the actual requirements.

MZC is designed for use in combination with all fan coils with asynchronous or brushless motors and is pre-set to distribute exchange air.

FEATURES

Structure

- Galvanized sheet metal structure, insulated with self-extinguishing material.
- From 2 to 6 delivery outlets, depending on the model. Each outlet is fitted with a motorised damper, with the possibility if required by the system to add an MZCSM accessory outlet (possibility not available for all models see the accessory compatibility table)
- Fresh air injection flange, supplied as standard, for connecting the MZC plenum to a heat recovery unit.
- Pre-setting for the installation of an additional air probe (accessory MZCSA) to control modulating or pressure-independent valves.
- Possibility to install the plenum even on the fan coil intake, using a flange (accessory MZCA)
- Reversible electrical box (right/left)
- Water probe supplied as standard, for the fan coil.

Regulation

- MZC is equipped with a zone thermostat VMHI to define the required temperature setting.
- The status of the dampers (open/closed) is adjusted on reaching the temperature set in each room.
- Management of up to 6 motorized dampers.
- Flow control for each damper (the maximum and minimum damper opening can be set for each outlet).
- Possibility to associate the control of several dampers with the request from the same zone thermostat (VMHI or WT10).

- For installations in which the dampers and room thermostats are uniquely associated, the dampers can be modulated in relation to the room thermostat requirements.
- "Suction plenum" function enabling
- MZC can control the valves that may be installed on the fan coil associated with it (On/Off, modulating or pressure-independent types), for 2- or 4-pipe systems
- Possibility to set the control unit parameters via the supervision serial port.

ACCESSORIES

Control panels

WR10: Two-channel wireless receiver for WT10.

WT10: Wireless thermostat.

VMF Components

VMF-VOC: Air quality detection accessory.

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Installation accessories

MZCACV: Electrical system with relay interface board. Mandatory accessory on units where motor absorption exceeds 0.7 A. The relay interface board is supplied with a 2A fuse to protect the fan coil. If the fan coil absorbs more than 2A and up to 4A, the fuse inside must be replaced with a 4A fuse supplied.

MZCAC: Mandatory electrical system for connecting the MZC plenum with a fan coil fitted with an asynchronous motor.

MZCBC: Mandatory electrical system for connecting the MZC plenum with a fan coil fitted with a brushless motor.

MZCSM: Single module with motorized damper.

MZCA: Adapter flange for installing the Plenum even under fan coil suction. **MZCSA:** Air probe for controlling modulating or pressure independent valves.

ZCT: It is an electrical device equipped with Bluetooth and WiFi technology, with which it is possible to perform the functions of air probe and thermostat with dry contact. Communicate with the AerChront App (available for Android and iOS) for home control by creating customised rooms with name and cover image. For more information on the use of the application and available functions, please refer to the respective documentation on the cite.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Accessory	MZC220	MZC320	MZC530	MZC830	MZC5040	MZC/050
WR10	•	•	•	•	•	•
WT10	•	•	•	•	•	•
VMF system						
Accessory	MZC220	MZC320	MZC530	MZC830	MZC5040	MZC7050
VMF-VOC	•	•	•	•	•	•
MAHII						

Installation accessories

Relay interface board

Accessory			MZC	7050		
MZCACV				•		
Accessory	MZC220	MZC320	MZC530	MZC830	MZC5040	MZC7050
MZCAC	•	•	•	•	•	•

Compulsory electrical plant

Accessory	MZC220	MZC320	MZC530	MZC830	MZC5040	MZC7050
MZCBC	•	•	•	•	•	•

Single module with damper

Accessory	MZC320	MZC530	MZC830	MZC5040	MZC7050
MZCSM	•	•	•	•	•

Adaptation flange

	•			
Accessory	MZC220	MZC320	MZC530	MZC830
MZCA2	•			
MZCA3		•		
MZCA5			•	
M7CA8				

Air temperature probe

Accessory	MZC220	MZC320	MZC530	MZC830	MZC5040	MZC7050
MZCSA	•	•	•	•	•	•

Thermostat

Accessory	MZC220	MZC320	MZC530	MZC830	MZC5040	MZC7050
ZCT	•	•	•	•	•	•

COMPATIBILITY OF MZC PLENUMS WITH AERMEC FAN COILS

Plenum with motorised dampers - FCZ - PO

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
MZC220	PO,POR					•	•	•	•												
MZC320	PO,POR									•	•	•	•								
MZC530	PO,POR													•	•	•	•	•	•	•	•
Model	Ver	600	601	602	2 6	550	700	701	702	750	8	00	801	802	850	900	90	1 9	50	1000	1001
MZC830	PO,POR	•						•	•	•				•	•	•					

Plenum with motorised dampers - VED 030-340

Plenum with motorised dampers - VED 430-741

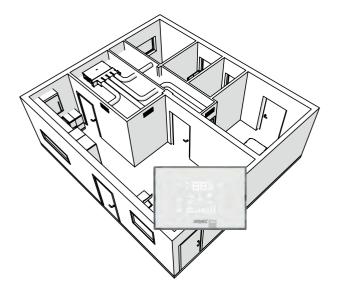
Accessory	VED430	VED440	VED530	VED540	VED630	VED640	VED730	VED740
MZC5040	•	•	•	•				
MZC7050					•	•	•	•

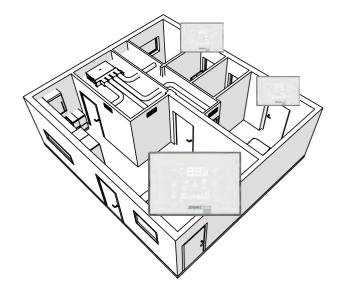
Accessory	VED432	VED441	VED532	VED541	VED632	VED641	VED732	VED741
MZC5040	•	•	•	•				
MZC7050					•		•	•

Plenum with motorised dampers - VED 030I-340I

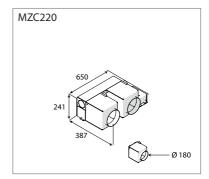
Plenum with motorised dampers - VED 530I-741I

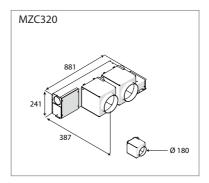
Accessory	VED530I	VED540I	VED730I	VED740I
MZC5040	•	•		
MZC7050			•	•
Accessory	VED532I	VED541I	VED732I	VED741I
Accessory MZC5040	VED532I	VED541I	VED732I	VED741I

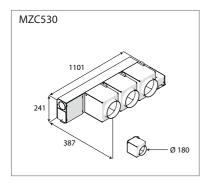

Plenum with motor-driven dampers - VES 030-340

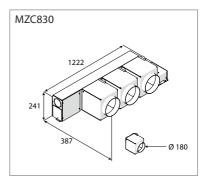

Accessory	VES030	VES040	VES130	VES140	VES230	VES240	VES330	VES340
MZC220	•	•						
MZC320			•	•				
MZC530					•	•		
M7C830								•

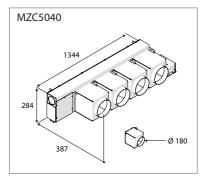
Plenum with motor-driven dampers - VES 030I-340I

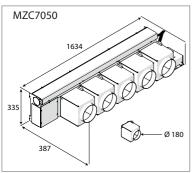

Accessory	VES030I	VES040I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
MZC220	•	•						
MZC320			•	•				
MZC530					•	•		
MZC830							•	•


SYSTEM SOLUTIONS






DIMENSIONS



VEC

Coanda-effect fan coil for cassette installation

- Very quiet
- Total comfort in every season

DESCRIPTION

Thanks to a special air intake and flow grid, these units allow a coanda-effect air flow to be generated, parallel to the ceiling, creating optimal circulation inside the room to be air-conditioned.

They are suitable to be installed inside a suspended ceiling.

FEATURES

Ventilation group

Comprised of a dual intake centrifugal fan that is particularly silent, statically and dynamically balanced and directly coupled to the motor shaft.

In addition to the traditional three-speed asynchronous motor for the "VECs", every unit can be supplied with a "VEC_I" Brushless-type inverter motor controlled by an inverter board.

Heat exchanger coil

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air years.

Units are available with a standard coil (20-50) and a larger coil (24-54). Only units with the standard coil can be combined with an additional electric or water coil with 1 row, both available as an accessory.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.

Air filter

Fire resistance class 1 air filter.

ACCESSORY COMPULSORY

VEC_GL: Air intake and flow grid with adjustable Coanda-effect vents (white M9016 = lacquered white similar to Ral 9016).

Control panels and dedicated accessories

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant

panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

FMT10: Electronic thermostat for fan coil in to 2/4 pipe systems. **PRO503:** Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW3: Water probe ($L=2.5\,\mathrm{m}$) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L=15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

 $\textbf{WMT16:} \ Electronic \ thermostat \ with \ thermostated \ ventilation.$

WMT16CV: Electronic thermostat with continuous ventilation.

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

177

VMF Components

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, DI24 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, DI24 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, DI24CP, is also available as a separate accessory in our catalog.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Common accessories

BV: Hot water heat exchanger with 1 row.

RX: Armoured electric coil with safety thermostat.

VCFD: Motorized 2-way valve kit without insulating shell, can be installed on the main or secondary battery or a battery that is only warm. The kit is made up of a valve, actuator and relative hydraulic fittings. It can be installed on fan coils with connections on the right and on the left.

VCF41 - 42 - 43 - for main heat exchanger: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

DSC: Condensate drainage device.

BC: Condensate drip.

VCF44 - 45 - for secondary heat exchanger: The 3-way motorised valve kit for the secondary coil heat only. The kit consists of a valve with its insulating shell, actuator and relevant water fittings; it is suitable to be installed on the fan coils with right and left water connections.

PCR: Galvanised plate protection for the controls and the electrical element.

ACCESSORIES COMPATIBILITY

Accessories mandatory

Intake grid and distribution of the air

Model	Ver	20	24	30	34	40	44	50	54
VEC20GL (1)		•	•						
VEC30GL (1)				•	•				
VEC40GL (1)						•	•	•	

(1) Mandatory accessory

Control panels and dedicated accessories

Model	Ver	20	24	30	34	40	44	50	54
AER503IR (1)		•	•	•	•	•	•	•	•
FMT10		•	•	•	•	•	•	•	•
PR0503		•	•	•	•	•	•	•	•
SA5 (2)		•	•	•	•	•	•	•	•
SIT3 (3)		•	•	•	•	•	•	•	•
SIT5 (4)		•	•	•	•	•	•	•	•
SW3 (2)		•	•	•	•	•	•	•	•
SW5 (2)		•	•	•	•	•	•	•	•
TX (5)		•	•	•	•	•	•	•	•
WMT10 (5)		•	•	•	•	•	•	•	•
WMT16 (5)		•	•	•	•	•	•	•	•
WMT16CV (5)			•	•	•	•	•	•	

- (1) Wall-mount installation.(2) Probe for AER503IR-TX thermostats, if fitted.
- (3) Cards for AER503IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere.
- (4) Probe for AER503IR-TX thermostats, if fitted.
- (5) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

VMF Components

Model	Ver	20	24	30	34	40	44	50	54
DI24		•	•	•	•	•	•	•	•
VMF-E19 (1)		•	•	•	•	•	•	•	•
VMF-E3		•	•	•	•	•	•	•	•
VMF-E4X		•	•	•	•	•	•	•	•
VMF-IR		•	•	•	•		•	•	•
VMF-SW		•	•	•	•	•	•	•	•
VMF-SW1	•	•	•	•	•	•	•	•	•

Model	Ver	20	24	30	34	40	44	50	54
VMHI		•	•	•	•		•	•	•

(1) Also the accessory VMF-SIT3V is mandatory if the unit exceeds 0.7 Amperes.

Common accessories

Electric coil

Model	Ver	20	24	30	34	40	44	50	54
RX22 (1)		•	•						
RX32 (1)				•	•				_
RX42 (1)						•	•		
RX52 (1)							-	•	•

(1) Requires a thermostat with heater management. Not available for sizes with an oversized main coil. The PCR1 PCR2 or PCR1V appliance must also be provided depending on the unit.

Protection for controls and electric resistance

Model	Ver	20	24	30	34	40	44	50	54
PCR1V		•	•	•	•	•	•	•	•

Water coil with 1 row

Model	Ver	20	24	30	34	40	44	50	54
BV122 (1)		•							
BV132 (1)									
BV142 (1)						•		•	

(1) Not available for sizes with oversized main coil.

3-way valve kit - main coil or accessory BV coil

	VEC20	VEC24	VEC30	VEC34	VEC40	VEC44	VEC50	VEC54
Main coil	VCF41 - VCF4124	VCF42 - VCF4224	VCF41 - VCF4124	VCF42 - VCF4224				
Additional coil "BV"	VCF44 - VCF4424	-						

2-way valve kit - main coil or accessory BV coil

	VEC20	VEC24	VEC30	VEC34	VEC40	VEC44	VEC50	VEC54
Main coil	VCFD1 - VCFD124	VCFD2 - VCFD224	VCFD1 - VCFD124	VCFD2 - VCFD224				
Additional coil "BV"	VCFD4 - VCFD424	-						

Valves ending with 24 ex. VCFD124, are 24V.

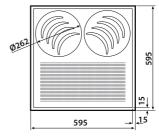
Condensate drip

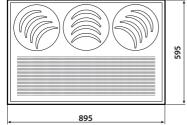
Condensate unp														
	Ver	20	24	30	34	40	44	50	54					
		BC5 (1)												

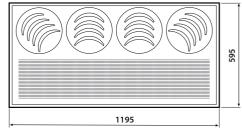
(1) For horizontal installation.

Condensate drainage

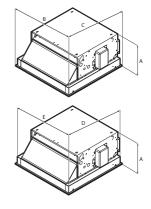
Ver	Ver 20 24		30	34	40	44	50	54
	DSC4	DSC4	DSC4	DSC4	DSC4	DSC4	DSC4	DSC4


PERFORMANCE SPECIFICATIONS VEC


2-pipe


		VEC20 VEC24		1	VEC30			VEC34		VEC40		VEC44		VEC50)	VEC54								
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																									
Heating capacity	kW	1,87	2,54	3,10	2,07	2,50	3,42	3,03	3,64	4,31	4,31	53,18	6,14	4,21	5,21	6,29	5,41	6,68	8,07	4,76	6,34	7,16	6,06	8,08	9,18
Water flow rate system side	l/h	164	223	272	181	219	300	266	319	378	378	454	538	369	457	551	474	586	708	417	556	628	532	709	805
Pressure drop system side	kPa	2	4	6	1	2	3	9	13	17	5	7	9	6	9	12	9	14	19	7	11	14	9	15	19
Heating performance 45 °C / 40 °C (2)																									
Heating capacity	kW	0,95	1,26	1,54	1,20	1,40	1,70	1,50	1,81	2,14	2,15	2,57	3,05	2,09	2,59	3,12	2,69	3,30	4,01	2,37	3,15	3,56	3,02	4,02	4,54
Water flow rate system side	I/h	163	217	265	206	241	292	258	311	368	370	442	525	359	445	537	463	568	690	408	542	612	519	691	781
Pressure drop system side	kPa	3	5	7	2	3	4	9	13	17	5	7	9	6	9	13	10	14	20	7	12	14	17	15	19
Cooling performance 7 °C / 12 °C																									
Cooling capacity	kW	0,80	1,07	1,31	0,88	1,21	1,52	1,35	1,61	1,91	1,79	2,14	2,47	1,99	2,47	2,99	2,55	3,34	3,91	2,35	3,17	3,61	3,00	4,00	4,28
Sensible cooling capacity	kW	0,64	0,87	1,07	0,67	0,90	1,14	1,03	1,25	1,49	1,26	1,51	1,78	1,58	1,98	2,41	1,91	2,42	2,74	1,68	2,27	2,59	2,09	2,83	3,04
Water flow rate system side	l/h	138	184	225	151	208	261	232	277	329	308	368	425	342	425	514	439	574	673	404	545	621	516	688	736
Pressure drop system side	kPa	3	4	6	1	2	3	6	11	13	5	6	8	6	9	12	11	17	22	7	12	15	17	27	30
Fan																									
Туре	type												Centri	ifugal											
Fan motor	type												Asynch	ronous											
Number	no.		1			1			2			2			2			2			2			2	
Air flow rate	m^3/h	130	194	247	130	167	247	241	309	383	241	309	383	306	406	511	306	406	511	371	529	613	371	529	613
Input power	W	19	22	25	19	22	25	25	33	44	25	33	44	30	43	57	30	43	57	34	46	67	34	46	67
Electrical wiring		٧1	V2	V3	٧1	V2	V3	٧1	V2	V3	V1	V2	V3	٧1	V2	V3	٧1	V2	V3	V1	V2	V3	V1	V2	V3
Fan coil sound data (3)																									
Sound power level	dB(A)	35,0	42,0	48,0	35,0	42,0	48,0	37,0	43,0	49,0	37,0	43,0	49,0	38,0	43,0	48,0	38,0	43,0	48,0	43,0	50,0	53,0	43,0	50,0	53,0
Sound pressure level	dB(A)	27,0	34,0	40,0	27,0	34,0	40,0	29,0	35,0	41,0	29,0	35,0	41,0	30,0	35,0	40,0	30,0	35,0	40,0	35,0	38,0	45,0	35,0	38,0	45,0
Diametre hydraulic fittings																									
Main heat exchanger	Ø		1/2"			3/4"			1/2"			3/4"			3/4"			3/4"			3/4"			3/4"	
Power supply																									
Power supply													230V-	~50Hz											

- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
 (2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
 (3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.


GRID DIMENSIONS (MANDATORY ACCESSORY)

DIMENSIONS

Dimensions and weights of the unit with grid (maximum dimensions)

Size			20	24	30	34	40	44	50	54
Dimensions and w	eights									
A		mm	283	283	283	283	283	283	283	283
В		mm	595	595	895	895	1195	1195	1195	1195
C		mm	595	595	595	595	595	595	595	595
Empty weight		kg	16	16	21	21	25	25	25	25
Weight of the grid		kg	3,7	3,7	5,7	5,7	7,0	7,0	7,0	7,0

Dimensions of the unit with grid (dimensions for installation)

Size			20	24	30	34	40	44	50	54
Dimensions and	d weights									
A		mm	283	283	283	283	283	283	283	283
D		mm	574	574	574	574	574	574	574	574
E		mm	574	574	874	874	1174	1174	1174	1174

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

VEC-I

Coanda-effect fan coil for cassette installation

- Very quiet
- Electric saving equal to 50% with respect to a fan coil with 3-speed motor
- Total comfort: reduced variations in temperature and relative humidity in every season

DESCRIPTION

Thanks to a special air intake and flow grid, these units allow a coanda-effect air flow to be generated, parallel to the ceiling, creating optimal circulation inside the room to be air-conditioned.

They are suitable to be installed inside a suspended ceiling.

FEATURES

Ventilation group

Comprised of a dual intake centrifugal fan that is particularly silent, statically and dynamically balanced and directly coupled to the motor shaft.

The Brushless electric motor with 0-100% continuous speed variation, which allows precise adaptation to the real demands of the internal environment without temperature fluctuations.

Continuous air flow rate variation is made possible by a 0-10V signal generated by Aermec adjustment and control commands or by independent regulation systems.

This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors). Apart from the inverter motor of the "VEC-I" models, each unit can be supplied with a single-phase asynchronous "VEC" motor.

Heat exchanger coil

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air

Units are available with a standard coil (20-50) and a larger coil (24-54). Only units with the standard coil can be combined with an additional electric or water coil with 1 row, both available as an accessory.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.

Air filter

Fire resistance class 1 air filter.

ACCESSORY COMPULSORY

Control panels and dedicated accessories

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. **SA5:** air probe kit (L = 15 m) with probe-locking cable grommet.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF Components

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, D124 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, D124 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, D124CP, is also available as a separate accessory in our catalog.

VMF-E19I: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

Common accessories

BV: Hot water heat exchanger with 1 row.

RX: Armoured electric coil with safety thermostat.

VCFD: Motorized 2-way valve kit without insulating shell, can be installed on the main or secondary battery or a battery that is only warm. The kit is made up of a valve, actuator and relative hydraulic fittings. It can be installed on fan coils with connections on the right and on the left.

VCF41 - 42 - 43 - for main heat exchanger: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

DSC: Condensate drainage device.

BC: Condensate drip.

PCR: Galvanised plate protection for the controls and the electrical element.

ACCESSORIES COMPATIBILITY

Accessories mandatory

Intake grid and distribution of the air

Accessory	VEC24I	VEC30I	VEC34I	VEC40I	VEC44I	VEC50I	VEC54I
VEC20GL	•						
VEC30GL		•	•				
VEC40GL					•	•	•

Control panels and dedicated accessories

Accessory	VEC20I	VEC24I	VEC30I	VEC34I	VEC40I	VEC44I	VEC50I	VEC54I
AER503IR	•	•	•	•	•	•	•	•
PR0503	•	•	•	•	•	•	•	•
SA5	•	•	•	•	•	•	•	•
SW5	•	•	•	•	•	•	•	•
TX	•	•	•	•	•	•	•	•

VMF Components

Model	Ver	20	24	30	34	40	44	50	54
DI24		•	•	•	•	•	•	•	•
VMF-E19 (1)		•	•	•	•	•	•	•	•
VMF-E3		•	•	•	•	•	•	•	•
VMF-E4X		•	•	•	•	•	•	•	•
VMF-IR		•	•	•	•	•	•	•	•
VMF-SW		•	•	•	•	•	•	•	•
VMF-SW1		•	•	•	•	•	•	•	•
VMHI		•	•	•	•	•	•	•	•

 $(1) \ \ Also \ the \ accessory \ VMF-SIT3V \ is \ mandatory \ if \ the \ unit \ exceeds \ 0.7 \ Amperes.$

Common accessories

Electric coil

Accessory	VEC20I	VEC24I	VEC30I	VEC34I	VEC40I	VEC44I	VEC50I	VEC54I
RX22	•	•						
RX32			•	•				
RX42					•	•		
DYC2								

Protection for controls and electric resistance

Accessory	VEC20I	VEC24I	VEC30I	VEC34I	VEC40I	VEC44I	VEC50I	VEC54I
PCR1V	•	•	· ·	•	•	•	•	•

Water coil with 1 row

Accessory	VEC20I	VEC30I	VEC40I	VEC50I
BV122	•			

Accessory	VEC20I	VEC30I	VEC40I	VEC50I
BV132		•		_
BV142			•	•

3-way valve kit - main coil or accessory BV coil

	VEC20I	VEC24I	VEC30I	VEC34I	VEC40I	VEC44I	VEC50I	VEC54I
Main coil	VCF41 - VCF4124	VCF42 - VCF4224	VCF41 - VCF4124	VCF42 - VCF4224				
Additional coil "BV"	VCF44 - VCF4424	-	VCF44 - VCF4224	-	VCF44 - VCF4224	-	VCF44 - VCF4224	-

2-way valve kit - main coil or accessory BV coil

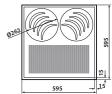
	VEC20I	VEC24I	VEC30I	VEC34I	VEC40I	VEC44I	VEC50I	VEC54I
Main coil	VCFD1 - VCFD124	VCFD2 - VCFD224	VCFD1 - VCFD124	VCFD2 - VCFD224				
Additional coil "BV"	VCFD2 - VCFD424	-	VCFD4 - VCFD424	-	VCFD4 - VCFD424	-	VCFD4 - VCFD424	-

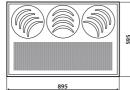
Valves ending with 24 ex. VCFD124, are 24V.

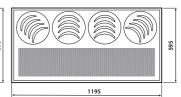
Condensate drip

Accessory	VEC20I	VEC24I	VEC30I	VEC34I	VEC40I	VEC44I	VEC50I	VEC54I
BC5	•	•	•	•	•	•	•	•

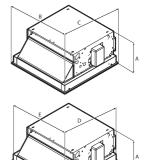
Condensate drainage


Accessory	VEC20I	VEC24I	VEC30I	VEC34I	VEC40I	VEC44I	VEC50I	VEC54I
DSC4	•	•	•	•	•	•	•	•


PERFORMANCE SPECIFICATIONS VEC


			VEC20	Ī		VEC24	ī		VEC30	Ī		VEC34	ī _		VEC40	Ī	VEC44		4I VEC50I		ī	VEC54			
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		Ė	M	 H	Ė	M	 H	i	M	H	Ė		 H	Ė	M	H	i	M	H	Ė	M	 H	Ĺ	M	H
Heating performance 70 °C / 60 °C (1)																									
Heating capacity	kW	1,87	2,54	3,10	2,07	2,50	3,42	3,03	3,64	4,31	4,31	53,18	6,14	4,21	5,21	6,29	5,41	6,68	8,07	4,76	6,34	7,16	6,06	8,08	9,18
Water flow rate system side	l/h	164	223	272	181	219	300	266	319	378	378	454	538	369	457	551	474	586	708	417	556	628	532	709	805
Pressure drop system side	kPa	2	4	6	1	2	3	9	13	17	5	7	9	6	9	12	9	14	19	7	11	14	9	15	19
Heating performance 45 °C / 40 °C (2)																									
Heating capacity	kW	0,95	1,26	1,54	1,20	1,40	1,70	1,50	1,81	2,14	2,15	2,57	3,05	2,09	2,59	3,12	2,69	3,30	4,01	2,37	3,15	3,56	3,02	4,02	4,54
Water flow rate system side	l/h	163	217	265	206	241	292	258	311	368	370	442	525	359	445	537	463	568	690	408	542	612	519	691	781
Pressure drop system side	kPa	3	5	7	2	3	4	9	13	17	5	7	9	6	9	13	10	14	20	7	12	14	17	15	19
Cooling performance 7 °C / 12 °C																									
Cooling capacity	kW	0,80	1,07	1,31	0,88	1,21	1,52	1,35	1,61	1,91	1,79	2,14	2,47	1,99	2,47	2,99	2,55	3,34	3,91	2,35	3,17	3,61	3,00	4,00	4,28
Sensible cooling capacity	kW	0,64	0,87	1,07	0,67	0,90	1,14	1,03	1,25	1,49	1,26	1,51	1,78	1,58	1,98	2,41	1,91	2,42	2,74	1,68	2,27	2,59	2,09	2,83	3,04
Water flow rate system side	l/h	138	184	225	151	208	261	232	277	329	308	368	425	342	425	514	439	574	673	404	545	621	516	688	736
Pressure drop system side	kPa	3	4	6	1	2	3	6	11	13	5	6	8	6	9	12	11	17	22	7	12	15	17	27	30
Fan																									
Туре	type												Centri	ifugal											
Fan motor	type												Inve	rter											
Number	no.		1			1			2			2			2			2			2			2	
Air flow rate	m³/h	130	194	247	130	167	247	241	309	383	241	309	383	306	406	511	306	406	511	371	529	613	371	529	613
Input power	W	4	9	14	4	9	14	11	16	35	11	16	35	16	20	26	16	20	26	18	27	34	18	27	34
Signal 0-10V	%	48	70	90	48	70	90	58	66	90	58	66	90	54	72	90	54	72	90	56	78	90	56	78	90
Fan coil sound data (3)																									
Sound power level	dB(A)	35,0	42,0	48,0	35,0	42,0	48,0	37,0	43,0	49,0	37,0	43,0	49,0	38,0	43,0	48,0	38,0	43,0	48,0	43,0	50,0	53,0	43,0	50,0	53,0
Sound pressure level	dB(A)	27,0	34,0	40,0	27,0	34,0	40,0	29,0	35,0	41,0	29,0	35,0	41,0	30,0	35,0	40,0	30,0	35,0	40,0	35,0	38,0	45,0	35,0	38,0	45,0
Diametre hydraulic fittings																									
Main heat exchanger	Ø		1/2"			3/4"			1/2"			3/4"			3/4"			3/4"			3/4"			3/4"	
Power supply																									
Power supply													230V-	~50Hz											

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.


GRID DIMENSIONS (MANDATORY ACCESSORY)

DIMENSIONS

Dimensions and weights of the unit with grid (maximum dimensions)

Size			20	24	30	34	40	44	50	54
Dimensions and w	eights									
A		mm	283	283	283	283	283	283	283	283
В		mm	595	595	895	895	1195	1195	1195	1195
C		mm	595	595	595	595	595	595	595	595
Empty weight		kg	16	16	21	21	25	25	25	25
Weight of the grid		kg	3,7	3,7	5,7	5,7	7,0	7,0	7,0	7,0

Dimensions of the unit with grid (dimensions for installation)

Size			20	24	30	34	40	44	50	54
Dimensions and	weights									
A		mm	283	283	283	283	283	283	283	283
D		mm	574	574	574	574	574	574	574	574
E		mm	574	574	874	874	1174	1174	1174	1174

FCL

Cassette Type Fan Coil Unit

- · Standard internal three-way valve
- Version with 2-way valve for variable water flow rate systems
- Version without valves

DESCRIPTION

4-way cassettes that can be installed in any type of 2- or 4-pipe system with any heat generator, even at low temperatures. Thanks to the selection of versions and configurations, it's easy to choose the best solution for every need.

FEATURES

Intake grid and distribution of the air

The recovery and air diffusion grille has an elegant design. In plastic, RAL 9010.

The dimensions of the first nine sizes respect the 600x600 mm modularity of false ceilings, whereas the larger sizes measuring 840x840 mm are designed for quiet operation and optimum performance.

Load-bearing structure

Models with a 600x600 mm module have a reinforced load-bearing structure with side panels in galvanised steel sheet, thermally insulated with internal polystyrene foam elements.

The structure of models with a 840x840 mm module is made entirely of galvanised steel sheet, thermally insulated with polyethylene foam on the inside and with an anti-condensate felt coating.

Ventilation group

Formed of a particularly quiet axial-centrifugal fan, statically and dynamically balanced.

The single-phase electric motor offers three or four speeds (depending on the size), is mounted on anti-vibration supports, and has a permanently enabled condenser.

Heat exchanger coil

Heat exchanger with shaped profile to increase the exchange surface, and easily accessible drain valves.

There are models with a single coil for 2-pipe systems, with the possibility to add an electric heater too, and models with two coils for 4-pipe systems. There is the possibility to combine outside air with the inlet ambient air, and to distribute it in separate rooms.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

There is the possibility to combine outside air with the inlet ambient air, and to distribute it in separate rooms.

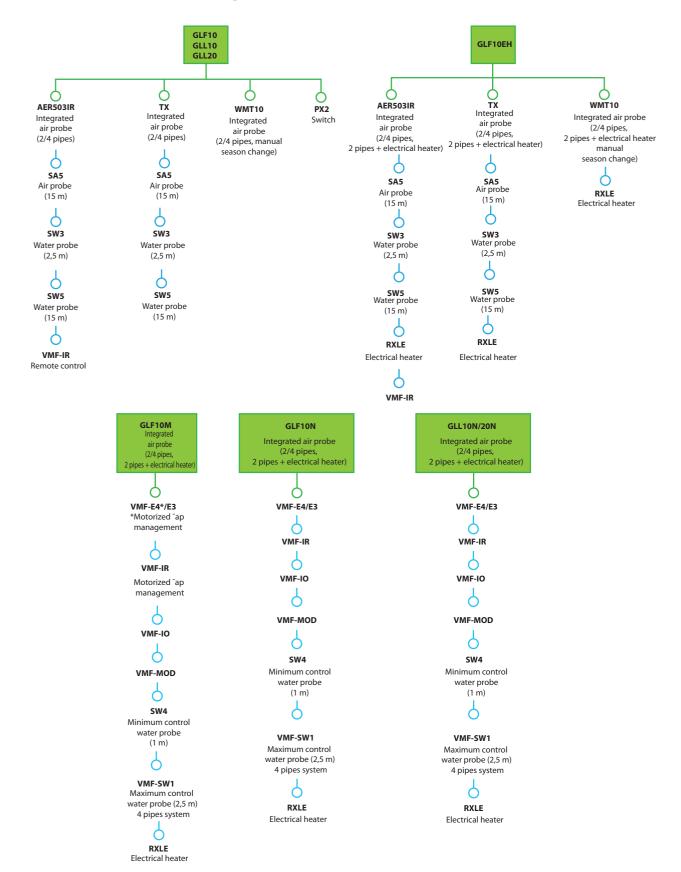
Condensate drip

Condensation drip tray in one piece, with V0 self-extinguishing level and overmoulding to insulation in expanded polystyrene with flame retardant additive.

Air filter

Air filter easily removed and cleaned, self-supporting structure, characterised by a high efficiency and low pressure drops, with class-V0 fire resistance (UL 94).

Versions


FCL Standard with internal 3-way valve

V2 With internal 2-way valve

VL Without internal valve

ACCESSORIES

Accessories that can be combined with the grilles

RXLE it can be installed only at the factory.

Intake grids and distribution of the air, compulsory accessory

GLF10: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm adapts perfectly to standard false ceilings without overlapping parts. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits with manually orientated louvers. Must be combined with a wall-mounted panel. (size 840x840 mm not available).

GLF10EH: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm; adapts perfectly to standard false ceilings without overlapping parts. Suitable for use with the RXLE heater. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits with manually orientated fins. Must be combined with a wall-mounted panel. (size 840x840 mm not available).

GLF10M: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm adapts perfectly to standard false ceilings without overlapping parts. It is equipped with an infrared receiver with an emergency operation button, a thermostat card which also requires the installation of the VMF-E4 panel or the VMF-IR remote control. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be orientated with the remote control. (size 840x840 not available).

GLF10N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4 or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated. (size 800x800 mm not available).

GLL10: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm; adapts perfectly to standard false ceilings without overlapping parts. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated. Must be combined with a wall-mounted panel.

GLL10N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4X or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated.

GLL20: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 840x840 mm, adapts perfectly to standard false ceilings without overlapping parts. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated. Must be combined with a wall-mounted panel.

GLL20N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 840x840 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4X or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated.

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF system

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, D124 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, D124 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, D124CP, is also available as a separate accessory in our catalog.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-MOD: Expansion board for the management of modulating valves.

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

Control panels and their accessories

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. **SA5:** air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW3: Water probe (L=2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW4: Water temperature probe allowing automatic season change on electronic controllers supplied with water-side change over.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualier).

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

Electric heaters it can be installed only at the factory

RXLE: Electric heater for heating, can be installed on board the units. **RXLE20:** Electric heater for heating, can be installed on board the units.

Water valve kit

VCFLX4: 3-way valve kit for single-coil fan coil for 4-pipe systems. With totally separate "heating" and "cooling" circuits. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings.

VHL1: 3-way motorised valve kit with 4 connections including the actuator. 230V~50Hz power supply.

VHL124: 3-way motorised valve kit with 4 connections including the actuator. 24V power supply.

VHL20: Motorised 3-way valve kit with 4 connections, complete with actuator and the relative hydraulic couplings. 230V~50Hz power supply.

VHL2024: Motorised 3-way valve kit with 4 connections, complete with actuator and the relative hydraulic couplings. 24V power supply.

VHL2: 2-way motorised valve kit with 2 connections including the actuator. Power supply 230V~50Hz;

VHL22: Motorised 2-way valve kit with 2 connections, complete with actuator and the relative hydraulic couplings. Power supply 230V~50Hz;

VHL2224: Motorised 2-way valve kit with 2 connections, complete with actuator and the relative hydraulic couplings. 24V power supply.

VHL224: 2-way motorised valve kit with 2 connections including the actuator. 24V power supply.

Installation accessories

KFL: Delivery flange, allowing the air to be directed to an adjacent room.

KFL20: Delivery flange, allowing the air to be directed to an adjacent room. Up to three KFL20 can be assembled on a single unit.

KFLD: Suction flange, allows to introduce external air directly into the room without mixing.

KFLD20: Suction flange, allows to introduce external air directly into the room without mixing. Up to two KFL20D can be assembled on a single unit. **FCLMC10:** Perimeter housing in painted galvanised sheet metal, 600x600 mm, used when the fan coil is installed outside the false ceiling. It has an aesthetic and protective purpose only, so the technical characteristics of the fan coil remain unaltered. Can only be combined with GLL/GLLI grilles.

FCLMC20: Perimeter housing in painted sheet metal, 840x840 mm, used when the fan coil is installed outside the false ceiling. It has an aesthetic and protective purpose only, so the technical characteristics of the fan coil remain unaltered. Can only be combined with GLL/GLLI grilles.

ACCESSORIES COMPATIBILITY

Intake grids and distribution of the air

Model	Ver	32	34	36	38	42	44	62	64
GLF10 (1)	FCL,V2,VL	•	•	•	•	•	•	•	•
GLF10EH (2)	FCL,V2,VL	•	•	•	•		•	•	•
GLF10M (3)	FCL,V2,VL	•	•	•	•		•	•	
GLF10N (3)	FCL,V2,VL	•	•	•	•	•	•	•	•
Model	Ver	72	82	84	10)2	104	122	124
GLF10 (1)	FCL,V2,VL	•							
GLF10EH (2)	FCL,V2,VL	•							
GLI TOLIT (L)									
GLF10M (3)	FCL,V2,VL	•							

- Not compatible with the VMF system and electric heaters.
 Not compatible with the VMF system, but compatible with electric heaters.
 Compatible with the VMF system and electric heaters.

Intake grid and distribution of the air

Model	Ver	32	34	36	38	42	44	62	64	72	82	84	102	104	122	124
GLL10 (1)	FCL,V2,VL	•			•	•	•	•	•	•						
GLL10N (2)	FCL,V2,VL	•	•		•	•	•	•	•	•						
GLL20 (1)	FCL,V2,VL											•				
GLI 20N (2)	FCL V2 VI															

36

38

42

44

62

64

34

32

Ver

VMF system

Model

DI24	FCL,V2,VL	•	•	•	•	•	•	•	•
VMF-E3	FCL,V2,VL	•	•	•	•	•	•	•	•
VMF-E4DX	FCL,V2,VL	•	•	•	•	•	•	•	•
VMF-E4X	FCL,V2,VL	•	•	•	•	•	•	•	•
VMF-IO	FCL,V2,VL	•	•	•	•	•	•	•	•
VMF-IR	FCL,V2,VL	•	•	•	•	•	•	•	•
VMF-MOD	FCL,V2,VL	•	•	•	•	•	•	•	•
VMF-SW1	FCL,V2,VL	•	•	•	•	•	•	•	•
Model	Ver	72	82	84	102	2	104	122	124
Model DI24	Ver FCL,V2,VL	. 72 •	. 82 •	. 84 •	102	2	104	•	124
						2			
D124	FCL,V2,VL	•	•	•	•	2	•	•	•
DI24 VMF-E3	FCL,V2,VL FCL,V2,VL	•		•	•	2	•	•	•
DI24 VMF-E3 VMF-E4DX	FCL,V2,VL FCL,V2,VL FCL,V2,VL	•	•	•	•	2	•	•	•
DI24 VMF-E3 VMF-E4DX VMF-E4X	FCL,V2,VL FCL,V2,VL FCL,V2,VL	•	•	•	•			•	•
DI24 VMF-E3 VMF-E4DX VMF-E4X VMF-10	FCL,V2,VL FCL,V2,VL FCL,V2,VL FCL,V2,VL FCL,V2,VL			•	•				

Control panels and dedicated accessories

Model	Ver	32	34	36	38	42	44	62	64	72	82	84	102	104	122	124
AER503IR (1)	FCL,V2,VL	•	•		•	•	•	•	•	•	•	•	•	•	•	•
SA5 (2)	FCL,V2,VL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SIT3 (3)	FCL,V2,VL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SIT5 (4)	FCL,V2,VL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SW3 (2)	FCL,V2,VL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SW4	FCL,V2,VL		•	•	•	•	•	•	•		•	•		•	•	•
SW5 (2)	FCL,V2,VL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
TX (5)	FCL,V2,VL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

⁽¹⁾ Not compatible with the VMF system and electric heaters.(2) Compatibility with VMF system.

Model	Ver	32	34	36	38	42	44	62	64	72	82	84	102	104	122	124
WMT10 (5)	FCL.V2.VL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

- Wall-mount installation.
 Probe for AER503IR-TX thermostats, if fitted.
 Cards for AER503IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere.
 Probe for AER503IR-TX thermostats, if fitted.
 Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

3 way valve kit

Model	Ver	32	34	36	38	42	44	62	64
VHL1 (1)	FCL,V2,VL		•		•		•		•
VHL124 (1)	FCL,V2,VL		•		•				•
Model	Ver	72	82	84	102	2	104	122	124
Model VHL20 (1)	Ver FCL,V2,VL	72	82	84	102	2	104		124

(1) Obligatory accessory in 4-pipe systems.

2 way valve kit

Model	Ver	32	34	36	38	42	44	62	64
VHL2 (1)	FCL,V2,VL		•		•		•		•
VHL224 (1)	FCL,V2,VL		•		•		•		•
M. J.I	V	73	01	0/			104	122	124
Model	Ver	12	02	84	10	2	104	122	124
VHL22 (1)	FCL,V2,VL	12	02	• 64	10		•	122	•

(1) Compulsory accessory in 4-pipe systems with variable flow rate.

Valve Kit for 4 pipe systems

Model	Ver	32	34	36	38	42	44	62	64	72
VCFLX4 (1)	VL	•		•		•		•		•

(1) The valve must be commanded via command panels enabled for valve control.

Delivery flange

Model	Ver	32	34	36	38	42	44	62	64
KFL	FCL,V2,VL	•	•	•		•	•	•	•
KFLD	FCL,V2,VL	•	•	•	•	•	•	•	•
Model	Ver	72	82	84	102	!	104	122	124
KFL	FCL,V2,VL	•							
KFL20	FCL,V2,VL		•	•			•	•	•
KFLD	FCL,V2,VL	•							
KFLD20	FCL,V2,VL		•	•	•		•	•	•

Perime	ter	case
--------	-----	------

Model	Ver	32	34	36	38	42	44	62	64	72	82	84	102	104	122	124
FCLMC10 (1)	FCL,V2,VL	•	•	•	•	•	•	•	•	•						
FCLMC20 (1)	FCL,V2,VL											•			•	•

(1) Can only be combined with GLL/GLLI grilles

Electric heaters it can be installed only at the factory

Model	Ver	32	34	36	38	42	44	62	64	72
RXLE (1)	FCL,V2,VL	•		•		•		•		•
Model	Ver	82		84	102		104	122		124
RXLE20 (1)	FCL,V2,VL	•			•			•		

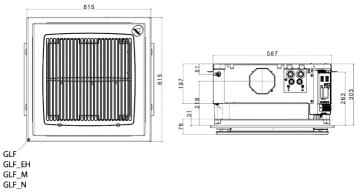
(1) It is mandatory to provide one of the grids that manage the resistance.

PERFORMANCE SPECIFICATIONS

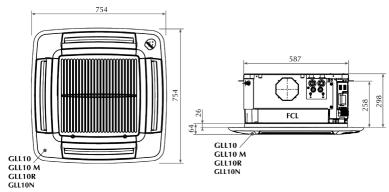
2-pipe

			FCL32			FCL36	5		FCL42			FCL62	2		FCL72			FCL82			FCL102	2		FCL122	
		1	2	3	1	2	3	1	2	4	1	2	4	1	2	4	1	2	4	1	2	4	1	2	4
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	H
Heating performance 70 °C / 60 °C (1)																									
Heating capacity	kW	2,22	2,95	4,00	3,42	4,50	6,27	3,32	4,47	7,34	5,19	6,37	10,49	6,14	7,57	11,32	5,88		11,88	8,30	11,71	17,73	10,53	14,73	21,75
Water flow rate system side	I/h	194	258	350	300	394	549	290	391	642	454	558	918	538	662	991	514	710	1039	726	1025	1551	921	1289	1903
Pressure drop system side	kPa	4	6	10	6	10	19	6	10	24	12	17	42	14	20	42	7	13	26	6	12	25	11	21	42
Heating performance 45 °C / 40 °C (2)																									
Heating capacity	kW	1,10	1,47	1,98	1,70	2,24	3,12	1,65	2,22	3,64	2,58	3,17	5,21	3,50	3,76	5,63	2,92	4,03	5,90	4,12	5,82	8,81	5,23	7,32	10,80
Water flow rate system side	I/h	192	254	345	295	389	541	287	386	633	448	550	905	530	654	977	507	701	1025	716	1011	1530	909	1271	1877
Pressure drop system side	kPa	4	6	11	6	9	17	5	9	23	10	15	36	13	19	40	7	12	23	4	7	15	10	17	35
Cooling performance 7 °C / 12 °C																									
Cooling capacity	kW	1,14	1,44	1,86	1,77	2,22	2,96	1,94	2,51	3,88	2,63	3,17	4,90	2,75	3,29	5,35	2,76	3,97	5,85	4,00	5,82	8,85	5,31	7,40	10,83
Sensible cooling capacity	kW	0,97	1,22	1,48	1,37	1,75	2,36	1,36	1,79	3,09	1,83	2,23	3,73	1,84	2,29	3,99	1,86	2,69	4,05	2,89	4,22	6,51	3,99	5,63	8,30
Water flow rate system side	l/h	200	253	327	308	387	516	337	437	679	458	551	856	484	571	938	482	695	1032	697	1012	1547	921	1292	1893
Pressure drop system side	kPa	4	7	10	6	9	15	7	11	25	12	16	36	13	18	43	7	14	28	7	13	28	10	19	38
Fan																									
Туре	type	Ce	entrifug	jal	Ce	ntrifug	jal	Ce	ntrifug	jal	Ce	ntrifug	gal	Ce	ntrifug	ıal	Ce	ntrifug	ıal	C	entrifug	al	Œ	ntrifug	al
Fan motor	type	Asy	nchron	ous	Asy	nchron	ous	Asy	nchron	ous	Asy	nchron	nous	Asy	nchron	ous	Asy	nchron	ous	Asy	nchron	ous	Asy	nchron	ous
Number	no.		1			1			1			1			1			1			1			1	
Air flow rate	m³/h	300	410	600	300	410	600	260	360	700	380	500	880	400	520	900	460	680	1100	560	830	1350	750	1100	1750
Sound power level (3)	dB(A)	35,0	38,0	46,0	35,0	38,0	46,0	35,0	38,0	53,0	41,0	47,0	61,0	44,0	49,0	60,0	39,0	43,0	50,0	40,0	45,0	54,0	44,0	50,0	60,0
Input power	W	21	31	45	21	31	45	-	32	75	26	37	83	50	58	110	45	80	150	50	80	155	55	105	175
Diametre hydraulic fittings																									
Туре	type		Gas - F	:		Gas - F	:		Gas - F	:		Gas - F			Gas - F	:		Gas - F	:		Gas - F			Gas - F	
Main heat exchanger	Ø		3/4"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"	
Finned pack heat exchanger																									
Water content main heat exchanger	I		0,6			0,8			0,8			1,3			1,3			2,6			4,0			4,0	
Power supply																									
Power supply		23	80V~50)Hz	23	0V~50)Hz	23	0V~50)Hz	23	0V~50	OHz	23	0V~50)Hz	23	0V~50)Hz	23	0V~50	Hz	23	0V~50	Hz

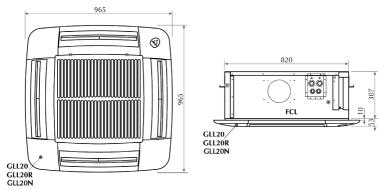
4-pipe 4-pipe


4-hihe			FCL34			FCL38			FCL44			FCL64			FCL84			FCL104			FCL124	
		1	7	3	1	2	3	1	2	3	1	2	4	1	2	4	1	2	4	1	2	
		1	 M	 H	-	M	 H	<u> </u>	 M	Н	<u> </u>	 M	_ + _	1	 M	_ _	+	 M	- 1	1	 M	_
Heating performance 65 °C / 55 °C (1)			IVI	- 11		IVI			IWI	- 11		IVI					L	IVI	-11	L	IVI	
Heating capacity	kW	1,74	1,95	2,32	1,74	1,95	2,32	1,75	2,04	2,44	2,21	2,50	3,19	4,73	5,71	7,59	5,27	6,53	8,93	6,30	8,31	11,17
Water flow rate system side	l/h	152	171	203	152	171	203	153	178	240	194	219	279	414	500	664	461	571	782	551	727	977
Pressure drop system side	kPa	6	7	10	6	7	10	6	7	10	10	10	19	6	8	12	7	10	17	9	15	25
Cooling performance 7 °C / 12 °C																						
Cooling capacity	kW	1,14	1,44	1,86	1,63	2,05	2,73	1,79	2,31	2,95	2,43	2,93	4,51	2,76	3,97	5,85	3,45	4,84	7,05	4,52	6,11	8,63
Sensible cooling capacity	kW	0,97	1,22	1,48	1,28	1,63	2,20	1,25	1,65	2,13	1,69	2,06	3,43	1,86	2,69	4,05	2,43	3,45	5,15	3,32	4,57	6,60
Water flow rate system side	l/h	200	253	327	284	358	476	314	396	626	424	510	793	482	695	1032	602	845	1238	786	1068	1513
Pressure drop system side	kPa	4	7	10	5	8	13	6	10	15	11	16	35	6	12	25	7	13	26	12	22	38
Fan																						
Туре	type	C	entrifug	al	G	entrifug	al	C	entrifug	al	G	entrifug	al	Ce	entrifug	al	(entrifug	al	(entrifug	al
Fan motor	type	Asy	/nchron	ous	Asy	/nchron	ous	Asy	nchron	ous	Asy	nchron	ous	Asy	nchrono	ous	As	ynchron	ous	Asy	nchron	ous
Number	no.		1			1			_1			1			1			1			1	
Air flow rate	m³/h	300	410	600	300	410	600	260	360	530	380	500	880	460	680	1100	560	830	1350	750	1100	1750
Sound power level (2)	dB(A)	35,0	38,0	46,0	35,0	38,0	46,0	35,0	39,0	46,0	41,0	47,0	61,0	39,0	43,0	50,0	40,0	45,0	54,0	46,0	50,0	60,0
Input power	W	21	31	45	21	31	45	22	32	47	32	45	101	45	80	150	50	80	155	55	105	175
Diametre hydraulic fittings																						
Туре	type		Gas - F			Gas - F			Gas - F			Gas - F			Gas - F			Gas - F			Gas - F	
Secondary heat exchanger	Ø		1/2"			1/2"			1/2"			1/2"			1/2"			1/2"			1/2"	
Main heat exchanger	Ø		3/4"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"	
Finned pack heat exchanger																						
Water content main heat exchanger	- 1		0,8			0,8			0,8			1,1			2,6			2,6			2,6	
Water content secondary heat exchanger			0,2			0,2			0,2			0,2			1,4			1,4			1,4	
Power supply																						
Power supply		23	80V~50	Hz	23	80V~50I	Hz	23	0V~50	Ηz	23	80V~50	Hz	23	0V~50I	Hz	2:	30V~50	Hz	23	30V~50I	Hz

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.


⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
(2) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS


Dimensions FCL 32 - 34 - 36 - 38 - 42 - 44 - 64 - 72 con GLF

Dimensions FCL 32 - 34 - 36 - 38 - 42 - 44 - 64 - 72 con GLL

Dimensions FCL 82 - 84 - 102- 104 - 122 - 124 con GLL

Size			102	104	122	124	32	34	36	38	42	44	62	64	72	82	84
Dimensions and weights																	
	FCL	kg	36	36	36	36	20	21	20	21	21	21	22	22	22	35	36
Empty weight	V2	kg	36	36	36	36	20	21	20	21	20	21	21	22	22	35	36
	VL	kg	35	35	35	35	20	20	20	20	20	20	22	22	22	34	35

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

FCLI

Cassette Type Fan Coil Unit

- Electric saving equal to 50% with respect to a fan coil with 3-speed motor
- Total comfort: reduced variations in temperature and relative humidity
- Standard internal three-way valve
- Version with 2-way valve for variable water flow rate systems
- Version without valves

DESCRIPTION

4-way cassettes that can be installed in any type of 2- or 4-pipe system with any heat generator, even at low temperatures. Thanks to the selection of versions and configurations, it's easy to choose the best solution for every need.

FEATURES

Intake grid and distribution of the air

The recovery and air diffusion grille has an elegant design. In plastic, RAL 9010. The dimensions of the first 5 sizes comply with the 600x600 mm modularity of false ceilings, whereas the larger sizes measuring 840x840 mm are designed for quiet operation and optimum performance of these large models.

Load-bearing structure

Models with a $\overline{600x600}$ mm module have a reinforced load-bearing structure with side panels in galvanised steel sheet, thermally insulated with internal polystyrene foam elements.

The structure of models with a 840x840 mm module is made entirely of galvanised steel sheet, thermally insulated with polyethylene foam on the inside and with an anti-condensate felt coating.

Ventilation group

Formed of a particularly quiet axial-centrifugal fan, statically and dynamically balanced

The Brushless electric motor with 0-100% continuous speed variation, which allows precise adaptation to the real demands of the internal environment without temperature fluctuations.

The air flow can be continuously changed through a 1-10 V signal, coming from adjustment and control commands Aermec or from independent adjustment systems.

This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors).

Heat exchanger coil

Heat exchanger with shaped profile to increase the exchange surface, and easily accessible drain valves.

There are models with a single coil for 2-pipe systems, with the possibility to add an electric heater too, and models with two coils for 4-pipe systems. There is the possibility to combine outside air with the inlet ambient air, and to distribute it in separate rooms.

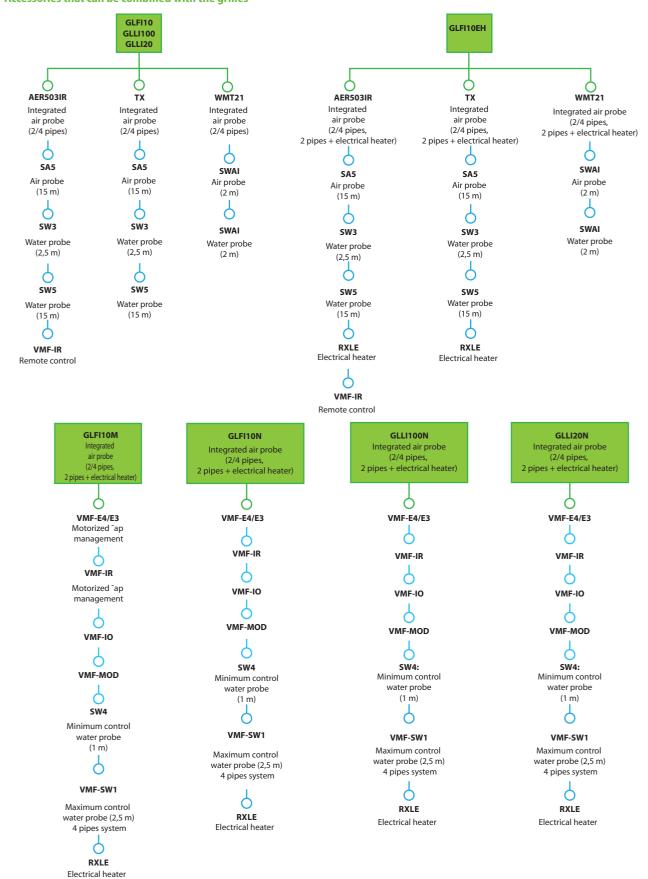
The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Condensate drip

Condensation drip tray in one piece, with V0 self-extinguishing level and overmoulding to insulation in expanded polystyrene with flame retardant additive

Air filter

Air filter easily removed and cleaned, self-supporting structure, characterised by a high efficiency and low pressure drops, with class-V0 fire resistance (UL 94).


Versions

FCLI Standard

V2 With internal 2-way valve

VL Without internal valve

ACCESSORIES Accessories that can be combined with the grilles

RXLE it can be installed only at the factory.

Intake grids and distribution of the air, compulsory accessory

GLF110: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm adapts perfectly to standard false ceilings without over-

lapping parts. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits with manually orientated louvers. Must be combined with a wall-mounted panel. (size 840x840 mm not available).

GLF110EH: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm; adapts perfectly to standard false ceilings without overlapping parts. Suitable for use with the RXLE heater. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits with manually orientated fins. Must be combined with a wall-mounted panel. (size 840x840 mm not available).

GLF110M: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm adapts perfectly to standard false ceilings without overlapping parts. It is equipped with an infrared receiver with an emergency operation button, a thermostat card which also requires the installation of the VMF-E4 panel or the VMF-IR remote control. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be orientated with the remote control. (size 840x840 not available).

GLF110N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4 or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated. (size 800x800 mm not available).

GLL1100: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm; adapts perfectly to standard false ceilings without overlapping parts. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated. Must be combined with a wall-mounted panel.

GLL1100EH: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm; adapts perfectly to standard false ceilings without overlapping parts. Suitable for use with the RXLE heater. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits with manually orientated fins. Must be combined with a wall-mounted panel. (size 840x840 mm not available).

GLL1100N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm; adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4X panel as well, and suitable for use with the RXLE heater. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated.

GLL120: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 840x840 mm, adapts perfectly to standard false ceilings without overlapping parts. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated. Must be combined with a wall-mounted panel.

GLL120N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 840x840 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4X or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated.

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

VMF system

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, D124 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, D124 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, D124CP, is also available as a separate accessory in our catalog.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-MOD: Expansion board for the management of modulating valves.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Control panels and their accessories

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. **SA5:** air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW4: Water temperature probe allowing automatic season change on electronic controllers supplied with water-side change over.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

SWAI: External air or water temperature probe.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT21: Electronic thermostat for inverter fancoils.

Electric heaters

RXLE: Electric heater for heating, can be installed on board the units. **RXLE20:** Electric heater for heating, can be installed on board the units.

Water valve kit

VCFLX4: 3-way valve kit for single-coil fan coil for 4-pipe systems. With totally separate "heating" and "cooling" circuits. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings.

VHL1: 3-way motorised valve kit with 4 connections including the actuator. 230V~50Hz power supply.

VHL124: 3-way motorised valve kit with 4 connections including the actuator. 24V power supply.

VHL20: Motorised 3-way valve kit with 4 connections, complete with actuator and the relative hydraulic couplings. 230V~50Hz power supply.

VHL2024: Motorised 3-way valve kit with 4 connections, complete with actuator and the relative hydraulic couplings. 24V power supply.

VHL2: 2-way motorised valve kit with 2 connections including the actuator. Power supply 230V~50Hz;

VHL22: Motorised 2-way valve kit with 2 connections, complete with actuator and the relative hydraulic couplings. Power supply 230V~50Hz;

VHL2224: Motorised 2-way valve kit with 2 connections, complete with actuator and the relative hydraulic couplings. 24V power supply.

VHL224: 2-way motorised valve kit with 2 connections including the actuator. 24V power supply.

Installation accessories

KFL: Delivery flange, allowing the air to be directed to an adjacent room.

KFL20: Delivery flange, allowing the air to be directed to an adjacent room. Up to three KFL20 can be assembled on a single unit.

KFLD: Suction flange, allows to introduce external air directly into the room without mixing.

KFLD20: Suction flange, allows to introduce external air directly into the room without mixing. Up to two KFL20D can be assembled on a single unit. FCLMC10: Perimeter housing in painted galvanised sheet metal, 600x600 mm, used when the fan coil is installed outside the false ceiling. It has an aesthetic and protective purpose only, so the technical characteristics of the fan coil remain unaltered. Can only be combined with GLL/GLLI grilles.

FCLMC20: Perimeter housing in painted sheet metal, 840x840 mm, used when the fan coil is installed outside the false ceiling. It has an aesthetic and protective purpose only, so the technical characteristics of the fan coil remain unaltered. Can only be combined with GLL/GLLI grilles.

FCLMC20IK: Installation kit for the inverter controller. Mandatory for units with FCLMC20.

ACCESSORIES COMPATIBILITY

Intake grids and distribution of the air

Model	Ver	32	34	42	44	62	64	82	122	124
GLFI10 (1)	FCLI,V2,VL	•	•	•	•	•	•			
GLFI10EH (2)	FCLI,V2,VL						•			
GLFI10M (3)	FCLI,V2,VL	•	•	•	•	•	•			
GLFI10N (3)	FCLI,V2,VL	•								

- (1) Not compatible with the VMF system and electric heaters.
- (2) Not compatible with the VMF system, but compatible with electric heaters.
 (3) Compatible with the VMF system and electric heaters.

Intake grid and distribution of the air

Model	Ver	32	34	42	44	62	64	82	122	124
GLLI100 (1)	FCLI,V2,VL	•	•	•	•	•	•			
GLLI100EH (2)	FCLI,V2,VL	•	•	•	•	•	•			
GLLI100N (3)	FCLI,V2,VL	•	•	•	•	•	•			
GLLI20 (1)	FCLI,V2,VL							•	•	•
GLLI20N (4)	FCLI,V2,VL							•	•	•

- Not compatible with the VMF system and electric heaters.
 Not compatible with the VMF system, but compatible with electric heaters.
- (3) Compatible with the VMF system and electric heaters.(4) Compatibility with VMF system.

VMF system

Model	Ver	32	34	42	44	62	64	82	122	124
DI24	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
VMF-E3	FCLI,V2,VL		•	•			•			
VMF-E4DX	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
VMF-E4X	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
VMF-IO	FCLI,V2,VL		•	•						
VMF-IR	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
VMF-MOD	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
VMF-SW	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
VMF-SW1	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
VMHI	FCLI,V2,VL		•	•	•	•	•			

Control panels and dedicated accessories

Model	Ver	32	34	42	44	62	64	82	122	124
AER503IR (1)	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
SA5 (2)	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
SW3 (2)	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
SW4	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
SW5 (2)	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
SWAI (3)	FCLI,V2,VL		•			•		•	•	•
TX (4)	FCLI,V2,VL	•	•	•	•	•	•	•	•	
WMT21	FCLI,V2,VL	•	•	•	•	•	•		•	

- (1) Wall-mount installation.
- (2) Probe for AER503IR-TX thermostats, if fitted.
 (3) Probe for thermostat WMT21.
- (4) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

3 way valve kit

Model	Ver	32	34	42	44	62	64	82	122	124
VHL1 (1)	VL		•		•		•			
VHL124 (1)	VL		•		•		•			
VHL20 (1)	VL									•
VHL2024 (1)	VL									•

(1) Obligatory accessory in 4-pipe systems.

2 way valve kit

Model	Ver	32	34	42	44	62	64	82	122	124
VHL2 (1)	VL		•		•		•			
VHL22 (1)	VL									•
VHL2224 (1)	VL									
VHL224 (1)	VL		•							

 $(1) \ \ Compulsory\ accessory\ in\ 4-pipe\ systems\ with\ variable\ flow\ rate.$

Valve Kit for 4 pipe systems

Model	Ver	32	34	42	44	62	64	82	122	124
VCFLX4 (1)	VL			•						

⁽¹⁾ The valve must be commanded via command panels enabled for valve control.

Delivery and suction flange

Denvery and saction .	ugc									
Model	Ver	32	34	42	44	62	64	82	122	124
KFL	FCLI,V2,VL	•	•	•	•	•	•			
KFL20	FCLI,V2,VL							•	•	•
KFLD	FCLI,V2,VL	•	•	•	•	•	•			
KFLD20	FCLI,V2,VL									

Perimeter case

Model	Ver	32	34	42	44	62	64	82	122	124
FCLMC10 (1)	FCLI,V2,VL	•	•	•	•	•	•			
FCLMC20 (1)	FCLI,V2,VL							•	•	•
FCLMC20IK (2)	FCLI,V2,VL							•	•	•

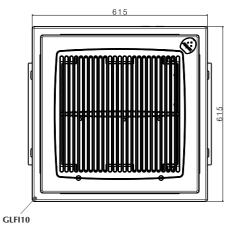
⁽¹⁾ Can only be combined with GLL/GLLI grilles (2) Mandatory for units with FCLMC20.

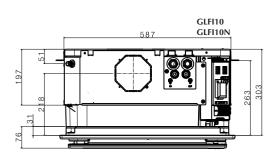
PERFORMANCE SPECIFICATIONS

2-pipe

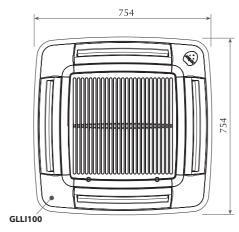
			FCLI32			FCLI42			FCLI62			FCLI82			FCLI122	
		1	2	3	1	2	4	1	2	4	1	2	4	1	2	4
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)					•											
Heating capacity	kW	2,22	2,95	4,00	3,32	4,47	7,34	5,19	6,37	10,49	5,88	8,12	11,88	10,53	14,73	21,75
Water flow rate system side	l/h	194	258	350	290	391	642	454	558	918	514	710	1039	921	1289	1903
Pressure drop system side	kPa	4	6	10	6	10	24	12	17	42	7	13	26	11	21	42
Heating performance 45 °C / 40 °C (2)																
Heating capacity	kW	1,10	1,47	1,98	1,67	2,21	3,64	2,58	3,21	5,21	2,94	4,05	5,90	5,28	7,37	10,80
Water flow rate system side	l/h	192	254	345	287	386	633	448	550	905	507	701	1025	909	1271	1877
Pressure drop system side	kPa	4	6	11	5	9	21	10	17	41	7	13	23	12	21	41
Cooling performance 7 °C / 12 °C																
Cooling capacity	kW	1,15	1,46	1,88	1,95	2,52	3,90	2,65	3,19	4,92	2,79	4,04	5,97	5,34	7,47	10,87
Sensible cooling capacity	kW	0,98	1,24	1,50	1,37	1,80	3,11	1,85	2,25	3,75	1,89	2,76	4,17	4,02	5,70	8,34
Water flow rate system side	l/h	200	253	327	337	437	679	458	551	856	482	695	1032	921	1292	1893
Pressure drop system side	kPa	4	4	13	7	11	25	12	16	36	7	12	28	10	19	38
Fan																
Туре	type		Centrifugal			Centrifugal			Centrifugal			Centrifuga			Centrifugal	
Fan motor	type		Inverter			Inverter			Inverter			Inverter			Inverter	
Number	no.		1			1			1			1			1	
Air flow rate	m³/h	300	410	600	260	360	700	380	500	880	460	680	1100	750	1100	1750
Input power	W	10	13	18	12	16	55	14	20	61	10	14	33	16	33	135
Signal 0-10V	%	42	62	90	34	46	90	40	52	90	38	54	90	38	54	90
Cassettes sound data (3)																
Sound power level (4)	dB(A)	35,0	38,0	46,0	35,0	38,0	53,0	41,0	47,0	61,0	39,0	43,0	50,0	44,0	50,0	60,0
Sound pressure level (5)	dB(A)	26,0	29,0	37,0	26,0	30,0	44,0	32,0	38,0	52,0	30,0	34,0	41,0	35,0	41,0	51,0
Diametre hydraulic fittings																
Main heat exchanger	Ø		3/4"			3/4"			3/4"			3/4"			3/4"	
Secondary heat exchanger	Ø		-			-			-			-			-	
Power supply																
Power supply			230V~50Hz			230V~50Hz	Z		230V~50Hz			230V~50H	Z		230V~50H	Į.

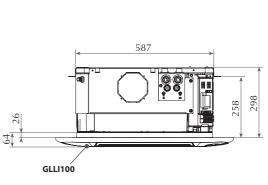
⁴⁻pipe

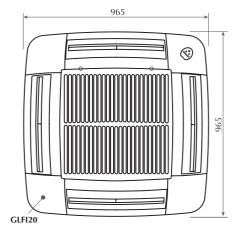

4-ріре			FCI 124			FCLIAA			FCI ICA			FCLI124	
		1	FCLI34		1	FCLI44		1	FCLI64		1		
		_ !	2	3	!	2	3	!	2	4	1	2	4
		L	M	Н	L	М	Н	L	M	Н	L	M	Н
Heating performance 65 °C / 55 °C (1)											1		
Heating capacity	kW	1,70	1,97	2,32	1,70	2,02	2,74	2,05	2,76	3,14	6,46	8,30	11,10
Water flow rate system side	l/h	152	171	203	153	178	240	194	219	279	551	727	977
Pressure drop system side	kPa	5	7	9	6	7	12	9	11	19	10	15	25
Cooling performance 7 °C / 12 °C													
Cooling capacity	kW	1,15	1,46	1,88	1,80	2,32	3,59	2,29	2,76	4,25	4,55	6,19	8,67
Sensible cooling capacity	kW	0,98	1,24	1,50	1,26	1,66	2,87	1,59	1,93	3,22	3,35	4,64	6,64
Water flow rate system side	l/h	200	253	327	314	396	626	424	510	793	786	1068	1513
Pressure drop system side	kPa	4	7	10	6	10	23	16	23	50	10	20	38
Fan	•						-				,		
Туре	type						Centr	ifugal					
Fan motor	type						Inve	erter					
Number	no.		1			1			1			1	
Air flow rate	m³/h	300	410	600	260	360	700	380	500	880	750	1100	1750
Input power	W	10	13	18	12	16	55	14	20	61	16	33	135
Signal 0-10V	%	42	62	90	34	46	90	40	52	90	38	58	90
Cassettes sound data (2)													
Sound power level (3)	dB(A)	35,0	38,0	46,0	35,0	39,0	53,0	41,0	47,0	61,0	44,0	52,0	60,0
Sound pressure level (4)	dB(A)	26,0	29,0	37,0	26,0	30,0	44,0	32,0	38,0	52,0	35,0	41,0	51,0
Diametre hydraulic fittings	•												-
Main heat exchanger	Ø						3,	4"					
Secondary heat exchanger	Ø						1,	2"					
Power supply													
Power supply							230V-	~50Hz					

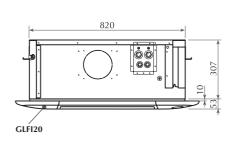

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) For the cassettes, Aermec determines the value of the sound power on the basis of measurements carried out in accordance with the standard UNI EN 16583:15, in observance of the EUROVENT certification and the level of sound pressure (weighed A) measured in an environment with volume V=100m3, reverberation time t=0.5s direction factor Q=2; distance r=2.5m.
(4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.
(5) Sound pressure (weighed A) measured in an environment with volume V=100m3, reverberation time t=0.5s direction factor Q=2; distance r=2.5m.

⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
(2) For the cassettes, Aermec determines the value of the sound power on the basis of measurements carried out in accordance with the standard UNI EN 16583:15, in observance of the EUROVENT certification and the level of sound pressure (weighed A) measured in an environment with volume V=100m3, reverberation time t=0.5s direction factor Q=2; distance r=2.5m.
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.
(4) Sound pressure (weighed A) measured in an environment with volume V=100m3, reverberation time t=0.5s direction factor Q=2; distance r=2.5m.


DIMENSIONS


Dimensions FCLI 32 - 34 - 42 - 44 - 62 - 64 con GLFI




Dimensions FCLI 32 - 34 - 42 - 44 - 62 - 64 con GLLI

Dimensions FCLI 82 - 122 - 124 con GLLI

Size			122	124	32	34	42	44	62	64	82
Dimensions and weights											
	FCLI	kg	36	36	21	21	22	21	22	23	35
Empty weight	V2	kg	36	36	21	21	21	21	22	23	35
	VL	kg	35	35	20	21	20	21	22	22	34

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

FCW

Fan coils wall-mount installation

- Versions with internal 2 or 3-way valve
- Compact dimensions

DESCRIPTION

Fan coil model for wall-mount installations, whose elegance and reduced dimensions make it aesthetically pleasing; this terminal is thus suitable for applications in residential or light commercial sectors.

To respond to the various system requirements, the product is configurable and available with or without (2- or 3-way) valve, as well as with or without control board, which ensures compatibility with various system requirements. Fan coils without control board must be necessarily combined with an external control device.

VERSIONS

2V Internal 2-way valve and microprocessor control
2VN Internal 2-way valve without microprocessor control
3V Internal 3-way valve and microprocessor control
3VN Internal 3-way valve without microprocessor control
VL Without internal valve but with microprocessor control
VLN Without internal valve and microprocessor control

FEATURES

Case

Aesthetically styled with flat panel:

- Microprocessor control
- Air flow louvered louvers with horizontal adjustment facility

— Colors pure white pantone GRIS 1C RAL 9010.

Ventilation group

Consisting of a tangential fan, especially quiet and directly coupled to the motor shaft.

Three-speed cross flow fan.

Finned pack heat exchanger

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air years.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Air filter

Fan coils are fitted with air filters easy to remove and clean.

Contro

The versions with microprocessor control have:

- Timer for programming switch-off or switch-on (TLW4 e PFW5)
- Program for operation in automatic, cooling, heating, ventilation and air ionising mode (TLW4 e PFW5)
- Night time Well-being Program (TLW4)
- Automatic season change (TLW4 e PFW5)
- Automatic re-start after power cut.

ACCESSORIES

FCWCP: Cold plasma mounting kit For models with control board installed

FCW_2V, 3V, VL it is mandatory to select among the user interfaces designed for the FCW series (TLW4 o PFW5)

PFW5: This accessory is essential for fan coil operation (as an alternative to TLW4). The PFW5 wired panel is supplied separately from the fan coil. It is used to set the main device operating parameters, and is essential for setting the Modbus address of the unit (handy only if you want to command the unit via the RS-485 port).

TLW4: Mandatory accessory. Infrared remote control with liquid crystal display for controlling all unit functions. The remote control is delivered separately from the fan coil; with a single remote control it is possible to control more than one fan coil. The remote control is equipped with a support that allows you to hang it on the wall, from which it can be operated without having to be removed.

For models without control board installed

FCW_2VN, 3VN, VLN a user interface must be mounted outside the fan coil, using either a visible or a recessed wall-mount installation.

To make the selection please refer to the "control panels" or "VMF system shett" where you will find comprehensive information on this topic.

VMF-485LINK: Expansion to interface the unit with the VMF communication protocol, making it possible to manage it from the VMF-E5 or VMF-E6 supervisors.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Accessory	FCW23VL	FCW33VL	FCW43VL	FCW53VL	FCW232V	FCW233V
PFW5 (1)	•	•	•	•	•	•
TLW4 (1)	•	•	•	•	•	•
Accessory	FCW332V	FCW333V	FCW432V	FCW433V	FCW532V	FCW533V
			1 411 1521	1 (11 1331	1 (113321	1 4113331
PFW5 (1)	•	•	•	•	•	•

(1) Mandatory accessory.

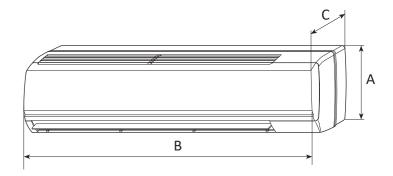
Cold plasma mounting kit

Accessory	FCW23VL	FCW33VL	FCW43VL	FCW53VL	FCW232V	FCW232VN	FCW233V	FCW233VN	FCW332V	FCW332VN
FCWCP	•	•	•	•	•	•	•	•	•	•
Accessory	FCW333V	FCW333VN	FCW432V	FCW432VN	FCW433V	FCW433VN	FCW532V	FCW532VN	FCW533V	FCW533VN

VMF system

Accessory	FCW23VL	FCW33VL	FCW43VL	FCW53VL	FCW232V	FCW233V
VMF-485LINK	•	•	•	•	•	•
Accessory	FCW332V	FCW333V	FCW432V	FCW433V	FCW532V	FCW533V

The VMF-485LINK accessory is not compatible with radiant floor heating systems.


PERFORMANCE SPECIFICATIONS

2-pipe

2-pipe			FCW23V			FCW33V			FCW43V			FCW53VI			FCW232\	,		FCW233	v
	-	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		<u> </u>	M	 H	i i	M	 H	<u> </u>	M	H		M	 H	<u>'</u>	M	 H	÷	M	H
Heating performance 70 °C / 60 °C (1)		-	IVI	- "	-	IVI	- 11	L	IVI	- 11		IVI	- 11	L	IVI	11	L	IVI	- 11
Heating capacity	kW	2,85	3,66	4,29	3,73	4,51	5,24	6,44	7,84	8,56	8,20	13,06	15,28	2,35	3,02	4,03	2,35	3,02	4,03
Water flow rate system side	I/h	250	321	377	328	396	460	565	688	751	718	1145	1339	206	265	354	206	265	354
Pressure drop system side	kPa	4	6	9	9	12	16	16	22	26	10	23	30	9	14	24	9	14	24
Heating performance 45 °C / 40 °C (2)	Krd	4	0	") 7	12	10	10	ZZ	20	10		30	ן ז	14	24	7	14	24
Heating capacity	kW	1,42	1,82	2,14	1,85	2,24	2,61	3,21	3,90	4,26	4,10	6,50	7,60	1,17	1,50	2,00	1,17	1,50	2,00
Water flow rate system side	I/h	246	316	371	322	390	453	556	677	739	712	1129	1320	203	261	348	203	261	348
Pressure drop system side	kPa	4	6	8	9	12	16	15	22	25	10	22	29	9	14	24	9	14	24
Cooling performance 7 °C / 12 °C	NI a	7	- 0	0)	12	10	13			10		27)	14	24	,	14	24
Cooling capacity	kW	1,37	1,74	2,05	1,78	2,15	2,50	3,07	3,74	4,08	4,40	6,50	7,45	1,10	1,45	1,90	1,10	1,45	1,90
Sensible cooling capacity	kW	1,16	1,47	1,73	1,51	1,82	2,04	2,59	3,10	3,47	3,30	5,05	5,80	0,92	1,20	1,55	0,92	1,20	1,55
Water flow rate system side	I/h	236	299	353	306	370	430	528	643	702	755	1115	1278	189	249	327	189	249	327
	kPa	5	7	9	8	11	15	15	21	26	12	24	30	9	14	23	9	14	23
Pressure drop system side	Krd)	- /	9	0	- 11	10	13	21	20	IZ	Z4	30) 9	14	23	9	14	23
Fan Tuna	tuno	1	angentia			Tangantia			Fangantia			Tangantia			[an aontia			Tangantia	al .
Type Fan motor	type	_	angentia vnchrone	-		Tangentia			Tangentia vnchrone			Tangentia			Tangentia vnchrono			Tangentia vnchrone	
Fan motor	type	AS	ynchrono 1	Jus	AS	synchrono 1	uS	AS	ynchrono 1	JUS	AS	ynchrono 1	us	AS	ynchrono 1	us	AS	ynchrono 1	ous
Number	no.	200	1 240	200	220	1	140	477		(04	F03	1 045	1170	270		200	270	1 220	200
Air flow rate	m³/h	280	340	389	330	400	446	476	602	684	592	945	1179	270	330	380	270	330	380
Input power	W	23	24	27	22	23	27	31	41	48	38	55	75	23	24	27	23	24	27
Fan coil sound data (3)	JD/A\	42.0	40.0	F2 0	42.0	40.0	F2 ^	44.0	40.0	F4.0	44.0	F4.0	(0.0	42.0	40.0	F2 ^	42.0	40.0	F2 A
Sound power level	dB(A)	42,0	48,0	53,0	42,0	48,0	53,0	44,0	49,0	54,0	44,0	54,0	60,0	42,0	48,0	53,0	42,0	48,0	53,0
Sound pressure level	dB(A)	34,0	39,5	44,5	34,0	39,5	44,5	35,5	40,5	45,5	35,5	45,5	51,5	34,0	39,5	44,5	34,0	39,5	44,5
Diametre hydraulic fittings		1	4 /2//			4/2//			4 /2//		1	2/4//			4 /2//			4 /2//	
Main heat exchanger	Ø		1/2"			1/2"			1/2"			3/4"			1/2"			1/2"	
Power supply		1 2	201/ 501	1-	1 ,	201/ 501		2	201/ 501	1-	_	201/ 501	_	_	201/ 501	_	_	201/ 501	11-
Power supply		Z.	30V~50H	1Z		30V~50H	Z		30V~50H	1Z		30V~50H	Z		30V~50H	Z		30V~50H	HZ
					1	FCW222	,		FCW432	.,		FC1114221			FCWF231			FCW5331	v
			FCW332	V		FCW333				V		FCW433\			FCW532\			CWJJJ	V
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
											_						_		
Heating performance 70 °C/60 °C(1)			2	3	1	2	3 H		2 M	3	_	2	3	1	2	3	_	2	3
Heating capacity	kW		2	3	1	2	3		2	3	_	2	3	1	2	3	_	2	3 H
•	kW I/h	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H
Heating capacity		1 L	2 M 4,36	3 H	1 L	2 M	3 H	1 L	2 M	3 H 7,97	1 L	2 M	3 H 7,97	1 L	2 M	3 H	1 L 8,04	2 M	3 H
Heating capacity Water flow rate system side	l/h	1 L 3,25 286	2 M 4,36 383	3 H 5,03 442	1 L 3,25 286	2 M 4,36 383	3 H 5,03 442	1 L 6,29 552	2 M 7,23 635	3 H 7,97 699	1 L 6,29 552	2 M 7,23 635	3 H 7,97 699	1 L 8,04 704	2 M 11,80 1034	3 H 14,00 1227	1 L 8,04 704	2 M 11,80 1034	3 H 14,00 1227
Heating capacity Water flow rate system side Pressure drop system side	l/h	1 L 3,25 286	2 M 4,36 383	3 H 5,03 442	1 L 3,25 286	2 M 4,36 383	3 H 5,03 442	1 L 6,29 552	2 M 7,23 635	3 H 7,97 699	1 L 6,29 552	2 M 7,23 635	3 H 7,97 699	1 L 8,04 704	2 M 11,80 1034	3 H 14,00 1227	1 L 8,04 704	2 M 11,80 1034	3 H 14,00 1227
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2)	l/h kPa kW l/h	1 L 3,25 286 13	2 M 4,36 383 22	3 H 5,03 442 29	1 L 3,25 286 13	2 M 4,36 383 22	3 H 5,03 442 29	1 L 6,29 552 21	2 M 7,23 635 27	3 H 7,97 699 32	1 L 6,29 552 21	2 M 7,23 635 27	3 H 7,97 699 32	1 L 8,04 704 10	2 M 11,80 1034 21	3 H 14,00 1227 28	1 L 8,04 704 10	2 M 11,80 1034 21	3 H 14,00 1227 28
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side	I/h kPa kW	3,25 286 13	2 M 4,36 383 22 2,17	3 H 5,03 442 29	1 L 3,25 286 13	2 M 4,36 383 22 2,17	3 H 5,03 442 29	1 L 6,29 552 21	2 M 7,23 635 27	3 H 7,97 699 32	1 L 6,29 552 21	2 M 7,23 635 27	3 H 7,97 699 32	1 L 8,04 704 10	2 M 11,80 1034 21	3 H 14,00 1227 28	1 L 8,04 704 10	2 M 11,80 1034 21	3 H 14,00 1227 28
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40 °C(2) Heating capacity Water flow rate system side	l/h kPa kW l/h	3,25 286 13 1,62 281	2 M 4,36 383 22 2,17 377	3 H 5,03 442 29 2,50 434	3,25 286 13 1,62 281	2 M 4,36 383 22 2,17 377	3 H 5,03 442 29 2,50 434 29	1 L 6,29 552 21 3,13 543	2 M 7,23 635 27 3,60 624	3 H 7,97 699 32 3,96 688	1 L 6,29 552 21 3,13 543	2 M 7,23 635 27 3,60 624	3 H 7,97 699 32 3,96 688	1 L 8,04 704 10 4,00 695	2 M 11,80 1034 21 5,90 1025	3 H 14,00 1227 28 7,00 1216	1 L 8,04 704 10 4,00 695	2 M 11,80 1034 21 5,90 1025	3 H 14,00 1227 28 7,00 1216
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity	l/h kPa kW l/h	3,25 286 13 1,62 281	2 M 4,36 383 22 2,17 377	3 H 5,03 442 29 2,50 434	3,25 286 13 1,62 281	2 M 4,36 383 22 2,17 377	3 H 5,03 442 29 2,50 434	1 L 6,29 552 21 3,13 543	2 M 7,23 635 27 3,60 624	3 H 7,97 699 32 3,96 688	1 L 6,29 552 21 3,13 543	2 M 7,23 635 27 3,60 624	3 H 7,97 699 32 3,96 688	1 L 8,04 704 10 4,00 695	2 M 11,80 1034 21 5,90 1025	3 H 14,00 1227 28 7,00 1216	1 L 8,04 704 10 4,00 695	2 M 11,80 1034 21 5,90 1025	3 H 14,00 1227 28 7,00 1216
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C	I/h kPa kW I/h kPa	3,25 286 13 1,62 281	2 M 4,36 383 22 2,17 377 22	3 H 5,03 442 29 2,50 434 29	1 L 3,25 286 13 1,62 281 13	2 M 4,36 383 22 2,17 377 22	3 H 5,03 442 29 2,50 434 29	1 L 6,29 552 21 3,13 543 20	2 M 7,23 635 27 3,60 624 26	3 H 7,97 699 32 3,96 688 31	1 L 6,29 552 21 3,13 543 20	2 M 7,23 635 27 3,60 624 26	3 H 7,97 699 32 3,96 688 31	1 L 8,04 704 10 4,00 695 11	2 M 11,80 1034 21 5,90 1025 22	3 H 14,00 1227 28 7,00 1216 30	1 L 8,04 704 10 4,00 695 11	2 M 11,80 1034 21 5,90 1025 22	3 H 14,00 1227 28 7,00 1216 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity	I/h kPa kW I/h kPa	3,25 286 13 1,62 281 13	2 M 4,36 383 22 2,17 377 22	3 H 5,03 442 29 2,50 434 29	1 L 3,25 286 13 1,62 281 13	2 M 4,36 383 22 2,17 377 22	3 H 5,03 442 29 2,50 434 29	1 L 6,29 552 21 3,13 543 20	2 M 7,23 635 27 3,60 624 26	3 H 7,97 699 32 3,96 688 31	1 L 6,29 552 21 3,13 543 20	2 M 7,23 635 27 3,60 624 26	3 H 7,97 699 32 3,96 688 31	1 L 8,04 704 10 4,00 695 11	2 M 11,80 1034 21 5,90 1025 22	3 H 14,00 1227 28 7,00 1216 30	1 L 8,04 704 10 4,00 695 11	2 M 11,80 1034 21 5,90 1025 22	3 H 14,00 1227 28 7,00 1216 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity	I/h kPa kW I/h kPa kW W kW	1 L 3,25 286 13 1,62 281 13 1,55 1,28	2 M 4,36 383 22 2,17 377 22 2,08 1,68	3 H 5,03 442 29 2,50 434 29 2,40 1,97	1 L 3,25 286 13 1,62 281 13 1,55 1,28	2 M 4,36 383 22 2,17 377 22 2,08 1,68	3 H 5,03 442 29 2,50 434 29 2,40 1,97	1 L 6,29 552 21 3,13 543 20 3,00 2,01	2 M 7,23 635 27 3,60 624 26 3,45 2,50	3 H 7,97 699 32 3,96 688 31 3,80 2,85	1 L 6,29 552 21 3,13 543 20 3,00 2,01	2 M 7,23 635 27 3,60 624 26 3,45 2,50	3 H 7,97 699 32 3,96 688 31 3,80 2,85	8,04 704 10 4,00 695 11 4,00 2,85	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30	8,04 704 10 4,00 695 11 4,00 2,85	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side	I/h kPa kW I/h kPa kW I/h kPa	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654	1 L 8,04 704 10 4,00 695 11 4,00 2,85 686	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201	1 L 8,04 704 10 4,00 695 11 4,00 2,85 686	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side	I/h kPa kW I/h kPa kW I/h kPa	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	1 L 8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30	1 L 8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan	I/h kPa kW I/h kPa kW W I/h kPa kW kW I/h kPa	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	6,29 552 21 3,13 543 20 3,00 2,01 516 21	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type	l/h kPa kW l/h kPa kW kW l/h kPa type	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	6,29 552 21 3,13 543 20 3,00 2,01 516 21	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor	kW I/h kPa kW I/h kPa kW kW I/h kPa type	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13	4,36 4,36 383 22 2,17 377 22 2,08 1,68 358 22 Tangentia	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21	7,23 635 27 3,60 624 26 3,45 2,50 593 27	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	6,29 552 21 3,13 543 20 3,00 2,01 516 21	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number	kW I/h kPa kW I/h kPa kW L/h kPa type type no.	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 27 2,08 1,08 1,08 1,08 1,08 1,08 1,08 1,08 1	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	3,25 286 13 1,62 281 13 1,55 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 Tangentia	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21	7,23 635 27 3,60 624 26 3,45 2,50 593 27	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	6,29 552 21 3,13 543 20 3,00 2,01 516 21	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23	3 H 14,00 1227 28 7,00 1216 30 7,00 1210 30 1201 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate	kW I/h kPa kW I/h kPa kW L/h kPa type type no. m³/h	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13 320	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 2,08 1,68 358 22	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 440	3,25 286 13 1,62 281 13 1,55 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 2Tangentia 1	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	1 L 6,29 552 21 3,13 543 20 2,01 516 21 370 As	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 470	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21 As	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 1 470	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 1030 23	3 H 14,00 1227 28 7,00 1216 30 7,00 1210 30 1201 30 1082
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power	kW I/h kPa kW I/h kPa kW L/h kPa type type no. m³/h	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13 320	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 2,08 1,68 358 22	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 440	3,25 286 13 1,62 281 13 1,55 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 2Tangentia 1	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	1 L 6,29 552 21 3,13 543 20 2,01 516 21 370 331	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 470	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21 As	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 1 470	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23 4,50 1030 1030 1030 1030 1030 1030 1030 10	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 1030 23	3 H 14,00 1227 28 7,00 1216 30 7,00 1210 30 1201 30 1082
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Fan coil sound data (3)	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13 320 22	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 27 370 1,68 358 22 27 390 23	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 440 27	3,25 286 13 1,62 281 13 1,55 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 Tangentia 1 390 23	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 I I us	1 L 6,29 552 21 3,13 543 20 2,01 516 21 370 As	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 470 41	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 540 48	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21 370 31	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 470 41	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30 1082 75	1 L 8,04 704 10 4,00 695 11 4,00 2,85 686 11 5335 38	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23 fangentia 1 859 55	3 H 14,00 1227 28 7,00 1216 30 7,00 1201 30 1201 30 1082 75
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Fan coil sound data (3) Sound power level Sound pressure level	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13 320 22 42,0	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 2,08 1,68 358 22 390,00000000000000000000000000000000000	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 440 27	3,25 286 13 1,62 281 13 1,55 1,28 267 13 320 22	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 2Tangentia 1 390 23	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 I us 53,0	1 L 6,29 552 21 3,13 543 20 2,01 516 21 As 370 31	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia ynchronc 1 470 41	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 540 48	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21 As 370 31	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 470 41	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 1 us 540 48	8,04 704 10 4,00 695 11 4,00 2,85 686 11 As	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30 1082 75	8,04 704 10 4,00 695 11 4,00 2,85 686 11 As	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 1030 23 1030 1030 1030 1030 10	3 H 14,00 1227 28 7,00 1216 30 7,00 1201 30 1201 30 1082 75 60,0
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Fan coil sound data (3) Sound power level Sound pressure level Diametre hydraulic fittings	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W dB(A)	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13 320 22 42,0	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 390,chronor 1 390 23	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 440 27	3,25 286 13 1,62 281 13 1,55 1,28 267 13 320 22	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 2Tangentia 1 390 23 48,0 39,5	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 I us 53,0	1 L 6,29 552 21 3,13 543 20 2,01 516 21 As 370 31	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 470 41 49,0 40,5	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 540 48	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21 As 370 31	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 470 41 49,0 40,5	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 1 us 540 48	8,04 704 10 4,00 695 11 4,00 2,85 686 11 As	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23 4,50 1030 1 859 55	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30 1082 75	8,04 704 10 4,00 695 11 4,00 2,85 686 11 As	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 459 55 55	3 H 14,00 1227 28 7,00 1216 30 7,00 1201 30 1201 30 1082 75 60,0
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Fan coil sound data (3) Sound power level Sound pressure level Diametre hydraulic fittings Main heat exchanger	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13 320 22 42,0	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 2,08 1,68 358 22 390,00000000000000000000000000000000000	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 440 27	3,25 286 13 1,62 281 13 1,55 1,28 267 13 320 22	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 2Tangentia 1 390 23	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 I us 53,0	1 L 6,29 552 21 3,13 543 20 2,01 516 21 As 370 31	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia ynchronc 1 470 41	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 540 48	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21 As 370 31	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 470 41	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 1 us 540 48	8,04 704 10 4,00 695 11 4,00 2,85 686 11 As	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30 1082 75	8,04 704 10 4,00 695 11 4,00 2,85 686 11 As	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 1030 23 1030 1030 1030 1030 10	3 H 14,00 1227 28 7,00 1216 30 7,00 1201 30 1201 30 1082 75 60,0
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Fan coil sound data (3) Sound power level Sound pressure level Diametre hydraulic fittings	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W dB(A)	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13 320 22 42,0 34,0	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 390,chronor 1 390 23	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 440 27 53,0 44,5	1 L 3,25 286 13 13 1,62 281 13 13 1,55 1,28 267 13 320 22 24,0 34,0	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 2Tangentia 1 390 23 48,0 39,5	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 1 1 us 440 27	1 L 6,29 552 21 3,13 543 20 2,01 516 21 As 370 31 44,0 35,5	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 470 41 49,0 40,5	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 540 48	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21 370 31 44,0 35,5	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 470 41 49,0 40,5	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 I us 540 48	8,04 704 10 4,00 695 11 4,00 2,85 686 11 As 535 38	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23 4,50 1030 1 859 55	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30 1082 75 60,0 51,5	1 L 8,04 704 10 4,00 695 11 4,00 695 11 Ass 535 38 44,0 35,5	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 459 55 55	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30 1001 1082 75 60,0 51,5

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

		FCW23VL	FCW33VL	FCW43VL	FCW53VL	FCW232V	FCW233V
Dimensions and weights							
A	mm	298	305	360	365	298	298
В	mm	880	990	1170	1450	880	880
C	mm	205	210	220	230	205	205
Empty weight	kg	9	10	19	28	9	9

		FCW332V	FCW333V	FCW432V	FCW433V	FCW532V	FCW533V
Dimensions and weights							
A	mm	305	305	360	360	365	365
В	mm	990	990	1170	1170	1450	1450
C	mm	210	210	220	220	230	230
Empty weight	kg	10	10	19	19	28	28

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

FCWI

Fan coils wall-mount installation

- Versions with internal 2 or 3-way valve
- Electric saving equal to 50% with respect to a fan coil with 3-speed motor
- Total comfort: reduced temperature and humidity oscillations
- Fully silent operation

DESCRIPTION

Fan coil model for wall-mount installations, whose elegance and reduced dimensions make it aesthetically pleasing; this terminal is thus suitable for applications in residential or light commercial sectors.

The product is configurable and available with or without (2- or 3-way) valve which ensures compatibility with various system requirements.

VERSIONS

2V Internal 2-way valve and microprocessor control

3V Internal 3-way valve and microprocessor control

VL Without internal valve but with microproccessor control

FEATURES

Case

Aesthetically styled with flat panel:

- Air flow louvered louvers with horizontal adjustment facility
- Motorised deflector louvers that can be activated by remote control TLW3 for vertical orientation of the outlet air with steps fixed positions and continuous oscillation
- Colors pure white pantone GRIS 1C RAL 9010.

Ventilation group

Consisting of a tangential fan, especially quiet and directly coupled to the motor shaft.

Brushless motor with continuous speed variation 0-100%.

Inverter motor allows precise adaptation to the real indoor environment requirements without temperature oscillations.

This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors).

Finned pack heat exchanger

With copper pipes and aluminium louvers, the main heat exchanger has female gas water connections on the left side and the manifolds have air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Air filter

Fan coils are fitted with air filters easy to remove and clean.

Contro

The versions with microprocessor control have:

- Timer for programming switch-off or switch-on (TLW4/ PFW4)
- Program for operation in automatic, cooling, heating, ventilation and air ionising mode (TLW4/ PFW4)
- Night time Well-being Program (TLW4/ PFW4)
- Automatic season change (TLW4/ PFW4)
- Automatic re-start after power cut.
- Possibility of using a contact on the board to switch off the unit (window contact) or change the set point (presence contact) via microswitch.
- $-\!\!\!-\!\!\!\!-$ Controllable via RS485 port with Modbus RTU communication protocol.

ACCESSORIES

FCWCP: Cold plasma mounting kit For models with control board installed

FCWI_2V, 3V, VL it is mandatory to select among the user interfaces designed for the FCWI series (TLW4 o PFW4)

PFW4: This accessory is essential for fan coil operation (as an alternative to TLW4). The PFW4 wired panel is supplied separately from the fan coil. It is used to set the main device operating parameters, and is essential for setting the Modbus address of the unit (handy only if you want to command the unit via the RS-485 port).

TLW4: Mandatory accessory. Infrared remote control with liquid crystal display for controlling all unit functions. The remote control is delivered separately from the fan coil; with a single remote control it is possible to control more than one fan coil. The remote control is equipped with a support that allows you to hang it on the wall, from which it can be operated without having to be removed.

VMF-485LINK: Expansion to interface the unit with the VMF communication protocol, making it possible to manage it from the VMF-E5 or VMF-E6 supervisors.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Accessory	FCWI23VL	FCWI33VL	FCWI43VL	FCWI53VL	FCWI232V	FCWI233V
PFW4 (1)	•	•	•	•	•	•
TLW4 (1)	•	•	•	•	•	•
Accessory	FCWI332V	FCWI333V	FCWI432V	FCWI433V	FCWI532V	FCWI533V
PFW4 (1)	•	•	•	•	•	•
TLW4 (1)		_				

(1) Mandatory accessory.

Plasmacluster mounting kit

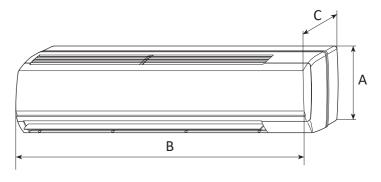
Accessory	FCWI23VL	FCWI33VL	FCWI43VL	FCWI53VL	FCWI232V	FCWI233V	FCWI332V	FCWI333V	FCWI432V	FCWI433V	FCWI532V	FCWI533V
FCWCP	•	•	•	•	•	•	•	•	•	•	•	•

VMF system

Accessory	FCWI23VL	FCWI33VL	FCWI43VL	FCWI53VL	FCWI232V	FCWI233V
VMF-485LINK	•	•	•	•	•	•
Accessory	FCWI332V	FCWI333V	FCWI432V	FCWI433V	FCWI532V	FCWI533V
VMF-485LINK	•	•	•	•	•	•

The VMF-485LINK accessory is not compatible with radiant floor heating systems.

PERFORMANCE SPECIFICATIONS


2-pipe

2-pipe					FGW 42V														
		ı	CWI23V	L	I	CWI33V	L	I	CWI43V	L	I	FCWI53V	L	I	CW1232	V	I	CW1233	V
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	H	L	М	Н	L	М	Н	L	М	Н	L	M	Н
Heating performance 70 °C / 60 °C (1)																			
Heating capacity	kW	3,12	4,52	4,75	3,46	5,33	5,74	6,36	9,24	9,86	8,31	13,80	15,24	2,57	3,73	4,46	2,57	3,73	4,46
Water flow rate system side	I/h	274	397	417	304	468	504	558	811	865	728	1147	1335	226	327	392	226	327	392
Pressure drop system side	kPa	8	16	17	9	19	22	16	30	34	10	23	30	11	21	29	11	21	29
Heating performance 45 °C / 40 °C (2)																			
Heating capacity	kW	1,55	2,25	2,37	1,71	2,65	2,86	3,17	4,60	4,91	4,16	6,51	7,58	1,28	1,85	2,21	1,28	1,85	2,21
Water flow rate system side	l/h	269	390	411	298	461	496	549	798	851	722	1131	1316	222	323	385	222	323	385
Pressure drop system side	kPa	8	16	17	9	19	21	15	30	32	10	22	29	11	21	29	11	21	29
Cooling performance 7 °C / 12 °C																			
Cooling capacity	kW	1,50	2,15	2,27	1,65	2,54	2,74	3,03	4,41	4,70	4,46	6,51	7,43	1,20	1,79	2,10	1,20	1,79	2,10
Sensible cooling capacity	kW	1,27	1,82	1,92	1,40	2,15	2,24	2,38	3,43	3,61	3,34	5,06	5,78	1,02	1,51	1,78	1,02	1,51	1,78
Water flow rate system side	l/h	258	369	391	284	437	471	521	758	809	765	1117	1275	207	308	362	207	308	362
Pressure drop system side	kPa	8	15	16	8	18	20	17	27	30	12	22	28	10	19	26	10	19	26
Fan																			
Туре	type									Tang	ential								
Fan motor	type									Inve	erter								
Number	no.		1			1			1			1			1			1	
Air flow rate	m³/h	250	400	440	290	450	490	450	690	760	590	960	1210	200	300	400	200	300	400
Input power	W	9	17	19	9	17	20	13	27	34	17	35	58	9	17	19	9	17	19
Fan coil sound data (3)																			
Sound power level	dB(A)	37,0	50,0	52,0	38,0	50,0	52,0	41,0	53,0	55,0	44,0	54,0	60,0	37,0	50,0	52,0	37,0	50,0	52,0
Sound pressure level	dB(A)	29,0	42,0	44,0	30,0	42,0	44,0	33,0	45,0	47,0	36,0	46,0	52,0	29,0	42,0	44,0	29,0	42,0	44,0
Diametre hydraulic fittings																			
Main heat exchanger	Ø		1/2"			1/2"			1/2"			3/4"			1/2"			1/2"	
Power supply																			
Power supply										230V	~50Hz								

		F	CWI332	V	I	-CWI333	V	F	CW1432	V	ı	FCWI433	V		FCWI532	V	F	CW1533	V
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																			
Heating capacity	kW	3,01	5,15	5,51	3,01	5,15	5,51	6,21	8,53	9,18	6,21	8,53	9,18	8,15	11,82	13,96	8,15	11,82	13,96
Water flow rate system side	I/h	265	452	484	265	452	484	545	749	805	545	749	508	714	1036	1224	714	1036	1224
Pressure drop system side	kPa	11	30	34	11	30	34	21	36	41	21	36	41	10	21	28	10	21	28
Heating performance 45 °C / 40 °C (2)																			
Heating capacity	kW	1,50	2,56	2,74	1,50	2,56	2,74	3,09	4,24	4,56	3,09	4,24	4,56	4,05	5,91	6,98	4,05	5,91	6,98
Water flow rate system side	l/h	260	445	476	260	445	477	536	736	793	536	736	793	704	1027	1213	704	1027	1213
Pressure drop system side	kPa	11	30	34	11	30	34	20	35	40	20	35	40	11	22	30	11	22	30
Cooling performance 7 °C / 12 °C																			
Cooling capacity	kW	1,44	2,46	2,63	1,44	2,46	2,63	2,96	4,07	4,38	2,96	4,07	4,38	4,05	6,01	6,98	4,05	6,01	6,98
Sensible cooling capacity	kW	1,22	2,08	2,15	1,22	2,08	2,15	2,32	3,16	3,36	2,32	3,16	3,36	3,04	4,67	5,44	3,04	4,67	5,44
Water flow rate system side	l/h	248	423	453	248	426	453	509	699	753	509	699	753	695	1032	1198	695	1032	1198
Pressure drop system side	kPa	11	28	32	11	28	32	18	32	37	18	32	37	11	23	30	11	23	30
Fan																			
Туре	type									Tang	ential								
Fan motor	type									Inve	erter								
Number	no.		1			1			1			1			1			1	
Air flow rate	m³/h	250	430	460	250	430	460	430	620	690	430	620	690	530	870	1110	530	870	1110
Input power	W	9	17	20	9	17	20	13	27	34	13	27	34	17	35	58	17	35	58
Fan coil sound data (3)																			
Sound power level	dB(A)	38,0	50,0	52,0	38,0	50,0	52,0	41,0	53,0	55,0	41,0	53,0	55,0	44,0	54,0	60,0	44,0	54,0	60,0
Sound pressure level	dB(A)	30,0	42,0	44,0	30,0	42,0	44,0	33,0	45,0	47,0	33,0	45,0	47,0	36,0	46,0	52,0	36,0	46,0	52,0
Diametre hydraulic fittings																			
Main heat exchanger	Ø		1/2"			1/2"			1/2"			1/2"			3/4"			3/4"	
Power supply																			
Power supply										230V-	~50Hz								

- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
 (2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
 (3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

		FCWI23VL	FCWI33VL	FCWI43VL	FCWI53VL	FCWI232V	FCWI233V
Dimensions and weights							
A	mm	298	305	360	365	298	298
В	mm	880	990	1170	1450	880	880
С	mm	205	210	220	230	205	205
Empty weight	kg	9	10	19	28	9	9

		FCWI332V	FCWI333V	FCWI432V	FCWI433V	FCWI532V	FCWI533V
Dimensions and weights							
A	mm	305	305	360	360	365	365
В	mm	990	990	1170	1170	1450	1450
(mm	210	210	220	220	230	230
Empty weight	kg	10	10	19	19	28	28

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

VENTILCASSAFORMA

Template for recessed installation of fancoils in the wall

Ideal for residential or office solutions

DESCRIPTION

Ventilcassaforma has been designed to respond to the needs to rationalise spaces to suit modern interior architecture. Ventilcassaforma is a galvanised template that makes it possible to make a space to house fan coils in the wall.

The template will make masonry work easier during the construction of a niche where the fan coil will be installed. When the work is finished, the fan coil will be completely hidden from view.

VERSIONS

CHU-L: For fan coils in the Omnia ULI_P series. CHF: For fan coils in the FCZ P, FCZI P series

FEATURES

Ventilcassaforma is made up of the following parts to be assembled:

- Recess box;
- Closure panel;
- Outer frame with deflector;
- Cover bases, cross-members, covers.

All parts are made of galvanised steel and treated with epoxy-polyester resin-based thermo-hardening base paint in grey with rough glazed finish in order to hold the paint. The final colour can be chosen by the client.

Socket box embedded in the wall

Made of galvanised steel, this is the box housing the fan coil. The box is recessed in the wall during building work making the construction of a niche where the fan coils will be installed much easier.

Holes for fitting the fan coil and preparing an electric plant with a socket and GEWISS fuse holder are already present on the back panel.

The box can accommodate the hydraulic system pipes and condensation drain pipes thanks to the presence of several easily-removable elements on the sides and base.

Closure panel

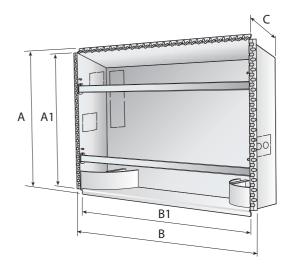
Made of steel pre-treated with base paint and no slots present. Easily removable for servicing and cleaning the air filter.

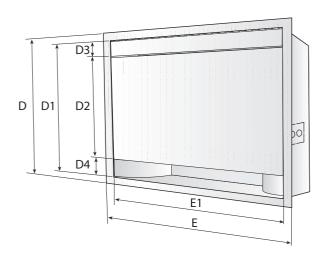
Outside frame

The perimeter of the box has an outer frame made of pre-treated steel making it possible to cover the perimeter part of the wall and hide any imperfections that overtime show possible crumbling on the edge of the plaster work.

Deflector

Manual, with which the flow of air can be directed into the room. The deflector is incorporated in the frame.




ACCESSORIES COMPATIBILITY

FCZ-H

	Ver		200			300			100		5	00		600	0		900			950	
	HP		CHF22		(CHF32		C	HF42		CH	F42		CHF	62		CHF62	2		CHF62	[
FCZI-H																					
	Ver	200)	250		300	350)	400	4	50	50	0	550		700	750)	900		950
	HP	CHF2	2	CHF22	C	HF32	CHF3	32	CHF42	CH	IF42	CHF	42	CHF42	(HF62	CHF6	52	CHF62	(CHF62
FCZ-P																					
	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
	P, PR	CHF17	CHF17	CHF17	CHF17	CHF22	CHF22	CHF22	CHF22	CHF32	CHF32	CHF32	CHF32	CHF42	CHF42	CHF42	CHF42	CHF42	CHF42	CHF42	CHF42
	PO, POR	-	-	-	-	CHF22	CHF22	CHF22	CHF22	CHF32	CHF32	CHF32	CHF32	CHF42	CHF42	CHF42	CHF42	CHF42	CHF42	CHF42	CHF42
	PPC	CHF17	-	-	CHF17	CHF22	-	-	CHF22	CHF32	-	-	CHF32	CHF42	-	-	CHF42	CHF42	-	-	CHF42
The accessory can	not be fitted on the	configurations in	dicated v	with -																	
	Ver	600	601	60	2 6	550	700	701	702	750	8	00	801	802	850	900	90	1 9	950	1000	1001
	P, PR	CHF62	CHF6	2 CHF	62 Cl	HF62	CHF62	CHF62	CHF62	CHF62	2 CH	F62 (CHF62	CHF62	CHF62	CHF62	2 CHF	62 CH	1F62	CHF62	CHF62
	PO, POR	CHF62	CHF6	2 CHF	62 Cl	1F62	CHF62	CHF62	CHF62	CHF62	2	-	-	-	-	CHF62	2 CHF	62 CH	1F62	-	-
	PPC	CHF62	-		Cl	1F62	CHF62	-	-	CHF6	2 CH	F62	-	-	CHF62	CHF62	2 -	CH	1F62	CHF62	-
The accessory can	not be fitted on the	configurations in	dicated v	with -																	
FCZI-P																					
	Ver	200	201 2	202 2	50 30	0 30	1 302	350	400	401 4	02 4	50 50	00 501	502	550	700	701 7	02 7	50 90	0 901	950
	P, PR	CHF22 (CHF22 CI	HF22 CH	F22 CHF	32 CHF:	32 CHF32	CHF32	CHF42 C	HF42 CH	F42 CH	F42 CHF	F42 CHF4	2 CHF42	CHF42	CHF62 C	:HF62 CH	IF62 CH	F62 CHF	62 CHF6	2 CHF6
UL-P																					
	Ver			11					16					26					36		
	Р			CHU12L					CHU17L					CHU27L					CHU37L		
ULI-P																					
Accessory					ULI16P						ULI	26P						ULI36	Р		
CHU17L																					
CHU27L												•									
CHU37L																					

DIMENSIONS

		CHU12L	CHU17L	CHU27L	CHU37L
Dimensions jig					
A	mm	691	691	691	691
A1	mm	648	648	648	648
В	mm	692	802	1032	1252
31	mm	644	754	984	1204
-	mm	186	186	186	186
)	mm	724	724	724	724
)1	mm	634	634	634	634
)2	mm	494	494	494	494
03	mm	70	70	70	70
04	mm	-	-	-	-
	mm	713	823	1053	1273
E1	mm	633	743	973	1193

	CHF17	CHF22	CHF32	CHF42	CHF62
mm	728	728	728	728	833
mm	684	684	684	684	789
mm	732	842	1073	1293	1414
mm	684	794	1025	1245	1366
mm	240	240	240	240	240
mm	760	760	760	760	865
mm	680	680	680	680	785
mm	493	493	493	493	598
mm	93	93	93	93	93
mm	94	94	94	94	94
mm	753	863	1094	1314	1435
mm	673	783	1014	1234	1355
	mm	mm 728 mm 684 mm 732 mm 684 mm 240 mm 760 mm 680 mm 493 mm 93 mm 94 mm 753	mm 728 728 mm 684 684 mm 732 842 mm 684 794 mm 240 240 mm 760 760 mm 680 680 mm 493 493 mm 93 93 mm 94 94 mm 753 863	mm 728 728 728 mm 684 684 684 mm 732 842 1073 mm 684 794 1025 mm 240 240 240 mm 760 760 760 mm 680 680 680 mm 493 493 493 mm 93 93 93 mm 94 94 94 mm 753 863 1094	mm 728 728 728 728 mm 684 684 684 684 mm 732 842 1073 1293 mm 684 794 1025 1245 mm 240 240 240 240 mm 760 760 760 760 mm 680 680 680 680 mm 493 493 493 493 mm 93 93 93 93 mm 94 94 94 94 mm 753 863 1094 1314

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

Control panels

Range of control panels for fan coils

4

 Wide range of panels for the simple, complete control of all the fan coil functions.

ACCESSORIES

AERCAB: 100 meter skein of shielded cable (4-pole wire + shield) for connection with RS485 serial port and CAN.

T-TOUCH AND T-TOUCH-I

Characteristics and equipment supplied as standard

- Installation on the fan coil.
- Air and water probes supplied as standard.
- RS485 serial port for connection with the VMF network (MASTER).
- Connection with VMF-E4X user interface.
- Control of the 3 speeds of the asynchronous motors.
- 0-10 V and/or PWM output for brushless motors.
- Two triac outputs for control of valves and/or accessories.
- MS input (micro switch).
- Inverter fault input.
- Visualisation of the speeds and the temperature set-point.

Compatibility with the hydronic terminals

Thermostat	Unit	Range
T-TOUCH	FCZ	AS - U - UA - DS
T-TOUCH-I	FCZI	AS - U

2-pipe systems	Air temperature probe	Water temperature probe
without accessories	_	
with 2-way valve		
with 3-way valve	-	
with Cold Plasma purifier		
with 2-way valve and Cold Plasma purifier	-	
with 3-way valve and Cold Plasma purifier	. cunnlind as standard	cumplied as standard
with heater	- supplied as stalidard	supplied as standard
with 2-way valve and heater		
with 3-way valve and heater		
cooling only, with heater for heating		
cooling only, with heater for heating and		
3-way valve		
4-pipe systems		
with 2-way valve	cumplied as standard	cumplied as standard
with 3-way valve	supplied as standard	supplied as standard

AER503IR

Characteristics and equipment supplied as standard

- Flush installation (503-502 module box, or plasterboard boxes).
- Management of fan coils with asynchronous and brushless motor.
- Automatic / manual season changeover.
- Control of up to 2 On/Off valves.
- Control of 1 modulating valve 0-10.
- Temperature and ventilation control.
- Internal air probe.
- Compatibility with VMF-IR.
- Overall dimensions (mm): H=86 W=125 D=46.

Compatibility with the hydronic terminals

Compatible with all ON/OFF fancoil and INVERTER fancoil, without on board controls.

Compatibility with 2 and 4 pipes systems

2-pipe systems	Air temperature probe	Water temperature probe
without accessories		
with 2-way valve		
with 3-way valve		
with Cold Plasma purifier		
with 2-way valve and Cold Plasma purifier		
with 3-way valve and Cold Plasma purifier		
with heater	SA5	SW5
with 2-way valve and heater	SAS	3773
with 3-way valve and heater		
cooling only, with heater for heating		
cooling only, with heater for heating and 3-way valve		
with 2-way valve and radiant panel (heating)		
radiant panel only (heating)		
4-pipe systems		
with 2-way valve	CAF	CML
with 3-way valve	SA5	SW5

TX

Characteristics and equipment supplied as standard

- Wall-mount installation.
- Management of fan coils with asynchronous and brushless motor.
- Automatic / manual season changeover.
- Control of up to 2 On/Off valves.
- Temperature and ventilation control (3 speeds).
- Internal air probe
- Management of fins and external contact.
- Overall dimensions (mm): H=148 W=70 D=27.5.

Compatibility with the hydronic terminals

Compatible with all ON/OFF fancoil and INVERTER fancoil, without on board controls.

Compatibility with 2 and 4 pipes systems

2-pipe systems	Air temperature probe	Water temperature probe
without accessories		
with 2-way valve		
with 3-way valve		
with Cold Plasma purifier		
with 2-way valve and Cold Plasma purifier		
with 3-way valve and Cold Plasma purifier		
with heater		
with 2-way valve and heater	SA5	SW3/SW5
with 3-way valve and heater		
cooling only, with heater for heating		
cooling only, with heater for heating and		
3-way valve		
with 2-way valve and radiant panel (heating)		
radiant panel only (heating)		
with twin delivery (Dualjet)		
4-pipe systems		
with 2-way valve	SA5	SW3/SW5
with 3-way valve	כאכ	2002/2002

PXAI

Characteristics and equipment supplied as standard

- Installation on the fan coil.
- Automatic / manual season changeover.
- Control of up to 2 On/Off valves.
- Temperature and ventilation control (3 speeds).
- Internal water probe (2.5m) and air probe (2.3m).
- Management of fins and external contact.
- Overall dimensions (mm): H=148 W=70 D=27.5.

Compatibility with the hydronic terminalsCompatible with all fancoil of the series FCZ-P, FCZI-P.

2-pipe systems	Air temperature probe	Water temperature probe
without accessories		
with 2-way valve	_	
with 3-way valve		
with Cold Plasma purifier	— — — supplied as standard supplied as stand — — — —	
with 2-way valve and Cold Plasma purifier		
with 3-way valve and Cold Plasma purifier		cumplied as standars
with heater		supplied as stalldart
with 2-way valve and heater		
with 3-way valve and heater		
cooling only, with heater for heating		
cooling only, with heater for heating and		
3-way valve		
4-pipe systems		
with 2-way valve	- cumplied as standard	cumplied as standar
with 3-way valve	– supplied as standard	supplied as standard

TXB/TXBI - TXBIS

TXB-TXBI

TXBIS

Characteristics and equipment supplied as standard

- Installation on the fan coil.
- Automatic / manual season changeover.
- Control of up to 2 On/Off valves.
- Temperature and ventilation control (3 speeds).
- Internal air probe.
- Water probe (supplied) for controlling the minimum or maximum depending on the system, with the possibility to fit an external air probe (SA5)

Compatibility with the hydronic terminals

TXB

Compatible with all fancoil of the series FCZ.

TXBI

Compatible with all fancoil of the series FCZI.

TXBIS

Compatible with all fancoil of the series ULSI_B and ULSI_BR.

■ For ULSI_BR units add the mandatory EC-TXBI accessory.

Compatibility with 2 and 4 pipes systems

2-pipe systems	Air temperature probe	temperature probe
without accessories	_	
with 2-way valve		
with 3-way valve		
with Cold Plasma purifier	_	
with 2-way valve and Cold Plasma purifier	- - -	
with 3-way valve and Cold Plasma purifier		
with heater		
with 2-way valve and heater	supplied as standard	supplied as standard
with 3-way valve and heater		
cooling only, with heater for heating	-	
cooling only, with heater for heating and		
3-way valve	_	
with 2-way valve and radiant panel (heating)		
radiant panel only (heating)	•	
with twin delivery (Dualjet)		
4-pipe systems		
with 2-way valve	- cumplied as standard	cumplied as standard
with 3-way valve	supplied as standard	supplied as standard

WMT16 - 16V

Characteristics and equipment supplied as standard

- Wall-mount installation.
- Manual season changeover.
- Temperature and ventilation control (3 speeds).
- -- Thermostat-controlled ventilation WMT16 Continuos WMT16CV
- Internal air probe.
- Overall dimensions (mm): H=130 L=85 P=40.

Compatibility with the hydronic terminals

Compatible with all ON/OFF fancoil without on board controls.

Compatibility with 2 pipe systems

2-pipe systems	Air temperature probe	Water temperature probe
without accessories	internal	
with 2-way valve		-
4-pipe systems		
with 2-way valve	internal	-

WMT10

Characteristics and equipment supplied as standard

- Wall-mount installation.
- Manual season changeover.
- Control of up to 2 On/Off valves.
- Temperature and ventilation control (3 speeds).
- Internal air probe.
- Overall dimensions (mm): H=75 W=127 D=25.

Compatibility with the hydronic terminals

Compatible with all ON/OFF fancoil without on board controls.

Compatibility with 2 and 4 pipes systems

2-pipe systems	Air temperature probe	Water temperature probe
without accessories		
with 2-way valve		
with heater	internal	-
with 2-way valve and heater		
cooling only, with heater for heating		
4-pipe systems		
with 2-way valve	internal	-

FMT10

Water

Characteristics and equipment supplied as standard

- Wall-mount installation.
- Automatic / manual season changeover.
- Control of up to 2 On/Off valves, or 1 valve and 1 heater.
- Temperature and ventilation control (3 speeds).
- Air probe (supplied) to be installed on the fan coil intake.
- Overall dimensions (mm): H=80 W=118 D=40.

Compatibility with the hydronic terminals

Compatible with all ON/OFF fancoil without on board controls.

2-pipe systems	Air temperature probe	Water temperature probe
without accessories		
with 2-way valve		
with heater	supplied as standard	-
with 2-way valve and heater		
cooling only, with heater for heating		
4-pipe systems		
with 2-way valve	supplied as standard	-

DSKT/DSKTI - DSKTS

DSKT-DSKTI

DSKTS

Characteristics and equipment supplied as standard

- Installation on the fan coil.
- Air and water probes supplied as standard.
- RS485 serial port for connection with the VMF network (MASTER).
- Control of the 3 speeds of the asynchronous motors.
- 0-10 V and/or PWM output for brushless motors.
- MS input (micro switch).
- Inverter fault input.
- Visualisation of the speeds and the temperature set-point.
- Air purification device management.

Compatibility with the hydronic terminals

DSKT

Compatible with all fancoil of the series FCZ-AS.

Compa **DSKTI**

Compatible with all fancoil of the series FCZI-AS.

DSKTS

Compatible with all fancoil of the series ULSI_B and ULSI_BR.

■ For ULSI_BR units add the mandatory EC-DSKT accessory.

2-pipe systems	Air temperature probe	Water temperature probe
without accessories		
with 2-way valve		
with 3-way valve		
with Cold Plasma purifier	 supplied as standard supplied as stan -	
with 2-way valve and Cold Plasma purifier		
with 3-way valve and Cold Plasma purifier		cumplied as standard
with heater		supplied as stalldard
with 2-way valve and heater		
with 3-way valve and heater		
cooling only, with heater for heating	_	
cooling only, with heater for heating and		
3-way valve		
4-pipe systems		
with 2-way valve	cumplied ac ctandard	supplied as standard
with 3-way valve	supplied as stalldard	supplied as stalldard

VMF

Multi Flow Variable Systems

- · Components for plant management
- Air conditioning
- Heating
- Hot domestic water (HDW)

DESCRIPTION

Hydronic system management and control unit for air conditioning, heating and domestic hot water production.

The VMF system ensures the complete control of every single component of a hydronic system, both local and centralised, through communication between the various system components, managing the performance without neglecting the end user's request for comfort at any time, but reaching it as efficiently as possible, with consequent energy savings.

Summing up the advantages of a such an innovative control with the flexibility of a hydronic system, you achieve a more effective and efficient alternative to variable refrigerant volume (VRF) systems.

The VMF system can manage different areas, each of which has one of the following types of terminals:

- Fancoil;
- Radiant only (heating only);
- Fancoil + Radiant;
- MZC Zone;
- MZC Zone + Radiant.

FEATURES

The VMF system is extremely flexible, to the extent that it offers various control and management steps, also expandable at different times:

- 1. Control of a single zone;
- Control of a Master/Slave zone (one MASTER fancoil and up to 5 SLAVE fancoils);
- Control of a network consisting of several independent zones (one MASTER fancoil and up to 5 SLAVE fancoils for each zone, or another of the types of terminals provided);
- Control of several zones, plus heat pump management (if compatible with the VMF system);
- Control of several zones, of heat pumps and management of the domestic hot water:
- Control of several zones, heat pumps, domestic hot water production and additional pumps (up to a maximum of 12 using 3 additional VMF-CRP modules);
- Control of several zones, heat pumps, domestic hot water production, additional pumps and management of up to 3 heat recovery units (with the possibility to manage up to 3 VMF-VOC probes) and/or a boiler;

CONTROL PANELS

The VMF system can pilot and manage a different number of areas, depending on the panel used:

- VMF-E6/VMF-E5: maximum 64 zones (so a maximum of 64 Master Fancoil, each of which will pilot 5 Slave, for a total of 384 Fancoil);
- VMF-RCC: maximum 10 zones (then a maximum of 10 Master Fancoil, each of which will pilot 5 Slave, for a total of 50 Fancoil).

In addition to the centralised control provided by the VMF-E6/VMF-E5/VMF-RCC panel, the MASTER system terminal must be equipped with a local control interface; this interface can be mounted on board the terminal itself or on a wall panel.

Via panel VMF-E6/VMF-E5/VMF-RCC it is possible to control several functions:

- Identify the various zones by giving each of them a name that characterises it;
- Control and set the ON-OFF function and the temperature setting of each zone;
- Set and manage the heat pump temperature;
- Schedule time slots.

Simple installation of the fancoil network thanks to the SELF-DETECTION function of the MASTER fancoils.

SYSTEM COMPONENTS

AerSuite

The AerSuite application is used to remotely control the DI24 user interface, with VMF-E19/VMF-E19I thermostats, using Smart Devices with iOS and Android operating systems.

This is an application for Smartphones and Tablets with which the user can access and control the system operation remotely.

For more information about the use of the application and the available functions, refer to the respective documentation on the website.

Command interfaces

D124: Flush-mounted interface (503 box) with 2.4" touch screen display to be combined with VMF-E19, VMF-E19I accessories. It allows you to regulate and monitor the temperature inside rooms precisely and on time; in addition to accessing and interacting with your system's operating information, parameters and alarms, it allows you to set time slots. Thanks to its Wi-Fi connection, D124 in combination with the AerSuite APP (available for Android and iOS) can also be remotely controlled. All programming and most functions are done in a simple and intuitive way using the APP. To allow for customization of the interface so that it seamlessly integrates with the style of any home, D124 is compatible with switch plates from major brands available on the market. For more information, please refer to our documentation. However, a switch plate with its graphite gray support, D124CP, is also available as a separate accessory in our catalog.

VMF-E2D: Machine user interface to be combined with VMF-E19 accessory, dedicated to the DUALJET range. It has 2 selector switches, one for temperature and the other for speed control.

VMF-E2H: User interface on the machine, to be combined with the VMF-E19 accessory, dedicated to the HL series. It has 2 selector switches, one for temperature and the other for speed control.

VMF-E25: User interface on the fan coil, with two selectors - one for temperature and the other for speed control. For operation, the installation of either the VMF-E19 or VMF-E19l accessory is required.

VMF-E2Z: User interface on the fan coil, with two selectors, one for temperature and the other for speed control; to be combined with accessories VMF-E19 and VMF-E19I.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: A wall-mounted user interface to be combined with VMF-E19, VMF-E19, VMF-E24 ed VMF-E24I accessories. Featuring an innovative, extremely slim and cost-effective design, it allows running functions via a capacitive touchscreen keyboard with LCD display. You can choose to adjust the environment temperature with a panel-mounted sensor probe (standard), or with the VMF-E19/E19I probe, or through mediated reading. It also enables the activation of an air purifier (Cold Plasma/ UV lamp) and a heating element. Light grey front panel PANTONE 425C (METAL).

VMF-E4X: A wall-mounted user interface to be combined with VMF-E19, VMF-E19I, VMF-E24 ed VMF-E24I accessories. Featuring an innovative, extremely slim and cost-effective design, it allows running functions via a capacitive touchscreen keyboard with LCD display. You can choose to adjust the environment temperature with a panel-mounted sensor probe (standard), or with the VMF-E19/E19I probe, or through mediated reading. It also enables the activation of an air purifier (Cold Plasma/ UV lamp) and a heating element. Light grey front panel PANTONE COOL GRAY 1C.

VMF-E5: Black recessed panel with backlit graphic LCD display and capacitive keyboard, it allows the centralised command/control of a complete hydronic system consisting of Fan coils: up to 64 fan coil zones consisting of 1 master + up to 5 slaves; Chiller/heat pump (accessory required for RS 485 interface), pumps: up to 12 configurable zone pumps; boiler: boiler hook-up management for hot water production; heat recovery units: up to 3 hook-ups per programmable recovery units based on time periods and/or by

measuring air quality with the VMF-VOC accessory; domestic water module: complete management of the domestic hot water production through the control of: diverter valve/pump, integrated heating element, storage tank temperature sensor, anti-legionella circuit system. The panel is available in both white (VMF-E5B) and black (VMF-E5N).

 $\label{lem:WMF-E6:White flush-mounting panel with 4.3 inch colour touchscreen. For the centralised command/control of a complete hydronic/aeraulic system consisting of: fan coils (up to 64 fan coil zones formed of 1 master + max. 5 slaves), heat pumps (up to 4), MZC accessories (up to 5) for the management of radiant panels (using a suitable number of VMF-REB accessories, up to 64 radiant panels associated with the fan coil zones and up to 32 radiant panels associated with the zones served by MZC), the complete management of DHW production, control of the RAS heater and/or the boiler, management of digital I/Os, control of heat recovery units and VOC probes (up to 4).$

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-RCC: Flush-mounting panel for the centralised command/control of a complete hydronic system consisting of: fan coils (up to 10 fan coil zones formed of 1 master + max. 5 slaves), heat pumps (if you want to manage up to 4 outdoor units, the MULTICONTROL accessory must be provided), MZC accessories (up to 3) for the management of radiant panels using a suitable number of VMF-REB 1/VMF-REB 2/VMF-REB 3 accessories, (up to 28 zones total), the complete management of DHW production, control of the RAS heater and/or the boiler, management of digital I/O, control of heat recovery units and VOC probes (up to 3).

VMF-VOC: Air quality detection accessory.

VMHI: The VMHI panel can be used as a user interface for VMF-E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Thermostats

VMF-E19: Thermostat, accessory to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe, it controls systems with 2 pipes, 4 pipes, 2 pipes + Cold Plasma, 2 pipes + UV lamps, 2 pipes + Heating element. Equipped with an external contact to be used as a remote ON-OFF at low voltage. By means of 2-wire serial communication, it allows for the creation of a single fan coil area (1 master + maximum 5 slaves). Compared to the previous model, thanks to a different dip switch configuration, it allows implementing new features: 1. In systems with two pipes and a heating element, the latter can be activated as a complete replacement. allowing you to warm the environment exclusively with this accessory. 2. Dualjet features are available in standard software and can be set via dip switch. 3. Economy contact/presence sensor. 4. Additional water sensor for overall control in 4-pipe systems (with VMF-SW1 accessory). 5. Serial RS485, ModBus RTU protocol, for centralised control. 6. Possibility of inserting expansion boards for future developments. The VMF-E19 accessory must be therefore used in masters in the presence of multiple zones, or for communication with the chiller/heat pump. 7. Compatibility with the VMF-IO accessory. Compatibility with VMF-LON expansion board. The thermostat is protected by a fuse.

VMF-E19I: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe, it controls systems with 2 pipes, 4 pipes, 2 pipes + Cold Plasma, 2 pipes + UV lamps, 2 pipes + Heating element. Equipped with an external contact to be used as a remote ON-OFF at low voltage. By means of 2-wire serial communication, this thermostat allows for the creation of a single fan coil area (1 master + maximum 5 slaves). Compared to the previous model, thanks to a different dip switch configuration, it allows implementing new features:In systems with two pipes and a heating element - the latter can be activated as a complete replacement - allowing you to warm the environment exclusively with this accessory - Dualjet features are available in standard software and can be set via dip switch - Economy contact/presence sensor - Additional water sensor for overall control in 4-pipe systems (with VMF-SW1 accessory) - Serial RS485, ModBus RTU protocol, for centralised control - Possibility of inserting expansion boards for future developments. The VMF-E19 accessory must be therefore used in masters in the presence of multiple zones, or for communication with the chiller/heat pump - Compatibility with the VMF-IO accessory - Compatibility with VMF-LON expansion board. The thermostat is protected by a fuse.

VMF-E19Y: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe, it controls systems with 2 pipes, 4 pipes, 2 pipes + Cold Plasma, 2 pipes + UV lamps, 2 pipes + Heating

element. Equipped with an external contact to be used as a remote ON-OFF at low voltage. By means of 2-wire serial communication, this thermostat allows for the creation of a single fan coil area (1 master + maximum 5 slaves). Compared to the previous model, thanks to a different dip switch configuration, it allows implementing new features: 1. In systems with two pipes and a heating element - the latter can be activated as a complete replacement - allowing you to warm the environment exclusively with this accessory. 2. Economy contact/presence sensor. 3. Additional water sensor for overall control in 4-pipe systems (with VMF-SW1 accessory). 4. Serial RS485, ModBus RTU protocol, for centralised control. 5. Possibility of inserting expansion boards for future developments. The VMF-E19Y accessory must be therefore used in masters in the presence of multiple zones, or for communication with the chiller/heat pump. 6. Compatibility with the VMF-IO accessory - Compatibility with VMF-LON expansion board. The thermostat is protected by a fuse.

VMF-FMD: The VMF-FMD panel is a flush-mounted thermostat that, when used in stand-alone mode or within a centralised supervisory system (BMS), can manage plant requirements where an actuator (a heating furniture valve, radiant system head, zone valve, zone circulator) is to be controlled as a function of room temperature.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-LON: Expansion allowing the thermostat to interface with BMS systems that use the LON protocol.

VMF-YCC: Electric on/off completion unit for the VMF-E19Y accessory (mandatory for the unit with options P and X).

VMF-YCCH: Electric on/off completion unit for the VMF-E19Y accessory (mandatory for the unit with option H).

VMF-YCCK: Electric on/off completion unit for the VMF-E19Y accessory, mandatory for FCY units with GKY accessory.

VMF-YICC: Electric inverter completion unit for the VMF-E19Y accessory (mandatory for the unit with options P and X).

VMF-YICCH: Electric inverter completion unit for the VMF-E19Y accessory (mandatory for the unit with option H).

VMF-YICCK: Electric inverter completion unit for the VMF-E19Y accessory, mandatory for FCYI units with GKY accessory.

Intake grids and distribution of the air, compulsory accessory

GLF10M: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm adapts perfectly to standard false ceilings without overlapping parts. It is equipped with an infrared receiver with an emergency operation button, a thermostat card which also requires the installation of the VMF-E4 panel or the VMF-IR remote control. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be orientated with the remote control. (size 840x840 not available).

GLF10N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4 or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated. (size 800x800 mm not available).

GLF110M: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm adapts perfectly to standard false ceilings without overlapping parts. It is equipped with an infrared receiver with an emergency operation button, a thermostat card which also requires the installation of the VMF-E4 panel or the VMF-IR remote control. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be orientated with the remote control. (size 840x840 not available).

GLF110N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4 or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated. (size 800x800 mm not available).

GLL10N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4X or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated.

GLL20N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 840x840 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4X or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated.

GLL1100N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm; adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4X panel as well, and suitable for use with the RXLE heater. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated.

GLLI20N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 840x840 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4X or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated.

Probes

VMF-SW: Water probe (L=2.5m) used if required in place of the standard unit supplied with the VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve.

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

Modules

AERCAB: 100 meter skein of shielded cable (4-pole wire + shield) for connection with RS485 serial port and CAN.

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with the VMF-E6 panel, the VMF-CRP modules will be able to manage heat recovery units, RAS, boiler, sanitary management, I/O control, pumps.

IC-2P: Connector for communication via Mod Bus or VMF -485LINK. Accessory compulsory if combined with VMF-485LINK, or for third party supervision systems.

VMF-485LINK: Expansion to interface the unit with the VMF communication protocol, making it possible to manage it from the VMF-E5 or VMF-E6 supervisors.

VMF-REB: Only available for VMF-E6, manages the heads of the radiant panels (each module can manage up to 8), one pump and up to 3 thermostats through digital input.

VMF-REB 1: Only available for VMF-RCC, manages the heads of 10 radiant panels associated with fancoil and up to 10 thermostats through digital in-

VMF-REB 2: Only available for VMF-RCC, manages the heads of 10 radiant panels associated with MZC and up to 10 thermostats through digital input **VMF-REB 3:** Only available for VMF-RCC, manages the heads of 8 radiant panels associated with MZC and up to 10 thermostats through digital input **VMF-SIT3:** Interface boards that allow connecting thermostats to a fan coil with a high-power motor (for selection, see all the thermostat and fan coil documentation); if a VMF-E19 thermostat is used, this accessory will be replaced by the normal SIT3.

VMF-SIT3V: Relay interface board. Mandatory accessory on units where motor absorption exceeds 0.7 A. The relay interface board is supplied with a 2A fuse to protect the fan coil. If the fan coil absorbs more than 2A and up to 4A, the fuse inside must be replaced with a 4A fuse supplied.

Electrical panels for DHW (Domestic hot water management for other suppliers' storage tanks, not available for VMF-E6)

VMF-ACS3KM: Electrical panel for the complete command/control of a hot water storage tank (3-way control valve, integrated single phase 3kW resistor command, anti-legionella function and temperature sensor)

VMF-ACS3KTN: Quadro elettrico per il comando / controllo completo di un accumulo acqua sanitaria (comando valvola 3 vie, comando resistenza integrativa da 3kW trifase, antilegionella e sonda di temperatura).

VMF-ACS6KTN: Quadro elettrico per il comando / controllo completo di un accumulo acqua sanitaria (comando valvola 3 vie, comando resistenza integrativa da 6kW trifase, antilegionella e sonda di temperatura).

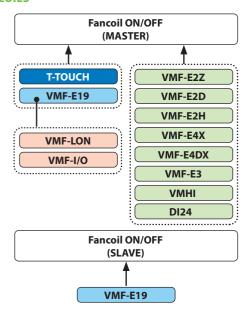
VMF-ACS8KTN: Quadro elettrico per il comando / controllo completo di un accumulo acqua sanitaria (comando valvola 3 vie, comando resistenza integrativa da 8kW trifase, antilegionella e sonda di temperatura).

Heat storage tank with integrated domestic hot water management (no need to be combined with a VMF-ACS accessory)

SAF: Thermal buffer tank kit with instantaneous Domestic Hot Water production. For more information about SAF refer to the dedicated documentation

Control systems

AERCONNECT: Web server allowing local and remote supervision of the VMF-E6 system (by appropriately configuring the DNS service supplied with the purchase of the accessory) via web pages; allows simultaneous access for up to 8 users


VMF-485EXP: This accessory, specifically mounted in the VMF-E5/RCC panel, adds an RS485 serial communication port to external supervision (BMS, Aerweb or Aermec supervision systems). Not available for VMF-E6.

VMF-MONITORING: PC software to monitor and control the operation of one or several VMF controlled systems. Through the VMF-E5/RCC expansion board, the VMF-485EXP panel provides the RS485 serial communication port used by the VMF-MONITORING application for controlling the hydronic system. The maximum number of controllable systems, each with VMF-E5 and VMF-485EXP expansion, is 10 (not available for VMF-E6).

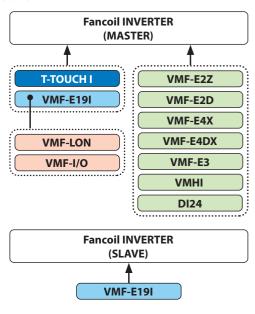
AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

BMConverter: The BMConverter accessory consists of the FPC-N54 network device which allows units that communicate via the Modbus RTU protocol on RS485, to be controlled by a third-party BMS system via the BACNet TCP-IP protocol.

COMPATIBILITY OF VMF COMPONENTS WITH ON/OFF FAN COILS

Type of component:

Thermostat board
Thermostat board + Command interface
Expansion board
Command interfaces


Note:

 Each fan coil (Master or Slave) may have just one thermostat board, selected from those that are compatible;

- The E19 thermostat board can manage just one expansion board, selected from those available;
- Each Master fan coil must have just ONE command interface, selected from those that are compatible:

Command interfaces	Compatible ranges or models
	FCZ (AS-AF-U-UA-UF)
VMF-E2Z	FCZ-D (DS)
	FCZ-H
VMF-E2D	Omnia UL (S)
VMF-E2H	Onmia HL (S-SM)
	FCZ (AS-AF-U-UA-UF)
	FCZ-D (DS)
VAAE EAV (EADV) (VAAE E2	FCZ-H
VMF-E4X (E4DX) / VMF-E3	Omnia UL (S)
	Omnia radiant
	FCW
T-TOUCH	FCZ (AS-AF-U-UA-UF-DS)
	FCZ-D (DS)
	FCZ-H
	FCZ (AS-AF-U-UA-UF)
VMHI / DI24	FCZ-D (DS)
	FCZ-H
	Omnia UL (S)
	Omnia radiant

COMPATIBILITY OF VMF COMPONENTS WITH INVERTER FAN COILS

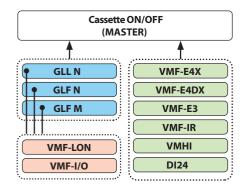
Type of component:

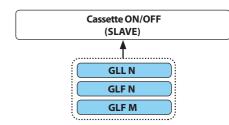
Thermostat board

Thermostat board + Command interface

Expansion board

Command interfaces


Note:


- Each fan coil (Master or Slave) may have just one thermostat board, selected from those that are compatible;
- The E19I thermostat board can manage just one expansion board, selected from those available:
- Each Master fan coil must have just ONE command interface, selected from those that are compatible:

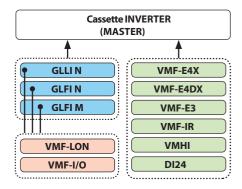
Command interfaces	Compatible ranges or models
VAAE E27	FCZI (AS-AF-U-UF)
VMF-E2Z	FCZI-H

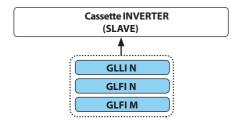
Command interfaces	Compatible ranges or models	
VMF-E2D	Omnia ULI (S)	
	FCZI (AS-AF-U-UF)	
	FCZI-D (DS)	
VMF-E4X (E4DX) / VMF-E3	Omnia ULI (S)	
	Omnia radiant plus	
	FCWI	
T-TOUCH-I	FCZI (AS-AF-U-UF)	
	FCZI (AS-AF-U-UF)	
VANUE / DI24	FCZI-D (DS)	
VMHI / DI24	Omnia ULI (S)	
	Omnia radiant plus	

COMPATIBILITY OF VMF COMPONENTS WITH ON/OFF CASSETTES

Type of component:

Delivery suction grille with thermostat board


Command interfaces


Note:

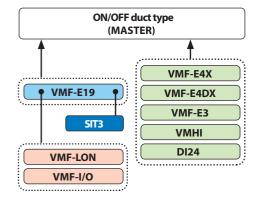
- Each Cassette (Master or Slave) must have a delivery recovery grille (fitted with a VMF thermostat board) selected from those that are compatible;
- The delivery recovery grilles can manage just one expansion board, selected from those available;
- Each Master Cassette must have just ONE command interface, selected from those that are compatible:

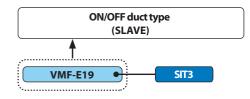
Command interfaces	Compatible ranges or models
VAAE EAV (EADV) (VAAE E2	FCL
VMF-E4X (E4DX) / VMF-E3	VEC
VAAE ID	FCL
VMF-IR	VEC
VMHI / DI24	FCL
	VEC

COMPATIBILITY OF VMF COMPONENTS WITH INVERTER CASSETTES

Type of component:

- Delivery suction grille with thermostat board
- Expansion board
- Command interfaces


Note:


- Each Cassette (Master or Slave) must have a delivery recovery grille (fitted with a VMF thermostat board) selected from those that are compatible;
- The delivery recovery grilles can manage just one expansion board, selected from those available;
- Each Master Cassette must have just ONE command interface, selected from those that are compatible:

Command interfaces	Compatible ranges or models
VAAE EAV (EADV) (VAAE E2	FCLI
VMF-E4X (E4DX) / VMF-E3	VEC-I
VAAE ID	FCLI
VMF-IR	VEC-I
14444 / 1510 /	FCLI
VMHI / DI24	VFC-I

217

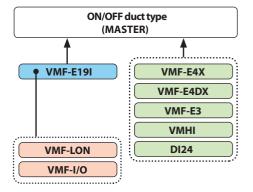
COMPATIBILITY OF VMF COMPONENTS WITH ON/OFF DUCT TYPE FAN COILS

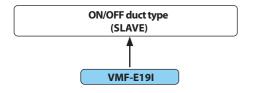
Type of component:

Thermostat board

Motor control board

Expansion board


Command interfaces

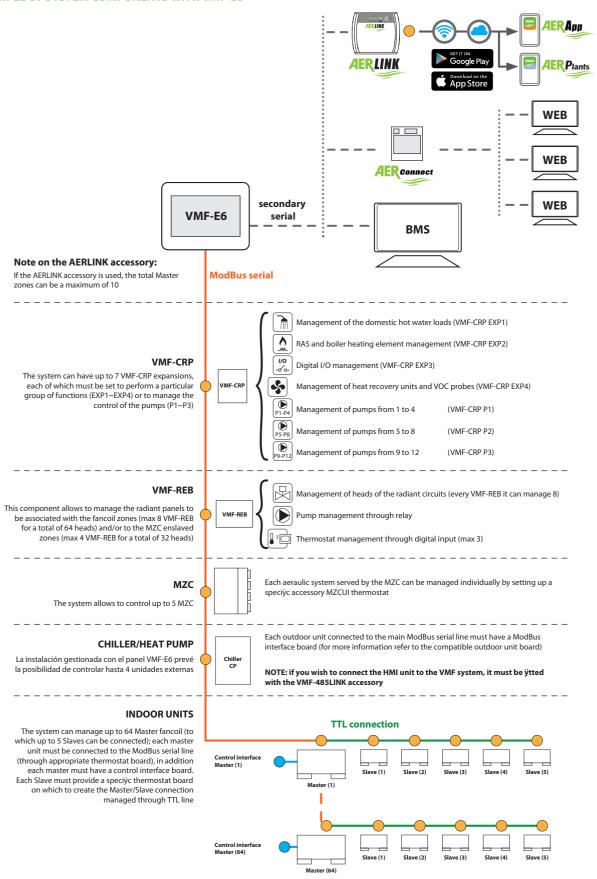

Note:

- Each duct type fan coil (Master or Slave) may have just one thermostat board, selected from those that are compatible;
- The VMF-E19 thermostat board can manage just one expansion board, selected from those available;
- Depending on the size of the duct type fan coil, a motor control board (VMF-SIT3 or SIT3) may be needed;
- Each Master fan coil must have just ONE command interface, selected from those that are compatible:

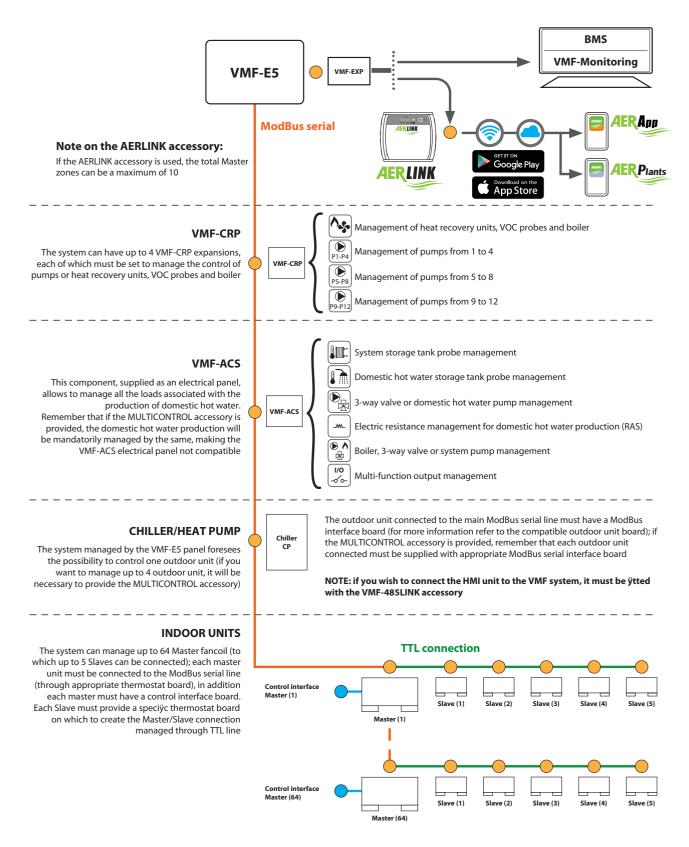
Command interfaces	Compatible ranges or models	
	VED	
	VES	
WALL DAY (DADY) (WALL DA	FCZ PO	
VMF-E4X (E4DX) / VMF-E3	FCY	
	Omnia UL (P - PAF)	
	FCZ-H (P-PO)	
	VED	
	VES	
VMIII / DI24	FCZ PO	
VMHI / DI24	FCY	
	Omnia UL (P - PAF)	
	FCZ-H (P-PO)	

COMPATIBILITY OF VMF COMPONENTS WITH INVERTER DUCT TYPE FAN COILS

Type of component:

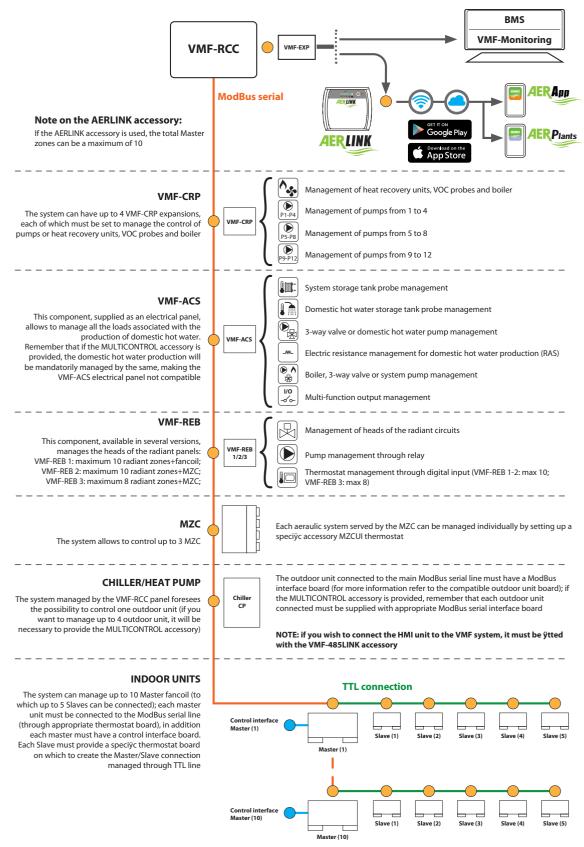

- Thermostat board
- Expansion board
 - Command interfaces

Note:


- Each duct type fan coil (Master or Slave) may have just one thermostat board, selected from those that are compatible;
- The VMF-E19I thermostat board can manage just one expansion board, selected from those available;
- Each Master fan coil must have just ONE command interface, selected from those that are compatible:

Command interfaces	Compatible ranges or models
	VED I
	VES I
VMF EAV (EADV) /VMF E3	FCZI P
VMF-E4X (E4DX) / VMF-E3	FCYI
	Omnia UL (P - PAF)
	FCZI-H (P-PO)
	VED I
	VES I
VALII / DI24	FCZI P
VMHI / DI24	FCYI
	Omnia UL (P - PAF)
	FCZI-H (P-PO)

EXAMPLE OF SYSTEM COMPONENTS WITH VMF-E6



ATTENTION: if one (or more) areas are controlled with an FCWI fan coil (each of which require the VMF-485LINK interface), these areas cannot have a Slave unit.

ATTENTION: if one (or more) areas are controlled with an FCWI fan coil (each of which require the VMF-485LINK interface), these areas cannot have a Slave unit.

EXAMPLE OF SYSTEM COMPONENTS WITH VMF-RCC

ATTENTION: if one (or more) areas are controlled with an FCWI fan coil (each of which require the VMF-485LINK interface), these areas cannot have a Slave unit.

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.

Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

HEAT RECOVERY UNIT

Objective air quality and energy saving: Aermec offers a large range of air-air heat recovery units for industrial and commercial systems and for Controlled Mechanical Ventilation Systems for residential.

The heat recovery units, provided with appropriate accessories (heat exchange coils, heat pump refrigerant circuit, etc.), actively participate in the air treatment providing an important contribution to the air conditioning of the spaces served.

The catalogued range of nominal available air flow rates is from 100 to around 16.100 m³/h.

HEAT RECO	VERY UNITS	Air flow rate (m3/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Page
RPS	Counter-current flow heat recovery unit with inverter motor	800			224
REPURO	With cross-flow exchanger	100-650			229
TRS	Heat recovery unit with enthalpy exchanger	250-1300	-	-	235
RPLI	Counter-current flow heat recovery unit with inverter motor	200-3900	-	-	237
RTD	Thermodynamic recovery unit with integrated heat pump	1100-3200	-	-	242
RPF	High performance heat recovery unit with cross-current recuperator	790-4250	-	-	246
URX-CF	With cross-flow exchanger and refrigerant circuit	750-3300	-	-	250
URHE-CF	High efficiency version with cross-flow exchanger and refrigerant circuit	1000-3300	=	-	254
ERSR	High-efficiency heat recovery with rotary recovery unit	1000-30000			258

RPS

Nominal air flow rate 800 m³/h

- VMC solution for classrooms, bars, restaurants, offices, hotels, shops
- Minimum air flow rate 800 m³/h
- Fully silent operation
- Ventilation management by VOC probe
- Photocatalytic device

DESCRIPTION

RPS is a counter-current heat recovery unit ideal for retrofit solutions for classrooms, offices, hotels, bars, restaurants, shops. With versatile installation and compact dimensions, it can be adapted to any existing space by drilling just two 300mm holes in one of the perimeter walls of the building, thus avoiding outside air ducts.

Thanks to the high thermal efficiency of the heat recovery unit, the appropriately filtered and treated fresh air is introduced at a temperature close to that of the room.

VERSIONS

RPS800A: With rear external air inlets and upper air delivery **RPS800B**: With side external air inlets and upper air delivery

FEATURES

Structure

The external metal casing is treated with RAL9003 anti-corrosion polyester paint and insulated internally with a 12mm thick high sound-absorbing mattress with low thermal conductivity.

The natural anodised aluminium delivery air distribution grille is adjustable. The stale air is suctioned through special micro-punched grilles directly in the unit casing.

Ventilation group

The ventilation unit consists of fan plug fans with rear-facing blades and a directly coupled Ec-type electric motor.

The use of fan plug fans reduces the power input compared to fans with front-facing blades.

Heat exchanger

Plate heat exchanger with counter-current flow.

Condensate drip

The aluminium condensate drip tray is thermally insulated and must be connected to a condensate discharge system.

Air filtration

As standard the fresh air is filtered through an ePM1 50% filter in accordance with ISO 16890 (F7 in accordance with EN 779).

As standard the exhaust air is filtered through an ePM10 50% filter in accordance with ISO 16890 (M5 in accordance with EN 779).

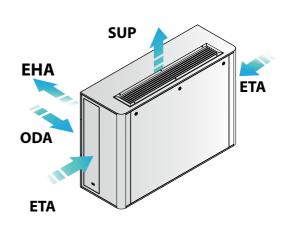
For version A only, other Coarse 30% filters in accordance with ISO 16890 (G2 in accordance with EN 779) are fitted to the outside air vents to protect the unit from large components such as pollen, leaves and insects. The filters are easily accessible for maintenance and cleaning.

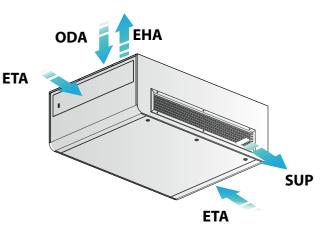
Air sanitisation

As standard, the fresh air flow has a latest-generation device with a photo-catalytic UV lamp for active sanitisation.

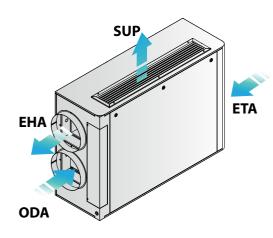
The hydrogen peroxide produced by the photo-catalytic reaction, disseminated and carried by the air flow, makes this sanitisation action effective on the surfaces of the unit as well as in the air in the place of installation and by contact with the surfaces of the rooms treated.

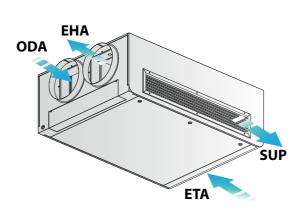
Regulation


The power is supplied through the control board positioned on the inside panel of the heat recovery unit.


The unit is managed by a microprocessor control card and is controlled by the ultra-thin, flush-mounted control panel, which controls the functions from a capacitive touch screen with an LCD display.

The main adjustment functions are as follows:


- Manual fresh and exhaust air ventilation speed control
- Fresh and exhaust air ventilation speed control according to the air quality (by VOC probe)
- Freecooling
- Heat recovery unit anti-freeze function
- Ambient air cleaning function
- Photo-catalytic device management
- ON/OFF from digital input
- Management via RS485 serial with Modbus RTU protocol


RPS800A

RPS800B

ODA = External air

ETA = Extracted air

SUP = Air introduced

EHA = Exhaust air

ACCESSORIES

AVM: Anti-vibration supports.

KVOC: The kit consists of the VOC probe, the 230V/24V power supply and cables for connecting the VOC probe, power supply and controller.

ACCESSORIES COMPATIBILITY

VOC probe kit

Accessory	RPS800A	RPS800B
KVOC800	•	•
Antivibration		
Accessory	RPS800A	RPS800B
AVM	•	•

The accessory is not required for horizontal installation.

PERFORMANCE SPECIFICATIONS

SIZE			RPS800
Power supply			230V ~ 50Hz
Unit type			UVNR - UVB (Non-residential 2-way ventilation unit)
Nominal/maximum fresh air rate		m3/h	800
Nominal/maximum exhaust air rate		m3/h	750
Heat recovery system type			Statico a flussi controcorrente
Winter thermal efficiency	(1)	%	81
Heat capacity recovered in winter	(1)	kW	4,4
Summer thermal efficiency	(2)	%	77
Heat capacity recovered in summer	(2)	kW	1,9
Maximum electric input power		kW	0,300
Sound power L _w A		dB(A)	59,0
Fans			
Туре			Plug fan EC
Number			1+1
Filters			
Fresh air filter			EPM1 50% (F7)
Exhaust air filter			EPM10 50% (M5)

(1) Fresh air: Tbs $= 0^{\circ}$ C; RH = 80%; Exhaust air Tbs $= 20^{\circ}$ C; RH = 50%; nominal air flow rate (2) Fresh air: Tbs $= 35^{\circ}$ C; RH = 50%; Exhaust air Tbs $= 26^{\circ}$ C; RH = 50%; nominal air flow rate

ROOM VENTILATION AIR FLOW RATES

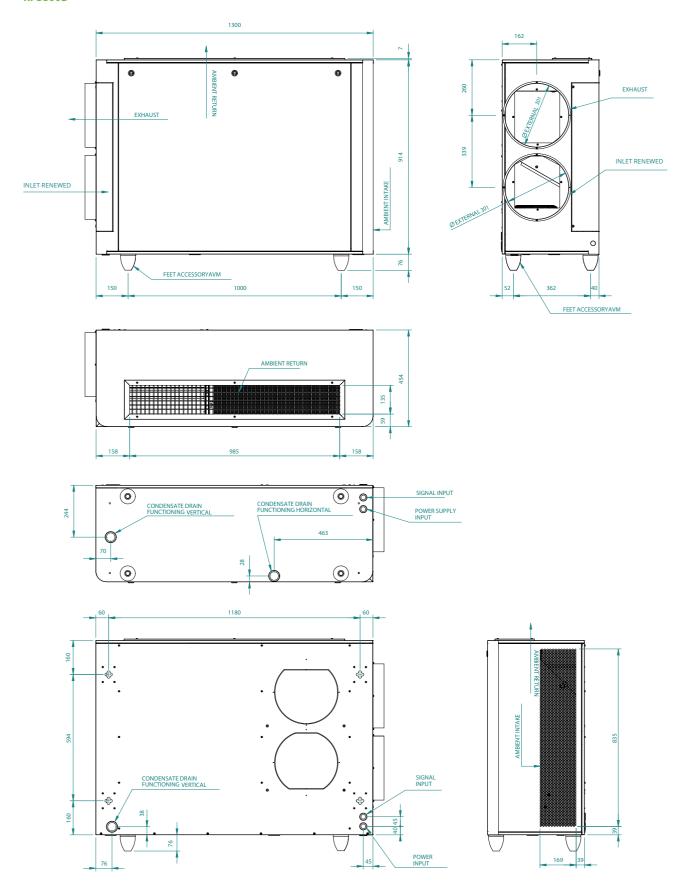
School classrooms

For the calculation of the ventilation rate in school classrooms, reference can be made to the UNI 10339 standard (which sets the air renewal flow rate per student and by type of institution) and to Decree No. 81 of 20/03/2009

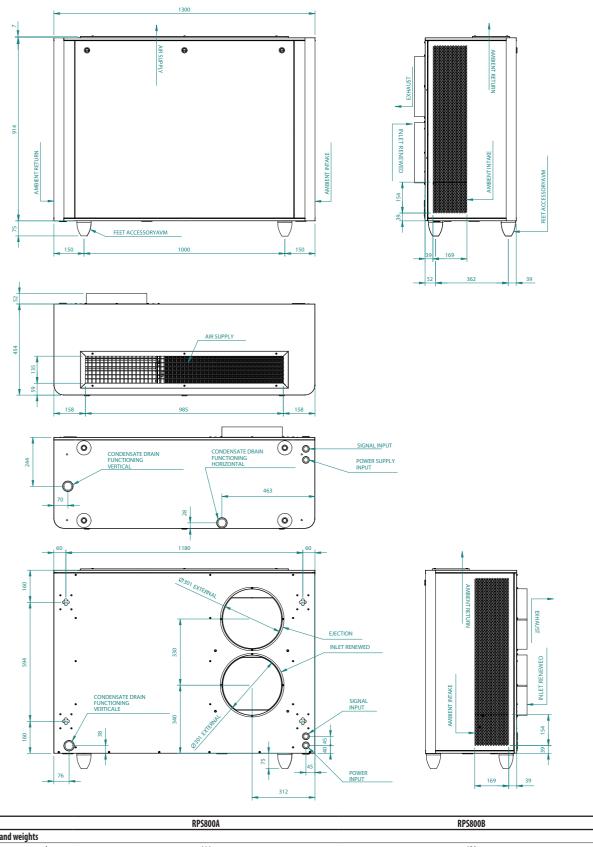
(which establishes the minimum and maximum number of students per class and by type of institution).

	UNI10339 - Sheet 3	Presidential decree no. 81 of 20/03/2009		Fresh air rate		Max occupants (fresh air rate 800 m3/h)	
	Air flow rate per person	Pupils per class				Persons	
	M3/h per person	Min	Max	Min	Max	No.	
Schools	,						
Nursery school	14	18	29	259	418	56	
Primary school	18	15	27	270	486	44	
Middle school	22	18	30	389	648	37	
High school	25	27	30	680	756	32	

Bar, restaurants, officies, hotels, shops or stores


For the calculation of the ventilation rate in other types of buildings, reference can be made to the UNI 10339 standard, which sets the air renewal flow rate per person based on the type of indoor space.

	UNI10339 - Sheet 3	Max occupants (fresh air rate 800 m3/h)
	Air flow rate per person	Persons
	M³/h per person	No.
Bars, Restaurants		
Bar	40	20
Dining rooms restaurants	36	22
Offices		
Open space offices	40	20
Hotels		
Hall, lounges	40	20
Dining rooms	36	22
Shops		
Beauty salons	50	16
Stores	41	19


N.B.: the values given are indicative, assess the correct VMC sizing during the design phase.

DIMENSIONS

RPS800B

RPS800A

		RPS800A	RPS800B
Dimensions and weigh	nts		
Empty weight	kg	116	120

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

Duct-type residential 2-way ventilation unit with heat recovery

- Compact dimensions
- High efficiency, reaching 90%+ (UNI EN 308)
- · Cold Plasma purifier

DESCRIPTION

REPURO it's an innovative counter-current heat recovery system that ensures the right air renewal in closed areas.

Thanks to the use of high-efficiency heat exchangers, REPURO allows fresh air to be delivered at a temperature close to that of the room itself, thereby cutting the energy costs that would be incurred with a traditional air renewal system or mechanical ventilation alone.

VERSIONS

- . Standard
- R With electric heater

Installation:

- Ceiling or wall: (100 170)
- Floor or wall: (250 650)

FEATURES

- Hexagonal heat recovery unit with a wider heat exchange surface;
- Free-standing sheet metal panels with internal insulation;
- Standard G4 filter on the fresh air;
- Standard G2 filter on the exhaust air;
- The filters can be removed for cleaning or replacement;
- The unit has in-built protection against frost formation with temperatures > -10°C;
- High efficiency, reaching 90%+ (UNI EN 308);
- Free cooling in the intermediate seasons, thanks to the automatic bypass function (not available for sizes 100 - 170);
- "No frost" bypass (RePuro 450-550-650), with PLSNF accessory;
- Air purification guaranteed by the Cold Plasma purifier: this is able to reduce pollutants, decomposing their molecules using electrical charges, causing the water molecules in the air to split into positive and negative ions. These ions neutralise the molecules in the gaseous pollutants, obtaining products normally present in clean air. The device is able to eliminate 90% of the bacteria. The result is clean, ionised air, free of foul odours:
- Nominal flow rate regulation from 0 to 100%;
- Centrifugal fans, directly coupled with the EC high-efficiency brushless electric motors with variable speed (ERP2015);
- Microprocessor control card that interfaces with the VMF system;

- Unit control by means of a wired panel (supplied as standard) with an innovative, extremely thin design. The functions are controlled via the capacitive touch keypad with an LCD display. Electric heater activation in the RePuro_R versions. Light grey front panel PANTONE COOL GRAY 1C;
- The 6-metre wired cable is provided as standard;
- Easy mounting on the wall (with the plate (provided), or on the floor (with the AVM accessory);
- Can adapt to an existing system;
- Compact dimensions;
- Silent operation;
- Filter change warning;
- Installation requires a condensate discharge system.

ACCESSORIES

VCH: 3-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VCHD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings.

BC: Condensate drip.

AVM: Anti-vibration supports.

SSR: Wall mounting kit

FF7: Filter with F7 efficiency class for the fresh air.

BMConverter: The BMConverter accessory consists of the FPC-N54 network device which allows units that communicate via the Modbus RTU protocol on RS485, to be controlled by a third-party BMS system via the BACNet TCP-IP protocol.

KSAE: External air sensor.

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with the VMF-E6 panel, the VMF-CRP modules will be able to manage heat recovery units, RAS, boiler, sanitary management, I/O control, pumps.

Plenum with multi-way flange

PLS350: Vacuum delivery plenum with sound-absorbent covering and multi-way flange.

PLS350E: Delivery plenum with sound-absorbent covering and multi-way flange. An electric heater is housed inside.

PLS350L: Delivery plenum with sound-absorbent covering and multi-way flange. A germicidal lamp is housed inside.

PLS350LE: Delivery plenum with sound-absorbent covering and multi-way flange. A germicidal lamp and an electric heater are housed inside.

PLS350W: Delivery plenum with sound-absorbent covering and multi-way flange. A water coil with condensate collection tray is housed inside; it is mandatory to fit the water valve as well.

PLS350WE: Delivery plenum with sound-absorbent covering and multi-way flange. An electric heater and a water coil with condensate collection tray are housed inside; it is mandatory to fit the water valve as well.

PLS350WL: Delivery plenum with sound-absorbent covering and multi-way flange. A germicidal lamp and a water coil with condensate collection tray are housed inside; it is mandatory to fit the water valve as well.

PLS350WLE: Delivery plenum with sound-absorbent covering and multi-way flange. A water coil with condensate collection tray, a germicidal lamp, and an electric heater are housed inside; it is mandatory to fit the water valve as well.

PLS650: Vacuum delivery plenum with sound-absorbent covering and multi-way flange.

PLS650E: Delivery plenum with sound-absorbent covering and multi-way flange. An electric heater is housed inside.

PLS650L: Delivery plenum with sound-absorbent covering and multi-way flange. A germicidal lamp is housed inside.

PLS650LE: Delivery plenum with sound-absorbent covering and multi-way flange. A germicidal lamp and an electric heater are housed inside.

PLS650W: Delivery plenum with sound-absorbent covering and multi-way flange. A water coil with condensate collection tray is housed inside; it is mandatory to fit the water valve as well.

PLS650WE: Delivery plenum with sound-absorbent covering and multi-way flange. An electric heater and a water coil with condensate collection tray are housed inside; it is mandatory to fit the water valve as well.

PLS650WL: Delivery plenum with sound-absorbent covering and multi-way flange. A germicidal lamp and a water coil with condensate collection tray are housed inside; it is mandatory to fit the water valve as well.

PLS650WLE: Delivery plenum with sound-absorbent covering and multi-way flange. A water coil with condensate collection tray, a germicidal lamp, and an electric heater are housed inside; it is mandatory to fit the water valve as well.

Plenum with 1-way flange

PLSM350: Vacuum delivery plenum with sound-absorbent covering and 1-way flange.

PLSM350E: Delivery plenum with sound-absorbent covering and 1-way flange. An electric heater is housed inside.

PLSM350L: Delivery plenum with sound-absorbent covering and 1-way flange. A germicidal lamp is housed inside.

PLSM350LE: Delivery plenum with sound-absorbent covering and 1-way flange. A germicidal lamp and an electric heater are housed inside.

PLSM350W: Delivery plenum with sound-absorbent covering and 1-way flange. A water coil with condensate collection tray is housed inside; it is mandatory to fit the water valve as well.

PLSM350WE: Delivery plenum with sound-absorbent covering and 1-way flange. An electric heater and a water coil with condensate collection tray are housed inside; it is mandatory to fit the water valve as well.

PLSM350WL: Delivery plenum with sound-absorbent covering and 1-way flange. A germicidal lamp and a water coil with condensate collection tray are housed inside; it is mandatory to fit the water valve as well.

PLSM350WLE: Delivery plenum with sound-absorbent covering and 1-way flange. A water coil with condensate collection tray, a germicidal lamp, and an electric heater are housed inside; it is mandatory to fit the water valve as well.

PLSM650: Vacuum delivery plenum with sound-absorbent covering and 1-way flange.

PLSM650E: Delivery plenum with sound-absorbent covering and 1-way flange. An electric heater is housed inside.

PLSM650L: Delivery plenum with sound-absorbent covering and 1-way flange. A germicidal lamp is housed inside.

PLSM650LE: Delivery plenum with sound-absorbent covering and 1-way flange. A germicidal lamp and an electric heater are housed inside.

PLSM650W: Delivery plenum with sound-absorbent covering and 1-way flange. A water coil with condensate collection tray is housed inside; it is mandatory to fit the water valve as well.

PLSM650WE: Delivery plenum with sound-absorbent covering and 1-way flange. An electric heater and a water coil with condensate collection tray are housed inside; it is mandatory to fit the water valve as well.

PLSM650WL: Delivery plenum with sound-absorbent covering and 1-way flange. A germicidal lamp and a water coil with condensate collection tray are housed inside; it is mandatory to fit the water valve as well.

PLSM650WLE: Delivery plenum with sound-absorbent covering and 1-way flange. A water coil with condensate collection tray, a germicidal lamp, and an electric heater are housed inside; it is mandatory to fit the water valve as well

VMF system

VMF-E5B: White recessed panel with backlit graphic LCD display and capacitive keypad for centralised command/control of a complete hydronic system.

VMF-E5N: Black recessed panel with backlit graphic LCD display and capacitive keypad for centralised command/control of a complete hydronic system.

VMF-VOC: Air quality detection accessory.

AC	CECC	ODIEC	COMPA	TIRII ITY

Model	Ver	100	170	250	350	450	550	650
BMConverter	.,R	•	•	•	•	•	•	•
KSAE	.,R	•	•	•	•	•	•	•
VMF-CRP	.,R	•	•	•	•	•	•	•

Plenum with multi-way flange

Model	Ver	100	170	250	350	450	550	650
PLS350		•						
PLS350E		•						
PLS350L		•						
PLS350LE		•	•	•	•			
LUDDULE	R	•	•	•				
PLS350W (1)		•						
PLS350WE (1)		•						
PLS350WL (1)		•						
PLS350WLE (1)		•						
PLS650	.,R					•	•	
PLS650E	.,R					•	•	•
PLS650L	.,R					•	•	
PLS650LE	.,R					•	•	•
PLS650W (1)	.,R					•	•	•
PLS650WE (1)	.,R					•	•	
PLS650WL (1)	.,R					•	•	•
PLS650WLE (1)	.,R							•

⁽¹⁾ It is mandatory to also provide for the water valve.

Water valves

3 way valve kit

Ver	100	170	250	350	450	550	650
., R	VCH						

2 way valve kit

Ver	100	170	250	350	450	550	650
	VCHD						

Installation accessories

Condensate drip

Model	Ver	100	170	250	350	450	550	650
BC10 (1)	.,R	•	•	•	•	•	•	•
BC20 (2)	.,R	•	•	•	•	•	•	•

Anti-vibration support feet

Ver	100	170	250	350	450	550	650
., R	-	-	AVM	AVM	AVM	AVM	AVM

The accessory cannot be fitted on the configurations indicated with -

Wall mounting kit

Ver	100	170	250	350	450	550	650
	-	-	SSR	SSR	SSR	SSR	SSR

The accessory cannot be fitted on the configurations indicated with -

External air sensor

Ver	100	170	250	350	450	550	650
, R	BMConverter						

⁽¹⁾ For vertical installation.(2) For horizontal installation.

Accessories

Plenum with multi-way flange

Model	Ver	100	170	250	350	450	550	650
PLS350		•						
PLS350E		•						
PLS350L		•						
PLS350LE		•	•	•	•			
LUSSOULE	R	•	•	•				
PLS350W (1)		•						
PLS350WE (1)		•						
PLS350WL (1)		•						
PLS350WLE (1)		•						
PLS650	.,R					•	•	•
PLS650E	.,R					•	•	•
PLS650L	.,R					•	•	•
PLS650LE	.,R					•	•	
PLS650W (1)	.,R					•	•	•
PLS650WE (1)	.,R					•	•	•
PLS650WL (1)	.,R					•	•	•
PLS650WLE (1)	.,R					•	•	•

⁽¹⁾ It is mandatory to also provide for the water valve.

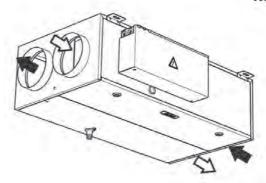
Plenum with 1-way flange

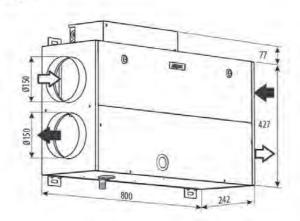
Model	Ver	100	170	250	350	450	550	650
PLSM350	.,R	•	•	•	•			
PLSM350E	.,R	•	•	•	•			
PLSM350L	.,R	•	•	•	•			
PLSM350LE	.,R	•	•	•	•			
PLSM350W (1)	.,R	•	•	•	•			
PLSM350WE (1)	.,R	•	•	•	•			
PLSM350WL (1)	.,R	•	•	•	•			
PLSM350WLE (1)	.,R	•	•	•	•			
PLSM650	.,R					•	•	•
PLSM650E	.,R					•	•	•
PLSM650L	.,R					•	•	•
PLSM650LE	.,R					•	•	•
PLSM650W (1)	.,R					•	•	•
PLSM650WE (1)	.,R					•	•	•
PLSM650WL (1)	.,R					•	•	•
PLSM650WLE (1)	.,R					•	•	•

⁽¹⁾ It is mandatory to also provide for the water valve; if you intend to use the system with post heating battery, or in any case in all those cases in which the air temperature in the channels could cause condensation on the external surfaces of the pipes, it is mandatory to adequately isolate the components of the system.

VMF system

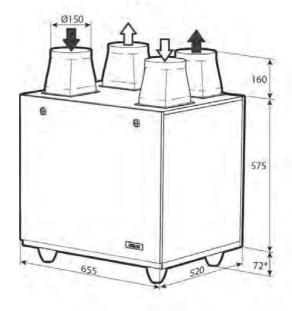
Model	Ver	100	170	250	350	450	550	650
VMF-E5B	.,R	•	•	•	•	•	•	•
VMF-E5N	.,R	•	•	•	•	•	•	•
VMF-VOC	.,R	•	•	•	•	•	•	•

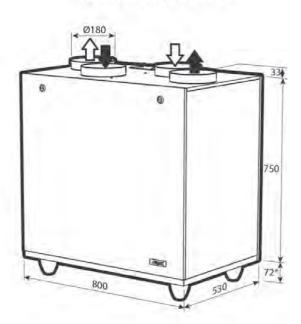

PERFORMANCE SPECIFICATIONS

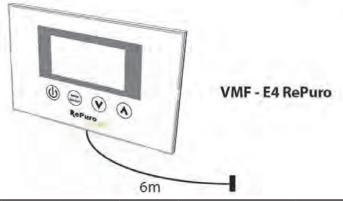

Size		100 (1)	170 (1)	250 (2)	350 (2)	450 (2)	550 (2)	650 (2)
Heat recovery unit	'							
Power supply					230V ~ 50Hz			
Summer recovery (3)								
Recovery efficiency	%	90	85	86	82	83	81	78
Recovered heating power	W	180	289	430	573	750	887	1015
Winter recovery (4)								
Recovery efficiency	%	94	91	91	89	90	88	87
Recovered heating power	W	957	1573	2329	3171	4118	4940	5734
General data								
SEC	kWh/(m²a)	-36	-38	-37	-40	-40	-40	-40
CLASS					A			
Total input power	W	45	65	160	180	220	280	360
Heat recovery unit performance								
Nominal air flow rate	m³/h	100	170	250	350	450	550	650
High static pressure	Pa	85	20	195	133	100	120	70

⁽¹⁾ Ceiling or wall installation
(2) Floor or wall installation
(3) Exhaust air temperature 26°C D.B., 50% R.H; Fresh air temperature 32°C D.B., 50% R.H.
(4) Exhaust air temperature 20°C D.B., 50% R.H; Fresh air temperature -10°C D.B., 80% R.H.

DIMENSIONS (MM) AND WEIGHTS

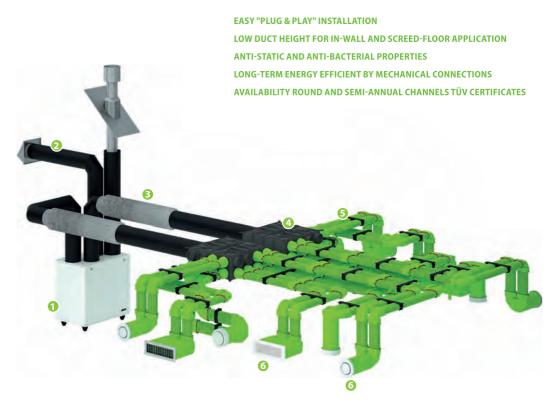

RePuro 100 - 170





RePuro 250 - 350

RePuro 450 - 550 - 650


Size			100 (1)	170 (1)	250 (2)	350 (2)	450 (2)	550 (2)	650 (2)
Dimensions and weights									
Empty weight	.,R	kg	25	25	48	48	55	55	55

⁽¹⁾ Ceiling or wall installation (2) Floor or wall installation

RePuropistribution

A complete range for air distribution which, combined with the innovative RePuro heat recovery and air purification units, provides designers, install-

ers and users with an efficient, practical installation solution that guarantees optimum comfort throughout the lifecycle of the system.

The picture is intended purely as an example of a system with semi-rigid, semi-oval, antibacterial ducts. This example consists of:

- 1 RePuro heat recovery units
- 2 Duct with fresh/exhaust air intake
- 3 Interconnection between RePuro and the distribution box
- 4 Hydronic box
- Air distribution with semi-rigid, semi-oval, antibacterial ducts
- 6 Terminals with designer intakes or grilles

In addition to point 5, the Aermec range also includes a further 2 air distribution systems:

- Air distribution with semi-rigid, round ducts
- Air distribution with rigid, rectangular ducts

For more information about all the types and solutions available, refer to the "AerDistribution" selection program and the technical documentation, both available at www.aermec.com

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.

Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

Heat recovery unit with enthalpy exchanger

- Compact dimensions
- Fans coupled to brushless Ec motors with low energy consumption
- Easy installation
- Horizontal installation

DESCRIPTION

The TRS heat recoveries, for horizontal inside installation allow the combination of maximum comfort with a safe energy saving.

It is more and more necessary in modern systems to create a forced ventilation, but also involves the expulsion of climate-controlled air, thus determining a higher energy consumption.

TRSintends to solve these problems using a static heat recovery unit that saves most of the energy that would otherwise be lost.

The unit adopts high-efficiency heat recovery with countercurrent flows which consists of flat sheets of special paper that allow you to recover both sensible and latent heat (humidity). Therefore, no condensate drip tray or the relative drain pipe is required.

The high static pressures available allow ducts to be mounted, thereby allowing the extraction or input of air across multiple environments simultaneously.

They can be integrated in the direct expansion and hydronic systems both in heating and cooling mode.

FEATURES

- Very compact units that can only be installed horizontally, which require simple maintenance of the heat exchanger and filters both removable from the side.
- Free-cooling in mid-season thanks to the automatic by-pass function;

- Centrifugal fans with Brushless EC motor, with the possibility to adjust the speed on 10 different levels through the obligatory accessory TR-SPTS1, touch screen control panel. In the absence of this accessory it will only be possible, by acting on the remote on-off contact, to operate the fans always at maximum speed;
- Built-in electrical panel with electronic board for the control of ventilation and free-cooling functions;
- Hexagonal-shaped enthalpy recovery unit to increase the exchange surface;
- Self-supporting panels in galvanized sheet with insulation, both internal and external. Access via the side door;
- ISO 16890 ePM₂₅ 95% efficiency class filter with synthetic cleanable media and COARSE 50% pre-filter on fresh air, COARSE 50% filter on return air intake:
- Pressure switch with integrated dirty filter signal;
- $\boldsymbol{--}$ Connections to funnels with plastic fittings;
- Silent operation;
- The installation does not require a condensate drain system.

ACCESSORIES

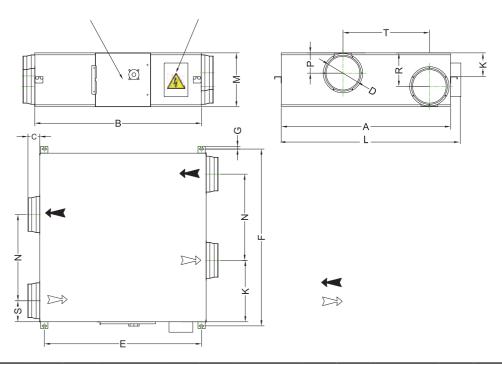
The following accessories are available for complete control of the TRS recovery units:

TRSPTS1: Control panel with Touch Screen. Mandatory accessory.

TRSQSW: Wall CO2 probe. **TRSUSW:** Wall humidity probe.

ACCESSORIES COMPATIBILITY

Accessory	TRS252	TRS352	TRS502	TRS652	TRS802	TRS1002	TRS1302
TRSPTS1	•	•	•	•	•	•	•
TRSQSW	•	•	•	•	•	•	•
TRSUSW	•	•	•		•	•	•


www.aermec.com

PERFORMANCE SPECIFICATIONS

		TRS252	TRS352	TRS502	TRS652	TRS802	TRS1002	TRS1302
Fans (1)								
Nominal air flow rate	m³/h	250	350	500	650	800	1000	1300
Nominal useful head	Pa	90	140	110	100	140	140	140
Maximum input power	A	0,5	0,6	0,6	1,2	1,4	2,1	2,7
Туре	type				EC			
Speed number	no.	10	10	10	10	10	10	10
SFP int.	W/(m ³ /s)	812,00	670,00	547,00	846,00	865,00	881,00	873,00
Maximum input power	kW	0,08	0,13	0,15	0,23	0,32	0,39	0,50
Sound data (2)								
Sound pressure level (1 m)	dB(A)	34,0	37,0	39,0	40,0	42,0	43,0	44,0
Heating performances (3)								
Winter thermal efficiency	%	73,0	74,0	76,0	74,0	76,0	76,0	74,2
Enthalpy winter efficiency	%	65,0	65,0	67,0	65,0	65,0	62,0	59,0
Cooling performances (4)								
Summer thermal efficiency	%	73,0	74,0	76,0	74,0	76,0	76,0	74,0
Summer enthalpy efficiency	%	62,0	62,0	63,0	60,0	63,0	60,0	58,0
Heat recovery unit								
Dry heating efficiency (5)	%	73,0	74,0	76,0	74,0	76,0	76,0	74,0
Power supply					230V~50Hz - 60Hz			

- (1) Performances referring to clean filters
 (2) Sound pressure level assessed at 1 m from suction / discharge ports and the inspection side at nominal conditions in free field.
 (3) Recovery air 20 °C 50%; External air 5 °C 80%.
 (4) Recovery air 26 °C 50%; External air 3 °C 50%.
 (5) Relation between the inlet air heating gain and the expulsion air heating loss, both relating to the outside temperature, measured in dry reference conditions, with balanced mass flow and an internal/external air heating difference of 20K, excluding the heating gain generated by the fan motors and the internal leakage.

DIMENSIONS AND WEIGHTS

Model								Dimensio	on / [mm]								Net weight / Gross weight [kg]
	A	В	(D	E	F	G	L	Ţ	K	М	N	Р	R	S	Υ	
TRS252	599	814	100	150	675	657	19	650	315	111	270	315	111	111	142	142	30/33
TRS352	804	814	100	150	675	862	19	855	480	111	270	480	111	111	162	162	37/41
TRS502	904	894	107	200	754	960	19	955	500	135	270	500	135	135	202	202	43/47
TRS652	884	1186	85	250	1115	940	19	945	428	170	388	428	170	170	228	228	65/70
TRS802	1134	1186	85	250	1115	1190	19	1200	678	170	388	678	170	170	228	228	71/76
TRS1002	1216	1199	85	250	1130	1273	19	1290	621	171	388	621	146	241	151	442	83/88
TRS1302	1216	1199	85	250	1130	1273	19	1290	621	171	388	621	146	241	151	442	83/88

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.

Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

Counter-current flow heat recovery unit with inverter motor

- Compact dimensions
- · EC fan Plug-fan
- Versions with water coil or electric for the post-heating
- Horizontal installation

DESCRIPTION

The RPLI heat recoveries, for horizontal inside installation allow the combination of maximum comfort with a safe energy saving.

It is more and more necessary in modern systems to create a forced ventilation, but also involves the expulsion of climate-controlled air, thus determining a higher energy consumption.

The unit is equipped with a counter-current heat recovery unit and allows an effective heat exchange between the expulsion air flow and fresh air that is pre-heated or pre-cooled, depending on the season, thus saving the energy that would otherwise be lost with the expelled exhaust air.

They can be integrated in the direct expansion and hydronic systems both in heating and cooling mode.

VERSIONS

Horizontal installation:

RPLI (L o P): L low, P high, useful static pressure RPLI_E: With electric heating coil.

RPLI W: With water coil:Cooled / hot

Also to be used with cooled water:

- For sizes 030-100 in flow orientation 1 (°);
- Sizes 070-100 with flow orientation 2 (X), in this configuration, the coil is not available for sizes 030-050;

The following can only be used with hot water:

Sizes 140-400 with any type of flow configuration (° and X).

FEATURES

- Plug-fan radial fan with EC motors;
- Aluminium plate counter-current flow heat recovery unit with heating efficiency in compliance with the European regulation 1253, housing in condensate collection basin;
- Ventilation by-pass of the external air flow equipped with internal damper, with free cooling and even anti-freeze function;
- Synthetic filter class M5 according to EN779 placed on the expelled air intake;
- Synthetic filter class F7 according to EN779 placed on the external air inlet;
- Filters fouling pressure switches assembled;
- Self-supporting sandwich panels in galvanised sheet metal with injected polyurethane insulation density 45 kg/m³ and a thickness of 25 mm.

- The polyurethane is in compliance with the standard UL 94 class HBF and the panel with the standard NF P 512: 1986 in class M1;
- Condensate collection basin in galvanised steel;
- Easy accessible fans, from bottom for the sizes 030-100, from the side for the sizes 140-400;
- Accessible filters, from the top and from the bottom for the sizes 030-100, from the side for the sizes 140-400;
- The fan can be controlled with a 0-10 Vdc controller, RVC or RVCL accessory

ACCESSORIES

Regulation

HRB: Electrical panel (IP56) to be installed outside the heat recovery unit. It is formed of a plastic electric box 300x220x120. It houses an electronic board for controlling the loads, 4 NTC temperature probes (6m long), a 4-pole serial cable + shield for connecting the control card to the user interface of the system, and an interface panel. Via the configuration of 10 DIP switches, the electronic board in the kit can control: an electric heater for pre-warming the air taken in from the room; up to 2 electric heaters (with cascade management) for the post-treatment of the fresh air delivered back into the room; a component for air purification (e.g. UV lamp, Plasmacluster, etc.).

RVC: Speed regulator supplied in n°2 pieces.

Additional modules

M4F: External module equipped with pre-filters class G4 (according to EN779) to be placed on the external air inlet.

MBF: External module with water cooling coil and condensate collection basin (only for sizes 140-400).

MBF_X: External module with water cooling coil and condensate collection basin (only for sizes 140X-400X).

MBP: Module with post-heating water coil.

MBE: Module with electric coil (anti-freeze and/or post-heating function).

MSU: Module equipped with silencer baffles. The accessory is supplied in n°1 piece.

FGC: Circular flanges. The accessory is supplied in n°1 piece.

Adjustment accessories

TWWV050: 3-way valve (the valve body only - does not include the pipe kit for connection to the heat recovery unit or external module with coil) PN16 KVS 1.0 DN15.

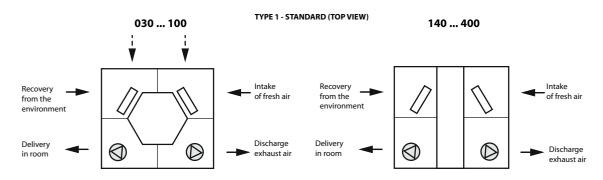
TWWV100: 3-way valve (the valve body only - does not include the pipe kit for connection to the heat recovery unit or external module with coil) PN16 KVS 2.5 DN15.

TWWV400: 3-way valve (the valve body only - does not include the pipe kit for connection to the heat recovery unit or external module with coil) PN16 KVS 6.3 DN20.

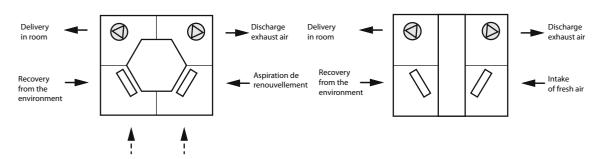
TF100: DN15 threaded couplings with shank and flat-seal idle nut for heat recovery unit / external module with coil.

TF400: DN20 threaded couplings with shank and flat-seal idle nut for heat recovery unit / external module with coil.

TWWVA: Actuator for 3-way valve 24V, for receiving ON-OFF or modulating commands (0-10V), for correct operation provide the VMF-MOD accessory. **FCDA:** Servomotor for free cooling damper.


CONFIGURATOR

Field	Description
1,2,3,4	RPLI
5,6,7	Size 030, 050, 070, 100, 140, 200, 300, 400
8	Version
L	Low useful static pressure
Р	High useful static pressure
9	Installation
0	Horizontal
10	Flow orientation
Х	Type 2
0	Type 1
11	Exchanger
E	Post-heating electric internal coil
W	Water coil (1)
0	No internal coil


⁽¹⁾ Can also be used with chilled water: with sizes 030-100 in flow orientation 1 (°), 070-100 in flow orientation 2 (X); the coil is not available for sizes 030-050 with flow orientation 2 (X). Sizes 140-400 can only

be used with hot water.

AVAILABLE ORIENTATION

TYPE 2 - TO BE REQUESTED DURING ORDER (TOP VIEW)

ACCESSORIES COMPATIBILITY

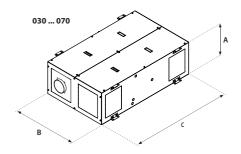
Regulation

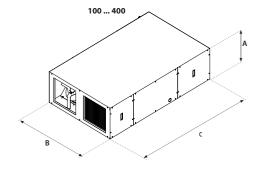
Regulation	mal (autoida tha h		w:4\					
Regulation and control pa Ver	030	050	070	100	140	200	300	400
L, P	HRB	HRB	HRB	HRB	HRB	HRB	HRB	HRB
peed regulator								
Ver	030	050	070	100	140	200	300	400
L	RVC40	RVCL	RVCL	RVC40	RVCL	RVC40	RVC40	RVC40
Р	RVC40	RVC40	RVC40	RVC40	RVC40	RVC40	RVC40	RVC40
dditional modules								
xternal module equipped	-							
Ver	030	050	070	100 M4F10	140	200	300	400
L, P	M4F03	M4F05	M4F07	M4F10	M4F14	M4F20	M4F30	M4F40
cternal module with wat Ver	er cooling coil 030	050	070	100	140	200	300	400
L, P	- 030	- 030	- 070	- 100	MBF14	MBF20	MBF30	MBF40
e accessory cannot be fitted on the co					IIIDI IT	MIDI 20	11101 30	11101 10
Ver	030	050	070	100	140	200	300	400
L, P	-	-	-	-	MBF14X	MBF20X	MBF30X	MBF40X
e accessory cannot be fitted on the co way valve kit	nfigurations indicated with	-						
cessory	MBF14	MBF14X	MBF20	MBF20X	MBF30	MBF30X	MBF40	MBF40X
VWV020	•	•	•	•				
VWV400					•	•	•	•
readed coupling	MDF14	MDF1 AV	MDF20	MDESOV	MDE20	MDESOV	MDE40	MDE40V
ccessory 100	MBF14 •	MBF14X	MBF20	MBF20X	MBF30	MBF30X	MBF40	MBF40X
400	<u> </u>	•	•	•	•	•	•	•
tuator for valves	,							
ccessory	MBF14	MBF14X	MBF20	MBF20X	MBF30	MBF30X	MBF40	MBF40X
VWVA	•	•	•	•	•	•	•	•
lodule with post-heating	water coil.							
Ver	030	050	070	100	140	200	300	400
L, P	MBP03	MBP05	MBP07	MBP10	MBP14	MBP20	MBP30	MBP40
odule with electric coil								
Ver	030	050	070	100	140	200	300	400
L, P	MBE03	MBE05	MBE07	MBE10	MBE14	MBE20	MBE30	MBE40
odule equipped with sile	encer baffles							
Ver	030	050	070	100	140	200	300	400
L, P	MSU03	MSU05	MSU07	MSU10	MSU14	MSU20	MSU30	MSU40
ircular flanges								
Ver	030	050	070	100	140	200	300	400
L, P	FGC030	FGC050	FGC070	FGC100	FGC140	FGC200	FGC300	FGC400
ccessories								
way valve kit								
Ver	030	050	070	100	140	200	300	400
L, P	TWWV050	TWWV050	TWWV100	TWWV100	TWWV400	TWWV400	TWWV400	TWWV400
readed coupling								
Ver	030	050	070	100	140	200	300	400
L, P	TF100	TF100	TF100	TF100	TF400	TF400	TF400	TF400
ctuator for 3-way valves								
Ver	030	050	070	100	140	200	300	400
L, P	TWWVA	TWWVA	TWWVA	TWWVA	TWWVA	TWWVA	TWWVA	TWWVA
ree cooling damper actua	ator							
Ver L, P	O30 FCDA	O50 FCDA	O70 FCDA	100 FCDA	T40 FCDA	200 FCDA	300 FCDA	400

PERFORMANCE SPECIFICATIONS

RPLI - L

Size	'	030	050	070	100	140	200	300	400
Heat recovery unit									
Power supply		230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	400V 3~50Hz
Unit type					UVNR (non-residen	tial ventilation un	it)		
Heat recovery system type	Type/n°				Static at counte	r-current flow / 1			
Heat capacity recovered (EN308) (1)	kW	1,6	2,4	3,6	4,8	7,1	10,0	14,9	19,7
Dry heating efficiency (2)	%	81,1	78,1	76,8	75,3	76,0	76,3	75,5	75,6
Information in compliance with Annex V of regula									
Nominal air flow rate supply / recovery	m³/s	0,08	0,13	0,19	0,26	0,39	0,54	0,82	1,08
Nominal air flow rate supply / recovery	m³/h	300	450	700	950	1400	1950	2950	3900
Minimum air flow rate	m³/h	200	250	400	550	800	1150	1750	2350
Fans (3)									
Commissioning	type				Analogue signal o	of EC fan (0-10Vdc)			
Туре	type					EC			
Number	no.	2	2	2	2	4	2	2	2
Supplied electrical power consumption	kW	0,07	0,09	0,14	0,21	0,33	0,45	0,47	0,73
Recovered electrical power consumption	kW	0,06	0,09	0,14	0,20	0,31	0,41	0,44	0,69
Total input electric power	kW	0,13	0,17	0,28	0,41	0,64	0,86	0,91	1,42
SFP int.	W/(m ³ /s)	820,00	953,00	907,00	1120,00	1132,00	1103,00	748,00	928,00
SFP int. lim. 2018	W/(m ³ /s)	1329	1234	1185	1131	1132	1118	1053	1015
Filters face velocity	m/s	0,8	1,2	1,0	1,4	2,2	2,2	1,9	2,5
Nominal external pressure Δp (3)	Pa	100	100	110	110	110	110	110	110
Useful static supply pressure	Pa	323	401	191	143	112	110	132	196
Useful static recovery pressure	Pa	328	416	198	161	154	149	164	242
Supplied internal pressure drop Δps int.	Pa	115	228	189	293	268	270	245	290
Recovered internal pressure drop Δps int.	Pa	110	213	182	274	228	230	213	244
Fans static efficiency (4)	%	35.8%	57.0%	57.0%	59.7%	57.0%	49.2%	67.2%	66.9%
Internal leakage (5)	%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%
External leakage	%	<3%	<3%	<3%	<3%	<3%	<3%	<3%	<3%
Air filter									
Expelled air filter	Type/n°				М	5/1			
Delivery air filter	Type/n°				F7	7/1			
Delivery filter energy classification					On re	equest			
Recovery filter energy classification					On re	quest			


⁽¹⁾ Expelled air: Tdb=25°C; Twb<14°C. Fresh air: Tdb=5°C.
(2) Relation between the inlet air heating gain and the expulsion air heating loss, both relating to the outside temperature, measured in dry reference conditions, with balanced mass flow and an internal/external air heating difference of 20K, excluding the heating gain generated by the fan motors and the internal leakage.
(3) Performances referring to clean filters
(4) According to regulation EU 327/2011
(5) External leakage test performed at +400 Pa and -400 Pa; internal leakage test performed at 250 Pa


RPLI - P

Size		030	050	070	100	140	200	300	400
Heat recovery unit									
Power supply		230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	400V 3~50Hz	400V 3~50Hz
Unit type					UVNR (non-resider	ntial ventilation uni	it)		
Heat recovery system type	Type/n°				Static at counte	r-current flow / 1			
Heat capacity recovered (EN308) (1)	kW	1,6	2,4	3,6	4,8	7,1	10,0	14,9	19,7
Dry heating efficiency (2)	%	81,1	78,1	76,8	75,3	76,0	76,3	75,5	75,6
Information in compliance with Annex V of regulation EU	no. 1253/2014								
Nominal air flow rate supply / recovery	m³/s	0,08	0,13	0,19	0,26	0,39	0,54	0,82	1,08
Nominal air flow rate supply / recovery	m³/h	300	450	700	950	1400	1950	2950	3900
Minimum air flow rate	m³/h	200	250	400	550	800	1150	1750	2300
Fans (3)									
Commissioning	type				Analogue signal	of EC fan (0-10Vdc)			
Туре	type					EC			
Number	no.	2	2	2	2	2	4	4	2
Supplied electrical power consumption	kW	0,04	0,08	0,11	0,22	0,35	0,41	0,55	0,87
Recovered electrical power consumption	kW	0,04	0,08	0,11	0,21	0,33	0,38	0,50	0,82
Total input electric power	kW	0,09	0,16	0,23	0,42	0,68	0,79	1,04	1,69
SFP int.	W/(m ³ /s)	543,00	903,00	694,00	1116,00	1095,00	918,00	770,00	999,00
SFP int. lim. 2018	W/(m ³ /s)	1329	1234	1185	1131	1132	1118	1053	1015
Filters face velocity	m/s	0,8	1,2	1,0	1,4	2,2	2,2	1,9	2,5
Nominal external pressure Δp (3)	Pa	100	100	125	125	145	145	150	150
Useful static supply pressure	Pa	506	338	279	638	412	469	462	303
Useful static recovery pressure	Pa	511	353	285	656	452	509	493	349
Supplied internal pressure drop Δps int.	Pa	115	228	189	293	268	270	245	290
Recovered internal pressure drop Δps int.	Pa	110	213	182	274	228	230	213	244
Fans static efficiency (4)	%	61,7	61,7	61,7	57,2	57,2	61,8	66,9	62,7
Internal leakage (5)	%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%
External leakage	%	<3%	<3%	<3%	<3%	<3%	<3%	<3%	<3%
Air filter									
Expelled air filter	Type/n°				М	5/1			
Delivery air filter	Type/n°				F	7/1			
Delivery filter energy classification					On re	equest			
Recovery filter energy classification					On re	equest			
(1) Expelled air: Tdb=25°C: Twb<14°C Fresh air: Tdb=5°C									

(1) Expelled air: Tobbe 25°C; Twb <14°C. Fresh air: Tdb=5°C.
(2) Relation between the inlet air heating gain and the expulsion air heating loss, both relating to the outside temperature, measured in dry reference conditions, with balanced mass flow and an internal/external air heating difference of 20K, excluding the heating gain generated by the fan motors and the internal leakage.
(3) Performances referring to clean filters
(4) According to regulation EU 327/2011
(5) External leakage test performed at +400 Pa and -400 Pa; internal leakage test performed at 250 Pa

DIMENSIONS AND WEIGHTS

Size		030	050	070	100	140	200	300	400
Dimensions and weights									
A	mm	400	400	435	435	460	460	600	600
В	mm	800	800	945	945	1100	1600	1700	2050
C	mm	1300	1300	1600	1600	1800	1800	2350	2350
Empty weight	kg	95	93	125	123	160	210	287	340

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

RTD

Thermodynamic recovery unit with integrated heat pump

Air flow rate 1100 - 3200 m³/h

- Compact dimensions
- Compressor with inverter
- EC fan Plug-fan
- · Fixed point adjustment in delivery
- Horizontal installation

DESCRIPTION

Is an air replacement, filtration and treatment unit equipped with high efficiency thermodynamic recovery performed by an integrated cooling circuit. The inverter compressor allows a high energy saving at the same time as maintaining the set delivery temperature.

The unit can be integrated in the direct expansion and hydronic systems both in heating and cooling mode.

FEATURES

Versions

Horizontal installation:

- **RTD**: Standard unit with constant flow-rate control.
- RTD_Q: Units with flow modulation according to the concentration of CO₂
- RTD_W: Unit with internal hot/cold water coil complete with three-way valve, modulating servo-control and anti-freeze thermostat.

Main components

- Cooling circuit **BLDC inverter compressor.**
- Plug fans with EC inverter motor.
- Safety valve.
- Lower sandwich panels in galvanised sheet metal with injected polyurethane insulation; upper and side panel in galvanised sheet metal internally lined with insulating mat
- Synthetic filter class Coarse 85% according to EN16890 on the outside air inlet complete with fouling detection pressure switch.

— Condensate collection tank in aluminium alloy with side discharge.

Regulation

- **Power and control electrical panel** on the machine.
- Programmable controller able to manage all the advanced functions present on the unit (with fixed point adjustment in delivery; cooling, heating, automatic, free cooling functions; compressor, fans and eventual water coil modulation).
- Remote panel (mandatory accessory)) in graphic display version or Touch version.

ACCESSORIES

CPVR: Recovery fan constant air flow rate control (accessory supplied separately; the function is enabled on the controller).

PRGD1: Control panel for wall or flush-mount installation with graphic display. Maximum installation distance of 10m.

PRGDX: Touch screen control panel for wall or flush-mount installation complete with black and white frame. Maximum installation distance of 150m.

MRE: Single-stage anti-freeze electric heater module 2 kW to be installed on the external air intake (required for outdoor air temperatures below -5° C). **MF:** Coarse 85% efficiency filters module (EN16890) to be positioned in recovery (side extraction) complete with filter clogging pressure switch.

■ The remote controller is required for unit operation, it is possible to select between PRGD1 and PRGDX.

ACCESSORIES COMPATIBILITY

Recovery fan constant air flow rate control and xontrol panel

Model	Ver	11	14	17	21	26	32
CPVR (1)	.,Q,QW,W	•	•	•	•	•	•
PRGD1 (2)	.,Q,QW,W	•	•	•	•	•	•
PRGDX	0.0W.W						

Anti-freeze electric heater module

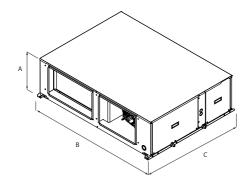
Model	Ver	11	14	17	21	26	32
MRE2M	.,Q,QW,W	•	•				
MRE3M	.,Q,QW,W			•			
MRE3T	.,Q,QW,W				•		
MRE5T	.,Q,QW,W					•	•

Coarse 85% efficiency filters module (EN16890)

Model	Ver	11	14	17	21	26	32
MF5R1	.,Q,QW,W	•	•				
MF5R2	.,Q,QW,W			•	•		
MF5R3	.,Q,QW,W					•	•
MF7M1	.,Q,QW,W	•	•				
MF7M2	.,Q,QW,W			•	•		
MF7M3	.,Q,QW,W					•	•

CONFIGURATOR

Field	Description	
1,2,3	RTD	
4,5	Size 11, 14, 17, 21, 26, 32	
6	Ventilation control type	
Q	Control via air quality probe	
0	Constant flow (standard unit)	
7	Internal hot/cold water coil	
W	Internal water coil	
0	No coil (standard unit)	


⁽¹⁾ Accessory supplied separately.
(2) The remote controller is required for unit operation, it is possible to select between PRGD1 and PRGDX.

PERFORMANCE SPECIFICATIONS

		RTD11	RTD14	RTD17	RTD21	RTD26	RTD32
Air flow rates							
Nominal air flow rate	m³/h	1100	1400	1700	2100	2600	3200
Minimum air flow rate	m³/h	950	1200	1450	1800	2200	2700
Maximum air flow rate	m³/h	1200	1550	1850	2300	2850	3500
Delivery fan							
Туре	type	Plug-fan	Plug-fan	Plug-fan	Plug-fan	Plug-fan	Plug-fan
Fan motor	type	EC Inverter motors	EC Inverter motors	EC Inverter motors	EC Inverter motors	EC Inverter motors	EC Inverter motors
Number	no.	1	1	1	1	1	1
Nominal useful head	Pa	150	150	150	150	150	150
Maximum useful head	Pa	510	580	520	360	570	380
Cooling input power	kW	0,19	0,20	0,23	0,32	0,43	0,62
Heating input power	kW	0,18	0,18	0,22	0,30	0,39	0,56
Expulsion fan		·					
Туре	type	Plug-fan	Plug-fan	Plug-fan	Plug-fan	Plug-fan	Plug-fan
Fan motor	type	EC Inverter motors	EC Inverter motors	EC Inverter motors	EC Inverter motors	EC Inverter motors	EC Inverter motors
Number	no.	1	1	1	1	1	1
Nominal useful head	Pa	150	150	150	150	150	150
Maximum useful head	Pa	530	600	520	370	590	400
Cooling input power	kW	0,17	0,16	0,19	0,27	0,33	0,46
Heating input power	kW	0,18	0,18	0,22	0,31	0,39	0,54
Performance in cooling mode at maximum com	pressor speed (1)						
Cooling capacity	kW	6,70	8,00	8,80	11,20	14,10	16,30
Sensible cooling capacity	kW	5,70	6,80	7,80	9,80	12,10	13,80
Compressors absorbed power	kW	1,80	2,20	2,30	3,20	4,00	4,50
Total input power EN14511 2017	kW	2,09	2,43	2,58	3,55	4,48	5,15
EER EN14511:2017	W/W	3,20	3,30	3,42	3,16	3,14	3,16
EER	W/W	3,11	3,15	3,24	2,96	2,95	2,92
Performance in heating mode at maximum com	pressor speed						
Heating capacity	kW	7,70	9,30	10,60	13,80	16,90	20,00
Compressors absorbed power	kW	1,60	2,00	2,20	2,90	3,30	4,10
COP refrigerant circuit	W/W	4,83	4,64	4,82	4,74	5,12	4,87
COP EN14511:2017 (2)	W/W	4,07	4,13	4,26	4,20	4,45	4,18
COP	W/W	3,94	3,92	4,02	3,91	4,15	3,84
Total input power EN14511 2017	kW	1,90	2,20	2,50	3,30	3,80	4,80
Total input power	kW	2,00	2,40	2,60	3,50	4,10	5,20
Compressor							
Туре	type	Twin-rotary BLDC	Twin-rotary BLDC	Twin-rotary BLDC	Twin-rotary BLDC	Twin-rotary BLDC	Twin-rotary BLDC
Compressor regulation	Type	Inverter	Inverter	Inverter	Inverter	Inverter	Inverter
Number	no.	1	1	1	1	1	1
Refrigerant	type	R410A	R410A	R410A	R410A	R410A	R410A
Electric data	М.	· · · · · · · · · · · · · · · · · · ·					
Input power at full load	kW	4,30	4,50	4,50	5,30	6,10	6,10
Input current at full load	A	14,40	13,80	13,80	17,90	16,90	16,90
Power supply	**		-/	-7	r	- 17	-,

⁽¹⁾ Cooling mode: aire temperature 35°C Tbs / 24°C Tbh ; ambient air 27°C Tbs /19°C Tbh. (2) Heating mode: aire temperature 7°C Tbs /6°C Tbh ; ambient air 20°C Tbs /15°C Tbh.

DIMENSIONS

Size			11	14	17	21	26	32
Dimensions and weights	'							
A	.,Q,QW,W	mm	430	430	530	530	630	630
В	.,Q,QW,W	mm	1508	1508	1508	1508	1508	1508
(.,Q,QW,W	mm	1100	1100	1100	1100	1100	1100
		kg	133	135	148	160	179	179
Empty waight	Q	kg	135	137	150	162	181	181
Empty weight	QW	kg	135	142	161	172	197	197
	W	kg	140	142	159	170	195	195
Weight functioning		kg	133	135	148	160	179	179
	Q,QW,W	kg	-	-	-	-	-	-

RPF

High performance heat recovery unit with cross-current recuperator

Air flow rate 790 - 4250 m3/h

- Cross-current heat recovery with performances superior than 90%
- Plug fans coupled with ec brushless motors for energy costs reduction

DESCRIPTION

Heat recovery units RPF have been designed for commercial applications and permits to combine an excellent ambient comfort with a sure energy saving.

It is more and more necessary in modern systems to create a forced ventilation, but also involves the expulsion of climate-controlled air, thus determining a higher energy consumption.

The units RPF thanks to the cross-current heat recuperator permit to save more than 90% of energy which otherwise would be lost with expelled stuffy air.

RPF could be integrated with traditional systems realized with fan coils, chillers, and could work both in winter and in summer. This series is indicated for both horizontal and vertical installation.

CONFIGURATIONS

O Horizontal right supply

P Horizontal left supply

 ${\bf V} \ {\bf Vertical} \ {\bf right} \ {\bf supply}$

Z Vertical left supply

Each of the different configurations could be further customized thanks to the choice of the accessories.

For further information, please refer to the technical documentation on the website.

STRUCTURE

The structure is formed by aluminium profiles with thermic cut, connected by nylon angles charged with glassfibre.

The sealing panels, of 50 mm thickness, are of the sandwich type in pre-painted plate RAL 9002 (external) and galvanized sheet iron (internal) insulated with polyurethane with density 45 kg/m³. The expandent of the polyurethane foam is based on water permitting to reach GWP=0 (Global Warming Potential).

The casing is in fire reaction class M1 according to the French regulation NF P 92-512:1986. Removable panels are also foreseen to access to internal components, equipped with safety locks, condensate drain and internal modulating rolling shutter of motorized and controlled bypass for free-cooling.

Fans

Fans of supply and extract of plug-fan-type with synchronous motor with electronic control permanent magnetos (EC). The impellers are oriented in such a way to grant an optimal air flow which goes through the internal components, with the minimum noise.

Air filters

Air filtration with a filter with G4 efficiency (according to EN779) with low pressure drops on extracted air flow and a compact filter and with efficiency F7 (according to EN779) having a large filtrating surface made of glass microfibre paper, inserted in the intake flow.

The two typologies of filters are positioned upstream of the components to be protected, in order to grant low pressure drops, having a large surface available. The filtrating cells are fixed on a proper bearing frame to avoid any by-pass of non-treated air.

Their extractability is guaranteed from a proper side opening (standard), superior or inferior (optional) [with reference to the horizontal version].

Heat recovery unit

Static high efficiency cross-current heat recovery unit with high efficiency and aluminium plate.

The heat recovery unit guarantees the non-contamination of air flows, because the plates are properly sealed. Its performance is not inferior to 90% (EN308) in function to the external conditions: Air of intake: -10°C/90% - Air of extract 20°C/50% and equal capacities between supply and extract.

It is included also the function of automatic defrosting made easy by the internal modulating rolling shutter and from the possible modulation with intake flow.

REGULATION

Costituted by power electric panel and programmacontroller with integrated display. Everything graphic is internally fitted in the unit in an accessible position. The function of regulation are:

- Ventilation control (manual control of the standard fans speed);
- Thermo-regulation completed with all electric/electronic components (modality of regulation in standard extract);

- Integrated logics of energy savings: modulating free-cooling / free-heating, anti-freeze, night cooling, air quality control, dynamic set point, speed economy of ventilation, ranges of time;
- Complete interfaceability with BMS systems.

FUNCTIONALITY AND TECHNOLOGICAL ADVANTAGES

The elimination from closed rooms of the polluting elements, produced mainly from people and the simultaneous external air input, are at the basis of the concept of controlled mechanical ventilation (VMC) of the internal rooms.

The purpose of ventilation is to raise the standard of internal air quality with consequent positive effects for health and productivity of the occupiers. The change of air has positive effects also on the good maintenance of the building.

For the building to be requalified, the Controlled Mechanical Ventilation is almost a mandatory choice in order to reach high energy standards, which are imposed by the current legislation.

Very high ventilation efficiency

Since the ventilation represents one of the major factor of energy consumption, particular attention has been given to the study and to the creation of the ventilation system.

Fans of the plug-fan type with EC brushless motors have been used both in supply and in extraction; they permit high performances and reduced consumptions. Furthermore, compared with the traditional centrifugal fans, they don't have belts or pulleys with consequent easiness of capacity regulation, compactness, versatility, and an easy maintenance.

A particular adaptative logic permits to adjust the effective air capacity required from the system with more consequent advatages in terms of reduction of consumptions.

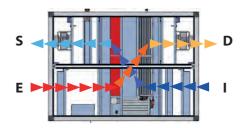
Maximum efficiencies

In this context RPF is proposed as the high efficient and performing solution for double flow ventilation systems with heat recovery.

The key-concept on which is based the RPF proposal are:

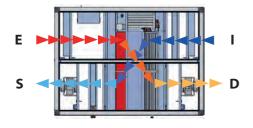
- Very high efficiency heat recovery attested by EUROVENT certification and maintenance of the complete separation of intake and discharge air flow:
- Reduced ventilation energy consumptions, thanks to a detailed dimensioning of the components in order to have low total values of SFP (Specific Fan Power or rather energy consumption for m³/h of total processed capacity);
- High efficiency filtration and low pressure drops;
- Advanced electronic management for the energy saving and of controlling of internal pollutants functions VOC (Volatile Organic Compounds);
- Compactness of dimensions and logic of installation "plug and play".

Air quality in room

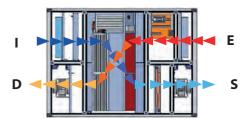

Particular attention has been given naturally also to the quality of air in the room, standard assigned to filters with efficiency G4 on extracted air flow and on compact filter with efficiency F7 included on intake air flow.

Naturally all these technological advantages are controlled by a thermoregulation of last generation, able to manage the different working procedures; assuring the maximum energy saving in every usage condition by using a proper software.

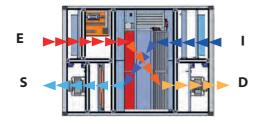
BASIC CONFIGURATION


RPF O Horizontal conÿguration

Right supply (seen from above)


RPF P Horizontal conÿguration

Left supply (seen from above)


RPF V Vertical conÿguration

Right supply (seen from the accessible side)

RPF Z Vertical conÿguration

Left supply (seen from the accessible side)

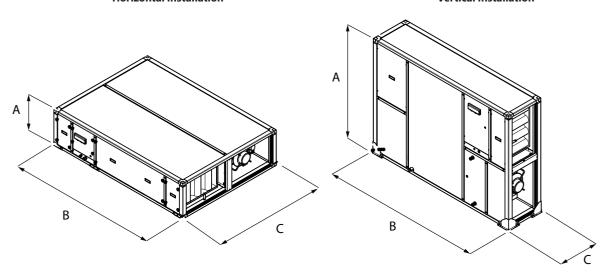
D = Discharge

I = Intake

S = Supply

E = Extract

PERFORMANCE SPECIFICATIONS


		RPF008	RPF010	RPF013	RPF020	RPF031	RPF042	
Heat recovery unit								
Power supply			230V-	~50Hz		400V 3	~50Hz	
Unit type		UVNR (non-residential ventilation unit)						
Heat recovery system type	Type/n°			Static at counte	r-current flow / 1			
Heat capacity recovered (EN308) (1)	kW	4,2	5,4	7,0	10,7	16,6	22,8	
Dry heating efficiency (2)	%	80,0	79,9	80,0	79,9	79,9	83,8	
Information in compliance with Annex V of r)14						
Nominal air flow rate supply / recovery	m³/s	0,22	0,28	0,36	0,56	0,86	1,18	
Nominal air flow rate supply / recovery	m³/h	790	1000	1300	2000	3100	4250	
Minimum air flow rate	m³/h	200	200	400	1000	1000	1300	
Maximum air flow rate	m³/h	980	1260	1530	2350	3700	4600	
Fans (3)								
Commissioning	type			Analogue signal o	of EC fan (0-10Vdc)			
Гуре	type				EC			
lumber	no.	2	2	2	2	2	2	
supplied electrical power consumption	kW	0,16	0,24	0,33	0,60	0,79	1,30	
Recovered electrical power consumption	kW	0,15	0,23	0,33	0,56	0,76	1,20	
otal input electric power	kW	0,31	0,47	0,66	1,16	1,55	2,50	
Maximum input power	kW	0,60	1,24	1,26	1,66	5,26	5,26	
Maximum input power	A	4,6	7,5	7,5	9,3	11,1	11,1	
SFP int.	W/(m ³ /s)	625,00	667,00	743,00	1142,00	919,00	1211,00	
GFP int. lim. 2018	W/(m³/s)	1127	1118	1109	1227	1031	1253	
ilters face velocity	m/s	1,8	2,0	1,8	2,2	2,2	2,1	
Nominal external pressure Δp (3)	Pa	200	250	250	250	250	225	
Jseful static supply pressure	Pa	191	218	169	134	215	143	
Jseful static recovery pressure	Pa	196	233	175	152	255	184	
Supplied internal pressure drop Δps int.	Pa	174	198	219	319	304	372	
Recovered internal pressure drop Δps int.	Pa	176	189	227	355	293	379	
ans static efficiency (4)	%	61,7	57,2	57,2	61,8	66,9	62,7	
nternal leakage (5)	%	0,3	0,3	0,3	0,1	0,3	0,2	
External leakage	%	<3	<3	<3	<3	<3	<3	
Air filter								
Delivery filter energy classification					В			
Recovery filter energy classification				On re	quest			

⁽¹⁾ Expelled air: Tdb=25°C; Twb<14°C. Fresh air: Tdb=5°C.
(2) Relation between the inlet air heating gain and the expulsion air heating loss, both relating to the outside temperature, measured in dry reference conditions, with balanced mass flow and an internal/external air heating difference of 20K, excluding the heating gain generated by the fan motors and the internal leakage.
(3) Performances referring to clean filters
(4) According to regulation EU 327/2011
(5) External leakage test performed at +400 Pa and -400 Pa; internal leakage test performed at 250 Pa

DIMENSIONS

RPF 008 - 031 **Horizontal Installation**

RPF 008 - 042 **Vertical Installation**

Size			008	010	013	020	031	042
Dimensions and weights								
Λ.	0,P	mm	450	450	524	560	700	-
A	V,Z	mm	1054	1258	1374	1694	1948	1550
n	0,P	mm	1915	1915	2174	2334	2654	-
)	V,Z	mm	1915	1915	2174	2334	2654	2974
	0,P	mm	1054	1258	1374	1694	1948	-
C	V,Z	mm	450	450	524	560	700	1130
	0,P	kg	194	220	264	328	452	-
Empty weight	V,Z	kg	194	220	264	328	452	585

[■] The weights are standard configuration units without accessories.

URX-CF

Heat recovery unit with refrigerant circuit

Air flow rate 750 - 3300 m³/h

· Heat pump cooling circuit with high yield and low noise scroll compressors.

The URX-CF series is the mono-bloc solution designed for the installation requirements typical for public spaces like bars, restaurants, offices, meeting rooms.

The URX-CF units combine in one mono-bloc unit, besides the fan, filter, and heat recovery sections, a heat pump refrigerant circuit with scroll compressors of high output and low noise.

The supply air is heated or cooled, based on the season, through the heat pump refrigerant circuit located within the unit and charged with refriger-

This allows for a complete machine, with autonomous operation during every season and able to provide both the required air renewal for rooms and an efficient heat recovery.

The careful design of the machine combines very compact dimensions, which permit easy installation in false ceilings, with an excellent accessibility for maintaining all the internal components.

FEATURES

Self-supporting sandwich panel 20 mm thick in galvanised steel for internal and external surfaces with injected polyurethane insulation (density 40 kg/ m^3).

Heat recovery

Cross flow plate heat exchanger in aluminium with outputs over 50% in winter conditions.

Air filters

Class G4, located before the heat recovery both in the supply and return air flow.

Double inlet forward curved blades with direct drive motor. Single phase 230V-50Hz single speed motor. The air flow is controlled, within \pm 15% of the nominal, through an electronic speed controller supplied as standard.

Refrigerant circuit

Heat pump complete with high efficiency low noise scroll compressors, 4 way refrigerant cycle reversing valve, evaporator coil, condenser coil, liquid receiver, liquid separator, double thermostatic expansion valve, liquid sight glass (only for models 150, 210, 330), filter drier, high/low pressure presso-

Accessibility

From below for the heat recovery, the filters, the condensate drain tray and the fans.

The unit is provided with an electrical panel complete with power and control section (included the control for the 3 way valve for the supplementary hot water coil and associated actuators), ensuring the control of all the refrigerant circuit functions.

Included are:

- NTC return air temperature sensor;
- External air temperature sensor;
- Dampers and actuators in the free-cooling version;
- Pressure switch in the supply air filter;
- Card RS485

Supplied loose is a remote mounted control terminal for automatic control of the unit and an outlet to power and control a light to conform with the current regulation for smoking zones.

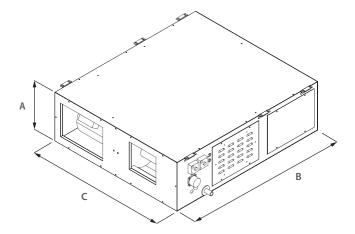
ACCESSORIES COMPATIBILITY

SUF33

Circular flanges					
Accessory	URX07CF	URX10CF	'	URX15CF	URX21CF
FGC07	•	'		,	
FGC10		•			
FGC15				•	
FGC21					•
Hot water coil module					
Accessory	URX07CF	URX10CF	URX15CF	URX21CF	URX33CF
MBC07	•				
MBC10		•			
MBC15			•		
MBC21				•	
MBC33					•
Free-cooling module					
Accessory	URX07CF	URX10CF	URX15CF	URX21CF	URX33CF
FCE07	•	'		,	
FCE10		•			
FCE15			•		
FCE21				•	
FCE33					•
Module with electric co	pil				
Accessory	URX07CF	URX10CF	URX15CF	URX21CF	URX33CF
MBX07	•				
MBX10		•			
MBX15			•		
MBX21					
MBX33					•
Module equipped with	silonear hafflas				
Accessory	URX07CF	URX10CF	URX15CF	URX21CF	URX33CF
SUF07	•	0101104	0.0	0111210	01010041
SUF10		•			
SUF15			•		
SUF21				•	
CUE22					

PERFORMANCE SPECIFICATIONS

		URX07CF	URX10CF	URX15CF	URX21CF	URX33CF
Heat recovery unit						
Power supply		230V~50Hz	230V~50Hz	400V~ 3N 50Hz	400V~ 3N 50Hz	400V~ 3N 50Hz
Cooling performances (1)						
Total cooling capacity (heat recovery + refrigerant circuit)	kW	6,1	7,3	10,2	15,0	23,0
Cooling capacity available	kW	1,4	1,7	2,2	3,4	5,1
Cooling capacity recovered	kW	0,9	1,3	2,0	2,8	4,2
Summer thermal efficiency	%	46,2	51,2	53,2	53,6	53,6
Total input power	kW	2,60	2,80	3,80	5,00	6,90
Heating performances (2)						
Heating capacity total (heat recovery + refrigerant circuit)	kW	8,8	10,8	15,8	22,8	33,3
Heating capacity available	kW	2,4	2,3	3,0	4,8	5,2
Recovered heating power	kW	2,9	4,3	7,1	10,1	14,3
Winter thermal efficiency	%	46,2	51,2	53,2	53,6	53,6
Total input power	kW	2,00	2,00	3,30	4,00	5,50
Compressor						
Туре	type	Scroll	Scroll	Scroll	Scroll	Scroll
Compressor regulation	Туре	On-Off	On-Off	On-Off	On-Off	On-Off
Number	no.	1	1	1	1	1
Refrigerant	type	R410A	R410A	R410A	R410A	R410A
Refrigerant charge (3)	kg	2,4	2,9	3,0	3,7	4,5
Delivery fan						
Туре	type	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal
Number	no.	1	1	1	1	1
Nominal air flow rate	m³/h	750	1000	1500	2100	3300
Minimum air flow rate	m³/h	640	850	1275	1785	2800
High static pressure	Pa	278	233	239	166	289
Total fan input power	kW	0,37	0,42	0,51	0,62	1,25
Total fan input current	A	2,4	2,4	3,6	3,6	6,6
Recovery fan						
Туре	type	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal
Number	no.	1	1	1	1	1
Nominal air flow rate	m³/h	750	1000	1500	2100	3300
Minimum air flow rate	m³/h	640	850	1275	1785	2800
High static pressure	Pa	248	218	233	163	273
Total fan input power	kW	0,37	0,42	0,51	0,62	1,25
Total fan input current	Α	2,4	2,4	3,6	3,6	6,6


⁽¹⁾ Recovery air 26 °C 50%; External air 34 °C 50%.
(2) Recovery air 20 °C 50%; External air 5 °C 80%.
(3) The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

		URX07CF	URX10CF	URX15CF	URX21CF	URX33CF
Hot water coil (accessory)						
Row	no.	2	2	2	2	2
Pressure drop - air side	Pa	11	18	23	42	78
Heating operations 70 °C / 60 °C (1)						
Heating capacity	kW	5,00	6,00	8,70	10,30	16,80
Water flow rate	l/h	442	523	763	902	1475
Pressure drop	kPa	16	22	9	12	31
Heating operations 45 °C / 40 °C (2)						
Heating capacity	kW	1,90	2,20	3,40	3,70	7,50
Water flow rate	l/h	336	382	584	638	1306
Pressure drop	kPa	11	14	6	7	28

⁽¹⁾ Water temperature (in/out) 70°C / 60°C; Compressor operating. (2) Water temperature (in/out) 45°C / 40°C; Compressor operating.

		URX07CF	URX10CF	URX15CF	URX21CF	URX33CF
Electric heating coil - (accessory)						
Power supply				400V 3 ~ 50Hz		
Stages	no.	1	1	1	1	1
Heating capacity	kW	3,00	4,50	6,00	9,00	12,00
Input current	A	4,6	6,8	11,4	17,2	26,0
Pressure drop - air side	Pa	10	10	10	10	10

DIMENSIONS

		URX07CF	URX10CF	URX15CF	URX21CF	URX33CF
Dimensions and weights						
A	mm	450	450	550	550	600
В	mm	1300	1300	1500	1500	1600
(mm	1500	1500	1800	1800	1800
Empty weight	kg	205	218	272	298	328

■ The weights are standard configuration units without accessories.

URHE-CF

Heat recovery unit with refrigerant circuit

Air flow rate 1000 - 3300 m³/h

- · Heat pump cooling circuit with high yield and low noise scroll compressors.
- High efficiency

The units of the series URHE-CF are a highly efficient solution for satisfying the requirements of thermohygrometric wellness and air changes in air conditioning systems that are used in civil and service sector environments such as offices, bars, restaurants, etc.

The URHE-CF units are perfectly efficient machines in that they use a high performance plate cross flow heat recovery unit together with a heat pump refrigerant circuit operating with the R410A. refrigerant.

The use of the high performance cross flow heat recovery unit allows you to substantially reduce the start-up period of the refrigerant circuit during the year, thereby minimizing electrical energy consumption.

The unit's small size makes it easy to install also in false ceilings, maintaining excellent accessibility for the upkeep of all its internal components.

The numerous accessories that are available upon request, like for example the compact high efficiency filters, the water coils or the silencers, complete the functions of the machine that is generally combined with an air conditioning system.

FEATURES

Panels

Structure made of aluminium profiles with fibreglass reinforced nylon cor-

Sandwich panels, 25 mm thick, in galvanised sheet metal for the inner surface, pre-painted for the external surface with injected polyurethane insulation (density 42 kg/m³).

Heat recovery

Aluminium cross flow plates optimised to guarantee elevated performance.

Air filters

Class G4, 80% gravimetric efficiency, according to EN 779, thickness 48 mm, located before the heat recovery both in the supply and return air flow.

Centrifugal fans with forward-curved blades with high pressure head motor directly attached. The air flow rate is kept constant by means of an electronic control device.

Refrigerant circuit

Heat pump with R410A refrigerant, equipped with high performance, quiet rotary or scroll compressors (depending on the size), 4-way cycle inversion valves, evaporator coil, condenser coil, liquid receiver, thermostatic valve, liquid indicator, filter-drier, high pressure switch, low pressure switch, safety valve, bypass valve (for smaller sizes).

The unit is provided with an electrical panel complete with power and control section (included the control for the 3 way valve for the supplementary hot water coil and associated actuators), ensuring the control of all the refrigerant circuit functions.

Included are:

- NTC return air temperature sensor;
- External air temperature sensor;
- Dampers and actuators in the free-cooling version;
- Pressure switch in the supply air filter;
- Card RS485

Supplied loose is a remote mounted control terminal for automatic control of the unit and an outlet to power and control a light to conform with the current regulation for smoking zones.

ACCESSORIES COMPATIBILITY

Hot water coil module

Accessory	URHE10CF	URHE15CF	URHE25CF	URHE33CF
MBCH1	•	•	•	·
MBCH2				•

	 		• •
MAG	with	electric	COIL

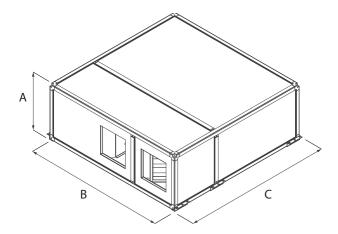
violule with electric ton				
Accessory	URHE10CF	URHE15CF	URHE25CF	URHE33CF
IBCX1	•			
BCX2		•		
BCX3			•	
BCX4				•
7 compact high efficiency filt				
ccessory	URHE15CF	URHI	25CF	URHE33CF
T1	•			
T2		<u> </u>	•	
T3				•
odule equipped with silence	er baffles.			
cessory	URHE10CF	URHE15CF	URHE25CF	URHE33CF
SS1	•	•	•	
SS2				•
ree-cooling module	HDHE40CE	UDUE45CE	HDHESECE	HDHEARE
cessory	URHE10CF	URHE15CF	URHE25CF	URHE33CF
E1	•	•	•	•
ase for floor installation.				
	URHE10CF	URHE15CF	URHE25CF	URHE33CF
	UNTETUCE	OHILITO		
Ī1	• OKNETUCE	•		
Ī1			•	
T1 T2			•	
TT 1 TZ 1 T3	•		•	
TI T2 T3 T3 T3 T5 T6 T6 T7 T6 T7	ne additional modules.	•		
T1 T2 T3 T3 T3 T5 T6 T6 T7 T6 T7	ne additional modules. URHE10CF	• URHE15CF	URHE25CF	URHE33CF
TT TZ T3 ase for floor installation of th	ne additional modules.	•		
T1 T2 T3 T3 ase for floor installation of thecessory M1	ne additional modules. URHE10CF	• URHE15CF	URHE25CF	URHE33CF
T1 T2 T3 T3 T3 T5 T6 T7 T6 T7	• ne additional modules. URHE10CF •	• URHE15CF •	URHE25CF •	URHE33CF •
TI TZ TZ TS	e additional modules. URHE10CF URHE10CF	URHE15CF URHE15CF	URHE25CF	URHE33CF
T1 T2 T3 T3 T3 T5 T6 T6 T7	• ne additional modules. URHE10CF •	• URHE15CF •	URHE25CF • URHE25CF	URHE33CF •
T1 T2 T3 T3 T3 T5 T6 T7	e additional modules. URHE10CF URHE10CF	URHE15CF URHE15CF	URHE25CF •	URHE33CF •
TI TZ TZ TS	e additional modules. URHE10CF URHE10CF	URHE15CF URHE15CF	URHE25CF • URHE25CF	URHE33CF • URHE33CF
TI T	DE ADDITIONAL MODULES. URHE10CF URHE10CF Of the additional modules.	URHE15CF • URHE15CF •	URHE25CF • URHE25CF •	URHE33CF URHE33CF
TI T	one additional modules. URHE10CF URHE10CF Of the additional modules. URHE10CF	URHE15CF URHE15CF URHE15CF	URHE25CF URHE25CF URHE25CF	URHE33CF • URHE33CF
TI T	DE ADDITIONAL MODULES. URHE10CF URHE10CF Of the additional modules.	URHE15CF • URHE15CF •	URHE25CF • URHE25CF •	URHE33CF URHE33CF URHE33CF
TI T	one additional modules. URHE10CF URHE10CF Of the additional modules. URHE10CF	URHE15CF URHE15CF URHE15CF	URHE25CF URHE25CF URHE25CF	URHE33CF URHE33CF
TI T	one additional modules. URHE10CF URHE10CF Of the additional modules. URHE10CF	URHE15CF URHE15CF URHE15CF	URHE25CF URHE25CF URHE25CF	URHE33CF URHE33CF URHE33CF
TI T	one additional modules. URHE10CF URHE10CF Of the additional modules. URHE10CF	URHE15CF URHE15CF URHE15CF	URHE25CF URHE25CF URHE25CF	URHE33CF URHE33CF URHE33CF
TI T	URHE10CF URHE10CF URHE10CF URHE10CF URHE10CF URHE10CF URHE10CF URHE10CF URHE10CF	URHE1SCF URHE1SCF URHE1SCF URHE1SCF	URHE25CF URHE25CF URHE25CF URHE25CF	URHE33CF URHE33CF URHE33CF
TI T2 T2 T3 ase for floor installation of the coessory M1 oof for outdoor installation. ccessory E1 E2 E3 oof for outdoor installation of ccessory M1 oof for outdoor installation of ccessory M1 ccessory M1 ccessory M1 ccessory M2 it free-cooling. ccessory H1	OF the additional modules. URHE10CF URHE10CF URHE10CF URHE10CF URHE10CF URHE10CF	URHE15CF URHE15CF URHE15CF URHE15CF	URHE25CF URHE25CF URHE25CF URHE25CF	URHE33CF URHE33CF URHE33CF
TI T	OF the additional modules. URHE10CF URHE10CF URHE10CF URHE10CF URHE10CF URHE10CF	URHE15CF URHE15CF URHE15CF URHE15CF	URHE25CF URHE25CF URHE25CF URHE25CF	URHE33CF URHE33CF URHE33CF URHE33CF
TI T	OF the additional modules. URHE10CF OF the additional modules. URHE10CF URHE10CF URHE10CF URHE10CF	URHE15CF URHE15CF URHE15CF URHE15CF URHE15CF	URHE25CF URHE25CF URHE25CF URHE25CF URHE25CF	URHE33CF URHE33CF URHE33CF URHE33CF
TI T	URHETOCF URHETOCF URHETOCF URHETOCF URHETOCF URHETOCF URHETOCF URHETOCF URHETOCF	URHE1SCF URHE1SCF URHE1SCF URHE1SCF URHE1SCF URHE1SCF	URHE25CF URHE25CF URHE25CF URHE25CF URHE25CF	URHE33CF URHE33CF URHE33CF URHE33CF
accessory IT1 IT2 IT3 Base for floor installation of the accessory IM1 Boof for outdoor installation. Coccessory PE1 PE2 PE3 Boof for outdoor installation. Coccessory PM1 PM2 Cit free-cooling. Coccessory CH1 CH2 Boof for silencer baffles. Coccessory PMSS1 PMSS2	OF the additional modules. URHE10CF OF the additional modules. URHE10CF URHE10CF URHE10CF URHE10CF	URHE15CF URHE15CF URHE15CF URHE15CF URHE15CF	URHE25CF URHE25CF URHE25CF URHE25CF URHE25CF	URHE33CF URHE33CF URHE33CF URHE33CF

PERFORMANCE SPECIFICATIONS

		URHE10CF	URHE15CF	URHE25CF	URHE33CF
Heat recovery unit					
Power supply		230V~50Hz	230V~50Hz	400V~ 3N 50Hz	400V~ 3N 50Hz
Cooling performances (1)					
Total cooling capacity (heat recovery + refrigerant circuit)	kW	6,6	8,7	13,8	19,8
Cooling capacity available	kW	1,8	3,1	3,3	5,4
Cooling capacity recovered	kW	2,2	3,2	4,5	5,8
Summer thermal efficiency	%	82,0	80,0	68,0	65,0
Total input power	kW	2,60	2,90	5,10	6,50
Heating performances (2)					
Heating capacity total (heat recovery + refrigerant	kW	10,9	14,2	24,8	33,1
circuit)	KVV	10,7	14,2	24,0	ا,دد
Heating capacity available	kW	2,8	2,9	3,9	7,0
Recovered heating power	kW	3,6	10,0	15,3	19,6
Winter thermal efficiency	%	82,0	80,0	73,0	71,0
Total input power	kW	2,20	2,40	4,20	4,90
Compressor					
Number	no.	1	1	1	1
Refrigerant	type	R410A	R410A	R410A	R410A
Delivery fan					
Туре	type	Centrifugal	Centrifugal	Centrifugal	Centrifugal
Number	no.	1	1	1	1
Nominal air flow rate	m³/h	1000	1500	2500	3300
Minimum air flow rate	m³/h	800	1100	2000	2500
High static pressure	Pa	320	245	140	220
Total fan input power	kW	0,42	0,46	1,10	1,10
Total fan input current	A	3,1	3,1	5,3	5,3
Recovery fan					
Туре	type	Centrifugal	Centrifugal	Centrifugal	Centrifugal
Number	no.	1	1	1	1
Nominal air flow rate	m³/h	1000	1500	2500	3300
Minimum air flow rate	m³/h	800	1100	2000	2500
High static pressure	Pa	320	245	140	220
Total fan input power	kW	0,42	0,46	1,10	1,10
Total fan input current	A	3,1	3,1	5,3	5,3

⁽¹⁾ Recovery air 26 °C 50%; External air 34 °C 50%. (2) Recovery air 20 °C 50%; External air 5 °C 80%.

Technical data MBCH - Hot water coil (accessory)


		URHE10CF	URHE15CF	URHE25CF	URHE33CF
Hot water coil (accessory)					
Row	no.	2	2	2	2
Pressure drop - air side	Pa	7	18	37	37
Heating operations 70 °C / 60 °C (1)					
Heating capacity	kW	7,70	10,30	15,60	19,70
Water flow rate	l/h	673	906	1363	1725
Pressure drop	kPa	11	8	18	32
Heating operations 45 °C / 40 °C (2)					
Heating capacity	kW	2,60	4,00	6,50	7,60
Water flow rate	l/h	446	700	1118	1311
Pressure drop	kPa	3	6	14	22

⁽¹⁾ Water temperature (in/out) 70°C / 60°C; Compressor operating. (2) Water temperature (in/out) 45°C / 40°C; Compressor operating.

Technical data MBCX - Electric heating coil - (accessory)

		URHE10CF	URHE15CF	URHE25CF	URHE33CF
Electric heating coil - (accessory)					
Power supply			400V/3	/50Hz	
Stages	no.	1	1	1	1
Heating capacity	kW	5,00	7,50	12,50	10,00
Input current	A	7,6	11,4	19,0	25,1
Pressure drop - air side	Pa	10	10	10	10

DIMENSIONS

		URHE10CF	URHE15CF	URHE25CF	URHE33CF
Dimensions and weights					
A	mm	580	580	580	580
В	mm	1640	1640	1640	1970
C	mm	1500	1500	1990	2310
Empty weight	kg	300	310	373	410

■ The weights are standard configuration units without accessories.

ERSR

High-efficiency heat recovery with rotary recovery unit

Air flow rate 1000 - 30000 m³/h

- · Technology high efficiency
- Mechanically controlled ventilation
- Recovery of up to 80% of the energy of the expelled air
- Air purification

DESCRIPTION

The ERSR heat recovery units for indoor and outdoor installation are designed for commercial applications and are able to combine maximum environmental comfort with definite energy saving.

It is more and more necessary in modern systems to create a forced ventilation, but also involves the expulsion of climate-controlled air, thus determining a higher energy consumption.

But ERSR units are equipped with a rotary heat recovery unit (upon request, also hygroscopic rotary) that enables you to save more than 80% of the energy that would otherwise be lost with the expelled stale air.

These units can be integrated with fan coils and chillers, and can operate both in winter and summer.

VERSIONS

H With a hygroscopic rotary recovery **T** With a sensitive rotary recovery

STRUCTURE

- Rotary heat recovery unit (with the option in hygroscopic material), high-efficiency and low pressure drops.
- Soft air bag F7 filters (flow and recovery) equipped with a standard differential pressure switch, which can be extracted from either side facilitate their periodic cleaning.
- Fans (intake and flow), Plug fan with back curved blades with a directly coupled, electronically controlled motor for sizes 07-17 and with an inverter for sizes 21-24.
- Support frame and sandwich panels, 50 mm thick, in galvanised sheet steel for internal surfaces and pre-painted externally, and with mineral wool insulation (density 40 kg/m³). Base in galvanised sheet steel continuous profiles. Sizes 07 to 09 are monoblocs whilst the other sizes are divided into sections. The unit can be inspected from both sides.
- The unit is equipped with a power electric control board on the machine and adjustment purposely designed to reduce energy consumption.
 Equipped with a communication serial port on RS485 with MODBUS Master/Slave protocol.

FEATURES

- Air expelled
- Air recovery from the room
- Outdoor fresh air
- Air introduced into the room

Quality of the air

Nowadays, the quality of air inside rooms is fundamental. The mechanically controlled ventilation system is not only indispensable from an energetic point of view, but also for the comfort of the rooms.

ACCESSORIES

CAP: Intake waterproof cover.

BDL: Delivery waterproof cover.

TDP: Roof for outdoor installation.

VRC: Condensate drip tray.

VVR: Variable speed recovery unit.

KDP: Dehumidification and post-heating management kit.

Roof protection for basic unit in the case of outdoor installation.

07

TDP07

07

BDL07

09

TDP09

09

BDL09

Ver

H,T

H, T

Delivery waterproof cover.

ERSR_Y_UN50_03

RBC: 3-way valve hot water coil module. **RBF:** 3-way valve cold water coil module.

Harmful elements and smells in the air are eliminated by the efficient filtration system with bag filters (F7), which are easily extracted and regenerated.

High-efficiency air circulation thanks to plug-fans with electronically controlled motors or inverters, depending on the sizes

Freecooling: free comfort

During in-between seasons, outdoor climatic conditions can be more pleasant than those indoors. In such situations, the ERSRs stop the recovery unit enabling the intake of fresh outdoor air to air-condition indoor rooms at zero cost.

High-efficiency recovery unit (80% of the energy of the expelled air)

Air heat recovery both in summer and winter, thanks to the rotary recovery unit (hygroscopic version also available). Air introduced into the room is always optimised, thanks to the heat exchange between the air recovery and outdoor fresh air.

State of the art electronic control

Naturally, all these technological advantages are controlled by state of the art heat regulation, thus ensuring maximum energy savings in every condition of use.

RBE: Electric coil module.

RBP: 3-way valve cold water and post-heating coil module.

MSS: Module equipped with silencer baffles.

FRR: Rectangular flange.

GAR: Rectangular anti-vibration joint.

HSR: Fresh air intake damper with servocontrol.

RSR: Recirculation damper module. **HG4:** Flat filters efficiency G4.

ACCESSORIES COMPATIBILITY

Regulation

Rectangular flange.

Ver	07	09	12	15	17	21	24
H,T	FRR09	FRR09	FRR12	FRR15	FRR17	FRR21	FRR24
ondensate drain tray.							
Ver	07	09	12	15	17	21	24
H, T	VRC07	VRC09	VRC12	VRC15	VRC17	VRC21	VRC24
dditional modules							
ectangular anti-vibration	joint.						
Ver	07	09	12	15	17	21	24
H,T	GAR07	GAR09	GAR12	GAR15	GAR17	GAR21	GAR24
ecirculation damper mod	ule.						
Ver	07	09	12	15	17	21	24
H,T	-	-	RSR12	RSR15	RSR17	RSR21	RSR24
e accessory cannot be fitted on the con	figurations indicated with -						
lat filters efficiency G4.							
Ver	07	09	12	15	17	21	24
H,T	HG407	HG409	HG412	HG415	HG417	HG421	HG424
resh air intake damper wi	th servocontrol.						
Ver	07	09	12	15	17	21	24
H,T	HSR07	HRS09	HRS12	HRS15	HRS17	HRS21	HRS24

12

TDP12

12

BDL12

15

TDP15

15

BDL15

17

TDP17

17

BDL17

21

TDP21

21

BDL21

24

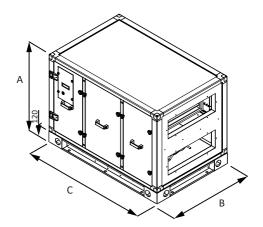
TDP24

24

BDL24

259

www.aermec.com


Accessories

Air qua	litv	probe	(VOC).
---------	------	-------	--------

Air quality probe (VOC).									
Ver	07	09		12	15	17		21	24
H, T	QP	QP		QP	QP	QP		QP	QP
ariable speed recovery unit.									
Ver	07	09		12	15	17		21	24
H, T	VVR07	VVRO	9	VVR12	VVR15	VVR17		VVR21	VVR24
Dehumidification and post-hea Ver	or 07	jement kit. 09		12	15	17		21	24
H,T	KDP	KDP	,	KDP	KDP	KDP		KDP	KDP
	IIDI	NOT		NOT	ILDI	NO1		NOT	ND1
ntake waterproof cover.	07			12	15	17		21	24
Ver	07 CAP07	09		12 CAD12	15 CAD15	17		21 CAD21	24 (AD24
Н, Т	CAPU/	CAPO:	9	CAP12	CAP15	CAP17		CAP21	CAP24
-way valve hot water coil mod									
Ver	07	09		12	15	17		21	24
H,T	RBC07	RBCO	9	RBC12	RBC15	RBC17		RBC21	RBC24
DEDECIDANCE CRECIFICA	ATIONS								
ZERFORMANCE SPECIFICA	ATIONS		07	09	12	15	17	21	24
eat recovery unit			07	- 07	14		- 17		
ower supply						400V 3N ~ 50Hz			
nit type					UVNR (U	nit ventilation not resid	dential)		
eat recovery system type		Type/n°							
eat capacity recovered (EN308) (1)		kW	5,8	10,3	19,4	31,4	41,3	64,3	85,0
ry heating efficiency (2)		%	79,0	78,9	78,3	78,8	78,9	78,5	78,7
nformation in compliance with Annex V of	regulation EU no	. 1253/2014							
ominal air flow rate supply / recovery		m³/s	0,31	0,54	1,03	1,65	2,17	3,39	4,47
ominal air flow rate supply / recovery		m³/h	1100	1950	3700	5950	7800	12200	1610
linimum air flow rate		m³/h	-	-	-	-	-	-	-
ans (3)									
ommissioning		type			<i>F</i>	Analog signal of EC fan			
уре		type				Plug-fan			
umber		no.	11	1	1	1	1	1	1
upplied electrical power consumption		kW	0,27	0,48	0,85	1,31	1,90	2,20	2,80
ecovered electrical power consumption		kW	0,27	0,48	0,86	1,30	1,90	2,20	2,80
otal input electric power FP int.		kW W/(m³/c)	0,84	2,04	6,10	8,78	10,20	22,37	30,3
FP int. lim. 2018		W/(m³/s) W/(m³/s)	1061,00 1141	994,00 1106	927,00 1033	733,00 942	669,00 887	778,00 886	759,0 887
Iters face velocity		m/s	1,8	1,9	1,8	1,8	1,8	1,6	1,7
ominal external pressure Δp (3)		Pa	100	100	100	100	100	100	100
seful static supply pressure		Pa	360	520	1000	1100	900	1440	1500
seful static recovery pressure		Pa Pa	360	520	1000	1100	900	1440	1500
upplied internal pressure drop Δps int.		Pa	269	262	276	222	216	240	241
ecovered internal pressure drop Δps int.		Pa	272	265	280	225	219	243	244
ns static efficiency (4)		%	64,5	65,5	62,8	64,1	67,2	64,7	65,8
ternal leakage (5)		%	<3	<3	<3	<3	<3	<3	< 3
cternal leakage		%	0,2	0,2	0,1	0,1	0,1	0,1	0,1
ir filter									
xpelled air filter		Type/n°							
elivery air filter		Type/n°	<u> </u>	·		· · ·			
						n .			
Delivery filter energy classification Recovery filter energy classification						D			

⁽¹⁾ Expelled air: Tdb=25°C; Twb<14°C. Fresh air: Tdb=5°C.
(2) Relation between the inlet air heating gain and the expulsion air heating loss, both relating to the outside temperature, measured in dry reference conditions, with balanced mass flow and an internal/external air heating difference of 20K, excluding the heating gain generated by the fan motors and the internal leakage.
(3) Performances referring to clean filters
(4) According to regulation EU 327/2011
(5) External leakage test performed at +400 Pa and -400 Pa; internal leakage test performed at 250 Pa

DIMENSIONS AND WEIGHTS

Size		07	09	12	15	17	21	24
Dimensions and weights								
A	mm	965	1285	1445	1765	2085	2405	2725
В	mm	895	1005	1375	1695	1855	2335	2665
C	mm	1375	1535	2045	2365	2365	3005	3005
Empty weight	kg	240	340	570	820	1010	1610	1980

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

AIR CONDITIONING The air handling units customized according to different

	AIR HANDLING	UNITS	Air flow rate (m3/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Page
	Compact air handling uni	ts				
	TVS	Air flow rate 800÷5200 m³/h	800-5200	4,40-27,80	10,50-66,40	264
	TVH	Air flow rate 800÷5200 m³/h	800-5200	4,70-29,30	11,60-73,90	273
	TS	Air flow rate 810÷4225 m³/h	810-4225	4,39-24,93	8,89-52,44	282
	TA	Air flow rate 800÷5000 m³/h	800-5000	4,2-39,6	3,9-72,8	286
	TN	Air flow rate 3000÷23000 m³/h	3000-23000	12,6-127,8		291
	Modular air handling unit	is				
	NCD	Air handling units	1134-79475			298
	SPL 025-130	For wellness areas	4000-13000			301
	SPL 160-250	For wellness areas	16000-25000			305
	Packaged ROOF-TOP unit	is				
new	RTG 060X-125X	For medium crowding applications		57,7-128,1	58,1-124,6	308
	RTX N1-N8	For medium crowding applications		12,70-49,95	13,50-50,79	314
	RTX 09-16	For medium crowding applications		50-135	49-141	319
	RTX 17-23	For medium crowding applications		151-307	152-310	325
	RTY 01-10	For high crowding applications		30,2-133,6	29,3-137,9	330

TVS

Air handling unit

- Centrifugal fan with EC motor
- Horizontal and vertical installation
- Available units with heat exchanger with 4-6 rows
- Large range of available static pressure
- Ductable unit

DESCRIPTION

TVS it is a thermoventilation unit designed to guarantee high heads in small to medium-sized rooms with nominal air flow rates from 800 to 5200 $\,\mathrm{m}^3/\mathrm{h}.$ As standard, it is suitable for 2-pipe systems, however the availability (as an accessory) of the secondary water coil, which can be installed inside the unit downstream of the main coil, makes it also suitable for 4-pipe systems. The unit is suitable for both horizontal installation in suspended ceilings and vertical installation on walls for greater versatility in use.

FEATURES

Structure

The supporting structure is made of galvanised steel sheet panels of suitable thickness. The panels are internally insulated with M1 fire reaction class insulation according to French standard NFP 92-501.

The bottom panels, which can be inspected, are of the sandwich type made of galvanised steel sheet with 15 mm thick polyurethane insulation (density 45 kg/m³).

The particular formulation of the polyurethane foam provides the sandwich panels with reaction to fire class M1 according to NFP standard 92-501. The polyurethane foam was developed with precise specifications to achieve the exceptional value of GWP = 0 (Global Warming Potential), not contributing to the greenhouse effect.

The presence of sandwich type panels on the bottom of the machine enables to significantly reduce the noise outside the unit in typical horizontal suspended ceiling installations.

The unit is supplied with specific brackets for attaching it to the wall.

Heat exchanger coil

Heat exchanger made with copper pipes and aluminium louvers blocked by the mechanical expansion of the pipes.

The main heat exchanger can be 4 or 6-row.

The secondary heat exchanger, available as an accessory, is 2-row.

Hydraulic connections

The hydraulic connections are on the right and are made with female threaded connections, however male-male threaded sleeves, with air release valves, are supplied to facilitate hydraulic connections.

The side of the hydraulic connections can be reversed on site by turning the coil.

■ The definition of "RH connections side" or "LH connections side" refers to the position of the coil connections in relation to the air flow direction (convection: air flow from behind a hypothetical operator inserted in the flow).

Condensate drip

The galvanised steel condensate drip tray is thermally insulated and has a double drain on the right and left. The unused condensate drain must be sealed.

Ventilation group

The ventilation unit consists of double intake centrifugal fans with blades facing forwards.

The electric motor, directly coupled to the impeller, is of the EC type. The use of the EC motor allows significant energy savings when compared to traditional AC motors and a continuous control of the rotation speed, simplifying air flow rate calibration operations on site.

Except for the first two sizes, Sensorless fans with integrated flow control are installed, without the need for additional accessories.

Air filtration

Air filtration is provided, as standard, by 48 mm thick corrugated synthetic filters with Coarse 55% efficiency according to EN ISO 16890 (G4 according to EN 779) positioned in the intake.

The filters are easily accessible for servicing and cleaning. Extraction is carried out by pulling them out from below by removing the respective panel.

Electrical wiring

On the side of the hydraulic connections there is an electric box, with IP55 protection rating, for connecting power and the 0-10V control signal or a potentiometer of the ventilation unit.

In the case of reversing the side of the hydraulic connections, there is no need to reverse the position of the electrical connections.

VENTILATION EFFICIENCY

All fans in the range TVS use an EC motor that, operating without slip losses, consumes less energy than conventional AC motors.

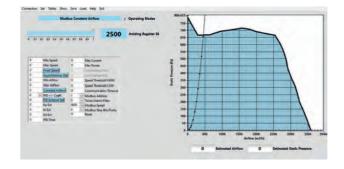
This applies to all speeds, i.e. also to partial load operation. The EC motor therefore uses less energy than the AC motor under all operating conditions

and has a significantly higher level of efficiency of the drive system (motor

In addition, continuous speed control via the 0-10V signal allows the air flow rate to be varied, and the static pressure can be adapted to the system's pressure drop, making unit start-up particularly easy.

Fans in sizes from TVS204 to TVS526 use an innovative "driver" that provides advanced functions that go far beyond simple speed control via the 0-10V signal (factory setting) and monitoring of operating limits to enable safe operation.

In fact, advanced operating modes can be activated through the use of free PC software, an RS485 interface cable and a commercially available USB to RS485 converter.


Particularly innovative is the operating mode with constant flow rate control. The air flow rate can be varied via an analogue 0-10V signal or the desired value can be set via the dedicated software.

Sensorless constant flow rate

Sensorless constant flow rate control is performed without the use of pressure probes.

The driver determines the operating point by measuring the rotational speed and input power of the fan and then adjusts the rotational speed to maintain the set value of the air flow rate within a predetermined range. This control system can compensate for a change in system pressure loss or

a change in unit pressure loss due to e.g. filter fouling.

CONFIGURATOR

ACCESSORIES

BS2x: 2 row water coil: 2-row water coil for 4-pipe system, located internally, downstream of the main coil. The threaded sleeves for the hydraulic connections and the air vent valve are supplied.

F7x: filter with ePM1 50% efficiency: Filter with ePM1 50% efficiency according to EN ISO 16890 (F7 according to EN 779) to be placed inside the unit in place of the standard filter.

F7x: filter with ePM1 80% efficiency: Filter with ePM1 80% efficiency according to EN ISO 16890 (F9 according to EN 779) to be placed inside the unit in place of the standard filter.

SMBEx: Electric coil module with double safety thermostat (manual and automatic) to be installed on the unit's flow side. Not compatible for vertical

SMF7x: Filter module with ePM1 50% efficiency according to EN ISO 16890 (F7 according to EN 779) to be positioned at the unit's flow or intake in order to carry out a two-stage filtration. Filter extraction from below.

SMF9x: Filter module with ePM1 80% efficiency according to EN ISO 16890 (F9 according to EN 779) to be positioned at the unit's flow or intake in order to carry out a two-stage filtration. Filter extraction from below.

SM2Sx: Mixing chamber module complete with two galvanised steel calibration dampers to be positioned at the intake of the unit. The damper pins are equipped with an easily removable hand control.

SMLFx: Module consisting of state-of-the-art devices with UV germicidal lamp with photocatalytic effect for active disinfection. To be placed at the discharge of the unit. The complete elimination of germs, bacteria and viruses cannot be achieved by using SMLFx modules alone, but a reduction in microbial load means less exposure to infection.

FAIx: Filter holder flange to allow intake in a direction perpendicular to the air flow through the unit. The use of the flange does not allow the installation of other accessories or the ducting of the unit to the intake.

SERx: Galvanised steel damper to be installed on the intake or flow side of the unit. The damper pin is equipped with an easily removable hand control. **GRAx:** Natural anodised aluminium intake grid with fixed louvers inclined at 45°. To be installed at the intake of the unit via the supplied flange.

GRMx: Natural anodised aluminium flow grille with two rows of adjustable louvers. To be installed on the unit's flow side via the flange supplied.

V2Vx for main and secondary coil: 2-way valve for main and secondary coil.

V3Vx for main and secondary heat exchanger: 3-way valve for main and secondary coil.

AV24F - 24V / ON-OFF actuator for main and secondary coil: 24V / ON-

OFF actuator for main and secondary coil.

AV24FM - 24V / ON-OFF - 0-10V actuator for main and secondary coil: Actuator with 24V power supply for ON-OFF or modulating 0-10V control of 2-way and 3-way main and secondary coil valves.

AV24M - 24V / 0-10V actuator for main and secondary coil: Actuator with 24V power supply for modulating 0-10V control of 2-way and 3-way main and secondary coil valves.

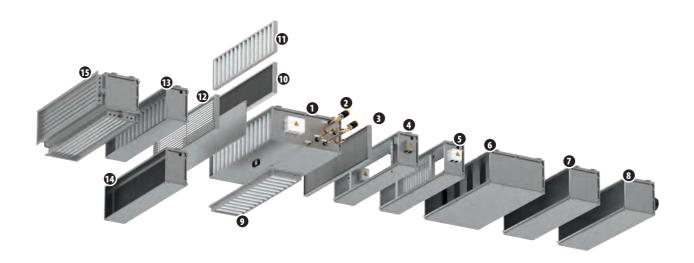
GT2x - 2-way valve tube assembly for main coil: Hose assembly and hydraulic fittings for connecting the 2-way valve to the main coil. The hose assembly allows the coil to be operated in countercurrent in the case of the right-hand side connections (standard configuration) and in direct current operation in the case of the left-hand side connections (modification to be carried out on site).

GT2Px - 2-way valve hose assembly for secondary coil: Hose assembly and hydraulic fittings for connecting the 2-way valve to the secondary coil. The hose assembly allows the coil to be operated in countercurrent in the case of the right-hand side connections (standard configuration) and in direct current operation in the case of the left-hand side connections (modification to be carried out on site).

GT3x - 3-way valve hose assembly for main coil: Hose assembly and hydraulic fittings for connecting the 3-way valve to the main coil. The hose assembly allows the coil to be operated in countercurrent in the case of the right-hand side connections (standard configuration) and in direct current operation in the case of the left-hand side connections (modification to be carried out on site).

GT3Px - 3-way valve hose assembly for secondary coil: Hose assembly and hydraulic fittings for connecting the 3-way valve to the secondary coil. The hose assembly allows the coil to be operated in countercurrent in the case of the right-hand side connections (standard configuration) and in direct current operation in the case of the left-hand side connections (modification to be carried out on site).

PVV: Potentiometer for fan speed control. The +10V signal is available directly on the electrical connection box located outside the unit.


SMSSx - Silencer baffles module: Module consisting of rock wool silencing baffles covered with polyethylene film and protective mesh to prevent flaking. To be installed on the flow and/or intake side of the unit.

SPCx: Closed plenum to be positioned at the flow or intake of the unit. Depending on the opening of the flow/intake hole, the accessory allows flow/intake in both longitudinal and perpendicular directions to the air flow through the unit.

SPMx: Plenum with circular flows to be positioned at the flow and/or intake of the unit. The multi-diameter (200mm, 180mm, 150mm) circular plastic

265

couplings allow the connection of circular ducts. Flow/intake is allowed in the longitudinal direction of the air flow through the unit.

Key	:	6	SMSS	12 G	RA
1	TVS	7	SPC	13 S	MF9
2	Valvola (V3V, AV24,GT3, GT3P)	8	SPM	14 S	MF7
3	GRM	9	FAI	15 S	M2S
4	SMLF	10	F7		
5	SMBE	11	F9		

ACCESSORIES COMPATIBILITY

Control

Potentiometer for fan speed control

Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
PVV														

TVS204

TVS274

TVS344

TVS404

TVS524

TVS154

TVS084

V3V1

GT3P1

AV24F/AV24M AV24F/AV24M

Water valves

2 way valve kit

Main coil							
2 way valve	V2V2	V2V3	V2V4	V2V5	V2V5	V2V6	V2V6
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT21	GT21	GT22	GT23	GT23	GT24	GT24
Secondary coil							
2 way valve	V2V1	V2V1	V2V4	V2V4	V2V4	V2V5	V2V5
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT2P1	GT2P1	GT2P2	GT2P2	GT2P2	GT2P3	GT2P3
	TVS086	TVS156	TVS206	TVS276	TVS346	TVS406	TVS526
Main coil							
2 way valve	V2V2	V2V3	V2V4	V2V5	V2V5	V2V6	V2V6
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT21	GT21	GT22	GT23	GT23	GT24	GT24
Secondary coil							
2 way valve	V2V1	V2V1	V2V4	V2V4	V2V4	V2V5	V2V5
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT2P1	GT2P1	GT2P2	GT2P2	GT2P2	GT2P3	GT2P3

Table 3 way valve kit

Table 3 way valve kit							
	TVS084	TVS154	TVS204	TVS274	TVS344	TVS404	TVS524
Main coil							
Three-way valve	V3V2	V3V2	V3V4	V3V5	V3V5	V3V6	V3V6
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT31	GT31	GT32	GT33	GT33	GT34	GT34
Secondary coil							
Three-way valve	V3V1	V3V1	V3V4	V3V4	V3V4	V3V5	V3V5
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FN
Pipe assembly	GT3P1	GT3P1	GT3P2	GT3P2	GT3P2	GT3P3	GT3P3
	TVS086	TVS156	TVS206	TVS276	TVS346	TVS406	TVS526
Main coil							
Three-way valve	V3V2	V3V2	V3V4	V3V5	V3V5	V3V6	V3V6
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FN
Pipe assembly	GT31	GT31	GT32	GT33	GT33	GT34	GT34
Secondary coil				-			

Heating only additional coil

2 row water coil

Three-way valve

Actuator Pipe assembly

Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
BS21	•	•												
BS22			•	•										
BS23					•	•								
BS24								•	•					
BS25											•	•	•	

V3V4

AV24FM

GT3P2

V3V4

AV24FM

GT3P2

V3V4

AV24FM

GT3P2

V3V5

AV24FM

GT3P3

V3V5

AV24FM

GT3P3

V3V1

GT3P1

Electric coil module

2-stage electric coil module

Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
SMBE1 (1)	•	•												
SMBE2 (1)			•	•										
SMBE3 (1)					•	•								
SMBE4 (1)							•	•	•	•				
SMBE5 (1)											•	•	•	•

 $[\]begin{tabular}{ll} \begin{tabular}{ll} \beg$

Filter modul	e with ePM	1 50% effi	ciencv											
Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS52
MF71	•	•												
MF72														
SMF73					•	•								
SMF74							•	•	•	•				
SMF75											•	•	•	•
Filter modul	o with oPM	1 900% offi	cionar											
Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS5
MF91	•	•	1 1 7 7 7 7	173130	1177207	173200	1732/7	1173270	TVJJTT	1175570	117707	175700	1 1 3 3 2 7	11733
SMF92			•	•										
5MF93						•								
SMF94							•	•	•					
SMF95												•		•
		1			'									
ilencer baff														
Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS
SMSS1	•	•												
SMSS2			•	•										
SMSS3					•	•								
SMSS4							•	•	•	•		•	•	
SMSS5											•	•	•	
Photocataly	tic device m	odule												
Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS5
SMLF1	•	•												
SMLF2			•	•										
SMLF3					•	•								
SMLF4							•	•	•	•				
SMLF5											•	•	•	•
Mixing cham	ber modul	e complet	e with tw	o calibra	tion dam	pers								
Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS5
SM2S1	•	•												
SM2S2														
SM2S3					•	•								
SM2S4							•	•	•	•				
SM2S5											•	•	•	•
Classed wlaw.														
Closed plenu		TUCOOC	TUC1EA	TUC1FC	TVC204	TUCANC	TVC274	TUCATA	TVC244	TUCDAC	TVC404	TUCANC	TVCF24	TVC
Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS
SPC1 SPC2	•	•	•											
SPC3				•		•								
SPC4					•	•	•	•	•	•				
SPC5							•	•	•	•			•	
51 CJ													•	
Plenum with	circular de	liveries												
Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS
SPM1		•												
SPM2														
SPM3					•	•								
SPM4								•	•	•				
SPM5												•		•
Table Eilte	flanco													
Table Filter		TUCOOC	TVC1F4	TUC1FC	TVC201	TUCAAC	TUCTTA	TUCATA	TVC244	TUCAA	TUCANA	TUCAGO	TUCEDA	TUC
Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS
Al1	•	•												
FAI2		-	•	•										
FAI3					•	•								
FAI4 FAI5							•	•	•	•		•	•	
												· ·	•	<u> </u>
Galvanised s	teel dampe	ers												
Accessory	TVS084	TVS086	TVS1	54 T	VS156	TVS204	TVS206	TVS274	TVS276	TVS	344	TVS346	TVS524	TVS52
SEK T														
SER2			•		•	•	•							
SER1 SER2 SER3 SER4			•		•	•	•		•	•		•		

SER5

Alluminium Intak	e arıas	5
------------------	---------	---

Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
GRA1	•	•												
GRA2			•	•										
GRA3					•	•								
GRA4							•	•	•	•				
GRA5											•	•	•	•

Alluminium delivery grille

Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
GRM1	•	•												
GRM2			•											
GRM3					•	•								
GRM4								•	•					
GRM5													•	•

Filter with ePM1 50% efficiency

Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS3	46 T\	VS404	TVS406	TVS524	TVS526
F71	•	•													
F72			•	•											
F73					•										
F74							•	•	•	•					
F75												•	•	•	•
Accessory		TVS	084 TVS0	86 TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
Accessory F71		TVS		86 TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
				86 TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
F71						TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
F71 F72								TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526

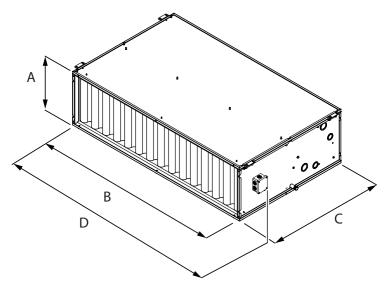
Filter with ePM1 80% efficiency

Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
F91	•	•												
F92			•	•										
F93						•								
F94							•	•	•					
F95								-			•		•	•

4-ROW COIL UNIT PERFORMANCE DATA

Units designed to operate with all recirculating air or maximum 10% of external air.

		TVS084	TVS154	TVS204	TVS274	TVS344	TVS404	TVS524
Performance in heating mode 70 °C / 60	°C - Main coil 2-	pipe system (1)						
Heating capacity	kW	10,50	18,80	25,10	31,90	41,40	54,20	66,40
Water flow rate	I/h	901	1615	2157	2738	3557	4659	5705
Pressure drop	kPa	26	25	37	23	41	38	55
Performance in heating mode 45 °C / 40	°C - Main coil fo	r 2-pipe systems (2)						
Heating capacity	kW	5,20	9,30	12,40	15,80	20,50	26,80	32,70
Water flow rate	I/h	896	1600	2139	2718	3525	4610	5640
Pressure drop	kPa	28	27	40	24	44	40	58
Heating performance 65 °C/55 °C - Seco	ndary coil 4-pip	e system (3)						
Heating capacity	kW	4,40	8,10	14,40	18,40	23,60	28,30	32,90
Water flow rate	I/h	380	697	1235	1579	2031	2433	2828
Pressure drop	kPa	6	26	18	20	32	19	25
Cooling performances 7 °C / 12 °C - Mair	coil 2 pipe syste	em (4)						
Cooling capacity	kW	4,40	7,70	10,90	13,20	17,90	23,20	27,80
Sensible cooling capacity	kW	3,30	6,00	8,20	10,40	13,60	17,10	20,70
Water flow rate	I/h	753	1322	1870	2266	3078	3979	4766
Pressure drop	kPa	22	20	33	20	36	34	46
Fan								
Туре	type	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal
Fan motor	type	EC	EC	EC	EC	EC	EC	EC
Number	no.	1	2	1	1	2	2	2
Nominal air flow rate	m³/h	800	1500	2000	2600	3400	4000	5200
Nominal useful head	Pa	150	150	200	200	200	200	200
Maximum useful head (2-pipes) (5)	Pa	213	242	351	361	380	403	414
Maximum useful head (4-pipes) (5)	Pa	194	217	321	337	342	377	375
Input power (2-pipes) (6)	W	199	358	545	825	826	998	1494
Input power (4 pipes) (6)	W	207	377	574	859	896	1044	1608
Sound data (7)								
Sound power level (inlet + radiated)	dB(A)	66,0	68,0	77,0	77,0	78,0	80,0	80,0
Sound power level (outlet)	dB(A)	66,0	68,0	74,0	76,0	74,0	77,0	78,0
Diametre hydraulic fittings								
Main heat exchanger	Ø	3/4" F	3/4" F	1″F	1"F	1″F	1″F	1″F
Secondary heat exchanger	Ø	1/2" F	1/2"F	3/4"F	3/4"F	3/4" F	3/4" F	3/4"F
Condensate discharge diameter	mm	1/2" M	1/2" M	1/2" M	1/2" M	1/2" M	1/2" M	1/2"M
Power supply								
Power supply		230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz
Air filter								
Туре	type	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)
Electric coil								
Electric coil capacity	kW	1,5 + 1,5	2,5 + 2,5	4+4	6+6	6+6	7,5 + 7,5	7,5 + 7,5
Stages	no.	2	2	2	2	2	2	2
Power supply		400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz


⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 70°C / 60°C
(2) Room air temperature 20°C d.b.; Water (in/out) 45°C / 40°C
(3) Room air temperature 20°C d.b.; Water (in/out) 65°C / 55°C
(4) Room air 27°C b.s. 47% U.R.; Water (in/out) 7°C/12°C
(5) Maximum high static pressure at nominal air flow rate, in heating mode
(6) Input power at nominal air flow rate, at nominal high static pressure, in heating mode
(7) Sound data in 2-pipe configuration, at nominal air flow rate, at nominal high static pressure, in heating mode

6-ROW COIL UNIT PERFORMANCE DATA

		TVS086	TVS156	TVS206	TVS276	TVS346	TVS406	TVS526
Performance in heating mode 70 °C/6	0 °C - Main coil 2-	pipe system (1)						
Heating capacity	kW	11,50	20,60	27,40	35,10	45,40	58,30	72,00
Water flow rate	l/h	986	1774	2359	3017	3900	5009	6189
Pressure drop	kPa	40	27	30	23	42	31	45
Performance in heating mode 45 °C / 4	0 °C - Main coil fo	r 2-pipe systems (2)						
Heating capacity	kW	5,70	10,20	13,60	17,30	22,50	28,90	35,80
Water flow rate	l/h	978	1762	2342	2985	3876	4980	6166
Pressure drop	kPa	42	29	32	25	44	33	48
Heating performance 65 °C/55 °C - Seco	ondary coil 4-pip	e system (3)						
Heating capacity	kW	4,40	8,10	14,40	18,40	23,60	28,30	32,90
Water flow rate	l/h	380	697	1235	1579	2031	2433	2828
Pressure drop	kPa	6	26	18	20	32	19	25
Cooling performances 7 °C / 12 °C - Main	n coil 2 pipe syste	em (4)						
Cooling capacity	kW	5,30	9,00	12,30	15,40	20,70	25,90	31,60
Sensible cooling capacity	kW	3,80	6,70	9,00	11,60	15,00	18,70	22,90
Water flow rate	l/h	912	1538	2104	2649	3554	4443	5427
Pressure drop	kPa	39	24	28	23	41	30	42
Fan								
Туре	type	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal
Fan motor	type	EC	EC	EC	EC	EC	EC	EC
Number	no.	1	2	1	1	2	2	2
Nominal air flow rate	m³/h	800	1500	2000	2600	3400	4000	5200
Nominal useful head	Pa	150	150	200	200	200	200	200
Maximum useful head (2-pipes) (5)	Pa	204	230	338	351	364	392	397
Maximum useful head (4-pipes) (5)	Pa	185	205	308	327	326	366	358
Input power (2-pipes) (6)	W	203	368	557	839	856	1016	1544
Input power (4 pipes) (6)	W	211	387	588	873	932	1064	1658
Sound data (7)								
Sound power level (inlet + radiated)	dB(A)	67,0	69,0	78,0	77,0	78,0	81,0	80,0
Sound power level (outlet)	dB(A)	67,0	69,0	74,0	77,0	74,0	78,0	79,0
Diametre hydraulic fittings								
Main heat exchanger	Ø	3/4" F	3/4" F	1″F	1"F	1"F	1"F	1"F
Secondary heat exchanger	Ø	1/2" F	1/2″F	3/4"F	3/4"F	3/4"F	3/4" F	3/4"F
Condensate discharge diameter	mm	1/2" M	1/2" M	1/2" M	1/2" M	1/2" M	1/2" M	1/2″M
Power supply								
Power supply		230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz
<u>Air filter</u>								
Туре	type	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)
Electric coil								
Electric coil capacity	kW	1,5 + 1,5	2,5 + 2,5	4 + 4	6+6	6+6	7,5 + 7,5	7,5 + 7,5
Stages	no.	2	2	2	2	2	2	2
Power supply		400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz

⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 70°C / 60°C
(2) Room air temperature 20°C d.b.; Water (in/out) 45°C / 40°C
(3) Room air temperature 20°C d.b.; Water (in/out) 65°C / 55°C
(4) Room air 27°C b.s. 47% U.R.; Water (in/out) 7°C/12°C
(5) Maximum high static pressure at nominal air flow rate, in heating mode
(6) Input power at nominal air flow rate, at nominal high static pressure, in heating mode
(7) Sound data in 2-pipe configuration, at nominal air flow rate, at nominal high static pressure, in heating mode

DIMENSIONS

Unit for horizontal installation

		TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
Dimensions and wei	ghts														
A	mm	300	300	300	300	390	390	390	390	390	390	390	390	390	390
В	mm	700	700	1000	1000	1000	1000	1400	1400	1400	1400	2000	2000	2000	2000
C	mm	700	700	700	700	850	850	850	850	850	850	850	850	850	850
D	mm	770	770	1070	1070	1070	1070	1470	1470	1470	1470	2070	2070	2070	2070
Net weight	kg	27,0	28,0	42,0	44,0	56,0	59,0	79,0	83,0	89,0	94,0	119,0	125,0	120,0	126,0

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

TVH

Air handling unit

- Plug fan with EC motor
- Horizontal installation only
- Available units with heat exchanger with 4-6 rows
- Large range of available static pressure
- Ductable unit
- 15 mm thick sandwich panelling

DESCRIPTION

TVH it is a thermoventilation unit designed to guarantee high heads in small to medium-sized rooms with nominal air flow rates from 800 to 5200 m³/h. As standard, it is suitable for 2-pipe systems, however the availability (as an accessory) of the secondary water coil, which can be installed inside the unit downstream of the main coil, makes it also suitable for 4-pipe systems. **The unit is suitable for horizontal installation.**

FEATURES

Structure

The load-bearing structure is made of sandwich-type panels made of galvanised steel sheet with 15 mm thick polyurethane insulation (density 45 kg/m³)

The particular formulation of the polyurethane foam provides the sandwich panels with reaction to fire class M1 according to NFP standard 92-501. The polyurethane foam was developed with precise specifications to achieve the exceptional value of GWP = 0 (Global Warming Potential), not contributing to the greenhouse effect.

The presence of sandwich type panels enables to significantly reduce the noise outside the unit in typical horizontal suspended ceiling installations.

Specific brackets supplied with the unit make it easier to secure it to the wall

Heat exchanger coil

Heat exchanger made with copper pipes and aluminium louvers blocked by the mechanical expansion of the pipes.

The main heat exchanger can be 4 or 6-row.

The secondary heat exchanger, available as an accessory, is 2-row.

Hydraulic connections

The hydraulic connections are on the right and are made with female threaded connections, however male-male threaded sleeves, with air release valves, are supplied to facilitate hydraulic connections.

The side of the hydraulic connections can be reversed on site by turning the coil.

■ The definition of "RH connections side" or "LH connections side" refers to the position of the coil connections in relation to the air flow direction (convection: air flow from behind a hypothetical operator inserted in the flow).

Condensate drip

The galvanised steel condensate drip tray is thermally insulated and has a double drain on the right and left. The unused condensate drain must be sealed.

Ventilation group

The ventilation unit consists of plug fans with reversed blades. The use of plug fans allows a reduction in input power compared to fans with forward-facing blades.

The electric motor, directly coupled to the impeller, is of the EC type.

The use of the EC motor allows significant energy savings when compared to traditional AC motors and a continuous control of the rotation speed, simplifying air flow rate calibration operations on site.

Air filtration

Air filtration is provided, as standard, by 48 mm thick corrugated synthetic filters with Coarse 55% efficiency according to EN ISO 16890 (G4 according to EN 779) positioned in the intake.

The filters are easily accessible for servicing and cleaning. Extraction is carried out by pulling them out from below by removing the respective panel.

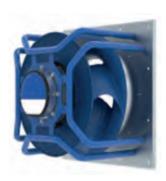
Electrical wiring

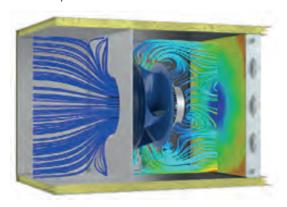
www.aermec.com

On the side of the hydraulic connections there is an electric box, with IP55 protection rating, for connecting power and the 0-10V control signal or a potentiometer of the ventilation unit.

In the case of reversing the side of the hydraulic connections, there is no need to reverse the position of the electrical connections.

VENTILATION EFFICIENCY


All fans in the range TVH use an EC motor, which, due to the special efficiency of the system, consumes less energy than conventional AC motors. This applies to all speeds, i.e. also to partial load operation.


In addition, continuous speed control via the 0-10V signal allows the air flow rate to be varied, and the static pressure can be adapted to the system's pressure drop, allowing a perfect machine - system match.

The innovative mixed-flow geometry of the composite impeller allows a particularly homogenous aeraulic distribution over the next component. The positive effect of homogeneous aeraulic distribution is reflected in a decrease in pressure drops and an increase in the cooling efficiency of the heat exchange coil located downstream of the fan.

For the same processed air flow rate there is therefore less electric input power and a higher cooling efficiency.

In addition, by means of the pressure probe (relying on an external controller) or the flow rate/pressure regulator, which are supplied as accessories, it is possible to carry out ventilation control in constant flow rate or constant pressure on the flow channel.

CONFIGURATOR

Field	Description
1,2,3	TVH
4,5	Size 08, 15, 20, 27, 34, 40, 52
6	Version
4	4-row finned pack main heat exchanger with right-hand connections
6	6-row finned pack main heat exchanger with right-hand connections

ACCESSORIES

BS2x: 2 row water coil: 2-row water coil for 4-pipe system, located internally, downstream of the main coil. The threaded sleeves for the hydraulic connections and the air vent valve are supplied.

F7x: F7x: F

F7x: F7x: F

SERx: Galvanised steel damper to be installed on the intake or flow side of the unit. The damper pin is equipped with an easily removable hand control. **GRAx:** Natural anodised aluminium intake grid with fixed louvers inclined at 45°. To be installed at the intake of the unit via the supplied flange.

GRMx: Natural anodised aluminium flow grille with two rows of adjustable louvers. To be installed on the unit's flow side via the flange supplied.

V2Vx for main and secondary coil: 2-way valve for main and secondary

V3Vx for main and secondary heat exchanger: 3-way valve for main and secondary coil.

AV24F - 24V / ON-OFF actuator for main and secondary coil: 24V / ON-OFF actuator for main and secondary coil.

AV24FM - 24V / ON-OFF - 0-10V actuator for main and secondary coil: Actuator with 24V power supply for ON-OFF or modulating 0-10V control of 2-way and 3-way main and secondary coil valves.

AV24M - 24V / 0-10V actuator for main and secondary coil: Actuator with 24V power supply for modulating 0-10V control of 2-way and 3-way main and secondary coil valves.

GT2x - 2-way valve tube assembly for main coil: Hose assembly and hydraulic fittings for connecting the 2-way valve to the main coil. The hose assembly allows the coil to be operated in countercurrent in the case of the right-hand side connections (standard configuration) and in direct current operation in the case of the left-hand side connections (modification to be carried out on site).

GT2Px - 2-way valve hose assembly for secondary coil: Hose assembly and hydraulic fittings for connecting the 2-way valve to the secondary coil. The hose assembly allows the coil to be operated in countercurrent in the case of the right-hand side connections (standard configuration) and in direct current operation in the case of the left-hand side connections (modification to be carried out on site).

GT3x - 3-way valve hose assembly for main coil: Hose assembly and hydraulic fittings for connecting the 3-way valve to the main coil. The hose

assembly allows the coil to be operated in countercurrent in the case of the right-hand side connections (standard configuration) and in direct current operation in the case of the left-hand side connections (modification to be carried out on site).

GT3Px - 3-way valve hose assembly for secondary coil: Hose assembly and hydraulic fittings for connecting the 3-way valve to the secondary coil. The hose assembly allows the coil to be operated in countercurrent in the case of the right-hand side connections (standard configuration) and in direct current operation in the case of the left-hand side connections (modification to be carried out on site).

PVV: Potentiometer for fan speed control. The +10V signal is available directly on the electrical connection box located outside the unit.

HMBEx: Electric coil module with double safety thermostat (manual and automatic) to be installed on the unit's flow side.

HMF7x: Filter module with ePM1 50% efficiency according to EN ISO 16890 (F7 according to EN 779) to be positioned at the unit's flow or intake in order to carry out a two-stage filtration. Filter extraction from below.

HMF9x: Filter module with ePM1 80% efficiency according to EN ISO 16890 (F9 according to EN 779) to be positioned at the unit's flow or intake in order to carry out a two-stage filtration. Filter extraction from below.

HMLFx: Module consisting of state-of-the-art devices with UV germicidal lamp with photocatalytic effect for active disinfection. To be placed at the discharge of the unit. The complete elimination of germs, bacteria and viruses cannot be achieved by using SMLFx modules alone, but a reduction in microbial load means less exposure to infection.

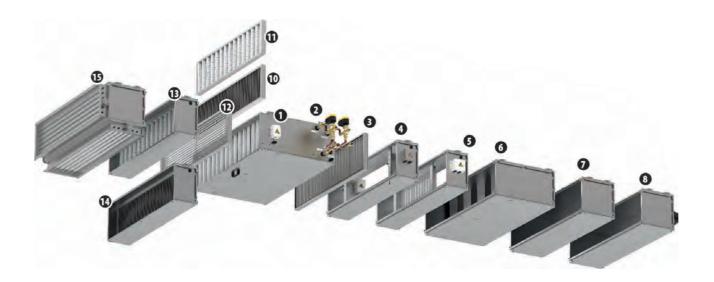
HM25x: Mixing chamber module complete with two galvanised steel calibration dampers to be positioned at the intake of the unit. The damper pins are equipped with an easily removable hand control.

HMSSx - **Silencer baffles module:** Module consisting of rock wool silencing baffles covered with polyethylene film and protective mesh to prevent flaking. To be installed on the flow and/or intake side of the unit.

RPx: Regulator to control ventilation in constant flow rate or constant pressure on the flow duct. An external regulator must be provided for thermoregulation.

SPD: Pressure probe for constant flow rate or constant pressure control on the flow duct. In order to carry out the control, the pressure probe must be controlled by an external regulator.

SPF: Differential pressure switch to signal filter fouling status.


HPCx: Closed plenum to be positioned at the flow or intake of the unit. Depending on the opening of the flow/intake hole, the accessory allows

flow/intake in both longitudinal and perpendicular directions to the air flow through the unit.

HPMx: Plenum with circular flows to be positioned at the flow and/or intake of the unit. The multi-diameter (200mm, 180mm, 150mm) circular plastic

couplings allow the connection of circular ducts. Flow/intake is allowed in the longitudinal direction of the air flow through the unit.

SCS: Servocontrol with 24V power supply for 0-10V modulating control of the SER damper or the HM2S mixing chamber dampers.

Key:		6	HMSS
1	TVH	7	HPC
2	Valvola (V3V, AV24,GT3, GT3P)	8	HPM
3	GRM	9	FAI
4	HMLF	10	F7
5	HMBE	11	F9

12	GRA
13 14	HMF9 HMF7
15	HM2S

ACCESSORIES COMPATIBILITY

Control

Potentiometer for fan speed control

Accessory	TVH084	TVH086	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH526
PVV					•		•				•		•	

Water valves

2 way valve kit

	TVH084	TVH154	TVH204	TVH274	TVH344	TVH404	TVH524
Main coil							
2 way valve	V2V2	V2V3	V2V4	V2V5	V2V5	V2V6	V2V6
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT21	GT21	GT22	GT23	GT23	GT24	GT24
Secondary coil							
2 way valve	V2V1	V2V1	V2V4	V2V4	V2V4	V2V5	V2V5
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT2P1	GT2P1	GT2P2	GT2P2	GT2P2	GT2P3	GT2P3
	TVH086	TVH156	TVH206	TVH276	TVH346	TVH406	TVH526
Main coil							
2 way valve	V2V2	V2V3	V2V4	V2V5	V2V5	V2V6	V2V6
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT21	GT21	GT22	GT23	GT23	GT24	GT24
Secondary coil							
2 way valve	V2V1	V2V1	V2V4	V2V4	V2V4	V2V5	V2V5
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT2P1	GT2P1	GT2P2	GT2P2	GT2P2	GT2P3	GT2P3

Table 3 way valve kit

lable 3 way valve kit							
	TVH084	TVH154	TVH204	TVH274	TVH344	TVH404	TVH524
Main coil							
Three-way valve	V3V2	V3V3	V3V4	V3V5	V3V5	V3V6	V3V6
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT31	GT31	GT32	GT33	GT33	GT34	GT34
Secondary coil							
Three-way valve	V3V1	V3V1	V3V4	V3V4	V3V4	V3V5	V3V5
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT3P1	GT3P1	GT3P2	GT3P2	GT3P2	GT3P3	GT3P3
	TVH086	TVH156	TVH206	TVH276	TVH346	TVH406	TVH526
Main coil							
Three-way valve	V3V2	V3V3	V3V4	V3V5	V3V5	V3V6	V3V6
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT31	GT31	GT32	GT33	GT33	GT34	GT34
Secondary coil							
Three-way valve	V3V1	V3V1	V3V4	V3V4	V3V4	V3V5	V3V5
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM

Heating only additional coil

2 row water coil

Pipe assembly

Accessory	TVH084	TVH086	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH526
BS21	•	•												
BS22			•	•										
BS23					•	•								
BS24								•	•					
BS25											•		•	•

GT3P2

GT3P2

GT3P2

GT3P3

GT3P3

GT3P1

GT3P1

Electric coil module

2-stage electric coil module

Accessory	TVH084	TVH086	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH526
HMBE1	•	•												
HMBE2			•	•										
HMBE3					•	•								
HMBE4							•	•	•					
HMBE5											•	•	•	•

GRA4 GRA5

Accessory	le with ePM1 TVH084	TVH086	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH526
MF71	•	•	1411157	1411150	1111201	1111200	111127 1	111270	1111311	1111510	1111101	1111100	1111521	1111320
MF72					-									
MF73														
IMF74							•	•	•	•				
HMF75											•	•	•	•
ilter modul	e with ePM1													
ccessory	TVH084	TVH086	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH52
IMF91 IMF92	•	•												
1MF93			•	•	•	•								
IMF94					•	•	•		•	•				
IMF95							-						•	
ilencer baf	fles module													
ccessory	TVH084	TVH086	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH52
MSS1	•	•												
HMSS2			•	•										
HMSS3					•	•								
HMSS4							•	•	•	•				
HMSS5											•	•	•	•
Photocataly Accessory	tic device m TVH084	odule TVH086	TVH154	TVH156	TVH204	TVH20	6 T\/I	H274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH526
IMLF1	1 V II U 0 4	•	1 111134	141110	1 V FIZU4	1 V H Z U	0 111	14/7	11112/0	דייינווזי	טוינוויו	1 11111111	I VIIMUU	1 111320
HMLF2	•	•	•											
IMLF3														
IMLF4											•			
IMLF5												•	•	
Mixing chan	nber module	complet	e with two	calibratio	on dampe	rs								
ccessory	TVH084	TVH086	TVH154	TVH156	TVH204	TVH20	6 TVI	H274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH526
IM2S1	•	•											-	
IM2S2			•	•										
1M2S3 1M2S4					•	•								
1M2S5								•	•	•	•			
												-	-	
losed pleni		Tilliand	71/1/454	7111454	THURST	THURSE	T1/110= 4	T1///07/	T1012.44	TIME	71/11/04	71/11/04	THUESA	T1///50
lccessory	TVH084	TVH086	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH52
IPC1	•	•												
HPC2 HPC3			•	•	•									
HPC4					•	•								
HPC5											•	•	•	
Plenum with	n circular del	iveries												
Accessory	TVH084	TVH086	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH526
IPM1	•	•												
HPM2			•	•										
HPM3					•	•								
HPM4							•	•	•	•				
HPM5											•	•	•	•
	steel dampe		Tilles	THUS	T1///20 :	THURSE	TIPLE:	P1 11 /	99.22	W1.11	W1.011	T 1111	T11115	W1 11 1 -
ccessory	TVH084	TVH086	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH52
ER1 ER2	•	•												
			•	•										
SER3 SER4					•	•								
SER5							•	•	•	•	•	•	•	
	Intake grids													
munninum														=
ccessorv	TVH084	TVH086	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	17457
	TVH084	TVH086	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH52
iRA1		TVH086 •	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH52
Accessory GRA1 GRA2 GRA3					TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH52

Accessory	TVH084	TVH086	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH526
GRM1		•												
GRM2														
GRM3														
GRM4								•	•					
GRM5											•	•	•	•
Filter with e	PM1 50% ef	ficiency												
Accessory	TVH084	TVH086	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH526
, , , , , , , , , , , , , , , , , , , 		•												
F72														
F73					•	•								
F74									•					
F75											•	•	•	•
Filter with e Accessory	TVH084	TVH086	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH52
F91	•	•												
F92			•	•										
F93					•	•								
F94							•	•	•	•				
F95											•	•	•	•
Flow rate ac	juster													
Accessory	TVH084	TVH086	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH52
RP1	•	•	•	•										
RP2					•	•	•	•	•	•	•	•	•	•
Differential	pressure pr	obe												
Accessory	TVH084	TVH086	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH52
SPD	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Filter foulin	g pressure s	witch												
Accessory	TVH084	TVH086	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH526
SPF	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Servocontro														
	-													

TVH526

Accessory SCS

TVH084

TVH086

TVH154

TVH156

TVH204

TVH206

TVH274

TVH276

TVH344

TVH346

TVH404

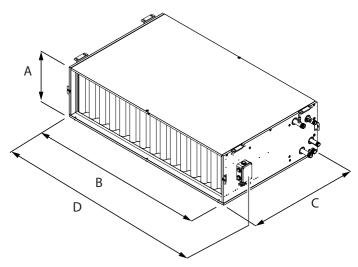
TVH406

TVH524

4-ROW COIL UNIT PERFORMANCE DATA

Units designed to operate with all recirculating air or maximum 10% of external air.

		TVH084	TVH154	TVH204	TVH274	TVH344	TVH404	TVH524
Performance in heating mode 70 °C / 6	0 °C - Main coil 2-	pipe system (1)						
Heating capacity	kW	11,60	20,80	28,50	36,60	47,10	60,30	73,90
Water flow rate	l/h	994	1787	2454	3150	4054	5189	6353
Pressure drop	kPa	31	31	48	31	53	42	60
Performance in heating mode 45 °C/4	0 °C - Main coil fo	r 2-pipe systems (2)						
Heating capacity	kW	5,70	10,30	14,10	18,20	23,40	29,80	36,50
Water flow rate	I/h	985	1769	2431	3123	4017	5125	6270
Pressure drop	kPa	33	32	51	33	56	45	64
Heating performance 65 °C/55 °C - Seco	ondary coil 4-pip	e system (3)						
Heating capacity	kW	4,40	8,10	14,40	18,40	23,60	28,30	32,90
Water flow rate	I/h	380	697	1235	1579	2031	2433	2828
Pressure drop	kPa	6	26	18	20	32	19	25
Cooling performances 7 °C / 12 °C - Main	n coil 2 pipe syste	em (4)						
Cooling capacity	kW	4,70	8,30	11,90	14,30	19,30	24,90	29,30
Sensible cooling capacity	kW	3,50	6,20	8,50	10,80	14,10	17,60	21,40
Water flow rate	l/h	815	1422	2038	2447	3316	4267	5032
Pressure drop	kPa	27	25	41	23	44	38	51
Fan								
Туре	type	Plug Fan	Plug Fan	Plug Fan	Plug Fan	Plug Fan	Plug Fan	Plug Fan
Fan motor	type	EC	EC	EC	EC	EC	EC	EC
Number	no.	1	2	1	1	2	2	2
Nominal air flow rate	m³/h	800	1500	2000	2600	3400	4000	5200
Nominal useful head	Pa	150	150	200	200	200	200	200
Maximum useful head (2-pipes) (5)	Pa	202	232	438	536	540	443	521
Maximum useful head (4-pipes) (5)	Pa	183	207	408	512	502	417	482
Input power (2-pipes) (6)	W	151	287	313	491	533	620	1006
Input power (4 pipes) (6)	W	159	305	335	511	581	656	1074
Sound data (7)								
Sound power level (inlet + radiated)	dB(A)	74,0	74,0	70,0	76,0	72,0	73,0	79,0
Sound power level (outlet)	dB(A)	72,0	75,0	72,0	78,0	73,0	75,0	81,0
Diametre hydraulic fittings								
Main heat exchanger	Ø	3/4" F	3/4" F	1"F	1"F	1"F	1"F	1"F
Secondary heat exchanger	Ø	1/2" F	1/2″F	3/4"F	3/4"F	3/4"F	3/4" F	3/4"F
Condensate discharge diameter	mm	3/4" M	3/4" M	3/4" M	3/4" M	3/4" M	3/4" M	3/4" M
Power supply								
Power supply		230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz
<u>Air filter</u>								
Туре	type	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)
Electric coil								
Electric coil capacity	kW	1,5 + 1,5	2,5 + 2,5	4+4	6+6	6+6	7,5 + 7,5	7,5 + 7,5
Stages	no.	2	2	2	2	2	2	2
Power supply		400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz


⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 70°C / 60°C
(2) Room air temperature 20°C d.b.; Water (in/out) 45°C / 40°C
(3) Room air temperature 20°C d.b.; Water (in/out) 65°C / 55°C
(4) Room air 27°C b.s. 47% U.R.; Water (in/out) 7°C/12°C
(5) Maximum high static pressure at nominal air flow rate, in heating mode
(6) Input power at nominal air flow rate, at nominal high static pressure, in heating mode
(7) Sound data in 2-pipe configuration, at nominal air flow rate, at nominal high static pressure, in heating mode

6-ROW COIL UNIT PERFORMANCE DATA

		TVH086	TVH156	TVH206	TVH276	TVH346	TVH406	TVH526
Performance in heating mode 70 °C/	60 °C - Main coil 2-							
Heating capacity	kW	12,40	22,60	30,80	39,40	51,30	64,90	80,10
Water flow rate	l/h	1070	1941	2652	3391	4407	5578	6889
Pressure drop	kPa	54	32	37	31	53	34	50
Performance in heating mode 45 °C/	40 °C - Main coil fo	r 2-pipe systems (2)						
Heating capacity	kW	6,20	11,20	15,30	19,60	25,50	32,20	39,90
Water flow rate	l/h	1063	1923	2630	3369	4377	5537	6855
Pressure drop	kPa	58	34	40	33	57	37	53
Heating performance 65 °C/55 °C - Se	econdary coil 4-pip	e system (3)						
Heating capacity	kW	4,40	8,10	14,40	18,40	23,60	28,30	32,90
Water flow rate	I/h	380	697	1235	1579	2031	2433	2828
Pressure drop	kPa	6	26	18	20	32	19	25
Cooling performances 7 °C / 12 °C - Ma	ain coil 2 pipe syste	em (4)						
Cooling capacity	kW	5,60	9,70	13,60	16,70	22,30	28,10	33,70
Sensible cooling capacity	kW	4,00	6,90	9,50	12,10	15,80	19,60	24,00
Water flow rate	l/h	965	1666	2329	2862	3827	4819	5789
Pressure drop	kPa	46	30	36	26	49	34	47
Fan								
Туре	type	Plug Fan	Plug Fan	Plug Fan	Plug Fan	Plug Fan	Plug Fan	Plug Fan
Fan motor	type	EC	EC	EC	EC	EC	EC	EC
Number	no.	1	2	1	1	2	2	2
Nominal air flow rate	m³/h	800	1500	2000	2600	3400	4000	5200
Nominal useful head	Pa	150	150	200	200	200	200	200
Maximum useful head (2-pipes) (5)	Pa	193	219	425	525	524	432	505
Maximum useful head (4-pipes) (5)	Pa	174	194	395	501	486	406	466
Input power (2-pipes) (6)	W	155	297	322	500	555	635	1036
Input power (4 pipes) (6)	W	163	315	344	520	601	671	1102
Sound data (7)								
Sound power level (inlet + radiated)	dB(A)	74,0	75,0	70,0	76,0	73,0	73,0	79,0
Sound power level (outlet)	dB(A)	73,0	75,0	72,0	78,0	73,0	75,0	82,0
Diametre hydraulic fittings								
Main heat exchanger	Ø	3/4" F	3/4"F	1″F	1"F	1"F	1″F	1"F
Secondary heat exchanger	Ø	1/2" F	1/2"F	3/4" F	3/4"F	3/4"F	3/4" F	3/4"F
Condensate discharge diameter	mm	3/4" M	3/4" M	3/4" M	3/4"M	3/4" M	3/4" M	3/4" M
Power supply								
Power supply		230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz
Air filter								
Туре	type	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)
Electric coil								
Electric coil capacity	kW	1,5 + 1,5	2,5 + 2,5	4+4	6+6	6+6	7,5 + 7,5	7,5 + 7,5
Stages	no.	2	2	2	2	2	2	2
Power supply		400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz

⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 70°C / 60°C
(2) Room air temperature 20°C d.b.; Water (in/out) 45°C / 40°C
(3) Room air temperature 20°C d.b.; Water (in/out) 65°C / 55°C
(4) Room air 27°C b.s. 47% U.R.; Water (in/out) 7°C/12°C
(5) Maximum high static pressure at nominal air flow rate, in heating mode
(6) Input power at nominal air flow rate, at nominal high static pressure, in heating mode
(7) Sound data in 2-pipe configuration, at nominal air flow rate, at nominal high static pressure, in heating mode

DIMENSIONS

Unit for horizontal installation

		TVH084	TVH086	TVH154	TVH156	TVH204	TVH206	TVH274	TVH276	TVH344	TVH346	TVH404	TVH406	TVH524	TVH526
Dimensions and we	ights														
A	mm	300	300	300	300	390	390	390	390	390	390	390	390	390	390
В	mm	700	700	1000	1000	1000	1000	1400	1400	1400	1400	2000	2000	2000	2000
C	mm	700	700	700	700	850	850	850	850	850	850	850	850	850	850
D	mm	758	758	1058	1058	1058	1058	1458	1458	1458	1458	2058	2058	2058	2058
Net weight	kg	30,0	31,0	43,0	45,0	55,0	58,0	69,0	73,0	80,0	85,0	110,0	116,0	110,0	116,0

TS

Air handling unit

- Very quiet
- Available units with heat exchanger with 3-4-6 rows
- Ductable units

DESCRIPTION

The air-conditioning units of the TS series are intended for civil, commercial and hotel systems in small to medium sized environments. They are distinguished by their compactness (a necessary requisite for false ceiling applications) and low noise. The wide range of accessories meets various system requirements.

STRUCTURE

Case

Structure made of Galvanized steel 10/10 sheet steel and internally covered with sheets of polyethylene and polyester to obtain improved thermal and acoustic insulation.

Ventilation group

Statically and dynamically balanced centrifugal fans:

- Three-speed electrical motor with running capacitor permanently activated and internal thermal protection
- Transmission system relay card for each speed (excluding the models TS13 and TS16)
- Useful static pressure available for any canalisation

Heat exchanger coil

3, 4 or 6 row coils, powered with hot or cold water and made of copper piping with aluminium louvered fins blocked by mechanical expansion of the pipes. The threaded sleeves for the hydraulic connections and the air bleeding valve are supplied. The coils can be rotated on site.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Condensate drip

Condensate drip tray in stainless steel AISI 304 with insulation.

ACCESSORIES

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant

panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

FMT10: Electronic thermostat for fan coil in to 2/4 pipe systems. **PXAE:** Electronic thermostat with thermostated or continuous ventilation.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualist)

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

WMT16: Electronic thermostat with thermostated ventilation.

WMT16CV: Electronic thermostat with continuous ventilation.

TSBA: 2-row coil for post-heating, contained in a delivery installation plenum.

TSFA: Air filter class Coarse 50%

 ${\bf TSGA:}$ Horizontal suction grille with fixed louvers to produce suction from below together with the TSPA accessory.

TSMX: Section that mixes the recirculating air and the external air. Calibration of the mix via the damper, motorisation is possible.

VCT: These are 3-way ball valves made of bronze, with female/female connections \emptyset 1/2". That can be servo-activated via servo commands. The valves do not have fittings and pipes for water connections, which are the installer's responsibility.

VCT: These are 3-way ball valves made of bronze, with female/female connections \emptyset 1/2". That can be servo-activated via servo commands. The valves do not have fittings and pipes for water connections, which are the installer's responsibility.

VCTK: The VCT series valves can be combined with the actuators On-Off 230V. The actuator must be selected according to the type of system/adjustment provided.

TSFM: Delivery flange with rectangular section.

VCTKM: The VCT series valves can be combined with the actuators 24V modulating. The actuator must be selected according to the type of system/ adjustment provided.

ACCESSORIES COMPATIBILITY

Control r	oan	els
-----------	-----	-----

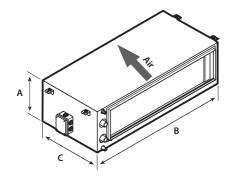
Model	13	16	23	34	36	43	46	53	56	63	74	76
AER503IR (1)	•	•	•	•	•	•	•	•	•	•	•	•
FMT10	•		•			•		•	•	•		
PXAE	•	•	•	•	•	•	•	•	•	•	•	•
SA5 (2)	•	•	•	•	•	•	•	•	•	•	•	•
SW5 (2)	•					•		•	•			
TX (3)	•	•	•	•	•	•	•	•	•	•	•	
WMT10 (3)	•	•	•	•	•	•	•	•	•	•	•	•
WMT16 (3)	•	•	•	•	•	•	•		•	•	•	
WMT16CV (3)	•	•	•	•	•	•	•	•	•	•	•	

 ⁽¹⁾ Wall-mount installation.
 (2) Probe for AERSO3IR-TX thermostats, if fitted.
 (3) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

2	coil	for	noct	· ha	atina

2-row coil fo	r post-heat	ing									
13	16	23	34	36	43	46	53	56	63	74	76
TSBA10	TSBA10	TSBA20/30	TSBA20/30	TSBA20/30	TSBA40	TSBA40	TSBA50	TSBA50	TSBA60/70	TSBA60/70	TSBA60/70
Air filter											
13	16	23	34	36	43	46	53	56	63	74	76
TSFA10	TSFA10	TSFA20/30	TSFA20/30	TSFA20/30	TSFA40	TSFA40	TSFA50	TSFA50	TSFA60/70	TSFA60/70	TSFA60/70
Intake grids											
13	16	23	34	36	43	46	53	56	63	74	76
TSGA10	TSGA10	TSGA20/40	TSGA20/40	TSGA20/40	TSGA20/40	TSGA20/40	TSGA50/70	TSGA50/70	TSGA50/70	TSGA50/70	TSGA50/70
Section that	mixes										
13	16	23	34	36	43	46	53	56	63	74	76
TSMX10	TSMX10	TSMX20/30	TSMX20/30	TSMX20/30	TSMX40	TSMX40	TSMX50	TSMX50	TSMX60/70	TSMX60/70	TSMX60/70
Plenum with	16	23	34	36	43	46	53	56	63	74	76
TSPA10	TSPA10	TSPA20/30	TSPA20/30	TSPA20/30	TSPA40	TSPA40	TSPA50	TSPA50	TSPA60/70	TSPA60/70	TSPA60/70
Delivery ple											
13	16	23	34	36	43	46	53	56	63	74	76
TSPM10	TSPM10	TSPM20/30	TSPM20/30	TSPM20/30	TSPM40	TSPM40	TSPM50	TSPM50	TSPM60/70	TSPM60/70	TSPM60/70
Delivery fla	nge										
13	16	23	34	36	43	46	53	56	63	74	76
TSFM10	TSFM10	TSFM20/30	TSFM20/30	TSFM20/30	TSFM40	TSFM40	TSFM50	TSFM50	TSFM60/70	TSFM60/70	TSFM60/70
2 way valve	kit										
13	16	23	34	36	43	46	53	56	63	74	76
		23	34	30	73	70	,,,	30	03	/4	70
VCT102	VCT102	VCT102	VCT102	VCT102	VCT202	VCT202	VCT202	VCT402	VCT402	VCT402P	VCT402P
VCT102 3 way valve	VCT102										
3 way valve	VCT102 kit	VCT102	VCT102	VCT102	VCT202	VCT202		VCT402	VCT402	VCT402P	
	VCT102						VCT202				VCT402P
3 way valve	VCT102 kit 16 VCT103	VCT102 23	VCT102 34	VCT102 36	VCT202 43	VCT202 46	VCT202 53	VCT402 56	VCT402 63	VCT402P 74	VCT402P 76
3 way valve 13 VCT103 Actuator VC	VCT102 kit 16 VCT103 TK 230V	VCT102 23 VCT103	VCT102 34 VCT103	VCT102 36 VCT103	VCT202 43 VCT203	VCT202 46 VCT203	VCT202 53 VCT203	VCT402 56 VCT403	VCT402 63 VCT403	VCT402P 74 VCT403P	VCT402P 76 VCT403P
3 way valve 13 VCT103	VCT102 kit 16 VCT103	VCT102 23	VCT102 34	VCT102 36	VCT202 43	VCT202 46	VCT202 53	VCT402 56	VCT402 63	VCT402P 74	VCT402P 76
3 way valve 13 VCT103 Actuator VC 13	VCT102 kit 16 VCT103 TK 230V 16 VCTK	VCT102 23 VCT103	VCT102 34 VCT103	VCT102 36 VCT103	VCT202 43 VCT203	VCT202 46 VCT203	VCT202 53 VCT203	VCT402 56 VCT403	63 VCT403	74 VCT403P	76 VCT403P
3 way valve 13 VCT103 Actuator VC 13 VCTK	VCT102 kit 16 VCT103 TK 230V 16 VCTK	VCT102 23 VCT103	VCT102 34 VCT103	VCT102 36 VCT103	VCT202 43 VCT203	VCT202 46 VCT203	VCT202 53 VCT203	VCT402 56 VCT403	63 VCT403	74 VCT403P	76 VCT403P

PERFORMANCE SPECIFICATIONS


2-pipe

- Pube		TS13			TS16			TS23			TS34			TS36			TS43	
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Cooling performance 7 °C / 12 °C (1)																		
Cooling capacity kW	4,39	4,65	4,85	4,44	5,21	5,81	7,18	7,65	7,98	8,59	9,20	9,61	9,40	10,08	10,52	7,14	9,35	11,11
Sensible cooling capacity kV	3,39	3,60	3,75	3,41	3,99	4,45	5,82	6,20	6,46	6,80	7,28	7,61	7,43	7,96	8,31	5,75	7,54	8,96
Water flow rate system side 1/h	754	800	835	764	896	999	1235	1315	1372	1478	1583	1653	1617	1733	1809	1227	1608	1912
Pressure drop system side kP	17	19	21	6	7	9	20	23	24	20	22	24	13	15	16	10	17	23
Heating performance 70 °C / 60 °C (2)																		
Heating capacity kW	8,89	9,43	9,83	9,75	11,34	12,61	14,14	15,04	15,67	17,71	18,92	19,76	19,36	20,71	21,60	14,24	18,33	21,67
Water flow rate system side 1/h	780	827	862	856	995	1106	1240	1319	1375	1553	1660	1733	1698	1816	1894	1249	1068	1900
Pressure drop system side kP	10	12	13	5	7	8	10	12	12	17	19	21	11	13	14	8	13	18
Fan																		
Air flow rate m ³ /	h 810	877	930	656	803	930	1316	1432	1518	1376	1507	1600	1376	1510	1601	1170	1631	2050
High static pressure Pa	68	80	90	27	41	55	77	91	102	62	75	85	33	40	45	37	72	114
Input power kV	0,1	0,1	0,2	0,1	0,1	0,2	0,2	0,3	0,3	0,2	0,3	0,3	0,2	0,3	0,3	0,3	0,3	0,4
Type typ	2								Centi	ifugal								
Fan motor typ										-Off								
Number no		1			1			2			2			2			2	
Diametre hydraulic fittings																		
Type typ	2								G	as								
Main heat exchanger Ø		3/4"			1″			3/4"			3/4"			1"			3/4"	
Power supply																		
Power supply									230V-	~50Hz								
		TCAC			TCF2			TCFC			TCC			TC74			TC7/	
	1	TS46	,	1	TS53	,	1	TS56			TS63	,	1	TS74	,	1	TS76	2
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
	1 L		3 H	1 L		3 H	1 L					3 H	1 L		3 H	1 L		3 H
Cooling performance 7 °C / 12 °C (1)	Ĺ	2 M	Н	L	2 M	Н	L	2 M	3 H	1 L	2 M	Н	L	2 M	Н	L	2 M	Н
Cooling performance 7 °C / 12 °C (1) Cooling capacity kW	L 8,57	2 M	H 13,44	L 8,05	2 M	H 13,86	L 9,50	2 M	3 H	1 L 8,11	2 M	H 16,62	L 17,47	2 M	H 21,92	L 19,79	2 M	H 24,93
Cooling performance 7 °C / 12 °C (1) Cooling capacity kW Sensible cooling capacity kW	8,57 6,90	2 M 11,27 9,06	H 13,44 10,81	8,05 5,68	2 M 11,06 7,80	H 13,86 9,77	9,50 6,73	2 M 13,13 9,31	3 H 16,47 11,68	1 L 8,11 6,40	2 M 12,84 10,12	H 16,62 13,11	17,47 14,20	2 M 20,65 16,78	H 21,92 17,82	19,79 16,04	2 M 23,38 18,95	H 24,93 20,21
Cooling performance 7 °C / 12 °C (1) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/f	8,57 6,90 1474	2 M 11,27 9,06 1938	H 13,44 10,81 2311	8,05 5,68 1385	2 M 11,06 7,80 1902	H 13,86 9,77 2384	9,50 6,73 1633	2 M 13,13 9,31 2260	3 H 16,47 11,68 2833	1 L 8,11 6,40 1395	2 M 12,84 10,12 2208	H 16,62 13,11 2858	17,47 14,20 3006	2 M 20,65 16,78 3551	H 21,92 17,82 3771	19,79 16,04 3405	2 M 23,38 18,95 4022	H 24,93 20,21 4289
Cooling performance 7 °C / 12 °C (1) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/t Pressure drop system side kP	8,57 6,90 1474	2 M 11,27 9,06	H 13,44 10,81	8,05 5,68	2 M 11,06 7,80	H 13,86 9,77	9,50 6,73	2 M 13,13 9,31	3 H 16,47 11,68	1 L 8,11 6,40	2 M 12,84 10,12	H 16,62 13,11	17,47 14,20	2 M 20,65 16,78	H 21,92 17,82	19,79 16,04	2 M 23,38 18,95	H 24,93 20,21
Cooling performance 7 °C / 12 °C (1) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/P Pressure drop system side kP Heating performance 70 °C / 60 °C (2)	8,57 6,90 1474 8	2 M 11,27 9,06 1938 13	H 13,44 10,81 2311 17	8,05 5,68 1385 12	2 M 11,06 7,80 1902 21	H 13,86 9,77 2384 32	9,50 6,73 1633 10	2 M 13,13 9,31 2260 18	3 H 16,47 11,68 2833 27	1 L 8,11 6,40 1395 7	2 M 12,84 10,12 2208 16	H 16,62 13,11 2858 26	17,47 14,20 3006 19	2 M 20,65 16,78 3551 25	H 21,92 17,82 3771 28	19,79 16,04 3405 17	2 M 23,38 18,95 4022 23	H 24,93 20,21 4289 26
Cooling performance 7 °C / 12 °C (1) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/t Pressure drop system side kP Heating performance 70 °C / 60 °C (2) Heating capacity kW	8,57 6,90 1474 8	2 M 11,27 9,06 1938 13	H 13,44 10,81 2311 17 27,83	8,05 5,68 1385 12	2 M 11,06 7,80 1902 21	H 13,86 9,77 2384 32 25,89	9,50 6,73 1633 10	2 M 13,13 9,31 2260 18	3 H 16,47 11,68 2833 27	8,11 6,40 1395 7	2 M 12,84 10,12 2208 16	H 16,62 13,11 2858 26 35,61	17,47 14,20 3006 19	2 M 20,65 16,78 3551 25 43,80	H 21,92 17,82 3771 28 46,45	19,79 16,04 3405 17	2 M 23,38 18,95 4022 23	H 24,93 20,21 4289 26
Cooling performance 7 °C / 12 °C (1) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/r Pressure drop system side kP Heating performance 70 °C / 60 °C (2) Heating capacity kW Water flow rate system side l/r	8,57 6,90 1474 8	2 M 11,27 9,06 1938 13 23,45 2056	H 13,44 10,81 2311 17 27,83 2440	8,05 5,68 1385 12 15,55 1364	2 M 11,06 7,80 1902 21 20,82 1826	H 13,86 9,77 2384 32 25,89 2270	9,50 6,73 1633 10 19,63 1722	2 M 13,13 9,31 2260 18 26,43 2321	3 H 16,47 11,68 2833 27 32,90 2886	8,11 6,40 1395 7	2 M 12,84 10,12 2208 16 27,78 2436	H 16,62 13,11 2858 26 35,61 3123	17,47 14,20 3006 19 37,33 3274	2 M 20,65 16,78 3551 25 43,80 3841	H 21,92 17,82 3771 28 46,45 4073	19,79 16,04 3405 17 42,00 3683	2 M 23,38 18,95 4022 23 49,25 4319	H 24,93 20,21 4289 26 52,44 4599
Cooling performance 7 °C / 12 °C (1) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/r Pressure drop system side kP Heating performance 70 °C / 60 °C (2) Heating capacity kW Water flow rate system side l/r Pressure drop system side kP	8,57 6,90 1474 8	2 M 11,27 9,06 1938 13	H 13,44 10,81 2311 17 27,83	8,05 5,68 1385 12	2 M 11,06 7,80 1902 21	H 13,86 9,77 2384 32 25,89	9,50 6,73 1633 10	2 M 13,13 9,31 2260 18	3 H 16,47 11,68 2833 27	8,11 6,40 1395 7	2 M 12,84 10,12 2208 16	H 16,62 13,11 2858 26 35,61	17,47 14,20 3006 19	2 M 20,65 16,78 3551 25 43,80	H 21,92 17,82 3771 28 46,45	19,79 16,04 3405 17	2 M 23,38 18,95 4022 23	H 24,93 20,21 4289 26
Cooling performance 7 °C / 12 °C (1) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/r Pressure drop system side kP Heating performance 70 °C / 60 °C (2) Heating capacity kW Water flow rate system side l/r Pressure drop system side kP Pressure drop system side kP	8,57 6,90 1474 8 18,17 1593 6	2 M 11,27 9,06 1938 13 23,45 2056	H 13,44 10,81 2311 17 27,83 2440 14	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15	H 13,86 9,77 2384 32 25,89 2270 22	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321	3 H 16,47 11,68 2833 27 32,90 2886 22	8,11 6,40 1395 7 18,32 1607 6	2 M 12,84 10,12 2208 16 27,78 2436 13	H 16,62 13,11 2858 26 35,61 3123 21	17,47 14,20 3006 19 37,33 3274 16	2 M 20,65 16,78 3551 25 43,80 3841 22	H 21,92 17,82 3771 28 46,45 4073 24	19,79 16,04 3405 17 42,00 3683 15	2 M 23,38 18,95 4022 23 49,25 4319 20	H 24,93 20,21 4289 26 52,44 4599 22
Cooling performance 7 °C / 12 °C (1) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/r Pressure drop system side kP Heating performance 70 °C / 60 °C (2) Heating capacity kW Water flow rate system side l/r Pressure drop system side kP Fan Air flow rate m³	8,57 6,90 1474 8 18,17 1593 6	2 M 11,27 9,06 1938 13 23,45 2056 10	H 13,44 10,81 2311 17 27,83 2440 14 2076	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15	H 13,86 9,77 2384 32 25,89 2270 22	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15	3 H 16,47 11,68 2833 27 32,90 2886 22	8,11 6,40 1395 7 18,32 1607 6	2 M 12,84 10,12 2208 16 27,78 2436 13	H 16,62 13,11 2858 26 35,61 3123 21	17,47 14,20 3006 19 37,33 3274 16	2 M 20,65 16,78 3551 25 43,80 3841 22	H 21,92 17,82 3771 28 46,45 4073 24	19,79 16,04 3405 17 42,00 3683 15	2 M 23,38 18,95 4022 23 49,25 4319 20	H 24,93 20,21 4289 26 52,44 4599 22 4225
Cooling performance 7 °C / 12 °C (1) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/V Pressure drop system side kP Heating performance 70 °C / 60 °C (2) Heating capacity kW Water flow rate system side l/V Pressure drop system side kP Pressure drop system side kP Fan Air flow rate m³/ High static pressure	8,57 6,90 1474 8 18,17 1593 6 h 1173 24	2 M 11,27 9,06 1938 13 23,45 2056 10	H 13,44 10,81 2311 17 27,83 2440 14 2076 76	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15 1775	H 13,86 9,77 2384 32 25,89 2270 22 2387 104	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15 1777 38	3 H 16,47 11,68 2833 27 32,90 2886 22 2391 69	1 L 8,11 6,40 1395 7 18,32 1607 6 1493 20	2 M 12,84 10,12 2208 16 27,78 2436 13 2570 61	H 16,62 13,11 2858 26 35,61 3123 21 3599 120	17,47 14,20 3006 19 37,33 3274 16 3117 63	2 M 20,65 16,78 3551 25 43,80 3841 22 3869 97	H 21,92 17,82 3771 28 46,45 4073 24 4200 115	19,79 16,04 3405 17 42,00 3683 15 3119	2 M 23,38 18,95 4022 23 49,25 4319 20 3869 63	H 24,93 20,21 4289 26 52,44 4599 22 4225 75
Cooling performance 7 °C / 12 °C (1) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/V Pressure drop system side kP Heating performance 70 °C / 60 °C (2) Heating capacity kW Water flow rate system side l/V Pressure drop system side kP Pressure drop system side kP Fan Air flow rate m³ Air flow rate pside kP Input power kW	8,57 6,90 1474 8 18,17 1593 6 h 1173 24 0,3	2 M 11,27 9,06 1938 13 23,45 2056 10	H 13,44 10,81 2311 17 27,83 2440 14 2076	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15	H 13,86 9,77 2384 32 25,89 2270 22	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15	3 H 16,47 11,68 2833 27 32,90 2886 22 2391 69 0,5	1 L 8,11 6,40 1395 7 18,32 1607 6 1493 20 0,3	2 M 12,84 10,12 2208 16 27,78 2436 13	H 16,62 13,11 2858 26 35,61 3123 21	17,47 14,20 3006 19 37,33 3274 16	2 M 20,65 16,78 3551 25 43,80 3841 22	H 21,92 17,82 3771 28 46,45 4073 24	19,79 16,04 3405 17 42,00 3683 15	2 M 23,38 18,95 4022 23 49,25 4319 20	H 24,93 20,21 4289 26 52,44 4599 22 4225
Cooling performance 7 °C / 12 °C (1) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/V Pressure drop system side kP Heating performance 70 °C / 60 °C (2) Heating capacity kW Water flow rate system side l/V Pressure drop system side kP Pressure drop system side kP Fan Air flow rate m³/ High static pressure Pa Input power kW Type type	8,57 6,90 1474 8 18,17 1593 6 h 1173 24 0,3	2 M 11,27 9,06 1938 13 23,45 2056 10	H 13,44 10,81 2311 17 27,83 2440 14 2076 76	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15 1775	H 13,86 9,77 2384 32 25,89 2270 22 2387 104	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15 1777 38	3 H 16,47 11,68 2833 27 32,90 2886 22 2391 69 0,5 Centri	1 L 8,11 6,40 1395 7 1607 6 1493 20 0,3 ifugal	2 M 12,84 10,12 2208 16 27,78 2436 13 2570 61	H 16,62 13,11 2858 26 35,61 3123 21 3599 120	17,47 14,20 3006 19 37,33 3274 16 3117 63	2 M 20,65 16,78 3551 25 43,80 3841 22 3869 97	H 21,92 17,82 3771 28 46,45 4073 24 4200 115	19,79 16,04 3405 17 42,00 3683 15 3119	2 M 23,38 18,95 4022 23 49,25 4319 20 3869 63	H 24,93 20,21 4289 26 52,44 4599 22 4225 75
Cooling performance 7 °C / 12 °C (1) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/r Pressure drop system side kP Heating performance 70 °C / 60 °C (2) Heating capacity kW Water flow rate system side l/r Pressure drop system side kP Fan Air flow rate m³/ High static pressure Pa Input power kW Type type Fan motor	8,57 6,90 1474 8 18,17 1593 6 h 1173 24 0,3	2 M 11,27 9,06 1938 13 23,45 2056 10 1642 48 0,3	H 13,44 10,81 2311 17 27,83 2440 14 2076 76	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15 1775 57 0,4	H 13,86 9,77 2384 32 25,89 2270 22 2387 104	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15 1777 38 0,4	3 H 16,47 11,68 2833 27 32,90 2886 22 2391 69 0,5 Centri	1 L 8,11 6,40 1395 7 18,32 1607 6 1493 20 0,3	2 M 12,84 10,12 2208 16 27,78 2436 13 2570 61 0,4	H 16,62 13,11 2858 26 35,61 3123 21 3599 120	17,47 14,20 3006 19 37,33 3274 16 3117 63	2 M 20,65 16,78 3551 25 43,80 3841 22 3869 97 0,8	H 21,92 17,82 3771 28 46,45 4073 24 4200 115	19,79 16,04 3405 17 42,00 3683 15 3119 41	2 M 23,38 18,95 4022 23 49,25 4319 20 3869 63 0,8	H 24,93 20,21 4289 26 52,44 4599 22 4225 75
Cooling performance 7 °C / 12 °C (1) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/P Pressure drop system side kP Heating performance 70 °C / 60 °C (2) Heating capacity kW Water flow rate system side l/V Pressure drop system side kP Fan Air flow rate m³ Air flow rate m³ Liphy static pressure l/P Input power kW Type type Fan motor type Number noo	8,57 6,90 1474 8 18,17 1593 6 h 1173 24 0,3	2 M 11,27 9,06 1938 13 23,45 2056 10	H 13,44 10,81 2311 17 27,83 2440 14 2076 76	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15 1775	H 13,86 9,77 2384 32 25,89 2270 22 2387 104	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15 1777 38	3 H 16,47 11,68 2833 27 32,90 2886 22 2391 69 0,5 Centri	1 L 8,11 6,40 1395 7 1607 6 1493 20 0,3 ifugal	2 M 12,84 10,12 2208 16 27,78 2436 13 2570 61	H 16,62 13,11 2858 26 35,61 3123 21 3599 120	17,47 14,20 3006 19 37,33 3274 16 3117 63	2 M 20,65 16,78 3551 25 43,80 3841 22 3869 97	H 21,92 17,82 3771 28 46,45 4073 24 4200 115	19,79 16,04 3405 17 42,00 3683 15 3119 41	2 M 23,38 18,95 4022 23 49,25 4319 20 3869 63	H 24,93 20,21 4289 26 52,44 4599 22 4225 75
Cooling performance 7 °C / 12 °C (1) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side leating performance 70 °C / 60 °C (2) Heating performance 70 °C / 60 °C (2) Heating capacity kW Water flow rate system side l/V Pressure drop system side kP Fan Air flow rate m³ Air flow rate m³ High static pressure lnput power kW Type type Fan motor typ Number no Diametre hydraulic fittings	8,57 6,90 1474 8 18,17 1593 6 h 1173 24 0,3	2 M 11,27 9,06 1938 13 23,45 2056 10 1642 48 0,3	H 13,44 10,81 2311 17 27,83 2440 14 2076 76	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15 1775 57 0,4	H 13,86 9,77 2384 32 25,89 2270 22 2387 104	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15 1777 38 0,4	3 H 16,47 111,68 2833 27 32,90 2886 22 2391 69 0,5 Centro	1 L 8,11 6,40 1395 7 18,32 1607 6 1493 20 0,3 iffugal -Off	2 M 12,84 10,12 2208 16 27,78 2436 13 2570 61 0,4	H 16,62 13,11 2858 26 35,61 3123 21 3599 120	17,47 14,20 3006 19 37,33 3274 16 3117 63	2 M 20,65 16,78 3551 25 43,80 3841 22 3869 97 0,8	H 21,92 17,82 3771 28 46,45 4073 24 4200 115	19,79 16,04 3405 17 42,00 3683 15 3119 41	2 M 23,38 18,95 4022 23 49,25 4319 20 3869 63 0,8	H 24,93 20,21 4289 26 52,44 4599 22 4225 75
Cooling performance 7 °C / 12 °C (1) Cooling capacity	8,57 6,90 1474 8 18,17 1593 6 h 1173 24 0,3	2 M 11,27 9,06 1938 13 23,45 2056 10 1642 48 0,3	H 13,44 10,81 2311 17 27,83 2440 14 2076 76	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15 1775 57 0,4	H 13,86 9,77 2384 32 25,89 2270 22 2387 104	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15 1777 38 0,4	3 H 16,47 111,68 2833 27 32,90 2886 22 2391 69 0,5 Centro	1 L 8,11 6,40 1395 7 1607 6 1493 20 0,3 ifugal	2 M 12,84 10,12 2208 16 27,78 2436 13 2570 61 0,4	H 16,62 13,11 2858 26 35,61 3123 21 3599 120	17,47 14,20 3006 19 37,33 3274 16 3117 63	2 M 20,65 16,78 3551 25 25 43,80 3841 22 3869 97 0,8	H 21,92 17,82 3771 28 46,45 4073 24 4200 115	19,79 16,04 3405 17 42,00 3683 15 3119 41	2 M 18,95 4022 23 49,25 4319 20 3869 63 0,8	H 24,93 20,21 4289 26 52,44 4599 22 4225 75
Cooling performance 7 °C / 12 °C (1) Cooling capacity	8,57 6,90 1474 8 18,17 1593 6 h 1173 24 0,3	2 M 11,27 9,06 1938 13 23,45 2056 10 1642 48 0,3	H 13,44 10,81 2311 17 27,83 2440 14 2076 76	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15 1775 57 0,4	H 13,86 9,77 2384 32 25,89 2270 22 2387 104	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15 1777 38 0,4	3 H 16,47 111,68 2833 27 32,90 2886 22 2391 69 0,5 Centro	1 L 8,11 6,40 1395 7 18,32 1607 6 1493 20 0,3 iffugal -Off	2 M 12,84 10,12 2208 16 27,78 2436 13 2570 61 0,4	H 16,62 13,11 2858 26 35,61 3123 21 3599 120	17,47 14,20 3006 19 37,33 3274 16 3117 63	2 M 20,65 16,78 3551 25 43,80 3841 22 3869 97 0,8	H 21,92 17,82 3771 28 46,45 4073 24 4200 115	19,79 16,04 3405 17 42,00 3683 15 3119 41	2 M 23,38 18,95 4022 23 49,25 4319 20 3869 63 0,8	H 24,93 20,21 4289 26 52,44 4599 22 4225 75
Cooling performance 7 °C / 12 °C (1) Cooling capacity	8,57 6,90 1474 8 18,17 1593 6 h 1173 24 0,3	2 M 11,27 9,06 1938 13 23,45 2056 10 1642 48 0,3	H 13,44 10,81 2311 17 27,83 2440 14 2076 76	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15 1775 57 0,4	H 13,86 9,77 2384 32 25,89 2270 22 2387 104	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15 1777 38 0,4	3 H 16,47 111,68 2833 27 32,90 2886 22 2391 69 0,5 Centro On	1 L 8,11 6,40 1395 7 18,32 1607 6 1493 20 0,3 iffugal -Off	2 M 12,84 10,12 2208 16 27,78 2436 13 2570 61 0,4	H 16,62 13,11 2858 26 35,61 3123 21 3599 120	17,47 14,20 3006 19 37,33 3274 16 3117 63	2 M 20,65 16,78 3551 25 25 43,80 3841 22 3869 97 0,8	H 21,92 17,82 3771 28 46,45 4073 24 4200 115	19,79 16,04 3405 17 42,00 3683 15 3119 41	2 M 18,95 4022 23 49,25 4319 20 3869 63 0,8	H 24,93 20,21 4289 26 52,44 4599 22 4225 75

(1) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C;
(2) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C;

Unit designed to operate with all recirculating air or maximum 10% of external air.

DIMENSIONS

Size		13	16	23	34	36	43	46	53	56	63	74	76
Dimensions and weights													
A	mm	295	295	295	295	295	325	325	325	325	375	375	375
В	mm	645	645	1000	1000	1000	1100	1100	1345	1345	1345	1345	1345
(mm	520	520	520	520	520	600	600	600	600	600	600	600
Empty weight	kg	25	27	35	38	42	42	46	48	52	56	61	67

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

TA

Air handling unit

- Horizontal or vertical, configurations
- Available units with heat exchanger with 4-6 rows
- Version with 4 row expansion coil using R410A
- Version with extractor

DESCRIPTION

The air-conditioning units of the TA series are intended for civil, commercial and hotel systems in small to medium sized environments. They are distinguished by their compactness (a necessary requisite for false ceiling applications) and low noise. The wide range of accessories meets various system requirements.

FEATURES

Structure

Made of galvanised steel sandwich panels with polyurethane insulation (density 45 kg/m³), 15 mm thick. The intake and delivery panels are fitted with flanges for the connection to any possible air channels or accessories. The unit is supplied with specific brackets for attaching it to the wall.

Air filtration

Filtration of the air entrusted to class G4 filters in compliance with EN779 (thickness 50mm) as per standard positioned at intake.

Ventilation group

Fans double intake centrifugal with forward blades and directly coupled motor. The 230V-50Hz single-phase motor has many speeds, of which three can be selected via the control panel.

Heat exchanger coil

4 or 6 row coils, powered with hot or cold water and made of copper piping with aluminium louvered fins blocked by mechanical expansion of the pipes. The threaded sleeves for the hydraulic connections and the air bleeding valve are supplied. The coils can be rotated on site.

The possibility to rotate the coils on site is envisioned.

Also available are coils with 4 rows with direct expansion operating with R410A fluid and post-heating coils with 2 rows realised in copper piping with aluminium louvers blocked via mechanical expansion of the pipes.

Condensate drip

Condensate drip tray interior isolated in aluminium alloy.

ACCESSORIES

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those

with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control. **SA5:** air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation

WMT16: Electronic thermostat with thermostated ventilation.

WMT16CV: Electronic thermostat with continuous ventilation.

VCT: These are 3-way ball valves made of bronze, with female/female connections \emptyset 1/2". That can be servo-activated via servo commands. The valves do not have fittings and pipes for water connections, which are the installer's responsibility.

VCT: These are 3-way ball valves made of bronze, with female/female connections Ø 1/2". That can be servo-activated via servo commands. The valves do not have fittings and pipes for water connections, which are the installer's responsibility.

VCTK: The VCT series valves can be combined with the actuators On-Off 230V. The actuator must be selected according to the type of system/adiustment provided.

VCTKM: The VCT series valves can be combined with the actuators 24V modulating. The actuator must be selected according to the type of system/ adjustment provided.

M25: Galvanised steel mixing chamber with two dampers for air calibration. Louver pitch 50 mm, the galvanised steel adjustment knob (diameter 8 mm) can be motorised.

M3S: Galvanised steel mixing chamber with three air calibration dampers and galvanised steel plates. Must necessarily be paired with the VRF acces-

FTF: Soft bag filters. Section in galvanised steel sheet metal with F6 soft bag filters. Must necessarily be paired in the powered units.

B2R: Hot water coil with 2 rows for lines with 4 tubes. Positioned internally at the base of the equipment, downstream from the main coil.

PBE: Section with post heating coil composed of armoured heaters equipped with a double safety thermostat.

SSL: Module with seven galvanised steel sheet metal silencers and seven stone wool silencers covered by polyethylene film to prevent chipping.

S2Z: Galvanised steel opposed louvers dampers for mixing outside air with recirculating air.

VRF: Recovery fan unit equipped with electronic variable speed control. The unit is contained in a galvanised steel sheet metal section equipped with flat filters, efficiency level G4 (EN779).

SAS: Air calibration damper with galvanised sheet metal louvers to be positioned for intake. Louver pitch 50 mm; the galvanised steel adjustment knob can be motorised.

GMD: Air delivery grill with louvers that can be positioned for the delivery of air in the room to be treated. May be installed directly on the device by removing the flanges or installed on the wall.

GAP: Intake grille with louvers at a fixed 45° angle. May be installed directly on the device by removing the flanges or installed on the wall.

FPI: ISO COARSE 50% filter flange for intake at base.

PMM: Plenum with circular multiple delivery, thickness 1.5 mm. The plenum is equipped with multi-diameter circular connections (200 mm, 180 mm, 150 mm) made of plastic to permit the connection of circular conduits.

PMC: Closed delivery plenum in 1.5 mm thick hot-dip galvanised sheet metal. The plenum allows for flow to be rotated by 90°. Opening the delivery outlet is the installer's responsibility.

ACCESSORIES COMPATIBILITY

Control panels

Model	Ver	09	11	15	19	24	33	40	50
AER503IR (1)	H4,H6,HE,V4,V6,X	•	•	•	•	•	•	•	•
SA5 (2)	H4,H6,HE,V4,V6,X	•	•	•	•	•	•	•	•
SIT3 (3)	H4,H6,HE,V4,V6,X	•	•	•	•	•	•	•	•
SW5 (2)	H4,H6,HE,V4,V6,X	•	•	•	•	•	•	•	
WMT10 (4)	H4,H6,HE,V4,V6,X	•	•	•	•	•	•	•	•
WMT16 (4)	H4,H6,HE,V4,V6,X	•	•	•	•	•	•	•	
WMT16CV (4)	H4,H6,HE,V4,V6,X	•							

- (1) Wall-mount installation.(2) Probe for AER503IR-TX thermostats, if fitted.
- (3) Cards for AERSO3IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere.
 (4) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

2 way valve kit								
Ver	09	11	15	19	24	33	40	50
H4, H6, V4, V6	VCT102	VCT102	VCT202	VCT202	VCT202	VCT402	VCT402P	VCT402P
3 way valve kit								
Ver	09	11	15	19	24	33	40	50
H4, H6, V4, V6	VCT103	VCT103	VCT203	VCT403, VCT403P	VCT403, VCT403P	-	-	-
The accessory cannot be fitted on t	he configurations indicated with	-						
Actuator VCTK 230V								
Ver	09	11	15	19	24	33	40	50
H4, H6, V4, V6	VCTK	VCTK	VCTK	VCTK	VCTK	VCTK	VCTK	VCTK
Actuator 24V								
Ver	09	11	15	19	24	33	40	50
H4, H6, V4, V6	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM
2-damper mixing chan	nber							
Ver	09	11	15	19	24	33	40	50
H4, H6, HE, V4, V6, X	M2S1	M2S1	M2S2	M2S3	M2S4	M2S4	M2S5	M2S5
3-damper mixing chan	nber							
Ver	09	11	15	19	24	33	40	50
H4, H6, HE, V4, V6, X	M3S1 (1)	M3S1 (1)	M3S2 (1)	M3S3 (1)	M3S4 (1)	M3S4 (1)	M3S5 (1)	M3S5 (1)
(1) It must necessarily be combine	d with the VRF accessory.							
Closed delivery plenur	n							
Ver	09	11	15	19	24	33	40	50
H4, H6, HE, V4, V6, X	PMC1	PMC1	PMC2	PMC3	PMC4	PMC4	PMC5	PMC5
Soft bag filter section								
Ver	09	11	15	19	24	33	40	50
H4, H6, HE, V4, V6, X	FTF1 (1)	FTF1 (1)	FTF2 (1)	FTF3 (1)	FTF4 (1)	FTF4 (1)	FTF5 (1)	FTF5 (1)
(1) It must necessarily be combine	d in the enhanced units.							
2-row coil								
Ver	09	11	15	19	24	33	40	50
H4, H6, HE, V4, V6, X	B2R1	B2R1	B2R2	B2R3	B2R4	B2R4	B2R5	B2R5
DMM								
PMM								
Ver	09	11	15	19	24	33	40	50

ICO COADCE	EOO/ files	flamma fau	intake at base	
ISU CUARSE	50% filter	tiange for	intake at base	

Ver	09	11	15	19	24	33	40	50
H4, H6, HE, V4, V6, X	FPI1	FPI1	FPI2	FP13	FPI4	FPI4	FPI5	FPI5
ection with post-heating c	oil							
Ver	09	11	15	19	24	33	40	50
H4, H6, HE, V4, V6, X	PBE1	PBE2	PBE3	PBE4	PBE5	PBE6	PBE7	PBE8
lencer baffles module								
Ver	09	11	15	19	24	33	40	50
H4, H6, HE, V4, V6, X	SSL1	SSL1	SSL2	SSL3	SSL4	SSL4	SSL5	SSL5
zone damper								
Ver	09	11	15	19	24	33	40	50
H4, H6, HE, V4, V6, X	S2Z1	S2Z1	S2Z2	S2Z3	S2Z4	S2Z4	S2Z5	S2Z5
eturn ventilating section v Ver	vith a G4 filter 09	11	15	19	24	33	40	50
H4, H6, HE, V4, V6, X	VRF1	VRF2	VRF3	VRF4	VRF5	VRF6	VRF7	VRF8
uction damper								
Ver	09	11	15	19	24	33	40	50
H4, H6, HE, V4, V6, X	SAS1	SAS1	SAS2	SAS3	SAS3	SAS3	SAS5	SASS
H4, H6, HE, V4, V6, X utlet grille with adjustable		SAS1	SAS2	SAS3	SAS3	SAS3	SAS5	SAS5
		SAS1	SAS2	SAS3	SAS3 24	SAS3 33	SAS5	SAS5
utlet grille with adjustable	e louvers							
utlet grille with adjustable Ver	e louvers 09	11	15	19	24	33	40	50
utlet grille with adjustable Ver H4, H6, HE, V4, V6, X	e louvers 09	11	15	19	24	33	40	50

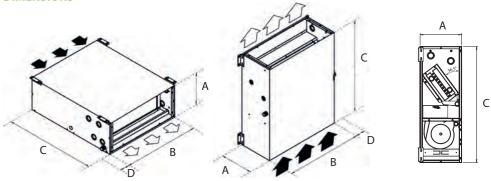
4-ROW COIL UNIT PERFORMANCE DATA

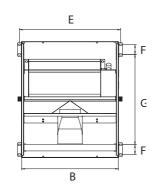
Units designed to operate with all recirculating air or maximum 10% of external air.

Versions H/V

	TA09H4	TA09V4	TA11H4	TA11V4	TA15H4	TA15V4	TA19H4	TA19V4	TA24H4	TA24V4	TA33H4	TA33V4	TA40H4	TA40V4	TA50H4	TA50V4
Cooling performances 7 °C / 12 °C - 2 pipe system	(1)															
Cooling capacity k	N 4,20	4,20	5,70	5,70	8,70	8,70	12,40	12,40	17,30	17,30	21,70	21,70	27,20	27,20	33,50	33,50
Sensible cooling capacity k	N 3,50	3,50	4,20	4,20	6,20	6,20	8,30	8,30	11,20	11,20	14,30	14,30	18,00	18,00	20,90	20,90
Water flow rate I/	h 722	722	980	980	1496	1496	2132	2132	2975	2975	3732	3732	4678	4678	5761	5761
Pressure drop kF	Pa 6	6	6	6	7	7	12	12	16	16	23	23	11	11	31	31
Heating performance 70 °C / 60 °C - 2 pipe system	l															
Heating capacity k	N 10,40	10,40	13,30	13,30	19,10	19,10	24,70	24,70	34,10	34,10	41,90	41,90	52,80	52,80	58,30	58,30
Water flow rate I/	h 894	894	1139	1139	1642	1642	2124	2124	2932	2932	3603	3603	4538	4538	5013	5013
Pressure drop kF	Pa 5	5	8	8	7	7	10	10	13	13	19	19	10	10	22	22
2-rows-heating coil with hot water - (accessory) (2)															
Heating capacity k	N 3,90	3,90	8,50	8,50	12,70	12,70	16,00	16,00	21,70	21,70	26,70	26,70	34,80	34,80	40,00	40,00
Water flow rate I/	h 333	333	731	731	1092	1092	1371	1371	1866	1866	2291	2291	2988	2988	3439	3439
Pressure drop kF	Pa 8	8	11	11	13	13	14	14	18	18	26	26	18	18	23	23
Electric heating coil - (accessory)																
Heating capacity k	N 4,00	4,00	6,00	6,00	8,00	8,00	10,00	10,00	12,00	12,00	16,00	16,00	20,00	20,00	24,00	24,00
Stages no	0. 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Power supply								400V~	-3 50Hz							
Fan																
Type ty	pe							Centr	rifugal							
Number no	o. 1	1	2	2	2	2	1	1	1	1	2	2	2	2	2	2
Air flow rate m ³	/h 800	800	1100	1100	1500	1500	1900	1900	2400	2400	3300	3300	4000	4000	5000	5000
High static pressure P	a 145	145	290	290	176	176	240	240	211	211	245	245	248	248	153	153
Input power k	N 0	25	0.	31	0.	38	0.	61	0.	83	0.	81	0.	98	1.	28
Air filter																
Type ty	pe							G4	/ F6							
Sound data																
Sound power level dB	(A) 62,0	62,0	66,0	66,0	67,0	67,0	72,0	72,0	74,0	74,0	75,0	75,0	76,0	76,0	79,0	79,0
Power supply																
Power supply								230V	~50Hz							

⁽¹⁾ Room air 27 °C b.s.47% U.R.; Water (in/out) 7 °C/12 °C (2) Water temperature (in/out) 70 °C / 60 °C.


6-ROW COIL UNIT PERFORMANCE DATA


Versions H/V

		TA09H6	TA09V6	TA11H6	TA11V6	TA15H6	TA15V6	TA19H6	TA19V6	TA24H6	TA24V6	TA33H6	TA33V6	TA40H6	TA40V6	TA50H6	TA50V6
Cooling performances 7 °C / 12 °C - 2	2 pipe sys	tem (1)															
Cooling capacity	kW	5,10	5,10	6,70	6,70	11,70	11,70	15,50	15,50	20,60	20,60	26,30	26,30	33,50	33,50	39,60	39,60
Sensible cooling capacity	kW	3,40	3,40	4,70	4,70	7,50	7,50	9,80	9,80	12,80	12,80	16,60	16,60	20,90	20,90	25,00	25,00
Water flow rate	l/h	868	868	1152	1152	2012	2012	2666	2666	3543	3543	4523	4523	5761	5761	6810	6810
Pressure drop	kPa	4	4	6	6	15	15	29	29	27	27	41	41	31	31	42	42
Heating performance 70 °C / 60 °C -	2 pipe sy	stem															
Heating capacity	kW	11,40	11,40	14,80	14,80	21,40	21,40	27,40	27,40	35,60	35,60	46,60	46,60	58,30	58,30	72,80	72,80
Water flow rate	l/h	976	976	1273	1273	1838	1838	2356	2356	3058	3058	4005	4005	5013	5013	6260	6260
Pressure drop	kPa	4	4	7	7	16	16	23	23	21	21	34	34	22	22	30	30
2-rows-heating coil with hot water	- (accesso	ry) (2)															
Heating capacity	kW	3,90	3,90	8,50	8,50	12,70	12,70	16,00	16,00	21,70	21,70	26,70	26,70	34,80	34,80	40,00	40,00
Water flow rate	l/h	333	333	731	731	1092	1092	1371	1371	1866	1866	2291	2291	2988	2988	3439	3439
Pressure drop	kPa	8	8	11	11	13	13	14	14	18	18	26	26	18	18	23	23
Electric heating coil - (accessory)																	
Heating capacity	kW	4,00	4,00	6,00	6,00	8,00	8,00	10,00	10,00	12,00	12,00	16,00	16,00	20,00	20,00	24,00	24,00
Stages	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Power supply									400V~	~3 50Hz							
Fan																	
Туре	type								Centi	rifugal							
Number	no.	1	1	2	2	2	2	1	1	1	1	2	2	2	2	2	2
Air flow rate	m³/h	800	800	1100	1100	1500	1500	1900	1900	2400	2400	3300	3300	4000	4000	5000	5000
High static pressure	Pa	131	131	265	265	158	158	224	224	199	199	224	224	234	234	131	131
Input power	kW	0	.25	0.	31	0.	38	0.	61	0.	.83	0.	81	0.	.98	1.	.28
Air filter																	
Туре	type								G4	/ F6							
Sound data																	
Sound power level	dB(A)	62,0	62,0	66,0	66,0	67,0	67,0	72,0	72,0	74,0	74,0	75,0	75,0	76,0	76,0	79,0	79,0
Power supply																	
Power supply									230V	~50Hz							

⁽¹⁾ Room air 27 °C b.s.47% U.R.; Water (in/out) 7 °C/12 °C (2) Water temperature (in/out) 70 °C / 60 °C.

DIMENSIONS

Unit for horizontal installation

Unit H

Omen																	
		TA09H4	TA09H6	TA11H4	TA11H6	TA15H4	TA15H6	TA19H4	TA19H6	TA24H4	TA24H6	TA33H4	TA33H6	TA40H4	TA40H6	TA50H4	TA50H6
Dimensions and weigh	ıts																
A	mm	300	300	300	300	300	300	390	390	390	390	390	390	390	390	390	390
В	mm	700	700	700	700	1050	1050	1050	1050	1475	1475	1475	1475	2100	2100	2100	2100
C	mm	700	700	700	700	700	700	850	850	850	850	850	850	1000	1000	1000	1000
D	mm	82	82	82	82	82	82	82	82	82	82	82	82	82	82	82	82
E	mm	732	732	732	732	732	732	1082	1082	1507	1507	1507	1507	2131	2131	2131	2131
F	mm	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
G	mm	655	655	655	655	655	655	905	905	905	905	905	905	905	905	905	905
Weights																	
With 4-row water coil	kg	28	28	33	33	45	45	60	60	78	78	86	86	135	135	140	140
With 6-row water coil	kg	30	30	35	35	47	47	62	62	81	81	89	89	139	139	144	144

Unit for vertical installation

Unit V

		TA09V4	TA09V6	TA11V4	TA11V6	TA11VE	TA15V4	TA15V6	TA19V4	TA19V6	TA24V4	TA24V6	TA33V4	TA33V6	TA40V4	TA40V6	TA50V4	TA50V6
Dimensions and weigh	its																	
A	mm	300	300	300	300	300	300	300	390	390	390	390	390	390	390	390	390	390
В	mm	700	700	700	700	700	1050	1050	1050	1050	1475	1475	1475	1475	2100	2100	2100	2100
C	mm	700	700	700	700	700	700	700	850	850	850	850	850	850	1000	1000	1000	1000
D	mm	82	82	82	82	82	82	82	82	82	82	82	82	82	82	82	82	82
E	mm	732	732	732	732	732	732	732	1082	1082	1507	1507	1507	1507	2131	2131	2131	2131
F	mm	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
G	mm	655	655	655	655	655	655	655	905	905	905	905	905	905	905	905	905	905
Weights																		
With 4-row water coil	kg	28	28	33	33	33	45	45	60	60	78	78	86	86	135	135	140	140
With 6-row water coil	kg	30	30	35	35	35	47	47	62	62	81	81	89	89	139	139	144	144

TN

Air handling unit

- · Maximum installation flexibility
- EC fan Plug-fan
- · Wide choice of accessories.
- Large range of capacities and static pressures.
- Versions available with water coil or with direct expansion.

DESCRIPTION

The TN range offers an alternative to the air treatment unit for flow rates from 2300 to 23000m³/h when the only treatment required is filtering, cooling and/or heating. Designed for domestic, commercial, industrial or hotel systems in small or medium sized contexts.

The units can be installed horizontally or vertically for greater flexibility of

All the units are always supplied and shipped in the vertical configuration. The customer is responsible for any possible modification from vertical to horizontal.

TN series are characterised by their compact size, low noise levels, and the wide choice of accessories.

The units are available with a plug fan unit with EC motor, or with a transmission centrifugal fan unit with AC motor (the latter comes in both the standard version and the boosted high head version).

FEATURES

Structure

The structure is made of aluminium profiles with sandwich cover paneling made of galvanised steel on the inside and pre-coated RAL 9003 galvanised steel on the outside with polyurethane insulation (density 40 kg/m³) with 25 mm thickness.

Both the panels of the base unit as well as the panels of the plenum have pre-shearing that render them compatible with the insertion of the accessories

The fixing of the paneling using a panel block profile ensures a perfect seal between the panel and the frame and makes it extremely easy to mount and remove the panels. The 3-way corner joint is made of glass-fibre reinforced nylon.

The condensate drip tray, in galvanised steel, has a threaded drain connection on both sides and can be used whether the unit is installed horizontally or vertically.

Water heat exchanger coils

With copper pipes. Aluminium fins blocked via the mechanical expansion of the pipes. With 4 or 6 rows for the main one (heating or cooling) and 2,3 or 4 rows for the secondary one (heating only).

Evaporative heat exchanger coils

An alternative to the main water coil.

Suitable for R410A refrigerant. With copper pipes. Aluminium fins blocked via the mechanical expansion of the pipes. With 4 or 6 rows and both RH and LH versions.

Electric heating coil

Electric heating coil with finned, armoured elements. With twin safety thermostat (automatic and manual reset). Includes the implementation contactors (commanded with 24Volt AC voltage).

Can be used both for summer post-heating and winter heating. The coil has two asymmetric levels (1/3, 2/3 of the total power) so it can be commanded at up to 3 levels.

Air filter

The air is filtered through synthetic 50mm filters with an efficiency level of Coarse 55% (as per the ISO 16890 standard) on the intake points.

The filters are housed on guides in the main coil section, and can be easily removed for cleaning and maintenance; just remove the panel on the side of the water connections and then take out the filters.

With the FT7MxT accessory, filtering takes place via compact filters with an EPM1 55% efficiency level (as per the ISO 16890 standard).

VENTILATION GROUP

The configurator allows you to choose between two different types of fan unit, to meet every possible system request.

Ventilation group with inverter EC fan plug fun

Fan

The fans are of the plug-fan type with reversed blades for excellent performance with single intake.

Motor

The electric motors with extremely high efficiency, directly coupled to the fans, have an external EC rotor with integrated electronic control. They can be controlled continuously by a 0-10V signal. IP55 Protection rating. The motors can be powered with 380-480V/3ph/50-60Hz (the range is however reduced to the power supply required by the ByyExT or ByyExTZ electric battery accessory, if required immediately or if installed at a later date). A standard control option via the ModBus protocol.

Fan unit with transmission

Fan

The fans are of the double suction centrifugal variety with high performance forward blades.

Motor

The single-speed (4-pole) electric motors are of the three-phase asynchronous type, with a closed construction and external ventilation, caged rotor

ACCESSORIES

PLxT: Plenum composed of pre-sheared panels that can be opened on 3 sides, it can be mounted as an inlet or as an outlet; it is compatible with the accessories GAxT, GMxT, SAxT and TPPLxT. It includes mounting brackets and feet (for horizontal and vertical configurations).

FT7MxT: Compact filters with filtering degree ePM1 55% (according to ISO 16890), composed of a plenum that can be opened on two sides, which can be positioned on the outlet of the machine; it is compatible with the accessories GMxT, SAxT and TPPxT. It includes fixing plates and feet (for horizontal and vertical configurations).

B2RxT: Hot water coil with 2 rows for lines with 4 tubes. Positioned internally at the base of the equipment, downstream from the main coil, and made of copper piping and aluminium finning blocked by the mechanical expansion of the pipes.

B3RxT: Hot water coil with 3 rows for lines with 4 tubes. Positioned internally at the base of the equipment, downstream from the main coil, and made of copper piping and aluminium finning blocked by the mechanical expansion of the pipes.

BR4xT: Hot water coil with 4 rows for lines with 4 tubes. Positioned internally at the base of the equipment, downstream from the main coil, and made of copper piping and aluminium finning blocked by the mechanical expansion of the pipes.

SAXT: Air calibration damper with galvanised steel louvers. Louvers pitch 50mm; galvanised steel adjusting pin: can be installed on the equipment base or the plenum.

GMxT: Outlet grille with double row of louvers that can be adjusted when emitting air into the room. Can be installed on the plenum.

GAXT: Suction grille with louvers fixed at an angle of 45°; Can be installed directly on the equipment base or on the plenum accessories.

TPVSxT: Protective roof for Vertical installation with top outlet. Composed of a pre-coated metal sheet, fastened to the side of the unit. To be installled on the unit base. The accessory is not compatible with units equipped with EC plug fans.

TPVFxT: Protective roof for Vertical installation with front delivery. Composed of pre-coated diamond sheet, fastened to the side of the unit. To be installed on: PLxT, FT7MxT and vertical unit base with front outlet.

TPLXT: Protective roof for horizontal installation with Front outlet. Composed of pre-coated diamond sheet, fastened to the side of the unit. To be installed on unit base.

and B3 configuration with horizontal shaft, complying with the IEC, CEI and UNEL standards. IP55 protection rating. They are powered at 400V-3ph-50Hz (standard) or 460V-3ph-60Hz (units with "Z" power supply).

Transmission

The pulleys (supplied with a Taperlock-type conical shrink disk) are statically and dynamically balanced, with a variable diameter for improved fan calibration. The transmission belts may be of the SPA or SPB type.

TPPLxT: Protective roof for the plenum, for horizontal installation with front delivery. Made of pre-painted diamond sheet metal fixed to the sides of the unit (to be installed on PLxT and FT7MxT, from size 3 to size 8).

TPFTLxT: Protective roof for the bag filters, for line installation with front delivery. Made of pre-painted diamond sheet metal fixed to the sides of the unit (to be installed on FT7MxT, on sizes 1 and 2).

P50MBT: Corner support feet for both the horizontal and vertical version. Made of galvanised sheet: they can be fixed directly to the unit with the screws supplied. The accessory has 4 corner feet and 2 side feet.

P50ACT: Lateral support feet for the horizontal version. Made of galvanised sheet: they come with the accessories unit together with the bolts and screws.

ByyExT: Electric coil 400V/3ph/50Hz. Can be positioned inside the standard device, downstream from the main coil. Consists of a sheet metal frame, heating elements (armoured and finned), command contactors (24V AC) and two thermostats (one with automatic reset and the other manual). The electrical heating power (yy in kW) is divided over two sets of heaters 1/3+2/3 that can be controlled up to max. 3 levels. WARNING: To avoid the risk of overheating, make sure the fan is working at the correct flow rate when the coil is activated, and that there is a minimum post-ventilation time when the coil is deactivated.

BYYExT2: Electric coil 460V/3ph/60Hz. Can be positioned inside the standard device, downstream from the main coil. Consists of a sheet metal frame, heating elements (armoured and finned), command contactors (24V AC) and two thermostats (one with automatic reset and the other manual). The electrical heating power (yy in kW) is divided over two sets of heaters 1/3+2/3 that can be controlled up to max. 3 levels. WARNING: To avoid the risk of overheating, make sure the fan is working at the correct flow rate when the coil is activated, and that there is a minimum post-ventilation time when the coil is deactivated.

CPxT: Adjustment module with sensor for volumetric flow rate (accessory for TNxxE version only).

CPxTP: Adjustment module with sensor for differential pressure (accessory for TNxxE version only).

CPxTV: Speed regulatory (accessory only for TNxxE versions).

ACCESSORIES COMPATIBILITY

ACCESSORIES C	OMPATIBILITY						
Plenum							
PL1T (1)	PL2T (1)	PL3T (1)	PL4T (1)	5 PL5T (1)	PL6T (1)	PL7T (1)	PL8T (1)
		1131(1)	1 (1)	I DI (I)	1 LOT (1)	11/1(1)	1 LOT (1)
For horizontal and vertica							
ompact ePM1 559							
1 FT7M1T (1)	2 FT7M2T (1)	3 FT7M3T (1)	4 FT7M4T (1)	5 FT7M5T (1)	6 FT7M6T (1)	7 FT7M7T (1)	FT7M8T (1)
		11/11/51 (1)	11711111(1)	11/1051 (1)	117///01(1)	1171171(1)	11/1101 (1)
) For horizontal and vertica	-						
lot water coil with							
1 B2R1T	2 B2R2T	B2R3T	4 B2R4T	5 B2R5T	6 B2R6T	7 B2R7T	8 B2R8T
DZNII	DZNZI	וכחצם	DZN41	ICANJI	DZNOI	DZR/ I	DZNOI
lot water coil with	3 rows for lines w	rith 4 pipes					
1	2	3	4	5	6	7	8
B3R1T	B3R2T	B3R3T	B3R4T	B3R5T	B3R6T	B3R7T	B3R8T
lot water coil with	4 rows for lines w	ith 4 pipes					
				5		7	
1 B4R1T	2 B4R2T	B4R3T	4 B4R4T	B4R5T	6 B4R6T	B4R7T	8 B4R8T
VIII II	υπιΔΙ	ונוווע	ITATI	וכוודע	DHIOI	D-111/1	וטוודע
uction damper							
1	2	3	4	5	6	7	8
SA1T	SA2T	SA3T	SA4T	SA5T	SA6T	SA7T	SA8T
outlet arille with a	diustable louvers						
Outlet grille with a	2	3	4	5	6	7	8
GM1T	GM2T	GM3T	4 GM4T	GM5T	GM6T		GM8T
	5.112.1			5.1.5.1			uo.
ntake grids							
1	2	3	4	5	6	7	8
GA1T	GA2T	GA3T	GA4T	GAST	GA6T	GA7T	GA8T
Protective roof for	Vertical installati	on with top outlet					
1	2	3	4	5	6	7	8
TPVS1T (1)	TPVS2T (1)	TPVS3T (1)	TPVS4T (1)	TPVS5T (1)	TPVS6T (1)	TPVS7T (1)	TPVS8T (1)
The accessory is not comp	atible with units equipped	with EC plug fans.					
		on with front outle	et .				
1	2	3	4	5	6	7	8
TPVF1T	TPVF2T	TPVF3T	TPVF4T	TPVF5T	TPVF6T	TPVF7T	TPVF8T
Protective roof for	horizontal install	ation with front ou					
1	2	3	4	5	6	7	8
TPL1T	TPL2T	TPL3T	TPL4T	TPL5T	TPL6T	TPL7T	TPL8T
Protective roof for	horizontal install	ation with Front o	utlet				
1	2	3	4	5	6	7	8
TPPL1T (1)	TPPL2T (1)	TPPL3T (1)	TPPL4T (1)	TPPL5T (1)	TPPL6T (1)	TPPL7T (1)	TPPL8T (1)
1) To be installed on PLxT an							
		installation on Lin	e with Front outle	t			
1	2	3	4	5	6	7	8
TPFTL1T (1)	TPFTL2T (1)	-	-	-	-	-	-
To be installed on FT7Mx1							
he accessory cannot be fitted		icated with -					
orner support fee	t						
1	2	3	4	5	6	7	8
P50MBT	P50MBT	P50MBT	P50MBT	P50MBT	P50MBT	P50MBT	P50MBT
atoral cumment for							
_ateral support fee							
1 P50ACT	2 P50ACT	3 P50ACT	4 P50ACT	5 P50ACT	6 P50ACT	7 P50ACT	P50ACT
I JUNCI	LONCI	LOUNCI	LONCI	LONG	LONG	LONG	FJUACI
lectric coil 400V~	3 50Hz						
1	2	3	4	5	6	7	8
B07E1T	B10E2T	B14E3T	B18E4T	B25E5T	B30E6T	B40E7T	B50E8T
lectric coil 460V	2 60∐-7						
lectric coil 460V~							
1	2	,	A	r.	<i>f</i>	7	0
1 B07E1TZ	2 B10E2TZ	B14E3TZ	4 B18E4TZ	5 B25E5TZ	6 B30E6TZ	7 B40E7TZ	8 B50E8TZ

Adjustment module with sensor for volumetric flow rate

1	2	3	4	5	6	7	8
CP1T (1)	CP1T (1)	CP2T (1)					

⁽¹⁾ Accessory only available for TNxxE versions.

Adjustment module with sensor for differential pressure

1	2	3	4	5	6	7	8
CP1TP (1)							

⁽¹⁾ Accessory only available for TNxxE versions.

Speed regulatory

,							
1	2	3	4	5	6	7	8
CP1TV (1)							

⁽¹⁾ Accessory only available for TNxxE versions.

CONFIGURATOR

Field	Description
1,2	TN
3	Size 1, 2, 3, 4, 5, 6, 7, 8
4	Version
4	Water coil, 4 rows (LH side for connections - the connections side can be altered on site)
6	Water coil, 6 rows (LH side for connections - the connections side can be altered on site)
Α	R410A direct expansion coil, 4 rows (RH side for connections - the connections side cannot be altered on site) (1)
В	R410A direct expansion coil, 4 rows (LH side for connections - the connections side cannot be altered on site) (2)
(R410A direct expansion coil, 6 rows (RH side for connections - the connections side cannot be altered on site) (1)
D	R410A direct expansion coil, 6 rows (LH side for connections - the connections side cannot be altered on site) (2)
5	Fans (3)
В	Centrifugal with AC motor (low head)
E	Plug fans with EC motor
P	Centrifugal with AC motor (high head)
6	Power supply (4)
Z	460V ~ 3 60Hz
0	400V ~ 3 50Hz

⁽¹⁾ With vertical configuration, the coil connections are on the opposite side to motor inspection. When transformed to horizontal configuration, the coil connections may be on the same side as motor inspection or on the opposite side, depending on the type of conversion.

(3) The unit is always supplied with fan delivery directed upwards. The delivery flow direction can be altered on site.

(4) Field to be specified only in the case of a "B" or "P" fan unit. In the case of an "E" fan unit, the permitted power supply range is 380-480V ~ 3 50-60 Hz.

**VERSION: the definition of "RH connections side" or "LH connect

the flow).

** All the units are always supplied and shipped in the vertical configuration. The customer is responsible for any possible modification from vertical to horizontal.

PERFORMANCE SPECIFICATIONS

TN 1-8 with 4-row water coil

Size		1	2	3	4	5	6	7	8
Cooling performance 7 °C / 12 °C (1)									
Cooling capacity	kW	15,6	21,3	29,1	38,1	44,8	56,7	74,7	96,4
Sensible cooling capacity	kW	10,7	14,7	20,1	26,2	33,3	41,7	55,1	70,9
Heating performance 70 °C / 60 °C (2)									
Heating capacity	kW	40,0	54,5	74,9	97,6	131,1	162,9	216,1	277,3
Performance in heating mode with additional coil f	or 4-pipe systems								
Heating capacity with 2 row water coil	kW	25,2	34,0	46,8	61,5	84,4	103,8	138,0	178,5
Heating capacity with 3 row water coil	kW	33,5	45,6	62,7	82,0	110,8	137,3	182,5	234,4
Heating capacity with 4 row water coil	kW	40,0	54,5	74,9	97,6	131,1	162,9	216,1	277,3
Heating performance 45 °C / 40 °C (3)									
Heating capacity	kW	23,4	31,9	43,7	57,0	76,3	94,8	125,8	161,4
Performance in heating mode with additional coil f	or 4-pipe systems								
Heating capacity with 2 row water coil	kW	14,7	19,8	27,3	36,0	49,0	60,3	80,1	103,8
Heating capacity with 3 row water coil	kW	19,6	26,6	36,6	47,9	64,4	79,8	106,1	136,3
Heating capacity with 4 row water coil	kW	23,4	31,9	43,7	57,0	76,3	94,8	125,8	161,4

⁽¹⁾ Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; (2) Room air temperature 10 °C d.b.; Water (in/out) 70 °C/60 °C (3) Room air temperature 10 °C d.b.; Water (in/out) 45 °C/40 °C;

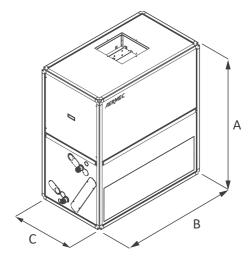
TN 1-8 with 4-row direct expansion coil

Size		1	2	3	4	5	6	7	8
Performance in cooling mode with incoming air at 27°C/	50% R.H. (1)								
Cooling capacity	kW	12,6	17,1	23,5	30,2	38,5	47,7	63,7	81,5
Sensible cooling capacity	kW	9,9	13,5	18,5	24,1	30,4	38,0	50,7	65,2

⁽¹⁾ Temperatura dell'aria in entrata 27°C b.s. 50% U.R.; Refrigerante R410A, t.at. EVAP. 10°C, fino a 8 K, trasformazione inferiore a 0 K, vapore-vapore liquido da 0 a 1; consultare il software di selezione.

TN 1-8 with 6-row water coil

Size		1	2	3	4	5	6	7	8
Cooling performance 7 °C / 12 °C (1)									
Cooling capacity	kW	20,0	27,4	37,7	49,2	58,3	74,5	98,9	127,8
Sensible cooling capacity	kW	13,4	18,3	25,2	32,8	41,1	51,8	68,8	88,5
Heating performance 70 °C / 60 °C (2)									
Heating capacity	kW	48,7	66,6	91,5	119,2	157,5	196,8	260,4	334,1
Performance in heating mode with additional coil f	or 4-pipe systems								
Heating capacity with 2 row water coil	kW	25,2	34,0	46,8	61,5	84,4	103,8	138,0	178,5
Heating capacity with 3 row water coil	kW	33,5	45,6	62,7	82,0	110,8	137,3	182,5	234,4
Heating capacity with 4 row water coil	kW	40,0	54,5	74,9	97,6	131,1	162,9	216,1	277,3
Heating performance 45 °C / 40 °C (3)									
Heating capacity	kW	28,5	38,9	53,5	69,6	91,7	114,3	151,7	194,6
Performance in heating mode with additional coil f	or 4-pipe systems								
Heating capacity with 2 row water coil	kW	14,7	19,8	27,3	36,0	49,0	60,3	80,1	103,8
Heating capacity with 3 row water coil	kW	19,6	26,6	36,6	47,9	64,4	79,8	106,1	136,3
Heating capacity with 4 row water coil	kW	23,4	31,9	43,7	57,0	76,3	94,8	125,8	161,4


⁽¹⁾ Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; (2) Room air temperature 10 °C d.b.; Water (in/out) 70 °C/60 °C (3) Room air temperature 10 °C d.b.; Water (in/out) 45 °C/40 °C;

GENERAL TECHNICAL DATA

ь	2	r	٦	c
	u	•	•	3

Fans										
Size			1	2	3	4	5	6	7	8
Fans: B										
Fan										
Number	4,6,A,B,C,D	no.	1	1	1	1	1	1	1	1
Nr. poles	4,6,A,B,C,D	no.	4	4	4	4	4	4	4	4
Maximum air flow rate with cooling coil	4,6,A,B,C,D	m³/h	3000	4100	5650	7350	9400	11700	15500	20000
Maximum air flow rate with heating coil	4,6,A,B,C,D	m³/h	3500	4700	6400	8000	9750	13400	17800	20000
High static pressure - maximum	4,6,A,B,C,D	Pa	425	455	452	440	383	425	436	400
Total fan input power	4,6,A,B,C,D	kW	0,8	1,1	1,5	2,2	2,2	4,0	4,0	5,5
Version without resistance										
Rated current input	4,6,A,B,C,D	A	1,8	2,4	3,2	4,7	4,7	8,2	8,2	11,1
Peak current	4,6,A,B,C,D	A	5,3	6,2	6,8	6,4	6,4	7,0	7,0	5,9
Version with electric heater						_				
Rated current input	4,6,A,B,C,D	A	11,9	16,9	15,0	23,4	30,7	40,8	51,6	83,4
Peak current	4,6,A,B,C,D	A	11,9	16,9	23,4	30,7	40,8	51,6	66,0	83,4
Fan										
Power supply	4,6,A,B,C,D		400~3 50Hz							
Size			1	2	3	4	5	6	7	8
Fans: E										
Fan										
Number	4,6,A,B,C,D	no.	1	1	1	1	1	1	2	2
Nr. poles	4,6,A,B,C,D	no.	-	-	-	-	-	-	-	-
Maximum air flow rate with cooling coil	4,6,A,B,C,D	m³/h	3000	4100	5650	7350	9400	11700	15500	20000
Maximum air flow rate with heating coil	4,6,A,B,C,D	m³/h	3500	4700	6400	8400	10500	13400	17800	23000
High static pressure - maximum	4,6,A,B,C,D	Pa	700	660	700	700	660	640	700	580
Total fan input power	4,6,A,B,C,D	kW	1,5	1,5	2,5	3,4	3,4	3,4	3,4	3,4
Version without resistance										
Rated current input	4,6,A,B,C,D	Α	2,4	2,4	4,0	5,4	5,4	5,4	2x5,4	2x5,4
Peak current	4,6,A,B,C,D	A	-	-	-	-	-	-	-	-
Version with electric heater										
Rated current input	4,6,A,B,C,D	Α	12,5	16,9	24,2	31,4	41,5	48,8	68,6	83,1
Peak current	4,6,A,B,C,D	Α	-	-	-	-	-	-	-	-
Fan										
Power supply	4,6,A,B,C,D		400~3 50Hz							
Size			1	2	3	4	5	6	7	8
Fans: P			· · ·			•				
Fan										
Number	4,6,A,B,C,D	no.	1	1	1	1	1	1	1	1
Nr. poles	4,6,A,B,C,D	no.	4	4	4	4	4	4	4	4
Maximum air flow rate with cooling coil	4,6,A,B,C,D	m³/h	3000	4100	5650	7350	9400	11700	15500	20000
Maximum air flow rate with heating coil	4,6,A,B,C,D	m³/h	3500	4700	6400	8400	10500	13400	17800	23000
High static pressure - maximum	4,6,A,B,C,D	Pa	600	627	674	672	567	670	625	610
Total fan input power	4,6,A,B,C,D	kW	1,1	1,5	2,2	3,0	3,0	5,5	5,5	7,5
Version without resistance			-1-	<i>y-</i>		- 1-	- 1-	- y=		- /-
Rated current input	4,6,A,B,C,D	A	2,4	3,2	4,7	6,3	6,3	11,1	11,1	14,9
Peak current	4,6,A,B,C,D	A	6,2	6,8	6,4	7,7	7,7	5,9	5,9	5,6
Version with electric heater		-	-,-		7.		r	- P		-,-
Rated current input	4,6,A,B,C,D	Α	12,5	17,7	24,9	32,3	42,4	54,5	68,9	87,2
Peak current	4,6,A,B,C,D	A	12,5	17,7	24,9	32,3	42,4	54,5	68,9	87,2
Fan				,		·	,	,		
Power supply	4,6,A,B,C,D		400~3 50Hz	400~3 50H						
It is the maximum static pressure that can		an: it is equal to								
Size			1	2	3	4	5	6	7	8
Finned pack heat exchanger			I				<u> </u>	U		0
i innea pack neat extilaliyel H		mm	475	475	550	550	720	720	960	960
<u> </u>		111111	4/ J	4/ J	770	JJ0	720	720	700	700

DIMENSIONS

Size			1	2	3	4	5	6	7	8
Dimensions and weights										
A	4,6,A,B,C,D	mm	1334	1334	1497	1497	1822	1822	2309	2309
В	4,6,A,B,C,D	mm	928	1172	1334	1659	1659	1984	1984	2472
(4,6,A,B,C,D	mm	684	684	765	765	928	928	1172	1172
Size			1	2	3	4	5	6	7	8
Fans: B										
Dimensions and weights										
	4	kg	187	216	270	314	408	466	619	793
F	6	kg	190	220	275	320	415	475	630	807
Empty weight	A,B	kg	191	220	274	318	412	470	623	797
	C,D	kg	195	225	280	325	420	480	635	812
Size			1	2	3	4	5	6	7	8
Fans: E										
Dimensions and weights										
	4	kg	175	199	249	304	388	466	611	769
Faranto consinha	6	kg	178	203	254	310	395	475	622	783
Empty weight	A,B	kg	179	203	253	308	392	470	615	773
	C,D	kg	183	208	259	315	400	480	627	788
Size			1	2	3	4	5	6	7	8
Fans: P										
Dimensions and weights										
	4	kg	197	219	279	316	410	493	646	799
Faculti constants	6	kg	200	223	283	321	417	502	657	813
Empty weight	A,B	kg	201	223	283	320	414	497	650	803

 $Add \, 50mm \, to \, the \, height \, of \, the \, unit \, (A), \, to \, allow \, for \, the \, feet. \\ The \, vertical \, configuration \, (B/D), \, the \, connections \, and \, motor \, inspection \, are \, on \, the \, same \, side.$

NCD Air handling

- · Maximum installation flexibility
- · EC fan Plug-fan
- · Large range of capacities.

FEATURES

- Central air handling units with double panelling with panel thickness of 50 mm;
- Support structure realised in aluminium alloy sections and a large choice of panels;
- Wide range of sections and components to satisfy all plant engineering requirements
- Double intake centrifugal fans with forward or reverse blades.
- PLUG FAN type fan with Inverter regulation, able to adapt to the most varied system requirements.

Structure

- In aluminium sections;
- Gaskets, able to guarantee reduced seepage in compliance with the EN1886 Standard;
- Reduction of noise emission thanks to the use of material with high sound-absorption power;
- Small dimensions and contained height.

Internal components

- New high-efficiency heat exchangers with small pressure drops
- 3-damper mixing chamber.

Mixing chamber with three dampers. The configurations for the mixing chambers with three dampers are the following:

- two upper dampers and an internal one for recirculation;
- two front dampers and a horizontal one for recirculation (for overlapping control units);
- two lateral internal dampers and an internal for recirculation (configuration for expulsion and non-ducted fresh air intake).

Large availability of filters

- Filters with large surfaces to reduce the pressure drops and increase the duration;
- Cell pre-filters;
- Roll filters;
- Bag filters;

298

- Absolute filters;
- Activated carbon filters;
- Germicidal lamp;
- New efficient drop eliminator in PVC;

New heat recoverers with high heat exchange.

Electric components

- Electronic regulation available able to optimise the performance and simplify installation of the control unit itself;
- New high performance selection software.

ACCESSORIES

Technical rooms;

Accessories for air intake/exhaust sections:

- Flange
- Blank panel (to be perforated with care by the customer);
- Anti-vibration sheet on the intake/flow vents (with or without damper) with earth cable;
- Aluminium grille (for internal dampers only);
- Manual command on the dampers;
- Proportional servo-control;
- Proportional servo-control with spring return;
- Pedestrian grill on the floor dampers.

Accessories for the fan-motor sections:

- Damper on the flow vent;
- Damper on the flow vent;
- Micro switch on the inspection hatch.

Accessories common to several sections:

- Spot light with window with 24V bulb (the installer must envision the 24V power supply);
- Manometer with dial;
- Pressure switche;

www.aermec.com

- Instruments-probes holder GJ 1/4" double sleeve;
- Floor reinforced with non-slip sheet steel.

PERFORMANCE SPECIFICATIONS

	Air flow rate m³/h	Section heating coil m ²
NCD 1	1134	0,13
NCD 2	1958	0,22
NCD 3	2390	0,27
NCD 4	3132	0,35
NCD 5	3823	0,42
NCD 6	4307	0,48
NCD 7	5257	0,58
NCD 8	6207	0,69
NCD 9	8019	0,89
NCD 10	9477	1,05
NCD 11	11548	1,28
NCD 12	14213	1,58
NCD 13	16978	1,89
NCD 14	19742	2,19
NCD 15	25761	2,86
NCD 16	30772	3,42
NCD 17	37139	4,13
NCD 18	47187	4,80
NCD 19	49235	5,47
NCD 20	55283	6,14
NCD 21	61331	6,81
NCD 22	67379	7,49
NCD 23	73427	8,16
NCD 24	79475	8,83

The performance refers to an air speed through the coils equal to 2.5 $\,$ m/s.

	EXT		734	894	1054	1214	1374	1534	1694	1854	2014
Height with base		INT	620	780	940	1100	1260	1420	1580	1740	1900
			NCD1	NCD1A	NCD2	NCD2	NCD3C	NCD4B	NCD5B	NCD6B	NCD6D
645	524	410	1370-1640	1880-2260	2350-2820	2350-2820	3390-4070	3890-4670	4380-5250	4860-5840	5330-6400
			m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h
			NCD1B	NCD3A	NCD4	NCD5	NCD6A	NCD7A	NCD8A	NCD8C	NCD8F
805	684	570	1970-2360	2720-3260	3400-4080	4150-4980	4900-5870	5620-6740	6320-7590	7020-8430	7700-9240
			m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h
			NCD2A	NCD4A	NCD6	NCD7	NCD8	NCD8D	NCD9	NCD9C	NCD9F
965	844	730	2580-3090	3550-4260	4440-5330	5420-6500	6400-7680	7350-8820	8270-9920	9180-11020	10070-12090
			m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h
			NCD3B	NCD5A	NCD6E	NCD8B	NCD8H	NCD9A	NCD10	NCD10C	NCD11
1125	1004	890	3180-3820	4390-5270	5490-6580	6700-8030	7910-9490	9080-10890	10210-12250	11340-13610	12440-14930
			m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h
				NCD6C	NCD7B	NCD8G	NCD9E	NCD10A	NCD10F	NCD11A	NCD12
1285	1164	1050		5220-6270	6530-7830	7970-9560	9410-11290	10800-12960	12150-14580	13500-16200	14810-17770
				m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h
					NCD8E	NCD9B	NCD10B	NCD10G	NCD11D	NCD12A	NCD12C
1445	1324	1210			7570-9090	9240-11090		12530-15040			
					m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h
						NCD10D	NCD11B	NCD12B	NCD13A	NCD13D	NCD14B
1765	1644	1530						15990-19190			
						m³/h	m³/h	m³/h	m³/h	m³/h	m³/h
								NCD13B	NCD14A	NCD14E	NCD15
2085	1964	1850								24300-29160	
								m³/h	m³/h	m³/h	m³/h
										NCD15D	NCD15G
2405	2284	2170									31390-37670
										m³/h	m³/h
											NCD16B
2565	2444	2330									33760-40510
											m³/h

	EXT		2334	2654	2974	3294	3614	3934	4254	4574	
Height with base		INT	2220	2540	2860	3180	3500	3820	4140	4460	
645	524	410									
			NCD9D								
805	684	570	9200-11040								
			m³/h								
			NCD10E	NCD11C							
965	844	730	12030-14440	13990-16790							
			m³/h	m³/h							
			NCD11E	NCD12D	NCD13C						
1125	1004	890	14860-17830	17280-20730	19700-23640						
			m³/h	m³/h	m³/h						
			NCD13	NCD14	NCD14C	NCD15B					
1285	1164	1050	17690-21230	20570-24680	23450-28140	26330-31590					
			m³/h	m³/h	m³/h	m³/h					
			NCD13E	NCD14D	NCD15C	NCD15E	NCD16A				
1445	1324	1210	20520-24620	23860-28630	27200-32640	30540-36650	33880-40660				
			m³/h	m³/h	m³/h	m³/h	m³/h				
			NCD15A	NCD15F	NCD16C	NCD17A	NCD17D	NCD18B			
1765	1644	1530	26180-31410	30440-36530	34700-41640	38970-46760	43230-51870	47490-56990			
			m³/h	m³/h	m³/h	m³/h	m³/h	m³/h			
			NCD16	NCD16D	NCD17C	NCD18C	NCD19A	NCD20A	NCD21A	NCD21C	
2085	1964	1850	31840-38200	37020-44430	42210-50650	47390-56870	52570-63090	57760-69310	62940-75530	68130-81750	
			m³/h								
			NCD17	NCD18	NCD19	NCD20	NCD21	NCD22	NCD23	NCD24	
2405	2284	2170	37500-45000	43600-52320	49710-59650	55810-66980	61920-74300	68030-81630	74130-88960	80240-96280	
			m³/h								
			NCD17B	NCD18A	NCD19B	NCD20B	NCD21B	NCD22A	NCD23A	NCD24A	
2565	2444	2330	40330-48390	46890-56270	53460-64150	60030-72030	66590-79910	73160-87790	79730-95670	86290-	
			m³/h	103550 m ³ /h							

DIMENSIONS

	Section A (mm)	Section B (mm)
NCD1	645	735
NCD2	645	1055
NCD3	645	1215
NCD4	805	1055
NCD5	805	1215
NCD6	965	1055
NCD7	965	1215
NCD8	965	1375
NCD9	965	1695
NCD10	1130	1695
VCD11	1130	2015
NCD12	1285	2015
NCD13	1285	2335
VCD14	1285	2655
VCD15	2085	2015
NCD16	2085	2335
NCD17	2405	2335
NCD18	2405	2655
NCD19	2405	2975
NCD20	2405	3295
NCD21	2405	3615
NCD22	2405	3935
NCD23	2405	4255
NCD24	2405	4575

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

SPL 025-130

Swimming Pool Lines air handling unit for health centres

Air flow rate 4000 ÷ 13000 m³/h

- · Maximum installation flexibility
- · EC fan Plug-fan
- Large range of capacities.

DESCRIPTION

The units from the SPL series represent the ideal solution to guarantee the comfort conditions in small-medium spaces such as health centres, spa areas, fitness centres, small swimming pools, sports facilities, etc.

The unit contains a refrigerant circuit and a system for the recovery of sensible and latent heat coming from the humid air extracted from the space, thereby being optimised for the reduction of energy consumption.

The main function of the unit, which is a "plug and play" machine ready for use, is that of dehumidifying and at the same time ensuring control of the temperature and humidity conditions of the area served.

The unit is fitted with an efficient heat recovery system on the water side, to be used to partially heat the swimming pool water at no cost. The structure and all the internal components are built to ensure the maximum resistance to corrosion

FEATURES

Fitted as standard with panel filters in extract (G4 efficiency class according to EN779) and panel + bag filters (G4 + F9 efficiency class according to EN779) meet the requirements for the applicable standards for indoor air quality. Dirty filter differential pressure switches are provided as standard.

Structure

Anodised aluminium profile with reinforced nylon corner pieces.

Casing made from sandwich type panels (50mm thickness), with internal surface pre-painted galvanised steel, external in pre-painted galvanised steel and insulating material hot injected polyurethane with a density of 42 kg/m³, fixed without screws but with panel locking profiles, doors with keyless handles.

This fixing method allows a uniform pressure on the casing, ensuring an excellent resistance to the leakage of air and water.

The support structures and the seals around components are completely painted to ensure the maximum corrosion resistance. The bottom surfaces of the unit are fitted with drain panels in pre-painted galvanised steel with a central drain point piped sideways.

Thermal recovery section

High efficiency static cross flow in pre-painted aluminium. Including dampers: recirculating damper used for the quick start up of the space, recirculating damper for the "primary" cycle, dampers on the air inlet and extract.

All dampers are manufactured in anodised aluminium and are individually controlled by an external actuator for precise air flow control.

Refrigerant circuit

Fitted with scroll compressor supplied with rubber anti-vibration feet, refrigerant gas/air heat exchanger coil with copper tubes and pre-painted aluminium fins and painted frame, filter, electronic expansion valve, liquid receiver, filter drier, controls (pressure transducers and visual indicators) and safeties (high and low pressure pressostats), brazed copper connections, refrigerant charge of environmentally friendly R410A.

The refrigerant circuit is installed in a compartment isolated from the air flow to facilitate checks and maintenance.

The units on request can also be realized without the refrigerant circuit. The size of the machine remains unchanged.

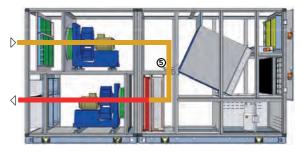
Fan section

Treated with epoxy paint resistant to corrosion, fitted with "plug fans" with backward curved impeller of high output. Electrical motor directly coupled to the impeller suitable for inverter control (standard).

Filtration systems

Hot water heating coil

With copper tubes and pre-painted aluminium fins to heat the supply air after dehumidification, controlled by a modulating 3 way valve (standard); this allows the accurate control of the supply air temperature. The frame of the coil is in painted galvanised steel to ensure the maximum resistance to corrosion.


Electric power board

Power and controls panel unit mounted. Electrical installation for the connection of power and controls, set in tubes or conduits with glands and grommets, IP55 protective rating. Remote panel supplied as standard for the control of all the main functions and display of alarms.

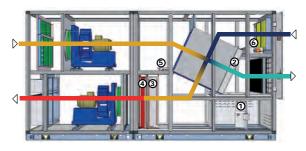
OPERATING SCHEMATICS

The principal operation modes of the unit are shown in the example schematics below.

"START UP" CYCLE

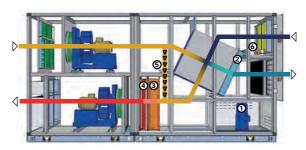
temperature to compensate for the heat losses from the building.

In all the following schematics the hot water coil is always operating be-


cause the external air temperature is below 10°C with a required supply air

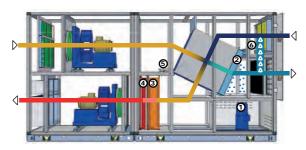
The operating mode is with no external air flow. The whole air flow is recirculated through damper 5 and returned to the pool area.

The hot water coil is operational.


The "start up cycle" is activated for the time necessary to heat up the area.

"DEHUMIDIFICATION" CYCLE

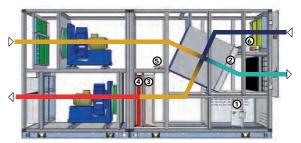
In night time mode the unit modifies the operating settings to adapt to the changes of evaporation from the pool and reduce consumption to the minimum.


Dehumidification with external air

The operating mode is with external air dehumidifying the space, compensating for evaporation from the pool. The refrigerant circuit (consisting of the compressor 1 and the coils 2 and 3) allows the sensible and latent heat recovery of the extracted air to be transferred to the supply air or the water, through the thermal heat exchange consisting of the double heat exchanger on the water side.

The hot water coil 4 supplements, if necessary, the heating capacity provided by the refrigerant circuit, placed downstream of the entering air flow (condensing coil 3).

ehumidification with external air and primary cycle

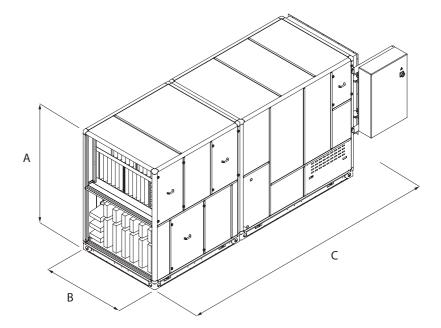


When required the compressor also assists in the dehumidification of the pool area.

The supply air flow is modulated by the fan inverter to reach the required hygrometric conditions.

As a function of the external ambient temperature the unit modifies the operating mode to achieve the best efficiency possible.

Dehumidification with external air (night cycle)


In night time mode the unit modifies the operating settings to adapt to the changes of evaporation from the pool and reduce consumption to the minimum.

PERFORMANCE SPECIFICATIONS

			025	040	060	100	130
Nominal airflow (supply/extract)		M³/h	2500	4000	6300	10000	13000
Available pressure (supply/		Pa	400	400	400	400	400
extract)		га	400	400	400	400	400
Heat recovery capacity	(1)	KW	7,90	12,60	20,40	32,00	41,50
recovered	. ,		7,90	12,00	20,40	32,00	41,50
Max heat recovery efficiency	(1)	%	80,80	79,30	80,10	79,50	79,40
Refrigerant circuit recovered	(1)	KW	7,50	10,50	21,30	31,70	45,70
capacity	(1)	IXVV	7,50	10,50	21,30	31,70	45,70
Total recovered capacity	(1)	KW	15,40	23,10	41,60	63,70	87,30
Compressor absorbed power	(1)	KW	1,30	1,60	3,70	6,00	8,40
COP	(1)	-	11,80	14,40	11,20	10,60	10,40
COP	(2)	-	3,90	4,00	4,10	4,00	4,10
Total dehumidification capacity	(1)	Kg/h	15,50	25,20	40,10	63,70	82,70
Supply fan power input		KW	1,60	2,60	3,70	5,90	7,60
Extract fan power input		KW	1,20	1,90	2,70	4,50	5,70
Type / number of compressors		No.			Scroll / 1		
Hot water heating coil							
(standard)							
Capacity (without recovery	(1)	KW	26,10	25.40	61,60	95,30	124,50
active)	(1)	K.VV	20,10	35,40	01,00	95,30	124,50
Water flow rate	(3)	L/h	2250	3050	5300	8200	10700
Water pressure drop	(3)	KPa	23,50	43,70	33,10	48,80	46,30
Plate heat exchanger R410A/non							
aggressive water (standard)							
Nominal water flow rate	(4)	L/h	950	1120	2500	3600	5400
Pressure drops	(4)	KPa	19,00	19,00	31,00	32,00	33,00
Plate heat exchanger accessible							
non aggressive water/pool water							
(standard)							
Water flow rate nominal pool	(5)	L/h	1200	1400	3100	4500	6800
Pressure drop pool side	(5)	KPa	32,40	34,00	31,40	33,00	34,50
Pressure drop intermediate	(5)	KPa	21,20	22,30	20.60	21.60	22,50
circuit side	(5)	Nrd	21,20	22,30	20,60	21,60	22,30
Electric data							
Unit power supply					400 V-3- 50 Hz		
Maximum total current input		Λ.	2.50	6.20	11.00	14.60	15.00
supply fan		А	3,50	6,20	11,00	14,60	15,00
Maximum total current input		Α.	2.60	4.00	6.40	11 20	11 20
extract fan		А	2,60	4,90	6,40	11,30	11,30
Unit maximum current input		A	11,60	17,10	32,40	49,30	61,30
Unit starting current		A	32,10	46,10	91,40	181,90	184,30

- 1. External air 0°C,80% RH; internal air 29°C,60% RH.
- 2. Values as per conditions of D.M. 7 april 2008 for heating only operation
- 3. Water temperature inlet/outlet 70/60°C; water pressure drop including 3 way valve
- **4.** Water temperature inlet/outlet non aggressive 27/37°C
- **5.** Water temperature inlet/outlet intermediate circuit 37/27°C; water temperature inlet/outlet pool 25/35°C

DIMENSIONS

		025	040	060	100	130
A	mm	1765	1765	2245	2405	2405
В	mm	895	895	1055	1375	1695
С	mm	3230	3390	4190	4190	4670
Weight	Kg	900	1000	1350	2060	2600

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

SPL 160-250

Swimming Pool Lines air handling unit for health centres

Air flow rate 16000 ÷ 25000 m3/h

- · Maximum installation flexibility
- · EC fan Plug-fan
- Large range of capacities.

DESCRIPTION

The units from the SPL series represent the ideal solution to guarantee the comfort conditions in small-medium spaces such as health centres, spa areas, fitness centres, small swimming pools, sports facilities, etc.

The unit contains a refrigerant circuit and a system for the recovery of sensible and latent heat coming from the humid air extracted from the space, thereby being optimised for the reduction of energy consumption.

The main function of the unit, which is a "plug and play" machine ready for use, is that of dehumidifying and at the same time ensuring control of the temperature and humidity conditions of the area served.

The unit is fitted with an efficient heat recovery system on the water side, to be used to partially heat the swimming pool water at no cost. The structure and all the internal components are built to ensure the maximum resistance to corrosion

FEATURES

Sizes

Indoor unit available in 3 sizes.

Structure

Anodised aluminium profile with reinforced nylon corner pieces.

Casing made from sandwich type panels (50mm thickness), with internal surface pre-painted galvanised steel, external in pre-painted galvanised steel and insulating material hot injected polyurethane with a density of 42 kg/m³, fixed without screws but with panel locking profiles, doors with keyless handles.

This fixing method allows a uniform pressure on the casing, ensuring an excellent resistance to the leakage of air and water.

The support structures and the seals around components are completely painted to ensure the maximum corrosion resistance. The bottom surfaces of the unit are fitted with drain panels in pre-painted galvanised steel with a central drain point piped sideways.

Thermal recovery section

High efficiency static cross flow in pre-painted aluminium. Including dampers: recirculating damper used for the quick start up of the space, recirculating damper for the "primary" cycle, dampers on the air inlet and extract.

All dampers are manufactured in anodised aluminium and are individually controlled by an external actuator for precise air flow control.

Refrigerant circuit

Fitted with scroll compressor supplied with rubber anti-vibration feet, refrigerant gas/air heat exchanger coil with copper tubes and pre-painted aluminium fins and painted frame, filter, electronic expansion valve, liquid receiver, filter drier, controls (pressure transducers and visual indicators) and safeties (high and low pressure pressostats), brazed copper connections, refrigerant charge of environmentally friendly R410A.

The refrigerant circuit is installed in a compartment isolated from the air flow to facilitate checks and maintenance.

The units on request can also be realized without the refrigerant circuit. The size of the machine remains unchanged.

Fan section

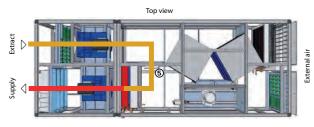
Treated with epoxy paint resistant to corrosion, fitted with "plug fans" with backward curved impeller of high output. Electrical motor directly coupled to the impeller suitable for inverter control (standard).

Filtration systems

Fitted as standard with panel filters in extract (G4 efficiency class according to EN779) and panel + bag filters (G4 + F9 efficiency class according to EN779) meet the requirements for the applicable standards for indoor air quality. Dirty filter differential pressure switches are provided as standard.

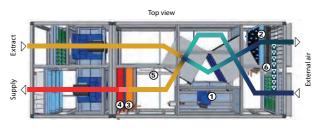
Hot water heating coil

With copper tubes and pre-painted aluminium fins to heat the supply air after dehumidification, controlled by a modulating 3 way valve (standard); this allows the accurate control of the supply air temperature. The frame of the coil is in painted galvanised steel to ensure the maximum resistance to corrosion.

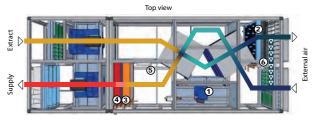

Electric power board

Power and controls panel unit mounted. Electrical installation for the connection of power and controls, set in tubes or conduits with glands and grommets, IP55 protective rating. Remote panel supplied as standard for the control of all the main functions and display of alarms.

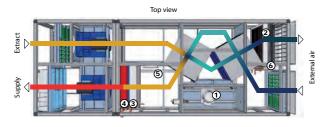
OPERATING SCHEMATICS


The principal operation modes of the unit are shown in the example schematics below.

"START UP" CYCLE



"DEHUMIDIFICATION" CYCLE


Dehumidification with external air

ehumidification with external air and primary cycle

Dehumidification with external air (night cycle)

In all the following schematics the hot water coil is always operating because the external air temperature is below 10°C with a required supply air temperature to compensate for the heat losses from the building.

The operating mode is with no external air flow. The whole air flow is recirculated through damper 5 and returned to the pool area.

The hot water coil is operational.

The "start up cycle" is activated for the time necessary to heat up the area.

The operating mode is with external air dehumidifying the space, compensating for evaporation from the pool. The refrigerant circuit (consisting of the compressor 1 and the coils 2 and 3) allows the sensible and latent heat recovery of the extracted air to be transferred to the supply air or the water, through the thermal heat exchange consisting of the double heat exchanger on the water side.

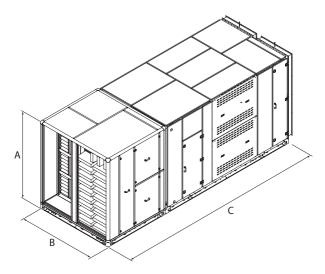
The hot water coil 4 supplements, if necessary, the heating capacity provided by the refrigerant circuit, placed downstream of the entering air flow (condensing coil 3).

When required the compressor also assists in the dehumidification of the pool area.

The supply air flow is modulated by the fan inverter to reach the required hygrometric conditions.

As a function of the external ambient temperature the unit modifies the operating mode to achieve the best efficiency possible.

In night time mode the unit modifies the operating settings to adapt to the changes of evaporation from the pool and reduce consumption to the minimum.


PERFORMANCE SPECIFICATIONS

SPL			160	200	250
Nominal air flow rate (supply / recovery)		m³/h	16000	20000	25000
Available pressure (supply/recovery)		Pa	400	400	400
Heat recovery capacity recovered	(1)	kW	59,6	68,6	89,2
Max heat recovery efficiency	(1)	%	93	86	89
Refrigerant circuit recovered capacity	(1)	kW	46,3	53,6	69,4
Total recovered capacity	(1)	kW	105,9	122,2	158,6
Compressor absorbed power	(1)	kW	8,5	9,2	12,8
COP	(1)	-	12,5	13,3	12,4
COP	(2)	-	4,0	3,9	3,9
Total dehumidification capacity	(1)	kg/h	102,2	127,6	159,5
Supply fan power input		kW	10,9	13,7	17,7
Extract fan power input		kW	8,3	9,8	12,4
Type / number of compressors		no.		Scroll / 1	
Hot water heating coil (standard)					
Capacity (without recovery active)	(1)	kW	131,9	182,7	205,9
Water flow rate	(3)	I/h	11300	15700	17700
Water pressure drop	(3)	kPa	43,7	37,9	42,2
Plate heat exchanger R410A/non aggressive water (standard)					
Nominal water flow rate	(4)	I/h	5760	6450	8260
Pressure drops	(4)	kPa	33	33	33
Plate heat exchanger accessible non aggressive water/pool water (standard)					
Water flow rate nominal pool	(5)	I/h	7200	8100	10400
Pressure drop pool side	(5)	kPa	34,2	34,7	34,2
Pressure drop intermediate circuit side	(5)	kPa	22,3	22,7	22,2
Electric data					
Unit power supply				400 V - 3 ph - 50 Hz	
Maximum total current input supply fan		A	29,2	41,0	42,0
Maximum total current input extract fan		A	22,0	22,6	30,0
Unit maximum current input		A	86,2	99,6	123,0
Unit starting current		A	209,0	223,0	287,0

- 1. External air 0°C,80% RH; internal air 29°C,60% RH.
- 2. Values as per conditions of D.M. 7 april 2008 for heating only operation
- 3. Water temperature inlet/outlet 70/60°C; water pressure drop including 3 way valve.
- **4.** Water temperature inlet/outlet non aggressive 27/37°C.
- 5. Water temperature inlet/outlet intermediate circuit 37/27°C; water temperature inlet/outlet pool 25/35°C

Preliminary technical data, subject to modification.

DIMENSIONS

SPL			160	200	250
A (including base H=120mm)	*	mm	2085	2405	2405
В	*	mm	2015	2175	2335
C	*	mm	5790	5790	6430
Weight		kg	2780	3250	3580

 $[\]mbox{\ensuremath{\mbox{*}}}$ The dimensions remain unchanged even if the unit, on request, is supplied without a refrigerant circuit.

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.

Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

RTG 060X-125X

Roof-Top for applications in medium crowed

Cooling capacity 57,7 ÷ 128,1 kW Heating capacity 58,1 ÷ 124,6 kW

- For medium crowding applications
- R32 refrigerant gas
- · High efficiency also at partial loads
- High power modulation capacity
- Compressors and fans with Inverter
- Upgraded thermodynamic heat recovery

DESCRIPTION

Independent Roof -top type air cooled air conditioner, for treatment, filtration and renewal of the air , based on the chosen configuration.

These are outdoor units using environmentally friendly R32 gas.

Being fitted to function with 50% external air (MB2, MB4, MBT and MBF versions), the units are designed for medium density applications like shopping malls, shops, offices and production areas. RTG 060X-125X

Based on the version and accessories selected, the units allow you to manage free-cooling mode and, in the MB4 and MBT versions, there is thermodynamic recovery (enhanced in the MBT configuration) of the energy contained in the expelled air, allowing for higher performance and efficiency.

VERSIONS

H Heat pump

FEATURES

Refrigerant HFC R32

Thanks to the R32 refrigerant (A2L slightly flammable), the environmental impact of the units is significantly reduced.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO_2 values.

Inverter compressor

All models use inverter-driven scroll compressors, which allow them to perfectly comply with the energy levels required by European regulations. Inverter technology enables high seasonal energy efficiencies, reduced noise level at partial loads and high environmental comfort

Inverter fans

The air treatment cross-section ventilation, which represents the highest expense in terms of machine operating costs, is entrusted to the plug fans with EC brushless motors, efficiency class IE5, which enable high performance, easy flow rate adjustment, compactness, low noise, versatility and easy maintenance.

Two types of flow fans are available: the standard one and the enhanced one for a higher useful static pressure.

Axial fand

The axial fans on the source side are helical, electrically and mechanically protected by grilles, and are equipped with **brushless EC motors**, **efficiency class IE5**.

Electronic control of summer condensation temperature and winter evaporation temperature is standard.

Air filtration

A Coarse 55% corrugated filter according to ISO 16890 (G4 according to EN 779), with synthetic fibre filter media protected by wire mesh on both sides and a galvanised sheet steel frame is included as per standard.

The filters are placed on guides and are easily removable from the side. Downstream it is possible to insert an additional filtration stage with ePM1 50% efficiency according to ISO 16890 (F7 according to EN 779) or ePM1 80% efficiency according to ISO 16890 (F9 according to EN 779).

As an alternative to mechanical filters, electrostatic filters can be fitted for even higher filtration efficiency and lower maintenance costs.

Air quality control systems are also available (VOC and CO2 probe).

Exchangers

The internal and external heat exchangers are made of copper pipes and aluminium louvers blocked by mechanical expansion of the pipes.

They are the high efficiency type with internally striped pipe and corrugated louvers.

To protect the louvers from corrosion, pre-painted aluminium louvers are available as an alternative.

Thermoregulation

Electronic controller able to manage the different functioning modes, ensuring maximum energy savings in all conditions of use by means of special software. Interfaces to connect to remote supervision and control systems available as options. The electrical panel complete with all devices is easily accessible

The free-cooling/heating and defrosting logics are particularly sophisticated. As soon as the external conditions allow it, the unit is able to automatically activate the free-cooling or free-heating mode, which cools or heats the served room, while keeping the compressors off and introducing suitably treated external air. This mode significantly reduces both energy consumption and wear of the compressors. These functions are also used when the external air energy content is not enough to cool or heat the room.

Air flow management

There are different types of supply and exhaust (if present) air flow rate control.

With constant flow rate control, air flows are kept constant at the set value regardless of the heat load and varying pressure drops of the machine/plant system.

With variable flow rate control, the air flows vary depending on the heat load between the set nominal value and the minimum value of the unit.

CONFIGURATIONS

MB1: Single ventilating cross-section for recovery air.

Recovery air only configuration where no fresh air is required.

The useful flow and recovery static pressure is provided by the flow ventilating cross-section.

MB2: Single ventilating cross-section for recovery and external air.

Recovery and external air configuration. The useful flow and recovery static pressure is provided by the flow ventilating cross-section.

If there are no extraction systems, the room will be in overpressure. Possibility of performing freecooling/freeheating.

MB4: double ventilating cross-section (flow and expulsion) for recovery air, external air and exhaust air, thermodynamic recovery.

Recovery, external and exhaust air configuration. The flow ventilating cross-section provides the flow and recovery useful static pressure. The exhaust ventilating cross-section only controls the air flow rate to be expelled, with consequent reduction of the installed ventilation power.

Thermodynamic recovery is performed by conveying expelled air on the external heat exchangers.

Possibility of performing freecooling/freeheating.

MBT: double ventilating cross-section (flow and expulsion) for recovery air, external air and exhaust air, upgraded thermodynamic recovery.

Recovery, external and exhaust air configuration. The flow ventilating cross-section provides the flow and recovery useful static pressure.

With variable flow rate, in addition to the benefits in terms of environmental comfort, there are also economic benefits as the modulation of the air flow rate leads to a considerable reduction in the electricity consumption of the unit compared to a unit operating with a fixed flow rate.

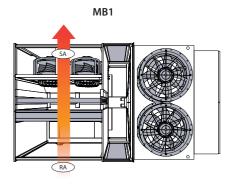
A function can also be enabled that in Economy mode, when the temperature set-point is reached, allows ventilation to be switched off, with considerable economic advantages.

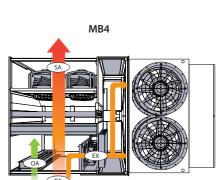
The exhaust ventilating cross-section only controls the air flow rate to be expelled, with consequent reduction of the installed ventilation power. Possibility of performing freecooling/freeheating.

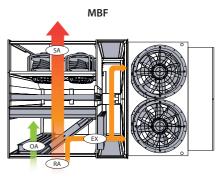
The MBT configuration allows for the upgraded thermodynamic recovery on the exhaust air by fully exploiting the energy content still present in it. The exhaust flow rate, controlled by the dedicated exhaust fan, is conveyed to the innovative finned pack recovery coil, integrated in the cooling circuit of the unit.

The coil, perfectly hit by the air flow, recovers the energy still present in the exhaust flow and transfer it to the cooling circuit, increasing the treatment coil performance without increasing the input power of the compressors. In summer functioning, the coil makes it possible to increase the liquid subcooling, while in winter functioning, the coil takes on part of the evaporation by operating the cooling circuit at more advantageous temperatures.

MBF: single fan section for return air, outside air and exhaust air


Recovery, external and exhaust air configuration.


The flow ventilating cross-section provides the flow and recovery useful static pressure.


The flow rate of fresh and exhaust air is achieved through the use of two modulating dampers (fresh and exhaust air) and one gravimetric damper (exhaust air).

The presence of the recirculation damper allows for total free-cooling (100% external air).

This configuration makes it possible to exploit the overpressure in the room to expel stale air (maximum 50 Pa leakage in the duct) without having to use a dedicated fan.

ACCESSORIES

Refer to the selection software for compatibility of accessories.

MB1: Single fan section - Recirculation

MB2: Single fan section - Recirculation + Renewal

MB4: Double fan section - Recirculation Renewal + Exhaust - Thermodynamic recovery

MBT: Double fan section - Recirculation + Renewal + Exhaust - Enhanced thermodynamic recovery

MBF: Single fan section - Recirculation + Renewal + Exhaust

MO: Horizontal air flow

MI: Lower air flow

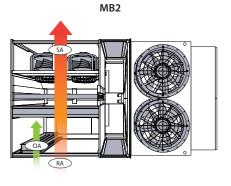
MS: Upper air flow

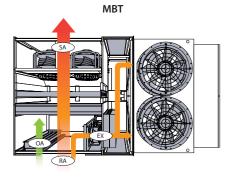
RO: Horizontal air recovery

RI1: Lower air recovery for MB1 configuration

RI2: Lower air recovery for MB2 configuration RI4: Lower air recovery for MB4/MBT configuration

RS1: Upper air recovery for MB1 configuration


RS2: Upper air recovery for MB2 configuration


RS4: Upper air recovery for MB4/MBT configuration

VSTD: Fans with standard static pressure

VPWR: Fans with increased static pressure

IAL: Internal coil with aluminium louvers

IPV: Internal coil with pre-painted aluminium louvers

EAL: External coil with aluminium louvers

EPV: External coil with pre-painted aluminium louvers

IALT: MBT internal coil with aluminium louvers

IPVT: MBT internal coil with pre-painted aluminium louvers

EALT: MBT external coil with aluminium louvers

EPVT: MBT external coil with pre-painted aluminium louvers

FCT: Thermal free-cooling

FCH: Enthalpy free-cooling

CMAN: Manual external damper control **SCM**: Modulating external damper servocontrol

SCM-F: MBF modulating damper servocontrols

PCOST: Constant air flow rate

PVAR: Variable air flow rate

DML: Demand limit

PFS: Filter fouling control differential pressure switch

DEU: Summer dehumidification

DEUP: Summer dehumidification with post-heating

CUR: Provision for humidification control (digital contact and analogue out-

BPGC: Hot gas after-heating coil with aluminium louvers

BPGCPV: Hot gas after-heating coil with pre-painted aluminium louvers

BW2: Heating/Integration water coil with aluminium louvers

BW2PV: Heating/Integration water coil with pre-painted aluminium louvers **BW3**: Water coil for recovery from refrigerated display cabinets with aluminium louvers

BW3PV: Water coil for recovery from refrigerated display cabinets with pre-painted aluminium louvers

V2V: Modulating 2-way valve + connecting pipes V3V: Modulating 3-way valve + connecting pipes BE: 2-stage electric heating coil (3 steps) F7: F7 filters (ISO 16890 ePM1 55%)

F9: F9 filters (ISO 16890 ePM1 85%)

FE1: Electrostatic filters for MB1/MB2 configuration **FE4**: Electrostatic filters for MB4/MBT/MBF configuration

SCO2: CO2 duct probe **SVOC**: VOC duct probe

SCO2+SVOC: CO2 + VOC duct probe

ASCO2: Room CO2 probe

ASVOC: Room VOC probe

ASCO2+SAVOC: Room CO2 + VOC probe **STR**: Recovery temperature probe

STA: Room temperature probe

STR+SUR: Recovery temperature and humidity probe **STA+SUA**: Room temperature and humidity probe

PRT1: Remote panel up to 50m **PRT2**: Remote panel up to 200m **AVG**: Anti-vibration supports

MIP: Modbus TCP/IP communication protocol (standard)

MRTU: Modbus RTU communication module BIP: Bacnet IP communication module BMSTP: Bacnet MS/TP communication module KON: KONNEX communication module

CAP: Hoods function **CFF**: Fire/smoke contact

PERFORMANCE SPECIFICATIONS

Unit input power: at nominal air flow rate, nominal high static pressure and standard fans

MB1

mo i					
Size			060	085	125
Configuration: MB1					
Cooling performances					
Cooling capacity	Н	kW	57,70	77,70	121,30
Sensible cooling capacity	Н	kW	46,30	64,70	88,10
Compressors absorbed power	Н	kW	15,80	20,70	38,00
EER compressors	Н		3,65	3,75	3,19
Unit input power	Н	kW	20,1	26,9	45,5
Heating performances					
Heating capacity	Н	kW	58,10	78,30	119,30
Compressors absorbed power	Н	kW	12,80	17,30	30,00
Compressor COP	Н		4,53	4,53	3,98
Unit input power	Н	kW	16.5	22.0	37.4

Cooling performances: Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b. Heating performances: Ambient air 20°C d.b./15°C w.b.; External air 7°C/6°C w.b.

MB2

Size			060	085	125
Configuration: MB2					
Cooling performances					
Cooling capacity	Н	kW	60,40	81,40	127,00
Sensible cooling capacity	Н	kW	49,00	68,70	92,10
Compressors absorbed power	Н	kW	15,90	20,80	38,40
EER compressors	Н		3,79	3,91	3,30
Unit input power	Н	kW	20,2	27,0	46,0
Heating performances					
Heating capacity	Н	kW	58,50	78,80	119,70
Compressors absorbed power	Н	kW	11,70	15,90	27,60
Compressor COP	Н		5,02	4,96	4,33
Unit input power	Н	kW	15,3	20,6	35,1

Cooling performances: Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external air. Heating performances: Ambient air 20°C d.b./15°C w.b.; External air 7°C/6°C w.b.; Functioning with 30% of external air.

MB4

Size			060	085	125
Configuration: MB4					
Cooling performances					
Cooling capacity	Н	kW	60,90	81,90	128,10
Sensible cooling capacity	Н	kW	49,10	68,80	92,40
Compressors absorbed power	Н	kW	15,50	20,40	37,40
EER compressors	Н		3,92	4,02	3,42
Unit input power	Н	kW	20,5	27,6	46,5
Heating performances					
Heating capacity	Н	kW	61,20	82,10	124,60
Compressors absorbed power	Н	kW	12,00	16,00	28,00
Compressor COP	Н		5,12	5,12	4,45
Unit input power	Н	kW	16,4	21,8	37,2

Cooling performances: Ambient air 27° C d.b./ 19° C w.b.; External air 35° C/ 24° C w.b.; Functioning with 30% of external and expelled air. Heating performances: Ambient air 20° C d.b./ 15° C w.b.; External air 7° C/ 6° C w.b.; Functioning with 30% of external and expelled air.

MBF

Size			060	085	125
Configuration: MBF					
Cooling performances					
Cooling capacity	Н	kW	60,40	81,40	127,00
Sensible cooling capacity	Н	kW	49,00	68,70	92,10
Compressors absorbed power	Н	kW	15,90	20,80	38,40
EER compressors	Н		3,79	3,91	3,30
Unit input power	Н	kW	20,2	27,0	46,0
Heating performances					
Heating capacity	Н	kW	58,50	78,80	119,70
Compressors absorbed power	Н	kW	11,70	15,90	27,60
Compressor COP	Н		5,02	4,96	4,33
Unit input power	Н	kW	15,3	20,6	35,1

Cooling performances: Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external air. Heating performances: Ambient air 20°C d.b./15°C w.b.; External air 7°C/6°C w.b.; Functioning with 30% of external air.

MBT

Size	"		060	085	125
Configuration: MBT					
Cooling performances					
Cooling capacity	Н	kW	66,00	88,80	139,10
Sensible cooling capacity	Н	kW	51,50	72,20	97,00
Compressors absorbed power	Н	kW	15,50	20,50	37,50
EER compressors	Н		4,25	4,34	3,71
Unit input power	Н	kW	20,5	27,7	46,6
Heating performances					
Heating capacity	Н	kW	65,90	88,50	134,40
Compressors absorbed power	Н	kW	12,50	16,60	29,10
Compressor COP	Н		5,29	5,32	4,62
Unit input power	Н	kW	16,9	22,4	38,3

Cooling performances: Ambient air 27° C d.b./ 19° C w.b.; External air 35° C/ 24° C w.b.; Functioning with 30% of external and expelled air. Heating performances: Ambient air 20° C d.b./ 15° C w.b.; External air 7° C/ 6° C w.b.; Functioning with 30% of external and expelled air.

ENERGY INDEX

Size			060	085	125
Energy index					
SEER	Н	W/W	5,94	6,41	5,81
ηςς	Н	%	234,60	253,50	229,20
SCOP	Н	W/W	3,74	3,83	3,59
ηsh	Н	%	146,70	150,30	140,70

■ In MB1 configuration according to EN 14825:2022

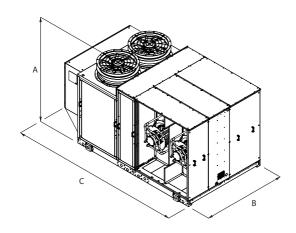
INDICES FOR ACCESS TO INCENTIVES

Size			060	085	125
Configuration: MB1					
Indices for access to incentives					
Cooling capacity	Н	kW	58,60	79,00	-
EER	Н	W/W	3,10	3,14	-
Heating capacity	Н	kW	56,90	76,70	-
COP	Н	W/W	3,71	3,73	-

■ In MB1 configuration according to EN 14511-3:2022

GENERAL TECHNICAL DATA

Size			060	085	125
Power supply					
Power supply	Н		400V~3 50Hz	400V~3 50Hz	400V~3 50Hz
Compressor					
Туре	Н	type	Scroll	Scroll	Scroll
Number	Н	no.	2	2	2
Circuits	Н	no.	2	2	2
Refrigerant	Н	type	R32	R32	R32
Compressor regulation	Н	Туре	Inverter	Inverter	Inverter
Sound data					
Sound power level	Н	dB(A)	84,0	85,0	89,0


■ Sound power in MB1 configuration at nominal operating conditions calculated on the basis of measurements in accordance with UNI EN ISO 9614-1/2

FANS

External fans

Size			060	085	125
Configuration: MB1, MB2, N	IB4, MBF, MBT				
External fans					
Гуре	Н	type	Assiali EC	Assiali EC	Assiali EC
Number	Н	no.	2	2	2
nternal flow fans					
Size			060	085	125
Configuration: MB1, MB2, N	IB4, MBF, MBT				
Delivery					
Гуре	Н	type		Plug fan EC	
Number	Н	no.	1	2	2
Nominal air flow rate	Н	m³/h	12700	17500	23000
Minimum air flow rate	Н	m³/h	9500	13000	17000
Maximum air flow rate	Н	m³/h	14000	20500	25500
Nominal high static pressure (EN14511)	Н	Pa	200	200	250
	Н	Pa	200	200	250
Nominal high static pressure (EN14511)	Н	Pa	200	200	250 125
Nominal high static pressure (EN14511) Expulsion fan MB4	Н	Pa			
Nominal high static pressure (EN14511) Expulsion fan MB4 Size	Н	Pa Pa		085	
Nominal high static pressure (EN14511) Expulsion fan MB4 Size Configuration: MB4	H	Pa type			
Expulsion fan MB4 Size Configuration: MB4 Exhaust Gype Number	H H			085	
Nominal high static pressure (EN14511) Expulsion fan MB4 Size Configuration: MB4 Exhaust Type	Н	type	060	085 Plug fan EC	125
Expulsion fan MB4 Size Configuration: MB4 Exhaust Gype Number	H H	type no.	060 1	085 Plug fan EC 2	125
Nominal high static pressure (EN14511) Expulsion fan MB4 Size Configuration: MB4 Exhaust Type Number Nominal useful head	H H	type no.	060 1	085 Plug fan EC 2	125
Expulsion fan MB4 Size Configuration: MB4 Exhaust Eype Number Nominal useful head Expulsion fan MBT	H H	type no.	060 1 100	085 Plug fan EC 2 100	3 125
Expulsion fan MB4 Size Configuration: MB4 Exhaust Flype Number Nominal useful head Expulsion fan MBT Size	H H	type no.	060 1 100	085 Plug fan EC 2 100	3 125
Expulsion fan MB4 Size Configuration: MB4 Exhaust Type Number Nominal useful head Expulsion fan MBT Size Configuration: MBT Exhaust	H H	type no.	060 1 100	085 Plug fan EC 2 100	3 125
Expulsion fan MB4 Size Configuration: MB4 Exhaust Flype Number Nominal useful head Expulsion fan MBT Size Configuration: MBT	H H H	type no. Pa	060 1 100	085 Plug fan EC 2 100	3 125

DIMENSIONS

Size			060	085	125
Dimensions and weights					
A	Н	mm	1570	1900	2165
В	Н	mm	2200	2200	2200
C	Н	mm	3305	3905	3905
Empty weight	Н	kg	1193	1518	1597

■ Empty weight: in MB1 configuration without accessories

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

RTX-N1-N8

Roof-Top for applications in medium crowed

Cooling capacity 12,70 ÷ 49,95 kW Heating capacity 13,50 ÷ 50,79 kW

- For medium crowding applications
- Upgraded thermodynamic heat recovery
- Handling section with plug fan coupled with BRUSHLESS EC motors
- Free-cooling / enthalpic free-cooling / photocatalytic system option

DESCRIPTION

Independent Roof-Top air-cooled air conditioner to treat, filter and renew air based on the selected configuration. Being fitted to function with 30% external and expelled air (MB4 versions), RTX units are designed for medium density applications like shopping malls, shops, offices and production

Based on the version and accessories selected, the units allow you to manage free-cooling mode and, in the MB4 versions, there is thermodynamic recovery of the energy contained in the expelled air, allowing for higher performance and efficiency.

CONFIGURATIONS

MB1: Single ventilating cross-section for recovery air.

Recovery air only configuration where no fresh air is required.

The useful flow and recovery static pressure is provided by the flow ventilating cross-section.

MB2: Single ventilating cross-section for recovery and external air.

Recovery and external air configuration. The useful flow and recovery static pressure is provided by the flow ventilating cross-section.

The presence of the recirculation damper (optional) allows for total free-cooling (100% external air).

If there are no extraction systems, the room will be in overpressure.

MB4: double ventilating cross-section (flow and expulsion) for recovery air, external air and exhaust air, thermodynamic recovery.

Recovery, external and exhaust air configuration. The flow ventilating cross-section provides the flow and recovery useful static pressure. The exhaust ventilating cross-section only controls the air flow rate to be expelled, with consequent reduction of the installed ventilation power.

The double flow and exhaust ventilating cross-section allows for partial free-cooling and has the thermodynamic recovery function.

${\bf Advantages\ of\ thermodynamic\ recovery\ (MB4):}$

- $\boldsymbol{-}$ Energy recovery from the exhaust air flow that would otherwise be lost
- No further components are introduced and, therefore, there are no additional pressure drops
- Cooling circuit functioning with heat sources at more advantageous temperatures

- Reduction of defrosting cycles
- Increase in thermal and cooling efficiency
- Efficiency increase (EER/COP)

FEATURES

- 2 cooling circuits with electronic thermostatic expansion valve;
- High efficiency scroll compressors with low power consumption;
- Finned pack direct expansion internal and external exchangers;
- Plug fan type (EC) flow and exhaust fans (if any). The impellers are facing so as to ensure that the air flows through all the internal components with minimum noise;
- Axial fan unit for extremely silent functioning positioned on the condensing section.
- Filter with 55% COARSE efficiency (according to EN ISO 16890) on the fresh air flow; Also available: compact filter with ePM1 50% efficiency (according to EN ISO 16890). Positioning upstream of the components to be protected to ensure low pressure drops, having a large surface. Air quality control systems are also available (VOC and CO_{2 probe});
- The structure consists of a galvanised sheet metal base, frame in galvanised sheet metal shaped profiles powder coated in RAL9003 (self-bearing structure), pre-painted sheet metal panels (external) insulated with 28kg/mc dense adhesive insulation and sandwich type panels insulated with 25 mm thick 45kg/mc polyurethane, eco-friendly "GWP 0" (Global Warming Potential);
- The casing, designed to allow the internal components to be accessed for routine and extraordinary maintenance.

CONTROL

Microprocessor control able to manage the different functioning modes, ensuring maximum energy savings in any conditions of use. Interfaces to connect to remote supervision and control systems available as options.

FUNCTIONALITY AND TECHNOLOGICAL ADVANTAGES

RTX units are designed with the aim of reducing the energy consumption that subsequently dictated the technological choices made on the unit we will now introduce in brief.

Very high ventilation efficiency

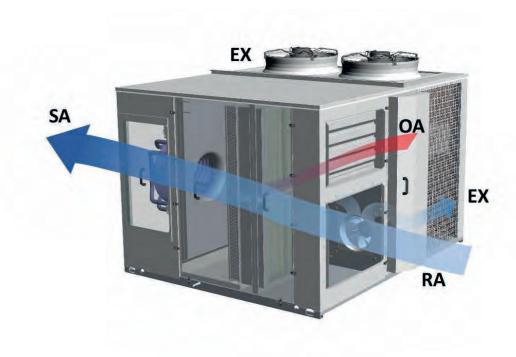
As ventilation is one of the major power consumption factors, we dedicated particular attention to designing and constructing the ventilation system.

State-of-the-art plug fans with EC brushless motors have been used both in flow and in recovery (if any), which enable high performance and reduced consumption. Furthermore, compared to conventional centrifugal fans, they have no belts or pulleys, thus facilitating flow rate adjustment and resulting in compactness, versatility and easy maintenance.

Special adaptive logic allows you to adjust the air flow rate to actual system demand with further resulting advantages in terms of consumption reduction.

Axial fans for the external section of the unit are helical. Electronic condensation control is available as an accessory, which regulates fan speed based on the load required, allowing for noise reduction. As an option, the motors can have electronic control (EC) to reduce consumption even in the condensing part.

Room air quality


Special attention was paid to the quality of the room air, entrusted to the standard 55% COARSE efficiency filters. F7 filters are also available as optional.

Active thermodynamic recovery

In the MB4 configurations, the units have a thermodynamic recovery function to recover the energy contained in the exhaust air, causing the expelled air flow to hit the external finned pack exchanger, allowing for higher performance and efficiency.

All of these technological advantages are controlled by a thermoregulation that is able to manage the different functioning modes, ensuring maximum energy savings in all conditions of use via dedicated software.

MB4 CONFIGURATION WITH DOUBLE VENTILATING SECTION FOR RETURN AIR, EXTERNAL AIR AND EXPELLED AIR. STANDARD FREE-COOLING AND THERMODYNAMIC HEAT RECOVERY FUNCTION

SA Supply air

EX Exhaust air

OA Fresh air

RA Return air

ACCESSORIES

AXEC: Axial fans with EC motors with speed control function according to the pressure of condensation and evaporation.

AXECP: EC axial fans with available useful static pressure.

BAC: Interface card BACnet MS/TP pCOnet.

BE: Electric heating coil 2 stages.

BIP: Interface card Ethernet-pCOweb (BACNET IP)

BPGC: After heating coil with hot gas. **BW:** 2-rows-heating coil with hot water.

BWV2V: 2 -rows -heating coil with hot water, with 2-way modulating valve.

BWV3V: 2-rows heating coil with hot water, with 3-way modulating valve.

CA: Waterproof covers on external air intake.

DP: Dehumidification control (humidity probe in recovery) and of after-heating (if present).

FCT: Partial Temperature Free-Cooling for MB2, MB4 versions.

FT7: F7 efficiency pocket filters positioned on the supply air flow.

GP: External coil protection grid.

LW: Interface card LonWorks.

PRT1: Wall/recessed (up to 50 m) remote control panel.

PRT2: Wall/recessed (up to 200 m) remote control panel.

PSF4: Differential pressure switch signalling dirty recovery and renewal filters (if any).

PSTEP: Adjusting constant flow, step flow in function of the modulation of the cooling circuit.

RFC: Smoke detector and damper management.

RS: Serial card BMS RS485.

SCM: Modulating servo-controls (standard on MB3 model or if temperature or enthalpic free-cooling is present).

SCMRM: Modulating Servo-control with spring return. **SCO2:** Probe CO2 (not available on MB1 fittings).

STA: Room temperature probe

SUA: Room humidity probe.

SVOC: Probe VOC (not available on MB1 fittings).

VT: Antivibration mounts.

PERFORMANCE SPECIFICATIONS

Size		N1	N2	N3	N4	N5	N6	N7	N8
Configuration: MB1									
Cooling performances (1)									
Cooling capacity	kW	12,70	15,50	19,10	22,20	28,60	33,00	43,00	47,00
Sensible cooling capacity	kW	8,60	10,40	12,80	14,80	19,00	22,40	28,80	32,10
Compressors absorbed power	kW	3,30	4,20	5,00	6,00	7,20	8,70	11,40	12,50
EER compressors		3,87	3,71	3,82	3,69	3,98	3,79	3,75	3,75
Heating performances (2)									
Heating capacity	kW	13,50	16,10	19,90	23,00	29,60	34,00	44,70	48,50
Compressors absorbed power	kW	3,07	3,65	4,28	5,15	6,23	6,86	9,43	10,02
Compressor COP		4,40	4,41	4,64	4,47	4,75	4,96	4,74	4,84

⁽¹⁾ Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air.
(2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

Size	·	N1	N2	N3	N4	N5	N6	N7	N8
Configuration: MB2	'								
Cooling performances (1)									
Cooling capacity	kW	13,42	16,34	20,16	23,35	30,21	34,79	45,26	49,44
Sensible cooling capacity	kW	8,92	10,86	13,40	15,40	19,70	23,40	30,00	33,50
Compressors absorbed power	kW	3,33	4,22	5,04	6,07	7,29	8,85	11,65	12,74
EER compressors		4,03	3,87	4,00	3,85	4,14	3,93	3,88	3,88
Heating performances (2)									
Heating capacity	kW	13,65	16,24	20,02	23,18	29,87	34,22	45,17	48,94
Compressors absorbed power	kW	2,77	3,31	3,86	4,65	5,62	6,15	8,58	9,22
Compressor COP		4,92	4,91	5,18	4,99	5,32	5,57	5,26	5,31

⁽¹⁾ Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air.
(2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

Size		N1	N2	N3	N4	N5	N6	N7	N8
Configuration: MB4									
Cooling performances (1)									
Cooling capacity	kW	13,49	16,49	20,33	23,58	30,45	35,16	45,65	49,95
Sensible cooling capacity	kW	8,93	10,91	13,40	15,50	19,80	23,50	30,20	33,60
Compressors absorbed power	kW	3,27	4,12	4,92	5,90	7,13	8,59	11,39	12,43
EER compressors		4,13	4,00	4,13	4,00	4,27	4,10	4,01	4,02
Heating performances (2)									
Heating capacity	kW	14,00	16,81	20,69	24,05	30,77	35,50	46,63	50,79
Compressors absorbed power	kW	2,81	3,36	3,92	4,73	5,71	6,27	8,74	9,38
Compressor COP		4,98	5,00	5,28	5,08	5,39	5,67	5,33	5,41

⁽¹⁾ Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air. (2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

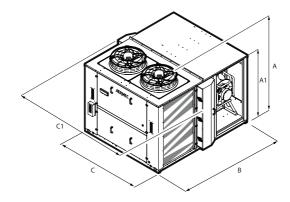
ENERGY INDEX

Size			N1	N2	N3	N4	N5	N6	N7	N8
Energy index										
SEER	Н	W/W	3,73	3,60	3,76	3,70	3,86	3,86	3,80	3,77
ηςς	Н	%	146.1%	141.2%	147.5%	144.8%	151.5%	151.5%	148.8%	147.8%
Pdesignh	Н	kW	7	9	11	13	16	19	25	26
SCOP	Н	W/W	3,47	3,34	3,46	3,36	3,29	3,50	3,47	3,44
ηsh	Н	%	135.6%	130.5%	135.4%	131.2%	128.7%	137.1%	135.7%	134.4%

GENERAL TECHNICAL DATA

Size		N1	N2	N3	N4	N5	N6	N7	N8
Power supply									
Power supply		400V~3N 50Hz	400V~3N 50Hz	400V~3N 50Hz	400V~3N 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz
Compressor									
Туре	type				Scr	oll			
Number	no.	2	2	2	2	2	2	2	2
Circuits	no.	2	2	2	2	2	2	2	2
Refrigerant	type				R41	0A			
Sound data									
Sound power level	dB(A)	73,3	73,7	76,4	76,3	81,2	79,7	82,8	82,9
Sound pressure level (1)	dB(A)	65,3	65,8	68,5	68,3	73,2	71,7	74,8	74,9

⁽¹⁾ MB1 configuration sound pressure measured in free field (Q=2), 1m away from the outer surface of the ducted unit, high static pressure 50 Pa (EN ISO 9614-2).. 3 dB(A) tolerance on sound power level (Eurovent 8/1).


FANS

Size			N1	N2	N3	N4	N5	N6	N7	N8
Configuration: MB1, MB2, M	B4									
External fans										
Туре	Н	type	axials							
Number	Н	no.	2	2	2	2	2	2	2	2

Size			N1	N2	N3	N4	N5	N6	N7	N8
Configuration: MB1, MB2,	MB4									
Internal fans										
Nominal air flow rate	Н	m³/h	2000	2800	3500	4000	5000	6500	8000	9500
Minimum air flow rate	Н	m³/h	1800	1800	2700	2700	4000	4000	6500	6500
Maximum air flow rate	H	m³/h	2900	2900	4100	4100	6900	6900	10100	10100
Size			09	10	11	12	13	14	15	16
Configuration: MBT										
Exhaust										
Туре	Н	type	RAD EC							
Number	Н	no.	1	1	1	2	2	2	2	2
Size	'		N1	N2	N3	N4	N5	N6	N7	N8
Configuration: MB1, MB2										
Delivery										
Туре	Н	type	Brushless EC							
Number	Н	no.	1	1	1	1	1	1	1	1
Maximum useful head (1)	Н	Pa	755	575	460	555	435	460	575	765
High static pressure (EN14511) (1)	Н	Pa	100	100	124	124	124	150	150	200
(1) At the nominal/maximum flow rate wi	ith a new, clean air	filter.								
Size			N1	N2	N3	N4	N5	N6	N7	N8
Configuration: MB4										
Delivery										
Туре	Н	type	RAD EC							
Number	Н	no.	1	1	1	1	1	1	1	1
Maximum useful head (1)	Н	Pa	755	575	460	555	435	460	575	765
High static pressure (EN14511) (1)	Н	Pa	100	100	124	124	124	150	150	200

⁽¹⁾ At the nominal/maximum flow rate with a new, clean air filter.

DIMENSIONS

Size			N1	N2	N3	N4	N5	N6	N7	N8
Configuration: MB1										
Dimensions and weights										
A	Н	mm	1170	1170	1470	1470	1610	1610	1710	1710
A1	Н	mm	910	910	1210	1210	1410	1410	1510	1510
В	Н	mm	1460	1460	1460	1460	1860	1860	2310	2310
C	Н	mm	1560	1560	1560	1560	1910	1910	1910	1910
C1	Н	mm	-	-	-	-	-	-	-	-
Empty weight	Н	kg	335	335	405	405	594	594	745	745
Size			N1	N2	N3	N4	N5	N6	N7	N8
Configuration: MB2										
Dimensions and weights										
A	Н	mm	1170	1170	1470	1470	1610	1610	1710	1710
A1	Н	mm	910	910	1210	1210	1410	1410	1510	1510
В	Н	mm	1460	1460	1460	1460	1860	1860	2310	2310
C	Н	mm	1560	1560	1560	1560	1910	1910	1910	1910
C1	Н	mm	-	-	-	-	-	-	-	-
Empty weight	Н	kg	335	335	405	405	594	594	745	745
Size			N1	N2	N3	N4	N5	N6	N7	N8
Configuration: MB4	'									
Dimensions and weights										
A	Н	mm	1170	1170	1470	1470	1610	1610	1710	1710
A1	Н	mm	910	910	1210	1210	1410	1410	1510	1510
В	Н	mm	1460	1460	1460	1460	1860	1860	2310	2310
С	Н	mm	-	-	-	-	-	-	-	-
C1	Н	mm	1850	1850	1850	1850	2200	2200	2200	2200
Empty weight	Н	kg	345	345	429	429	619	619	775	775

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

RTX 09-16

Roof-Top for applications in medium crowed

Cooling capacity 50 ÷ 135 kW Heating capacity 49 ÷ 141 kW

- For medium crowding applications
- Upgraded thermodynamic heat recovery
- Handling section with plug fan coupled with BRUSHLESS EC motors
- Free-cooling / enthalpic free-cooling / photocatalytic system option

DESCRIPTION

Independent Roof -top type air cooled air conditioner, for treatment, filtration and renewal of the air, based on the chosen configuration.

RTX 09-16units are designed fot medium crowding applications, like shopping malls, shops, offices , production areas being designed for operation with 30% external and expelled air (version MB3). The unit based on the version and selected accessories allows the management of the free-cooling operation, and can be equipped with a recuperator to recover the energy contained in the exaust air allowing higher performances and efficiencies.

VERSIONS

F Cooling onlyH Heat pump.

FEATURES

Refrigerant circuit

functioning with R410A refrigerant, consisting of scroll compressors in "uneven" tandem configuration (except for sizes 09, 10 and 14) to ensure maximum energy savings at partial loads and better adaptability to system demands, providing only the energy actually needed. The compressors are equipped with electric resistances on the guards and thermal protection on the exhaust. The compressor compartment is isolated from the air flow.

Ventilation

The air treatment cross-section ventilation, which represents the highest expense in terms of machine operating costs, is entrusted to the plug fans with EC brushless motors which enable high performance, easy flow rate adjustment, compactness, low noise, versatility and easy maintenance. Furthermore, a special adaptive logic allows you to adjust the air flow rate to actual system demand with further advantages in terms of consumption reduction.

Axial fans

The axial fans, located in the condensing section of the unit, are the helical type, statically and dynamically balanced, protected electrically and mechanically by grids. Electronic condensation control is optional in F versions and condensation and evaporation during winter functioning in H versions.

The fans are also available with electronically controlled (EC) permanent magnet synchronous motor.

Exchangers

The internal and external heat exchangers are finned pack direct expansion, made with copper pipes arranged in staggered rows and mechanically expanded to better adhere to the collar of the louvers. The louvers are made of aluminium with a special corrugated surfaces, suitably spaced to ensure maximum heat exchange yield.

Air filtration

Entrusted to a filter with 55% Coarse efficiency (according to EN ISO 16890) on the fresh air flow.

Also available: compact filter with ePM1 50% efficiency or ePM1 80% efficiency (according to EN ISO 16890) and electronic filter on fresh air flow. Positioning upstream of the components to be protected to ensure low pressure drops, having a large surface. Air quality control systems are also available (VOC and CO2 probe).

Cleaning system with photocatalytic lamp

The Photocatalytic Oxidation technology generates natural oxidising ions capable of attracting and destroying the pollutants present in the air and on surfaces, by means of the combined action of UV rays with a catalyst structure composed of a four-metal alloy, mainly consisting of TiO_2 (titanium dioxide).

Thermoregulation

Electronic controller able to manage the different functioning modes, ensuring maximum energy savings in all conditions of use by means of special software. Interfaces to connect to remote supervision and control systems available as options. The electrical panel complete with all devices is easily accessible.

The free-cooling/heating and defrosting logics are particularly sophisticated. As soon as the external conditions allow it, the unit is able to automatically activate the free-cooling or free-heating mode, which cools or heats the served room, while keeping the compressors off and introducing suitably treated external air. This mode significantly reduces both energy consumption and wear of the compressors. These functions are also used when the external air energy content is not enough to cool or heat the room. In this case, the thermal cooling capacity is integrated by the compressors.

CONFIGURATIONS

MB1: Single ventilating cross-section for recovery air.

Recovery air only configuration where no fresh air is required.

The useful flow and recovery static pressure is provided by the flow ventilating cross-section.

MB2: Single ventilating cross-section for recovery and external air.

Recovery and external air configuration. The useful flow and recovery static pressure is provided by the flow ventilating cross-section.

The presence of the recirculation damper (optional) allows for total free-cooling (100% external air).

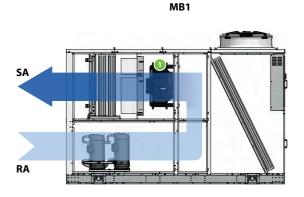
If there are no extraction systems, the room will be in overpressure.

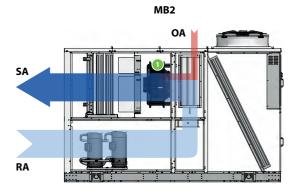
MB3: double ventilating cross-section (flow and return) for recovery air, external air and exhaust air, thermodynamic recovery.

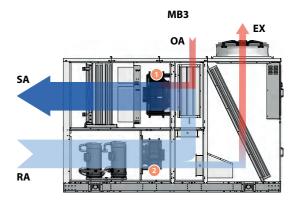
Recovery, external and exhaust air configuration. The flow ventilating cross-section provides the useful flow static pressure while the recovery ventilating cross-section provides the useful recovery static pressure. The double flow and recovery ventilating cross-section allows for total free-cooling (100% external air) without the need for a dedicated extraction system. The room overpressure or depression can be obtained by unbalancing the flow rates.

Thermodynamic recovery is performed by conveying expelled air on the external heat exchanger.

MB4: double ventilating cross-section (flow and expulsion) for recovery air, external air and exhaust air, thermodynamic recovery.


Recovery, external and exhaust air configuration. The flow ventilating cross-section provides the flow and recovery useful static pressure. The exhaust ventilating cross-section only controls the air flow rate to be expelled, with consequent reduction of the installed ventilation power.


The double flow and exhaust ventilating cross-section allows for partial free-cooling.


As for the MB3 version, it has the thermodynamic recovery function.

Advantages of thermodynamic recovery (MB3 - MB4 version):

- Energy recovery from the exhaust air flow that would otherwise be lost
- No further components are introduced and, therefore, there are no additional pressure drops
- Cooling circuit functioning with heat sources at more advantageous temperatures
- Reduction of defrosting cycles
- Increase in thermal and cooling efficiency
- Efficiency increase (EER/COP)

MB4 OA

- SA supply air
- RA fresh air
- OA fresh air
- EX Exhaust air

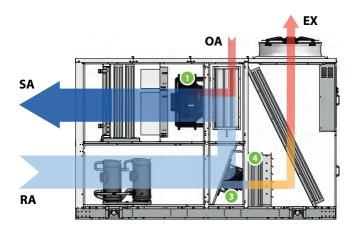
- 1 Delivery fan
- 2 Return fan
- 3 Expulsion fan

MBT: DOUBLE VENTILATING CROSS-SECTION (FLOW AND EXPULSION) FOR RECOVERY AIR, EXTERNAL AIR AND EXHAUST AIR, UPGRADED THERMODYNAMIC RECOVERY.

Recovery, external and exhaust air configuration. The flow ventilating cross-section provides the flow and recovery useful static pressure.

The exhaust ventilating cross-section only controls the air flow rate to be expelled, with consequent reduction of the installed ventilation power.

The double flow and exhaust ventilating cross-section allows for partial free-cooling.


The MBT configuration allows for the upgraded thermodynamic recovery on the exhaust air by fully exploiting the energy content still present in it. The exhaust flow rate, controlled by the dedicated exhaust fan, is conveyed to the innovative finned pack recovery coil, integrated in the cooling circuit of the unit.

The coil, perfectly hit by the air flow, recovers the energy still present in the exhaust flow and transfer it to the cooling circuit, increasing the treatment coil performance without increasing the input power of the compressors. In summer functioning, the coil makes it possible to increase the liquid subcooling, while in winter functioning, the coil takes on part of the evaporation by operating the cooling circuit at more advantageous temperatures.

Advantages of upgraded thermodynamic recovery (MBT version):

- High heat exchange efficiency thanks to the dedicated recovery coil
- Further increase in unit cooling and heating capacity
- Further increase in unit efficiency (EER/COP)
- Reduced additional air side pressure drops (expelled air side only)

- The unit remains compact
- In heating functioning, the defrost cycles are further reduced due to the increase in evaporation temperature. The result is an increase in efficiency and greater room comfort.
- Compared to traditional passive recuperators, in heating functioning it allows for exhaust air recovery even with low temperature difference between external and indoor air (mild winters)
- Compared to traditional passive recuperators, in cooling functioning it allows for exhaust air recovery even with low temperature difference between external and indoor air (continental and temperate climate)
- The presence of the dedicated coil determines the recovery efficiency that can be used in the energy certification calculations.

SA supply air

RA fresh air

OA fresh air

EX Exhaust air

- 1 Delivery fan
- 2 Return fan
- 3 Expulsion fan
- 4 Dedicated thermodynamic recovery coil

ACCESSORIES

AXEC: Axial fans with EC motors with speed control function according to the pressure of condensation and evaporation.

AXECP: EC axial fans with available useful static pressure.

BAC: Interface card BACnet MS/TP pCOnet.

BE: Electric heating coil 2 stages.

BEM: Modulating electric heating coil.

BIP: Interface card Ethernet-pCOweb (BACNET IP)

BPGC: After heating coil with hot gas.

BW: 2-rows-heating coil with hot water.

BWV2V: 2 -rows -heating coil with hot water, with 2-way modulating valve.

BWV3V: 2-rows heating coil with hot water, with 3-way modulating valve.

CA: Waterproof covers on external air intake.

CF: Flue, only on unit with gas burner module.

CUR: Humidification control (humidity probe in recovery, limit humidity probe in supply, contact ON/OFF and modulating analog output).

DCPR: AC fans with pressure switch device of speed control function of the pressure of condensation and evaporation.

DP: Dehumidification control (humidity probe in recovery) and of after-heating (if present).

FCT: Partial Temperature Free-Cooling for MB2, MB4 versions.

FT7: F7 efficiency pocket filters positioned on the supply air flow.

FT9: Pocket filters F9 efficiency placed on the flow of supply air.

FTE: Electronic filters placed on the flow of supply air.

FTH: Enthalpy free-cooling. **GP:** External coil protection grid.

Gx: Heating module with gas burner.

LFX: Device with photocatalytic effect.

LW: Interface card LonWorks.

MAN: High and low pressure gauges.

MSSM: Flow silencer module, only for rear flow.

MSSR: Recovery silencer module, only for rear air recovery.

PRT1: Wall/recessed (up to 50 m) remote control panel. PRT2: Wall/recessed (up to 200 m) remote control panel.

PSFT: Differential pressure switch signalling dirty filters.

PSTEP: Adjusting constant flow, step flow in function of the modulation of the cooling circuit

the cooling circuit.

RF: Smoke detector.

RFC: Smoke detector and damper management.

RS: Serial card BMS RS485.

SCM: Modulating servo-controls (standard on MB3 model or if temperature

or enthalpic free-cooling is present).

SCMRM: Modulating Servo-control with spring return.

SCO2: Probe CO2 (not available on MB1 fittings).

STA: Room temperature probe **SUA:** Room humidity probe.

SVOC: Probe VOC (not available on MB1 fittings).

UP: Manufacturer of immersed electrodes supplied and steam ramp in-

stalled

VT: Antivibration mounts.

PERFORMANCE SPECIFICATIONS

Size		09	10	11	12	13	14	15	16
Configuration: MB1									
Cooling performances (1)									
Cooling capacity	kW	50,00	60,10	68,60	81,00	93,40	103,50	114,00	125,30
Sensible cooling capacity	kW	40,10	46,10	52,70	63,20	70,90	81,80	89,30	97,10
Compressors absorbed power	kW	11,90	14,40	18,80	17,90	23,10	25,60	30,50	35,50
EER compressors		4,20	4,17	3,65	4,53	4,04	4,04	3,74	3,53
Heating performances (2)									
Heating capacity	kW	49,40	61,10	69,30	80,60	93,70	102,20	113,70	126,60
Compressors absorbed power	kW	9,80	12,20	15,50	15,70	20,60	21,00	24,40	28,40
Compressor COP		5,04	5,01	4,47	5,13	4,55	4,87	4,66	4,46

MB2

Size		09	10	11	12	13	14	15	16
		09	10		12	13	14	13	10
Configuration: MB2									
Cooling performances (1)									
Cooling capacity	kW	52,90	63,30	72,30	85,30	98,40	108,80	120,10	131,60
Sensible cooling capacity	kW	42,70	48,80	55,90	67,10	75,00	86,70	94,80	102,80
Compressors absorbed power	kW	12,10	14,60	19,00	18,10	23,30	25,90	30,90	35,90
EER compressors		4,37	4,34	3,81	4,71	4,22	4,20	3,89	3,67
Heating performances (2)									
Heating capacity	kW	50,50	61,90	70,60	82,20	94,90	103,60	115,30	128,10
Compressors absorbed power	kW	9,00	11,20	14,10	14,30	18,90	19,20	22,50	26,00
Compressor COP		5,61	5,53	5,01	5,75	5,02	5,40	5,12	4,93

⁽¹⁾ Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air. (2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

MB3

Size		09	10	11	12	13	14	15	16
Configuration: MB3									
Cooling performances (1)									
Cooling capacity	kW	53,40	63,70	73,10	86,10	99,30	110,00	121,30	133,30
Sensible cooling capacity	kW	43,00	48,90	56,20	67,40	75,30	87,00	95,10	103,20
Compressors absorbed power	kW	11,80	14,20	18,50	17,70	22,80	25,10	30,10	34,80
EER compressors		4,53	4,49	3,95	4,86	4,36	4,38	4,03	3,83
Heating performances (2)									
Heating capacity	kW	52,10	64,10	74,10	85,00	98,60	107,80	120,60	134,30
Compressors absorbed power	kW	9,20	11,40	14,40	14,60	19,10	19,40	22,90	26,70
Compressor COP		5,66	5,62	5,15	5,82	5,16	5,56	5,27	5,03

MB4

Size	'	09	10	11	12	13	14	15	16
Configuration: MB4									
Cooling performances (1)									
Cooling capacity	kW	53,40	63,70	73,10	86,10	99,30	110,00	121,30	133,30
Sensible cooling capacity	kW	43,00	48,90	56,20	67,40	75,30	87,00	95,10	103,20
Compressors absorbed power	kW	11,80	14,20	18,50	17,70	22,80	25,10	30,10	34,80
EER compressors		4,53	4,49	3,95	4,86	4,36	4,38	4,03	3,83
Heating performances (2)									
Heating capacity	kW	52,10	64,10	74,10	85,00	98,60	107,80	120,60	134,30
Compressors absorbed power	kW	9,20	11,40	14,40	14,60	19,10	19,40	22,90	26,70
Compressor COP		5,66	5,62	5,15	5,82	5,16	5,56	5,27	5,03

⁽¹⁾ Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air.
(2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

⁽¹⁾ Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air.
(2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

⁽¹⁾ Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air. (2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

Size	'	09	10	11	12	13	14	15	16
Configuration: MBT									
Cooling performances (1)									
Cooling capacity	kW	57,10	67,80	78,00	90,50	103,70	116,90	128,80	140,60
Sensible cooling capacity	kW	46,60	53,00	61,20	71,90	79,70	94,00	102,60	110,60
Compressors absorbed power	kW	11,80	14,20	18,50	17,70	22,80	25,10	30,10	34,80
EER compressors		4,84	4,77	4,22	5,11	4,55	4,66	4,28	4,04
Heating performances (2)									
Heating capacity	kW	55,40	68,00	78,30	90,10	103,60	114,40	127,50	141,40
Compressors absorbed power	kW	9,20	11,40	14,40	14,60	19,10	19,40	22,90	26,70
Compressor COP		6,02	5,96	5,44	6,17	5,42	5,90	5,57	5,30
Recovery efficiency	%	84%	92%	87%	90%	85%	85%	82%	78%

ENERGY INDEX

Size			09	10	11	12	13	14	15	16
Energy index										
SEER	Н	W/W	4,24	3,94	3,76	3,92	3,89	4,22	4,10	4,05
ŋsc	Н	%	166.6%	154.5%	147.2%	153.9%	152.7%	165.7%	161.1%	159.1%
Pdesignh	Н	kW	29	34	38	46	52	57	62	71
SCOP	Н	W/W	3,59	3,50	3,30	3,27	3,22	3,47	3,41	3,38
ŋsh	Н	%	140.5%	137.0%	128.8%	127.7%	126.0%	135.9%	133.5%	132.3%

GENERAL TECHNICAL DATA

Size			09	10	11	12	13	14	15	16
Power supply										
Power supply	Н		400V~3 50Hz							
Compressor										
Туре	Н	type	Scroll							
Number	Н	no.	2	2	2	2	2	2	2	2
Circuits	Н	no.	1	1	1	1	1	1	1	1
Refrigerant	Н	type	R410A							
Partialisation step	Н	no.	2	2	3	3	3	2	3	3

FANS

External fans

Size			09	10	11	12	13	14	15	16
Configuration: MB1,	MB2, MB3, MB4,	MBT								
External fans										
Туре	Н	type	Assiali AC							
Number	Н	no.	2	2	2	2	2	2	2	2
	"									

Internal fans MB1-MB2-MB3-MB4-MBT

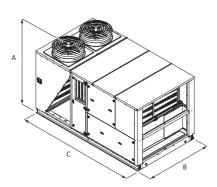
Size			09	10	11	12	13	14	15	16
Configuration: MB1, MI	B2, MB3, MB4,	MBT								
Internal fans										
Nominal air flow rate	Н	m³/h	9500	11000	13000	15000	17000	20000	22000	24000
Minimum air flow rate	Н	m³/h	6650	7700	9100	10850	12600	14000	15400	16800
Maximum air flow rate	Н	m³/h	9500	11000	13000	15500	18000	20000	22000	24000

Internal recovery fans

Size			09	10	11	12	13	14	15	16
Configuration: MB3										
Recovery										
Туре	Н	type	RAD EC							
Number	Н	no.	1	1	1	2	2	2	2	2

Expulsion fan MB4-MBT

Size			09	10	11	12	13	14	15	16
Configuration: MBT										
Exhaust										
Туре	Н	type	RAD EC							
Number	Н	no.	1	1	1	2	2	2	2	2


⁽¹⁾ Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air. (2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

Internal flow fans

Size			09	10	11	12	13	14	15	16
Configuration: MB1, MB2,	MB3, MB4,	MBT								
Delivery										
Туре	Н	type	RAD EC							
Number	Н	no.	1	1	1	2	2	2	2	2
Maximum useful head (1)	Н	Pa	770	510	445	555	740	640	525	675
High static pressure (EN14511) (1)	Н	Pa	200	200	200	200	250	250	250	300

⁽¹⁾ At the nominal/maximum flow rate with a new, clean air filter.

DIMENSIONS

Size			09	10	11	12	13	14	15	16
Dimensions and weights										
A	Н	mm	2061	2061	2061	2373	2373	2440	2440	2440
В	Н	mm	1900	1900	1900	2100	2100	2200	2200	2200
C	Н	mm	3400	3400	3400	3400	3400	4000	4000	4000

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

RTX-17-23

Roof-Top for applications in medium crowed

Cooling capacity 151 ÷ 307 kW Heating capacity 152 ÷ 310 kW

- · For medium crowding applications
- Thermodynamic heat recovery
- Handling section with plug fan coupled with BRUSHLESS EC motors
- Free cooling / Enthalpy free cooling

DESCRIPTION

Independent Roof -top type air cooled air conditioner, for treatment, filtration and renewal of the air , based on the chosen configuration.

The RTX 09-16 units are designed for installation in places with an average degree of crowding such as shopping centres, shops, offices and production sites, as operation uses 30% outside expelled air (versions MB3 and MB4). Depending on the version and the accessories chosen, the unit can man-

CONFIGURATIONS

MB1: Single ventilating cross-section for recovery air.

Recovery air only configuration where no fresh air is required.

The useful flow and recovery static pressure is provided by the flow ventilating cross-section.

MB2: Single ventilating cross-section for recovery and external air.

Recovery and external air configuration. The useful flow and recovery static pressure is provided by the flow ventilating cross-section.

The presence of the recirculation damper (optional) allows for total free-cooling (100% external air).

If there are no extraction systems, the room will be in overpressure.

MB3: double ventilating cross-section (flow and return) for recovery air, external air and exhaust air, thermodynamic recovery.

Recovery, external and exhaust air configuration. The flow ventilating cross-section provides the useful flow static pressure while the recovery ventilating cross-section provides the useful recovery static pressure.

The double flow and recovery ventilating cross-section allows for total free-cooling (100% external air) without the need for a dedicated extraction system. The room overpressure or depression can be obtained by unbalancing the flow rates.

Thermodynamic recovery is performed by conveying expelled air on the external heat exchanger.

MB4: double ventilating cross-section (flow and expulsion) for recovery air, external air and exhaust air, thermodynamic recovery.

Recovery, external and exhaust air configuration. The flow ventilating cross-section provides the flow and recovery useful static pressure. The exhaust ventilating cross-section only controls the air flow rate to be expelled, with consequent reduction of the installed ventilation power.

age free cooling mode. Versions MB3 and MB4 feature the thermodynamic recovery of the energy contained in the exhaust air, leading to higher performance and efficiency levels.

VERSIONS

F Cooling onlyH Heat pump.

The double flow and exhaust ventilating cross-section allows for partial free-cooling.

As for the MB3 version, it has the thermodynamic recovery function.

Advantages of thermodynamic recovery (MB3 - MB4 version):

- Energy recovery from the exhaust air flow that would otherwise be lost
- No further components are introduced and, therefore, there are no additional pressure drops
- Cooling circuit functioning with heat sources at more advantageous temperatures
- Reduction of defrosting cycles
- Increase in thermal and cooling efficiency
- Efficiency increase (EER/COP)

FEATURES

- 2 cooling circuits with electronic thermostatic expansion valve;
- Scroll compressors (UNEVEN tandem) with high capacity and low electrical power consumption;
- Finned pack direct expansion internal and external exchangers;
- Plug fan type (EC) flow and exhaust fans (if any). The impellers are facing so as to ensure that the air flows through all the internal components with minimum noise:
- Axial fan unit for extremely silent functioning positioned on the condensing section.
- Filter with 55% COARSE efficiency (according to EN ISO 16890) on the fresh air flow; Also available: compact filter with ePM1 50% efficiency (according to EN ISO 16890). Positioning upstream of the components to be protected to ensure low pressure drops, having a large surface. Air quality control systems are also available (VOC and CO_{2 probe});
- The structure consists of a galvanised sheet metal base, frame in galvanised sheet metal shaped profiles powder coated in RAL9003

325

(self-bearing structure), pre-painted sheet metal panels (external) insulated with 28kg/mc dense adhesive insulation and sandwich type panels insulated with 25 mm thick 45kg/mc polyurethane, eco-friendly "GWP 0" (Global Warming Potential);

 The casing, designed to allow the internal components to be accessed for routine and extraordinary maintenance.

CONTROL

Microprocessor control able to manage the different functioning modes, ensuring maximum energy savings in any conditions of use. Interfaces to connect to remote supervision and control systems available as options.

FUNCTIONALITY AND TECHNOLOGICAL ADVANTAGES

RTX units are designed with the aim of reducing the energy consumption that subsequently dictated the technological choices made on the unit we will now introduce in brief.

Very high ventilation efficiency

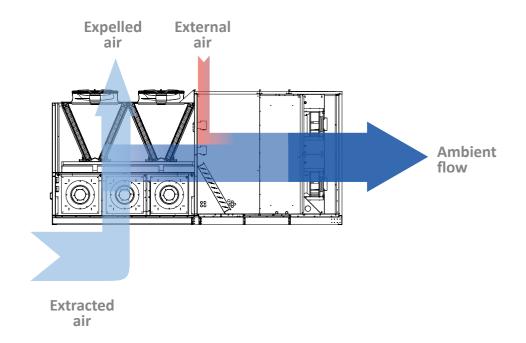
As ventilation is one of the major power consumption factors, we dedicated particular attention to designing and constructing the ventilation system. State-of-the-art plug fans with EC brushless motors have been used both in flow and in recovery (if any), which enable high performance and reduced consumption. Furthermore, compared to conventional centrifugal fans, they have no belts or pulleys, thus facilitating flow rate adjustment and resulting in compactness, versatility and easy maintenance.

Special adaptive logic allows you to adjust the air flow rate to actual system demand with further resulting advantages in terms of consumption reduction

Axial fans for the external section of the unit are helical. Electronic condensation control is available as an accessory, which regulates fan speed based on the load required, allowing for noise reduction. As an option, the motors can have electronic control (EC) to reduce consumption even in the condensing part.

Maximum seasonal efficiency

To improve the efficiency of the cooling circuit, tandem scroll compressors of different power levels are used (UNEVEN compressors on all sizes). This distinctive trait, combined with the use of next generation fans, means reduced consumption and enhanced adaptability to system requests (particularly in partial load operation), guaranteeing boosted seasonal efficiency levels.


Room air quality

Special attention has been paid to the quality of the air in the room, entrusted to filters that ensure 55% COARSE efficiency as standard. There is also the option of F7, F9 or electronic filters on the fresh air flow.

Active thermodynamic recovery

In the MB3-MB4 configuration, the unit with thermodynamic recovery function also takes advantage of the energy contained in the exhaust air, which would otherwise be lost; this ensures better performance and efficiency. All of these technological advantages are controlled by a thermoregulation that is able to manage the different functioning modes, ensuring maximum energy savings in all conditions of use via dedicated software.

MB3 CONFIGURATION WITH TWIN FAN SECTION FOR RECIRCULATION AIR, OUTSIDE AIR AND EXHAUST AIR. TOTAL FREE COOLING FUNCTION (WITH 100% OUTSIDE AIR) AND THERMODYNAMIC RECOVERY FUNCTION AS STANDARD.

ACCESSORIES

AXEC: Axial fans with EC motors with speed control function according to the pressure of condensation and evaporation.

AXECP: EC axial fans with available useful static pressure.

BAC: Interface card BACnet MS/TP pCOnet.

BE: Electric heating coil 2 stages.

BEM: Modulating electric heating coil.

BIP: Interface card Ethernet-pCOweb (BACNET IP)

BPGC: After heating coil with hot gas.

BW: 2-rows-heating coil with hot water.

BWV2V: 2 -rows -heating coil with hot water, with 2-way modulating valve.

BWV3V: 2-rows heating coil with hot water, with 3-way modulating valve.

CA: Waterproof covers on external air intake.

CF: Flue, only on unit with gas burner module.

CUR: Humidification control (humidity probe in recovery, limit humidity probe in supply, contact ON/OFF and modulating analog output).

DCPR: AC fans with pressure switch device of speed control function of the pressure of condensation and evaporation.

DP: Dehumidification control (humidity probe in recovery) and of after-heating (if present).

FCT: Partial Temperature Free-Cooling for MB2, MB4 versions.

FT7: F7 efficiency pocket filters positioned on the supply air flow.

FT9: Pocket filters F9 efficiency placed on the flow of supply air.

FTE: Electronic filters placed on the flow of supply air.

FTH: Enthalpy free-cooling.

GP: External coil protection grid.

Gx: Heating module with gas burner.

LFX: Device with photocatalytic effect.

LW: Interface card LonWorks.

MAN: High and low pressure gauges.

MSSM: Flow silencer module, only for rear flow.

MSSR: Recovery silencer module, only for rear air recovery.

PRT1: Wall/recessed (up to 50 m) remote control panel.

PRT2: Wall/recessed (up to 200 m) remote control panel. **PSFT:** Differential pressure switch signalling dirty filters.

PSTEP: Adjusting constant flow, step flow in function of the modulation of

the cooling circuit. RF: Smoke detector.

RFC: Smoke detector and damper management.

RS: Serial card BMS RS485.

SCM: Modulating servo-controls (standard on MB3 model or if temperature or enthalpic free-cooling is present).

SCMRM: Modulating Servo-control with spring return. SCO2: Probe CO2 (not available on MB1 fittings).

STA: Room temperature probe SUA: Room humidity probe.

SVOC: Probe VOC (not available on MB1 fittings).

UP: Manufacturer of immersed electrodes supplied and steam ramp in-

VT: Antivibration mounts.

PERFORMANCE SPECIFICATIONS

A	А	D	4
IV	1	D	U

Size		17	18	19	20	21	22	23
Configuration: MB1								
Cooling performances (1)								
Cooling capacity	kW	151,90	170,10	191,70	213,30	231,70	246,10	289,10
Sensible cooling capacity	kW	114,30	125,40	136,10	151,60	164,70	178,50	202,30
Compressors absorbed power	kW	32,70	39,20	45,30	54,00	60,70	69,00	68,90
EER compressors		4,65	4,34	4,23	3,95	3,82	3,57	4,20
Heating performances (2)								
Heating capacity	kW	152,70	170,80	192,80	216,20	230,80	245,50	296,30
Compressors absorbed power	kW	28,20	33,90	39,20	43,90	46,30	51,20	58,60
Compressor COP		5,41	5,04	4,92	4,92	4,98	4,79	5,06

MR2

MDZ								
Size		17	18	19	20	21	22	23
Configuration: MB2								
Cooling performances (1)								
Cooling capacity	kW	160,20	179,40	201,80	224,60	243,90	258,90	304,50
Sensible cooling capacity	kW	120,90	132,60	143,20	159,70	173,50	188,30	212,90
Compressors absorbed power	kW	33,10	39,50	45,60	54,60	61,60	69,80	69,70
EER compressors		4,84	4,54	4,43	4,11	3,96	3,71	4,37
Heating performances (2)								
Heating capacity	kW	155,10	174,20	195,50	219,50	234,00	248,60	300,70
Compressors absorbed power	kW	25,80	31,10	35,70	40,40	42,50	47,00	54,10
Compressor COP		6,01	5,60	5,48	5,43	5,51	5,29	5,56

⁽¹⁾ Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air. (2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

MB3

Size		17	18	19	20	21	22	23
Configuration: MB3	'							
Cooling performances (1)								
Cooling capacity	kW	161,30	181,10	203,70	226,90	246,70	262,10	307,20
Sensible cooling capacity	kW	121,30	133,30	143,80	160,50	174,50	189,20	213,90
Compressors absorbed power	kW	32,50	38,80	44,50	53,20	59,90	67,70	68,30
EER compressors		4,96	4,67	4,58	4,27	4,12	3,87	4,50
Heating performances (2)								
Heating capacity	kW	159,10	179,00	202,30	227,70	243,60	259,90	310,90
Compressors absorbed power	kW	26,20	31,40	36,30	41,00	43,30	47,90	55,00
Compressor COP		6,07	5,70	5,57	5,55	5,63	5,43	5,65

MB4

Size		17	18	19	20	21	22	23
Configuration: MB4	'							
Cooling performances (1)								
Cooling capacity	kW	161,30	181,10	203,70	226,90	246,70	262,10	307,20
Sensible cooling capacity	kW	121,30	133,30	143,80	160,50	174,50	189,20	213,90
Compressors absorbed power	kW	32,50	38,80	44,50	53,20	59,90	67,70	68,30
EER compressors		4,96	4,67	4,58	4,27	4,12	3,87	4,50
Heating performances (2)								
Heating capacity	kW	159,10	179,00	202,30	227,70	243,60	259,90	310,90
Compressors absorbed power	kW	26,20	31,40	36,30	41,00	43,30	47,90	55,00
Compressor COP		6,07	5,70	5,57	5,55	5,63	5,43	5,65

⁽¹⁾ Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air.
(2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

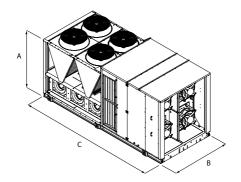
⁽¹⁾ Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air.
(2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

⁽¹⁾ Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air.
(2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

ENERGY INDEX

Size			17	18	19	20	21	22	23
Energy index									
SEER	Н	W/W	4,01	3,94	4,18	3,92	4,15	3,94	3,85
ηsc	Н	%	157.6%	154.6%	164.3%	153.8%	162.9%	154.5%	150.9%
Pdesignh	Н	kW	89	98	109	123	130	141	168
SCOP	Н	W/W	3,47	3,31	3,45	3,36	3,49	3,43	3,26
ŋsh	Н	%	135.7%	129.4%	134.8%	131.5%	136.4%	134.2%	127.3%

GENERAL TECHNICAL DATA


Size			17	18	19	20	21	22	23
Power supply									
Power supply	Н		400V~3 50Hz						
Compressor									
Туре	Н	type	Scroll						
Number	Н	no.	4	4	4	4	4	4	4
Circuits	Н	no.	2	2	2	2	2	2	2
Refrigerant	Н	type	R410A						
Partialisation step	Н	no.	6	6	6	6	6	6	6

FANS

41									
Size			17	18	19	20	21	22	23
Configuration: MB1, MB2, MB	3, MB4								
External fans			Ai.di AC	A: - I: AC	A: - 1: AC	A: - I: AC	A!- I: AC	A! - I: AC	A ! - !! A
Туре	H	type	Assiali AC	Assiali A					
Number	Н	no.	4	4	4	4	4	4	4
Internal fans									
Size			17	18	19	20	21	22	23
Configuration: MB1, MB2, MB	3, MB4								
Internal fans									
Nominal air flow rate	Н	m³/h	26000	29000	33000	37000	40000	44000	48000
Minimum air flow rate	Н	m³/h	18200	20300	23100	25900	28000	30800	33600
Maximum air flow rate	Н	m³/h	36000	36000	44000	44000	53000	53000	53000
Internal recovery fans									
Size			17	18	19	20	21	22	23
Configuration: MB3			1		-				
Recovery									
Туре	Н	type	RAD EC						
Number	Н	no.	3	3	3	3	3	3	3
Expulsion fan									
Size			17	18	19	20	21	22	23
Configuration: MB4									
Exhaust									
Туре	Н	type	RAD EC						
Number	Н	no.	2	2	2	2	2	2	2
Internal flow fans									
Size			17	18	19	20	21	22	23
Configuration: MB1									
Delivery									
Туре	Н	type	RAD EC						
Number	Н	no.	2	2	3	3	3	4	4
Maximum useful head (1)	Н	Pa	700	475	520	580	520	690	550
High static pressure (EN14511) (1)	Н	Pa	350	350	350	350	350	350	350
(1) At the nominal/maximum flow rate with a	new, clean air f	ilter.							
Size			17	18	19	20	21	22	23
Configuration: MB2, MB3, MB	34								
Delivery									
Туре	Н	type	RAD EC						
Number	Н	no.	2	2	3	3	3	4	4
Maximum useful head (1)	Н	Pa	519	341	330	470	460	636	467
High static pressure (EN14511) (1)	Н	Pa	350	350	350	350	350	350	350

⁽¹⁾ At the nominal/maximum flow rate with a new, clean air filter.

DIMENSIONS

Size			17	18	19	20	21	22	23
Dimensions and weights									
A	Н	mm	2430	2430	2430	2430	2430	2430	2430
В	Н	mm	2200	2200	2200	2200	2200	2200	2200
С	Н	mm	5210	5210	5210	5210	7750	7750	7750

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

RTY

Roof-Top for high-crowding applications

Cooling capacity 30.2 ÷ 133.6 kW Heating capacity 29.3 ÷ 137.9 kW

- · For high-crowding applications
- Thermodynamic heat recovery
- Handling section with plug fan coupled with BRUSHLESS EC motors
- Free cooling option

DESCRIPTION

Independent Roof -top type air cooled air conditioner, for treatment, filtration and renewal of the air , based on the chosen configuration.

The RTY 01-10 units are designed for highly crowded contexts such as cinemas, conference halls, restaurants and discos, as they work with 80% outside and exhaust air.

CONFIGURATIONS

MB3: double ventilating cross-section (flow and return) for recovery air, external air and exhaust air, thermodynamic recovery.

Recovery, external and exhaust air configuration. The flow ventilating cross-section provides the useful flow static pressure while the recovery ventilating cross-section provides the useful recovery static pressure.

The double flow and recovery ventilating cross-section allows for total free-cooling (100% external air) without the need for a dedicated extraction system. The room overpressure or depression can be obtained by unbalancing the flow rates.

Thermodynamic recovery is performed by conveying expelled air on the external heat exchanger.

FEATURES

- 1 refrigerant circuit;
- Scroll compressors (UNEVEN tandem) with high capacity and low electrical power consumption;
- Finned pack direct expansion internal and external exchangers;
- Plug fan type (EC) flow and exhaust fans (if any). The impellers are facing so as to ensure that the air flows through all the internal components with minimum noise;
- Axial fan unit for extremely silent functioning positioned on the condensing section.
- Filter with 55% COARSE efficiency (according to EN ISO 16890) on the fresh air flow; Also available: compact filter with ePM1 50% efficiency (according to EN ISO 16890). Positioning upstream of the components to be protected to ensure low pressure drops, having a large surface. Air quality control systems are also available (VOC and CO_{2 probe});
- Electronic control of condensation and evaporation as standard, to further extend the operating limits of the unit;

The standard unit permits the use of free cooling mode and the thermodynamic recovery of the energy in the exhaust air, guaranteeing higher output and efficiency levels.

VERSIONS

H Heat pump.

- The structure consists of a galvanised sheet metal base, frame in galvanised sheet metal shaped profiles powder coated in RAL9003 (self-bearing structure), pre-painted sheet metal panels (external) insulated with 28kg/mc dense adhesive insulation and sandwich type panels insulated with 25 mm thick 45kg/mc polyurethane, eco-friendly "GWP 0" (Global Warming Potential);
- The casing, designed to allow the internal components to be accessed for routine and extraordinary maintenance.

CONTROL

Microprocessor control able to manage the different functioning modes, ensuring maximum energy savings in any conditions of use. Interfaces to connect to remote supervision and control systems available as options.

FUNCTIONALITY AND TECHNOLOGICAL ADVANTAGES

RTX units are designed with the aim of reducing the energy consumption that subsequently dictated the technological choices made on the unit we will now introduce in brief.

Very high ventilation efficiency

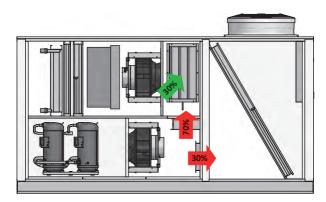
As ventilation is one of the major power consumption factors, we dedicated particular attention to designing and constructing the ventilation system. State-of-the-art plug fans with EC brushless motors have been used both in flow and in recovery (if any), which enable high performance and reduced consumption. Furthermore, compared to conventional centrifugal fans, they have no belts or pulleys, thus facilitating flow rate adjustment and resulting in compactness, versatility and easy maintenance.

Special adaptive logic allows you to adjust the air flow rate to actual system demand with further resulting advantages in terms of consumption reduction

Axial fans for the external section of the unit are helical. Electronic condensation control is available as an accessory, which regulates fan speed based on the load required, allowing for noise reduction. As an option, the motors can have electronic control (EC) to reduce consumption even in the condensing part.

Maximum seasonal efficiency

To improve the efficiency of the cooling circuit, tandem scroll compressors of different power levels are used (UNEVEN compressors on all size taglie except size 08). This distinctive trait, combined with the use of next generation fans, means reduced consumption and enhanced adaptability to system requests (particularly in partial load operation), guaranteeing boosted seasonal efficiency levels.


Room air quality

Special attention has been paid to the quality of the air in the room, entrusted to filters that ensure 55% COARSE efficiency as standard. There is also the option of F7, F9 or electronic filters on the fresh air flow.

Active thermodynamic recovery

In the MB3 configuration, the unit with thermodynamic recovery function also takes advantage of the energy contained in the exhaust air, which would otherwise be lost; this ensures better performance and efficiency. All of these technological advantages are controlled by a thermoregulation that is able to manage the different functioning modes, ensuring maximum energy savings in all conditions of use via dedicated software.

MB3 CONFIGURATION WITH TWIN FAN SECTION FOR RECIRCULATION AIR, OUTSIDE AIR AND EXHAUST AIR. TOTAL FREE COOLING FUNCTION (WITH 100% OUTSIDE AIR) AND THERMODYNAMIC RECOVERY FUNCTION AS STANDARD.

ACCESSORIES

AXEC: Axial fans with EC motors with speed control function according to the pressure of condensation and evaporation.

AXECP: EC axial fans with available useful static pressure.

BAC: Interface card BACnet MS/TP pCOnet.

BE: Electric heating coil 2 stages.

BEM: Modulating electric heating coil.

BIP: Interface card Ethernet-pCOweb (BACNET IP)

BPGC: After heating coil with hot gas.

BW: 2-rows-heating coil with hot water.

BWV2V: 2 -rows -heating coil with hot water, with 2-way modulating valve.

BWV3V: 2-rows heating coil with hot water, with 3-way modulating valve.

CA: Waterproof covers on external air intake.

CF: Flue, only on unit with gas burner module.

DP: Dehumidification control (humidity probe in recovery) and of after-heating (if present).

FT7: F7 efficiency pocket filters positioned on the supply air flow.

FT9: Pocket filters F9 efficiency placed on the flow of supply air.

FTH: Enthalpy free-cooling.

GP: External coil protection grid.

Gx: Heating module with gas burner.

LW: Interface card LonWorks.

MAN: High and low pressure gauges.

MSSM: Flow silencer module, only for rear flow.

MSSR: Recovery silencer module, only for rear air recovery.

PR1: Remote control panel.

PSF2: Differential pressure switch signalling dirty recovery and renewal filters (if any).

PSTEP: Adjusting constant flow, step flow in function of the modulation of

the cooling circuit.

RF: Smoke detector.

RFC: Smoke detector and damper management.

RS: Serial card BMS RS485.

SCMRM: Modulating Servo-control with spring return.

SCO2: Probe CO2 (not available on MB1 fittings).

SSV: Supervision systems.

STA: Room temperature probe

SUA: Room humidity probe.

SVOC: Probe VOC (not available on MB1 fittings).

U: Steam ramp installed.

UP: Manufacturer of immersed electrodes supplied and steam ramp in-

stalled.

VT: Antivibration mounts.

PERFORMANCE SPECIFICATIONS

MB3

MUS											
Size		01	02	03	04	05	06	07	08	09	10
Configuration: MB3											
Cooling performances (1)											
Cooling capacity	kW	30,20	39,60	48,70	65,40	75,30	84,30	90,90	107,60	121,40	133,60
Sensible cooling capacity	kW	21,20	27,10	32,60	43,10	48,90	55,20	61,10	70,50	80,60	87,40
Compressors absorbed power	kW	5,30	8,40	9,70	13,10	15,20	17,50	18,50	23,30	27,60	32,60
EER compressors		5,70	4,71	5,00	5,00	4,96	4,82	4,92	4,61	4,39	4,09
Heating performances (2)											
Heating capacity	kW	29,30	39,70	48,50	66,50	76,60	85,80	91,40	110,40	123,40	137,90
Compressors absorbed power	kW	4,40	7,00	8,40	12,40	14,20	15,70	15,50	19,20	21,80	25,50
Compressor COP		6,67	5,68	5,77	5,38	5,39	5,47	5,89	5,73	5,66	5,41

⁽¹⁾ Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air. (2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

ENERGY INDEX

Size			01	02	03	04	05	06	07	08	09	10
Energy index												
SEER	Н	W/W	4,78	4,68	4,19	3,46	3,37	3,40	3,27	3,46	3,45	3,24
ηςς	Н	%	188,40	184,40	164,60	135,50	131,80	133,00	127,70	135,60	134,90	126,70
Pdesignh	Н	kW	26	35	44	62	70	78	82	99	110	122
SCOP	Н	W/W	4,16	3,97	3,55	2,97	2,95	3,01	2,99	3,15	3,10	2,99
ηsh	Н	%	163,60	155,70	139,00	115,70	115,10	117,40	116,40	122,90	121,20	116,60

GENERAL TECHNICAL DATA

Size			01	02	03	04	05	06	07	08	09	10
Configuration: MB3												
Power supply												
Power supply	Н						400V 3	~ 50Hz				
Compressor												
Туре	Н	type					Sc	roll				
Number	Н	no.	2	2	2	2	2	2	2	2	2	2
Circuits	Н	no.	1	1	1	1	1	1	1	1	1	1
Refrigerant	Н	type					R4	10A				
Partialisation step	Н	no.	3	3	3	3	3	3	3	3	3	3

FANS

External fans

Size		01	02	03	04	05	06	07	08	09	10
Configuration: MB3	'										
External fans											
Туре	type	Axial									
Number	no.	1	1	2	2	2	2	2	2	2	2

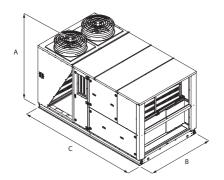
Internal fans

Size		01	02	03	04	05	06	07	08	09	10
Configuration: MB3											
Internal fans											
Nominal air flow rate	m³/h	3500	4500	5500	7000	8000	9500	11500	14000	15000	16500
Minimum air flow rate	m³/h	2450	3150	3850	4900	5600	6650	8050	9800	10500	11550
Maximum air flow rate	m³/h	3500	4500	5500	7000	8000	9500	11500	14000	15000	16500

Internal recovery fans

Size			01	02	03	04	05	06	07	08	09	10
Configuration: MB3												
Recovery												
Туре	Н	type	RAD EC									
Number	Н	no.	1	1	1	1	1	1	1	2	2	2

Expulsion fan


Size			01	02	03	04	05	06	07	08	09	10
Configuration: MB3												
Exhaust												
Туре	Н	type	-	-	-	-	-	-	-	-	-	-
Number	Н	no.	-	-	-	-	-	-	-	-	-	-

Internal flow fans

Size		01	02	03	04	05	06	07	08	09	10
Configuration: MB3											
Delivery											
Туре	type	RAD EC									
Number	no.	1	1	1	1	1	1	1	1	1	2
Maximum useful head (1)	Pa	150	150	200	200	200	250	250	250	300	300
High static pressure (EN14511) (1)	Pa	-	-	-	-	-	-	-	-	-	-

⁽¹⁾ At the nominal/maximum flow rate with a new, clean air filter.

DIMENSIONS

Size		01	02	03	04	05	06	07	08	09	10
Configuration: MB3											
Dimensions and weights											
A	mm	2061	2061	2061	2373	2373	2373	2373	2373	2373	2373
В	mm	1900	1900	1900	2100	2100	2100	2100	2100	2100	2100
C	mm	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400

AIR/WATER CHILLERS AND HEAT PUMPS

Aermec plant engineering really comes into its own in the field of machines and technology for centralised systems. Aermec offer a full range of chillers and heat pumps from the small domestic system up to that of the large size for the service industry.

The cooling capacity range is extremely wide, and the fittings solutions are equally diverse, for scroll, screw or centrifugal compressor applications.

The careful selection of materials and the close attention paid to every detail of assembly coupled with the huge selection of accessories complete the industry-leading products designed for use in this sector, making Aermec units a real "must" in the world of Italian and European climate control.

	AIR / WATER C	HILLERS AND HEAT PUMPS	Air flow rate (m3/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Page
	Units with scroll comp	ressors				
	ANKI 020-080	Reversible heat pumps inverter		5,8-24,8	6,1-20,8	336
	HMI	Reversible air/water heat pump	-	3,0-14,5	4,0-15,5	342
ew	HMI 180T-220T	Reversible air/water heat pump	-	17,5-21,0	18,0-22,0	349
	ВНР	Air/Water split type reversible heat pump	-	3,2-11,5	4,0-16,0	354
	HMG	Described to the least of the second	-	32-60	35-65	267
	HMG_P	Reversible air/water heat pump	-	33-60	36-65	- 367
	ANLI	Reversible heat pumps inverter	-	29,0-42,3	31,4-33,3	375
	ANK 020-150	Reversible air/water heat pump optimised for use in heating mode	-	6,8-39,8	8,0-35,3	381
ew	SHW	Heat pump water heater				388
	MIC	Air-water chiller		3		391
	ANL 021-202	Air-water chiller		5,7-43,3		396
	ANL 021H-203H	Reversible air/water heat pump		5,7-49,1	6,2-43,3	402
	NRK 0090-0150	Reversible air/water heat pump optimised for use in heating mode		18,4-31,0	20,8-34,4	410
	NRK 0200-0700	Reversible air/water heat pump optimised for use in heating mode		35,5-148,0	42,3-175,0	414
	NRV 0550	Air-water chiller		108,3		420
ew	PRM 0504	Air-cooled reversible modular heat pump		95,6	101,7	425
ew	PRG-0282H-0654H	Reversible air/water heat pump		49-143	51-143	432
	NRB 0282-0754	Air-water chiller		56-202	-	441
	NRB 0282H-0754H	Reversible air/water heat pump		52-261	57-193	451
	NRG 0282-0804	Air-water chiller		55,8-224,6	-	459
	NRG 0282H-0804H	Reversible air/water heat pump		52,5-212,0	56,6-214,4	468
	NRGI 151-602	Air-water chiller		31,0-132,2	-	476
	NRGI 151H-602H	Reversible air/water heat pump		28,9-123,7	31,6-133,9	481
	NRL 0280-0350	Air-water chiller		56,0-82,0	-	487
	NRL 0280H-0350H	Reversible air/water heat pump		51,0-76,0	58,0-86,0	492
	NRG 0800-3600	Air-water chiller		225,7-725,0	-	497
	NRG 0800H-3600H	Reversible air/water heat pump		194,9-962,3	209,6-991,9	506
	NRB 0800-2406	Air-water chiller (plate heat exchanger)		216,9-716,9	203,0-331,3	515
	NRB 0800-2406 Q					524
	NRB 08001-2406 Q	Air-water chiller (shell and tube heat exchanger) Reversible air/water heat pump (plate heat exchanger)		216,9-716,9	200.0.602.0	533
				196,4-647,7	209,8-683,9	
	NRB 0800W-2406W	Reversible air/water heat pump (shell and tube heat exchanger)		196,4-647,7	209,8-683,9	542
	CL 025-200	Air-water chiller with Plug Fan		5,8-41,0	77.440	550
	CL 025H-200H	Reversible air/water heat pump with Plug Fan		6,5-50,9	7,7-44,8	555
	NLC 0280-1250	Air-water chiller with Plug Fan		53-322	-	561
	NLC 0280H-1250H	Reversible air/water heat pump with Plug Fan		53-322	55-342	568
	Units with screw comp			202 2444		
	NSM 1402-9603	Air-water chiller		302-2100		573
	NSMI 1251-6102	Chiller with Inverter screw compressors		285,6-1342,6		587
	NSH	Reversible air/water heat pump		251-731	281-786	591
	NSG	Air-water chiller (with R1234ze)		228-1580		597
	Units with centrifugal					
	TBA 1300-4325	Air-water chiller		328-1404		609
	TBG 1230-4310	Air-water chiller		200-1165		614

ANKI 020-080

Reversible air/water heat pump

Cooling capacity 5,8 ÷ 24,8 kW – Heating capacity 6,1 ÷ 20,8 kW

- Production of hot water up to 60 °C
- Production of hot domestic water with outside temperatures from –20 °C up to 42 °C
- Quick & easy installation

DESCRIPTION

Reversible air/water heat pump for air conditioning systems with cold water production for cooling rooms and hot water for heating and/or domestic hot water services, suitable for connection with small or medium users. It's optimised for use in heating mode, and can be combined not only with low-temperature emission systems such as floor heating or fan coils, but

also conventional radiators.

All the units are equipped with inverter scroll compressors, axial fans, external coils with aluminium louvers, a plate heat exchanger on the side.

The base, the structure and the panels are made of galvanized steel treated

VERSIONS

° Standard

X With inverter pump

with polyester paint RAL 9003.

FEATURES

Operating field

Working at full load up to -20°C outside air temperature in winter, and up to 46°C in summer. Possibility production technical hot water production up to 60°C (for more information see the technical documentation).

Version with Integrated hydronic kit

If a plug&play solution is required, there's also a version with an integrated hydronic unit containing the main hydraulic components including the water filter (supplied).

■ The water filter must be installed to validate the warranty.

CONTROL PCO

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- Adjustment includes complete management of the alarms and their log.
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

ACCESSORIES

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi net-

work. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

MOD485K: RS-485 simplified interface for supervision systems with MODBUS protocol.

MULTICONTROL: Allows the simultaneous control of several units (up to 4), installed in the same hydraulic system.

PGD1: Allows you to control the unit at a distance.

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

SAF: Thermal buffer tank kit with instantaneous Domestic Hot Water production. For more information about SAF refer to the dedicated documentation.

SDHW: Domestic hot water sensor. To be used with a storage tank for the control of water temperature produced.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

SPLW: System water temperature sensor. In most cases the loose supplied sensors for each chiller/heat pump are sufficient. In cases of a common flow/return header this sensor can be used to control the common system supply water temperature for the chillers connected to the header, or it can be used for temperature monitoring

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signaling of the alarms of a single unit.

■ For the installation of the PR4 remote panel, the MOD485K communication interface is indispensable.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

VT: Anti-vibration supports.

BDX: Condensate drip.

BSKW: Electric heaters kit with IP44 panel for remote mounting in a sheltered area.

FACTORY FITTED ACCESSORIES

KR: Anti-freeze electric heater for the plate heat exchanger.

KRB: Electric anti-freeze resistance kit for base.

ACCESSORIES COMPATIBILITY

Model	Ver	020	025	040	045	070	075	080
AERLINK	°,X	•	•	•	•	•	•	•
MOD485K	°,X	•	•	•	•	•	•	•
MULTICONTROL	°,X	•	•	•		•	•	•
PGD1	°,X	•	•	•	•	•	•	•
PR3	°,X	•	•	•	•	•	•	•
SAF (1)	°,X	•	•	•	•	•	•	•
SDHW (2)	°,X	•	•	•	•	•	•	•
SGD	°,X		•			•	•	•
SPLW (3)	°,X	•		•		•		•

- For more information about SAF refer to the dedicated documentation.
 Probe required for MULTICONTROL for managing the domestic hot water system.
 Probe required for MULTICONTROL to manage the secondary circuit system.

Remote panel

Model	Ver	020	025	040	045	070	075	080
PR4	°.Х	•		•		•	•	•

For the installation of the PR4 remote panel, the MOD485K communication interface is indispensable.

Condensation control temperature

Ver	020	025	040	045	070	075	080
°, Х	DCPX71						
Antivibration							
Ver	020	025	040	045	070	075	080
°,X	VT9						
Condensate drip							
Ver	020	025	040	045	070	075	080
°, Х	BDX30	BDX30	BDX30	BDX30	BDX50	BDX50	BDX50
leater exchanger							
Ver	020	025	040	045	070	075	080
°, X	KR2						

Electric heater kit for the base

	-						
Ver	020	025	040	045	070	075	080
°, х	KRB1	KRB1	KRB1	KRB1	KRB2	KRB2	KRB2

CONFIGURATOR

Field	Description
1,2,3,4	ANKI
5,6,7	Size 020, 025, 040, 045, 070, 075, 080
8	Model
Н	Heat pump
9	Version
0	Standard
χ	With inverter pump
10	Heat recovery
0	Without heat recovery
11	Coils
V	Copper pieps-Coated aluminium fins
٥	Copper-aluminium
12	Fans
F	Phase cut
J	Inverter
٥	Standard
13	Operating field
٥	Electronic thermostatic expansion valve
14	Evaporator
٥	Standard - PED
15	Power supply
М	230V ~ 50Hz (1)
T	400V ~ 3N 50Hz (2)
16	Field for future development
0	Future developments

PERFORMANCE SPECIFICATIONS

Version without pump

ANKI - 230V-1-50Hz

Size		020	025	040	045
Power supply: M					
Cooling performance 12 °C/7 °C(1)					
Cooling capacity	kW	5,8	7,3	9,4	11,8
Input power	kW	2,0	2,6	3,2	4,2
Cooling total input current	A	8,3	11,0	14,0	18,0
EER	W/W	2,98	2,80	2,98	2,79
Water flow rate system side	l/h	1005	1256	1613	2024
Pressure drop system side	kPa	16	22	13	19
Heating performance 40 °C / 45 °C (2)					
Heating capacity	kW	6,2	7,7	9,3	12,3
Input power	kW	1,9	2,4	3,0	4,0
Heating total input current	A	8,2	10,0	13,0	18,0
COP	W/W	3,26	3,22	3,08	3,03
Water flow rate system side	l/h	1077	1345	1619	2131
Pressure drop system side	kPa	14	21	10	17
Power supply					
Power supply		230-1-50	230-1-50	230-1-50	230-1-50

⁽¹⁾ For sizes from 020 ÷ 045 (2) For sizes from 070 ÷ 080

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

ANKI - 400V-3N-50Hz

Size		070	075	080
Power supply: T				
Cooling performance 12 °C/7 °C(1)				
Cooling capacity	kW	13,7	16,4	18,6
Input power	kW	4,8	6,2	7,6
Cooling total input current	A	7,3	9,4	11,0
EER	W/W	2,85	2,67	2,44
Water flow rate system side	l/h	2354	2818	3196
Pressure drop system side	kPa	17	25	31
Heating performance 40 °C / 45 °C (2)				
Heating capacity	kW	15,3	17,7	20,2
Input power	kW	4,8	6,0	7,1
Heating total input current	A	7,3	9,1	11,0
COP	W/W	3,21	2,97	2,83
Water flow rate system side	l/h	2660	3072	3507
Pressure drop system side	kPa	17	23	30
Power supply				
Power supply		400-3N-50	400-3N-50	400-3N-50

Version with pump

ANKI - 230V-1-50Hz

Size		020	025	040	045
Power supply: M					1
Cooling performance 12 °C/7 °C (1)					
Cooling capacity	kW	5,8	7,3	9,4	11,8
nput power	kW	2,0	2,7	3,2	4,3
Cooling total input current	A	8,9	12,0	14,0	19,0
ER	W/W	2,88	2,72	2,90	2,73
Nater flow rate system side	l/h	1005	1256	1613	2024
Jseful head system side	kPa	75	68	73	60
Heating performance 40 °C / 45 °C (2)					
Heating capacity	kW	6,2	7,7	9,3	12,3
nput power	kW	2,0	2,5	3,1	4,1
leating total input current	A	8,7	11,0	14,0	18,0
COP	W/W	3,14	3,11	3,00	2,96
Nater flow rate system side	l/h	1077	1345	1619	2131
Jseful head system side	kPa	76	67	74	59
Power supply					
Power supply		230-1-50	230-1-50	230-1-50	230-1-50

ANKI - 400V-3N-50Hz

Size		070	075	080
Power supply: T				
Cooling performance 12 °C / 7 °C (1)				
Cooling capacity	kW	13,8	16,5	18,7
Input power	kW	4,8	6,2	7,7
Cooling total input current	A	8,3	10,0	12,0
EER	W/W	2,88	2,68	2,44
Water flow rate system side	l/h	2354	2818	3196
Useful head system side	kPa	82	62	43
Heating performance 40 °C / 45 °C (2)				
Heating capacity	kW	15,2	17,6	20,1
Input power	kW	4,8	6,0	7,2
Heating total input current	A	8,3	10,0	12,0
COP	W/W	3,19	2,95	2,80
Water flow rate system side	l/h	2660	3072	3507
Useful head system side	kPa	73	55	33
Power supply				
Power supply		400-3N-50	400-3N-50	400-3N-50

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

ENERGY DATA

Size			020	025	040	045
Power supply: M						
UE 811/2013 performance in ave	rage ambient conditions	(average) - 35 °C - Pdesignl	n ≤ 70 kW (1)			
Tet along an annual along	٥		A+	A+	A+	A+
Efficiency energy class	Х		A++	A++	A+	A+
Pdesignh	°,X	kW	6,00	7,00	9,00	12,00
	٥	%	140,00	139,00	133,00	125,00
lsh	Х	%	150,00	150,00	141,00	131,00
COD	٥	W/W	3,58	3,55	3,40	3,20
SCOP	Х	W/W	3,83	3,83	3,60	3,35
IE 811/2013 performance in ave	rage ambient conditions	average) - 55 °C - Pdesignl	ı ≤ 70 kW (2)			
Efficiency energy class	°,X		A+	A+	-	-
M. dank	٥	kW	6,00	7,00	-	-
designh	Х	kW	5,00	7,00	-	-
.1	0	%	112,00	113,00	-	-
sh	X	%	113,00	115,00	-	-
COD	0	W/W	2,88	2,90	-	-
COP	Х	W/W	2,90	2,95	-	-
EER - 12/7 (EN14825: 2018) (3)						
rrn.	0	W/W	3,50	3,54	3,76	3,77
EER	X	W/W	4,12	4,25	4,38	4,37
	0	%	137,10	138,40	147,30	147,70
easonal efficiency	Х	%	161,70	167,00	172,30	171,90

⁽¹⁾ Efficiencies for low temperature applications (35 °C)
(2) Efficiencies for average temperature applications (55 °C)
(3) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.

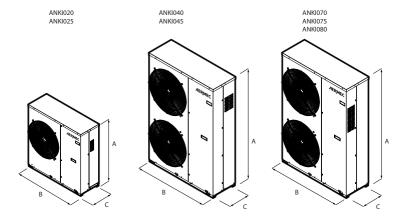
Size		•	070	075	080
Power supply: T					
	rage ambient conditions (a	verage) - 35 °C - Pdesignh ≤ 70 k\	N (1)		
Efficiency energy class	°,X		A+	A+	A+
Dalasianak	٥	kW	14,00	17,00	19,00
² designh	Χ	kW	14,00	16,00	19,00
	٥	%	137,00	130,00	129,00
l sh	Х	%	141,00	134,00	133,00
COD	٥	W/W	3,50	3,33	3,30
SCOP	Х	W/W	3,50	3,43	3,40
JE 811/2013 performance in ave	rage ambient conditions (a	verage) - 55 °C - Pdesignh ≤ 70 k\	N (2)		
Efficiency energy class	°,X		A+	A+	A+
Martinelia	٥	kW	14,00	16,00	19,00
designh	Х	kW	13,00	16,00	18,00
h	0	%	113,00	112,00	110,00
l sh	Х	%	112,00	112,00	110,00
	٥	W/W	2,90	2,88	2,83
GCOP	Х	W/W	2,88	2,88	2,83
SEER - 12/7 (EN14825: 2018) (3)					
TED.	0	W/W	3,49	3,47	3,44
EER	Х	W/W	3,78	3,81	3,77
· · · · · · · · · · · · · · · · · · ·	0	%	136,70	135,60	134,40
Seasonal efficiency	Х	%	148,00	149,40	147,80

ELECTRIC DATA

Size			020	025	040	045	070	075	080
Electric data	'								
Marinary arrant (FLA)	0	Α	12,1	14,1	20,0	23,6	12,5	13,5	15,0
Maximum current (FLA)	Х	A	12,9	14,9	20,8	24,4	13,6	14,6	16,1
Deals surrent (LDA)	0	А	8,0	8,0	10,0	10,0	15,0	15,0	15,0
Peak current (LRA)	Х	А	8,8	8,8	10,8	10,8	16,1	16,1	16,1
Power supply									
Power supply	°,X		230V ~ 50Hz	230V ~ 50Hz	230V ~ 50Hz	230V ~ 50Hz	400V ~ 3N 50Hz	400V ~ 3N 50Hz	400V ~ 3N 50Hz

GENERAL TECHNICAL DATA

Size			020	025	040	045	070	075	080
Compressor									
Туре	°,X	type	Rotary	Rotary	Rotary	Rotary	Scroll	Scroll	Scroll
Compressor regulation	°,X	Туре				Inverter			
Number	°,Х	no.	1	1	1	1	1	1	1


⁽¹⁾ Efficiencies for low temperature applications (35 °C)
(2) Efficiencies for average temperature applications (55 °C)
(3) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Size	'		020	025	040	045	070	075	080
Circuits	°,X	no.	1	1	1	1	1	1	1
Refrigerant	°,X	type				R410A			
Refrigerant charge (1)	°,X	kg	1,4	1,4	2,3	2,3	3,5	3,5	3,5
System side heat exchanger									
Туре	°,X	type				Brazed plate			
Number	°,X	no.	1	1	1	1	1	1	1
Hydraulic connections									
Connections (in/out)	°,X	Type				Gas-M			
Size (in)	°,X	Ø				1"			
Size (out)	°,X	Ø				1"			
Fan									
Туре	°,X	type				Axial			
Fan motor	°,X	type				Asynchronous			
Number	°,X	no.	1	1	2	2	2	2	2
Air flow rate	°,X	m³/h	3590	3590	7480	7480	7400	7400	7400
Sound data calculated in cooling m	ode (2)								
Sound power level	°,X	dB(A)	64,0	65,4	66,7	67,7	67,7	69,0	69,0
Sound pressure level (10 m)	°,X	dB(A)	32,7	34,1	35,4	36,3	36,3	37,6	37,6

DIMENSIONS

Size			020	025	040	045	070	075	080
Dimensions and weights									
A	°,X	mm	1028	1028	1481	1481	1481	1481	1481
В	°,X	mm	1000	1000	1000	1000	1000	1000	1000
С	°,X	mm	346	346	346	346	450	450	450
Emptyweight	0	kg	80	80	113	113	174	174	174
Empty weight	χ	kg	82	82	115	115	178	178	178

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Reversible air/water heat pump

Cooling capacity 3,0 ÷ 14,5 kW – Heating capacity 4,0 ÷ 15,5 kW

- New R32 ecological refrigerant gas
- Production of hot water up to 60 °C
- Production of hot domestic water with external temperatures from -25 °C to 45 °C
- Quick & easy installation

DESCRIPTION

Reversible outdoor heat pump for air-conditioning systems where, in addition to cooling rooms, high-temperature hot water is required for heating or for the production of domestic hot water. For the production of DHW it is mandatory to combine it with the Aermec compatible domestic hot water storage tank.

HMI is designed to meet the needs of both the new constructions market and the renovation market, **replacing or working alongside conventional boilers**

It can be combined with low-temperature emission systems such as floor heating or fan coils, and also with more traditional radiators, **and comes supplied with the main hydraulic components needed, thereby facilitating the final installation**.

FEATURES

Operating limits

Working at full load up to -25 °C outside air temperature in winter, and up to 48 °C in summer. Maximum temperature of water produced in heating mode 60 °C.

- Refrigerant circuit with economizer.
- Inverter rotary compressor.
- DC brushless axial flow fans designed for aerodynamic optimisation, reducing the noise level whilst at the same time increasing the efficiency and air flow rate.
- Fitted with a electrical anti-freeze heater (in unit base) to avoid the formation of ice and encourage the drainage of condensate during heating operation.
- Electronic expansion valve.

Main hydraulic components

- Inverter pump.
- Plate heat exchanger.
- Expansion tank
- Safety valve.
- Flow switch.
- Water filter supplied (mandatory installation).

Regulation

Adjustment via a multi-language touch-screen control panel:

- Management of a 3 way diverting valve (not supplied) for the production of domestic hot water.
- Management of a 2 way valve (not supplied) for shutting off part of the system.
- Weekly programming in time periods.
- Auto-restart function.
- Emergency operation (a supplementary heat source may be activated).
- Quick hot water function, for quickly heating domestic hot water.
- Weather dependent mode function for climate control.
- Quiet function for reduced noise operation (programmable with a timer).
- Condensation check
- When the anti-legionella cycle is activated (it's easily set via the control panel), the whole tank is heated once a week to a temperature (max. 70 °C) that weakens the bacteria responsible for the infection.

Special golden fin coil

Unlike normal batteries, this special golden epoxy coating silicon free is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

HMI-HP Y UN50 14

Smart APP Ewpe

The system is equipped standard with the Wi-Fi module; using this module and the app for iOS and Android devices (available free on Apple Store and Google Play, the system can be directly controlled from a distance on your smartphone or tablet. Remote control is possible via Cloud, using a wireless router connected to the Internet.

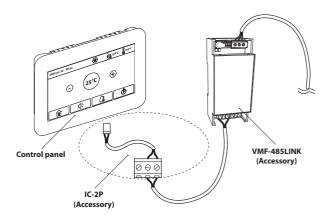
ACCESSORIES

HMICB15: Connection cable for the control panel. Cable length 15m. **IC-2P:** Connector for communication via Mod Bus or VMF -485LINK. Accessory compulsory if combined with VMF-485LINK, or for third party supervision systems.

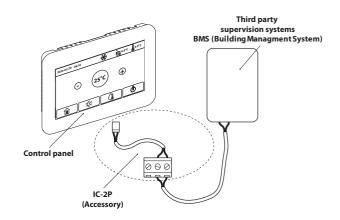
VMF-485LINK: Expansion to interface the unit with the VMF communication protocol, making it possible to manage it from the VMF-E5 or VMF-E6 supervisors.

VMF-E5: Black recessed panel with backlit graphic LCD display and capacitive keyboard, it allows the centralised command/control of a complete hydronic system consisting of Fan coils: up to 64 fan coil zones consisting of 1 master + up to 5 slaves; Chiller/heat pump (accessory required for RS 485 interface), pumps: up to 12 configurable zone pumps; boiler: boiler hook-up management for hot water production; heat recovery units: up to 3 hook-ups per programmable recovery units based on time periods and/or by measuring air quality with the VMF-VOC accessory; domestic water module: complete management of the domestic hot water production through the control of: diverter valve/pump, integrated heating element, storage tank temperature sensor, anti-legionella circuit system. The panel is available in both white (VMF-E5B) and black (VMF-E5N).

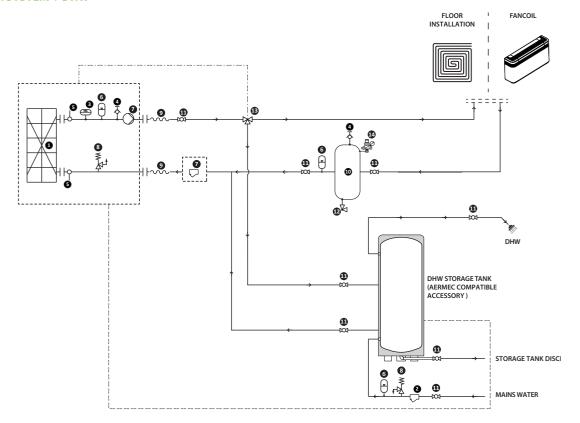
VMF-E6: White flush-mounting panel with 4.3 inch colour touchscreen. For the centralised command/control of a complete hydronic/aeraulic system consisting of: fan coils (up to 64 fan coil zones formed of 1 master + max. 5 slaves), heat pumps (up to 4), MZC accessories (up to 5) for the management of radiant panels (using a suitable number of VMF-REB accessories, up to 64 radiant panels associated with the fan coil zones and up to 32 radiant panels associated with the zones served by MZC), the complete management of DHW production, control of the RAS heater and/or the boiler, management of digital I/Os, control of heat recovery units and VOC probes (up to 4).


LOGATW: Diagnostic tool for air-water heat pumps.

DHWT300S: (220-240V~50Hz) DHW storage tank in enamelled steel. Single-phase power supply, tank capacity 300 litres with main and secondary coils and 3 kW back-up electric heater. Magnesium sacrificial anode. Indoor installation.


For more information about VMF system, refer to the dedicated documentation.

Accessory	HMI060	HMI080	HMI100	HMI100T	HMI1	20 F	IMI120T	HMI140	HMI140T	HMI160	HMI160T
LOGATW	•	•	•	•	•		•	•	•	•	•
Accessory	HMI040	HMI060	HMI080	HMI100	HMI100T	HMI120	HMI120T	HMI140	HMI140T	HMI160	HMI160T
HMICB15	•	•	•	•	•	•	•	•	•	•	•
Accessory	HMI040	HMI060	HMI080	HMI100	HMI100T	HMI120	HMI120T	HMI140	HMI140T	HMI160	HMI160T
IC-2P	•	•	•	•	•	•	•	•	•	•	•
VMF-485LINK	•	•	•	•	•	•	•	•	•	•	•
VMF-E5	•	•	•	•				•	•	•	
VMF-E6	•	•	•	•	•	•		•	•	•	•


Connection with VMF-485LINK

Connection with third party supervision systems

Accessories compatibility

COMPONENTS AS STANDARD

- 1 Plate heat exchanger
- 2 Water filter (as standard)
- 3 Flow switch
- 4 Air drain valve
- 5 Water temperature sensor (IN/OUT)
- 6 Expansion vessel
- 7 Pump
- 8 Pressure relief valve

HYDRAULIC COMPONENTS RECOMMENDED OUTSIDE THE UNIT (AT THE INSTALLER'S RESPONSIBILITY)

- 4 Air drain valve
- 9 Anti-vibration joints
- 10 System storage tank (recommended installation if the system water content is lower than that indicated in the technical manual).
- 11 Flow shut-off valves
- 6 Expansion vessel
- 12 Drain valve
- 13 3 way valve
- 14 Loading unit

In case of a free-standing system, the bypass valve must be installed to ensure the circulation of a minimum amount of water to the system.

PERFORMANCE SPECIFICATIONS

EUROVENT TECHNICAL DATA EN 14511:2022

		HMI040	HMI060	HMI080	HMI100	HMI100T	HMI120
Cooling performance 12 °C/7 °C(1)							
Cooling capacity	kW	2,98	3,97	4,96	7,75	7,75	9,45
Input power	kW	0,94	1,29	1,61	2,48	2,64	3,20
Input current	А	4,7	6,4	7,9	12,0	4,6	15,0
EER	W/W	3,17	3,08	3,08	3,12	2,94	2,95
Water flow rate	l/h	504	673	842	1318	1318	1609
Useful head	kPa	74,0	74,0	74,0	69,0	69,0	64,0
Heating performance 40 °C / 45 °C (2)							
Heating capacity	kW	4,03	6,04	7,55	10,06	10,06	12,06
Input power	kW	1,00	1,58	2,00	2,70	2,70	3,48
Input current	А	5,1	7,8	9,7	13,0	4,7	17,0
COP	W/W	4,03	3,83	3,78	3,72	3,72	3,46
Water flow rate	l/h	710	1062	1326	1762	1762	2110
Useful head	kPa	74,0	73,0	71,0	60,0	60,0	50,0

		HMI120T	HMI140	HMI140T	HMI160	HMI160T
Cooling performance 12 °C / 7 °C (1)						
Cooling capacity	kW	9,45	11,94	11,94	12,95	12,95
Input power	kW	3,11	4,14	4,38	4,96	4,91
Input current	A	5,3	20,0	7,3	23,0	8,1
EER	W/W	3,04	2,88	2,73	2,61	2,64
Water flow rate	l/h	1609	2038	2038	2210	2210
Useful head	kPa	64,0	52,0	52,0	47,0	47,0
Heating performance 40 °C / 45 °C (2)						
Heating capacity	kW	12,06	14,05	14,05	15,54	15,54
Input power	kW	3,48	4,18	4,18	4,70	4,70
Input current	А	5,9	20,0	6,9	22,0	7,7
COP	W/W	3,46	3,36	3,36	3,31	3,31
Water flow rate	l/h	2110	2456	2456	2714	2714
Useful head	kPa	50,0	39,0	39,0	29,0	29,0

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

		HMI040	HMI060	HMI080	HMI100	HMI100T	HMI120
Cooling performance 23 °C / 18 °C (1)							
Cooling capacity	kW	3,77	5,76	6,75	8,75	8,75	10,94
Input power	kW	0,82	1,32	1,55	1,96	1,96	2,56
Input current	A	4,2	6,6	7,6	9,5	3,6	12,0
EER	W/W	4,60	4,36	4,36	4,46	4,46	4,27
Water flow rate	l/h	641	982	1152	1495	1495	1873
Useful head	kPa	74,0	74,0	73,0	66,0	66,0	57,0
Heating performance 30 °C / 35 °C (2)							
Heating capacity	kW	4,03	6,04	7,55	10,06	10,06	12,06
Input power	kW	0,79	1,20	1,63	2,17	2,17	2,64
Input current	A	4,1	6,0	8,0	11,0	3,9	13,0
COP	W/W	5,10	5,04	4,63	4,63	4,63	4,57
Water flow rate	l/h	708	1058	1321	1756	1756	2102
Useful head	kPa	74,0	73,0	71,0	60,0	60,0	50,0

		HMI120T	HMI140	HMI140T	HMI160	HMI160T
Cooling performance 23 °C / 18 °C (1)						
Cooling capacity	kW	10,94	12,44	12,44	14,45	14,45
Input power	kW	2,56	3,05	3,05	3,82	3,82
Input current	А	4,5	15,0	5,2	18,0	6,4
EER	W/W	4,27	4,08	4,08	3,78	3,78
Water flow rate	l/h	1873	2132	2132	2478	2478
Useful head	kPa	57,0	50,0	50,0	38,0	38,0
Heating performance 30 °C / 35 °C (2)						
Heating capacity	kW	12,06	14,05	14,05	15,54	15,54
Input power	kW	2,64	3,22	3,22	3,60	3,60
Input current	Α	4,6	15,0	5,5	17,0	6,1
COP	W/W	4,57	4,36	4,36	4,32	4,32
Water flow rate	l/h	2102	2447	2447	2704	2704
Useful head	kPa	50,0	39,0	39,0	30,0	30,0

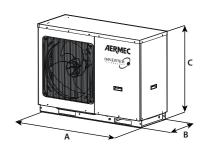
⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

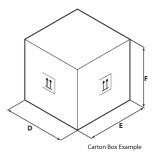
GENERAL TECHNICAL DATA

GENERAL TECHNICAL DATA	1	HMI040	HMI060	HMI080	HMI100	HMI100T	HMI120
Electric data							
Rated current input (1)	A	10,4	10,4	10,4	23,0	12,0	25,0
Compressor				D . DCI			
Туре	type			Rotary DC Inve			
Number	no.	1	1	1	1	1	1
Circuits	no.	1	1	1	1	1	1
Refrigerant	type			R32			
Potential global heating	GWP			675 kgCO₂e			,
Refrigerant charge (2)	kg	0,9	0,9	0,9	2,2	2,2	2,2
Oil	Туре			FW68DA			
Total oil charge	kg	0,5	0,5	0,5	1,1	1,1	1,1
System side heat exchanger							
Туре	type			Brazed plat	.e		
Number	no.	1	1	1	1	1	1
Connections (in/out)	Туре			Gas Maschi	.0		
Size (in)	Ø			1"			
Size (out)	Ø			1"			
Fan							
Туре	type			Axial			
Fan motor	type			Inverter			
Number	no.	1	1	1	1	1	1
Air flow rate	m³/h	2600	2600	2600	4500	4500	4500
Sound data calculated in cooling mode (3)	/ 11	2000			.550	1500	1500
Sound pressure level (1 m)	dB(A)	51,0	52,0	53,0	56,0	56,0	56,0
Sound data calculated in heating mode (3)	uD(A)	31,0	32,0	33,0		30,0	30,0
Sound power level	dB(A)	64,0	64,0	65,0	69,0	69,0	69,0
Sound pressure level (1 m)	dB(A)	50,0	50,0	51,0	54,0	54,0	54,0
Power supply	UD(A)	30,0	30,0	31,0	J4,U	34,0	34,0
			220.2401/			200 415V2N 50U-	220 2401/ 5011-
Power supply			220-240V ~ 5			380-415V 3N ~ 50Hz	220-240V ~ 50Hz
		HMI120T	HMI140	HMI140T		HMI160	HMI160T
Electric data							
Rated current input (1)	A	12,0	29,0	12,0		29,0	12,0
Compressor							
Туре	type			Rotary DC Inve	erter		
Number	no.	1	1	1		1	1
Circuits	no.	1	1	1		1	1
Refrigerant	type			R32			
Potential global heating	GWP						
Refrigerant charge (2)				675 kgCO₂e	d,		
Oil	kg	2,2	2,2	675 kgCO ₂ e 2,2	eq	2,2	2,2
UII	kg Type	2,2	2,2		eq	2,2	2,2
Total oil charge		2,2	2,2	2,2	eq	2,2	2,2
Total oil charge	Туре			2,2 FW68DA	eq		
Total oil charge System side heat exchanger	Type kg			2,2 FW68DA 1,1			
Total oil charge System side heat exchanger Type	Type kg type	1,1	1,1	2,2 FW68DA 1,1 Brazed plat		1,1	1,1
Total oil charge System side heat exchanger Type Number	Type kg type no.			2,2 FW68DA 1,1 Brazed plat	te		
Total oil charge System side heat exchanger Type Number Connections (in/out)	Type kg type no. Type	1,1	1,1	2,2 FW68DA 1,1 Brazed plat 1 Gas Maschi	te	1,1	1,1
Total oil charge System side heat exchanger Type Number Connections (in/out) Size (in)	Type kg type no. Type	1,1	1,1	2,2 FW68DA 1,1 Brazed plat 1 Gas Maschi 1"	te	1,1	1,1
Total oil charge System side heat exchanger Type Number Connections (in/out) Size (in) Size (out)	Type kg type no. Type	1,1	1,1	2,2 FW68DA 1,1 Brazed plat 1 Gas Maschi	te	1,1	1,1
Total oil charge System side heat exchanger Type Number Connections (in/out) Size (in) Size (out) Fan	Type kg type no. Type Ø	1,1	1,1	2,2 FW68DA 1,1 Brazed plat 1 Gas Maschi 1"	te	1,1	1,1
Total oil charge System side heat exchanger Type Number Connections (in/out) Size (in) Size (out) Fan	type kg type no. Type Ø type	1,1	1,1	2,2 FW68DA 1,1 Brazed plat 1 Gas Maschi 1" 1" Axial	te	1,1	1,1
Total oil charge System side heat exchanger Type Number Connections (in/out) Size (in) Size (out) Fan Type Fan motor	type no. Type Ø type type	1,1	1,1	2,2 FW68DA 1,1 Brazed plat 1 Gas Maschi 1" 1" Axial Inverter	te	1,1	1,1
Total oil charge System side heat exchanger Type Number Connections (in/out) Size (in) Size (out) Fan Type Fan motor Number	type no. Type Ø type no type no type no type no type type no.	1,1	1,1	2,2 FW68DA 1,1 Brazed plat 1 Gas Maschi 1" 1" Axial Inverter 1	te	1,1	1,1
Total oil charge System side heat exchanger Type Number Connections (in/out) Size (in) Size (out) Fan Type Fan motor Number Air flow rate	type no. Type Ø type type	1,1	1,1	2,2 FW68DA 1,1 Brazed plat 1 Gas Maschi 1" 1" Axial Inverter	te	1,1	1,1
Total oil charge System side heat exchanger Type Number Connections (in/out) Size (in) Size (out) Fan Type Fan motor Number Air flow rate Sound data calculated in cooling mode (3)	type no. Type Ø type no type no m³/h	1,1 1 1 4500	1,1 1 1 1 4500	2,2 FW68DA 1,1 Brazed plat 1 Gas Maschi 1" 1" Axial Inverter 1 4500	te	1,1 1 1 1 4500	1,1 1 1 4500
Total oil charge System side heat exchanger Type Number Connections (in/out) Size (in) Size (out) Fan Type Fan motor Number Air flow rate Sound data calculated in cooling mode (3) Sound pressure level (1 m)	type no. Type Ø type no type no type no type no type type no.	1,1	1,1	2,2 FW68DA 1,1 Brazed plat 1 Gas Maschi 1" 1" Axial Inverter 1	te	1,1	1,1
Total oil charge System side heat exchanger Type Number Connections (in/out) Size (in) Size (out) Fan Type Fan motor Number Air flow rate Sound data calculated in cooling mode (3) Sound data calculated in heating mode (3)	type no. Type Ø type no. type d d type type no. m³/h dB(A)	1,1 1 1 4500 56,0	1,1 1 1 4500 57,0	2,2 FW68DA 1,1 Brazed plat 1 Gas Maschi 1" 1" Axial Inverter 1 4500	te	1,1 1 1 4500 59,0	1,1 1 1 4500
Total oil charge System side heat exchanger Type Number Connections (in/out) Size (in) Size (out) Fan Type Fan motor Number Air flow rate Sound data calculated in cooling mode (3) Sound pressure level (1 m) Sound data calculated in heating mode (3) Sound power level	type no. Type Ø type no. type d d dB(A)	1,1 1 1 4500 56,0 69,0	1,1 1 1 4500 57,0 70,0	2,2 FW68DA 1,1 Brazed plat 1 Gas Maschi 1" 1" Axial Inverter 1 4500 57,0	te	1,1 1 1 4500 59,0	1,1 1 1 4500 59,0
Total oil charge System side heat exchanger Type Number Connections (in/out) Size (in) Size (out) Fan Type Fan motor Number Air flow rate Sound data calculated in cooling mode (3) Sound pressure level (1 m) Sound power level Sound pressure level	type no. Type Ø type no. type d d type type no. m³/h dB(A)	1,1 1 1 4500 56,0	1,1 1 1 4500 57,0	2,2 FW68DA 1,1 Brazed plat 1 Gas Maschi 1" 1" Axial Inverter 1 4500	te	1,1 1 1 4500 59,0	1,1 1 1 4500
Total oil charge System side heat exchanger Type Number Connections (in/out) Size (in) Size (out) Fan Type Fan motor Number Air flow rate Sound data calculated in cooling mode (3) Sound pressure level (1 m) Sound data calculated in heating mode (3) Sound power level	type no. Type Ø type no. type d d dB(A)	1,1 1 1 4500 56,0 69,0	1,1 1 1 4500 57,0 70,0	2,2 FW68DA 1,1 Brazed plat 1 Gas Maschi 1" 1" Axial Inverter 1 4500 57,0 70,0 55,0	te dia	1,1 1 1 4500 59,0 72,0 57,0	1,1 1 1 4500 59,0

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

(2) The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.


(3) Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).


ENERGY DATA

		HMI040	HM1060	HMI080	HMI100	HMI100T	HMI120
UE 811/2013 performance in average am	bient conditions (average)	- 35 °C - Pdesignh ≤ 70 k	:W (1)				
Pdesignh	kW	5	5	6	9	9	11
ηsh	%	185,00	185,00	183,00	176,00	176,00	175,00
Efficiency energy class		A+++	A+++	A+++	A+++	A+++	A+++
UE 811/2013 performance in average am	bient conditions (average)	- 55 °C - Pdesignh ≤ 70 k	(W (2)				
Pdesignh	kW	6	6	7	8	8	10
ηsh	%	126,00	126,00	127,00	128,00	128,00	126,00
Efficiency energy class		A++	A++	A++	A++	A++	A++
		HMI120T	HMI140	НМІ	140T	HMI160	HMI160T
UE 811/2013 performance in average am	bient conditions (average)	- 35 °C - Pdesignh ≤ 70 k	(W (1)				
Pdesignh	kW	11	11	1	1	13	13
ηsh	%	175,00	168,00	168	3,00	164,00	164,00
		A	A	Α.		Λ	A++
Efficiency energy class		A+++	A++	A-	++	A++	ATT
	bient conditions (average)			A-	++	A++	ATT
UE 811/2013 performance in average am	bient conditions (average)				1	13	13
Efficiency energy class UE 811/2013 performance in average am Pdesignh nsh	· · · · · · · · · · · · · · · · · · ·	- 55 °C - Pdesignh ≤ 70 k	xW (2)	1			

⁽¹⁾ Efficiencies for low temperature applications (35 °C) (2) Efficiencies for average temperature applications (55 °C)

DIMENSIONS

		HMI040	HMI060	HMI080	HMI100	HMI100T	HMI120
Dimensions and weights							
A	mm	1150	1150	1150	1200	1200	1200
В	mm	345	345	345	460	460	460
C	mm	758	758	758	878	878	878
D	mm	1260	1260	1260	1295	1295	1295
E	mm	490	490	490	595	595	595
F	mm	900	900	900	1020	1020	1020
Net weight	kg	96,0	96,0	96,0	151,0	151,0	151,0
Weight for transport	kg	109,0	109,0	109,0	166,0	166,0	166,0

		HMI120T	HMI140	HMI140T	HMI160	HMI160T
Dimensions and weights						
1	mm	1200	1200	1200	1200	1200
3	mm	460	460	460	460	460
	mm	878	878	878	878	878
)	mm	1295	1295	1295	1295	1295
	mm	595	595	595	595	595
=	mm	1020	1020	1020	1020	1020
Vet weight	kg	151,0	151,0	151,0	151,0	151,0
Veight for transport	kg	166,0	166,0	166,0	166,0	166,0

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

HMI 180T - 220T

Reversible air/water heat pump

Cooling capacity 17,5 ÷ 21,0 kW Heating capacity 18,0 ÷ 22,0 kW

- R32 ecological refrigerant gas.
- · Quick & easy installation
- Production of hot domestic water with external temperatures from -25 °C to 45 °C
- · Hermetically sealed equipment

DESCRIPTION

HMI is a reversible outdoor heat pump for air-conditioning systems where, in addition to cooling rooms, high-temperature hot water is required for heating or for the production of domestic hot water.

For the production of DHW it is mandatory to combine it with a domestic hot water storage tank Aermec compatibile.

HMI is designed to meet the needs of both the new constructions market and the renovation market, **replacing or working alongside conventional boilers.**

It can be combined with low-temperature emission systems such as floor heating or fan coils, and also with more traditional radiators, **and comes supplied with the main hydraulic components needed, thereby facilitating the final installation**.

FEATURES

Operating limits

Full load operation down to -25°C (outside air temperature in winter), and up to 48°C in summer.

Maximum processed water temperature in heating mode 65 °C.

Production of domestic hot water up to 80 $^{\circ}\text{C}$ with electric heater.

- Refrigerant circuit with economizer.
- Inverter rotary compressor.
- DC brushless axial flow fans designed for aerodynamic optimisation, reducing the noise level whilst at the same time increasing the efficiency and air flow rate.
- Fitted with a electrical anti-freeze heater (in unit base) to avoid the formation of ice and encourage the drainage of condensate during heating operation.
- Electronic expansion valve.

Main hydraulic components

- Inverter pump.
- Plate heat exchanger.
- Expansion tankSafety valve.
- Flow switch.
- Water filter supplied (mandatory installation).

Regulation

Adjustment via a multi-language touch-screen control panel:

- Management of a 3 way diverting valve (not supplied) for the production of domestic hot water.
- Management of a 2 way valve (not supplied) for shutting off part of the system.
- Weekly programming in time periods.
- Auto-restart function.
- Emergency operation (a supplementary heat source may be activated).
- **Quick hot water** function, for quickly heating domestic hot water.
- Weather dependent mode function for climate control.
- Quiet function for reduced noise operation (programmable with a timer).
- Condensation check
- When the anti-legionella cycle is activated (it's easily set via the control panel), the whole tank is heated once a week to a temperature (max. 70 °C) that weakens the bacteria responsible for the infection.

Special golden fin coil

Unlike normal batteries, this special golden epoxy coating silicon free is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

Smart APP Ewpe

The system is equipped standard with the Wi-Fi module; using this module and the app for iOS and Android devices (available free on Apple Store and Google Play, the system can be directly controlled from a distance on your smartphone or tablet. Remote control is possible via Cloud, using a wireless router connected to the Internet.

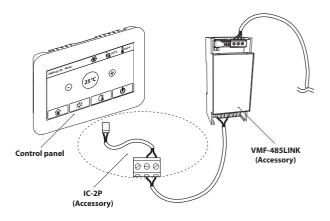
ACCESSORIES

HMICB15: Connection cable for the control panel. Cable length 15m. **IC-2P:** Connector for communication via Mod Bus or VMF -485LINK. Accessory compulsory if combined with VMF-485LINK, or for third party supervision systems.

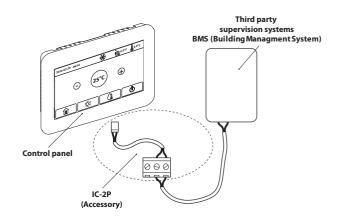
VMF-485LINK: Expansion to interface the unit with the VMF communication protocol, making it possible to manage it from the VMF-E5 or VMF-E6 supervisors.

VMF-E5: Black recessed panel with backlit graphic LCD display and capacitive keyboard, it allows the centralised command/control of a complete hydronic system consisting of Fan coils: up to 64 fan coil zones consisting of 1 master + up to 5 slaves; Chiller/heat pump (accessory required for RS 485 interface), pumps: up to 12 configurable zone pumps; boiler: boiler hook-up management for hot water production; heat recovery units: up to 3 hook-ups per programmable recovery units based on time periods and/or by measuring air quality with the VMF-VOC accessory; domestic water module: complete management of the domestic hot water production through the control of: diverter valve/pump, integrated heating element, storage tank temperature sensor, anti-legionella circuit system. The panel is available in both white (VMF-E5B) and black (VMF-E5N).

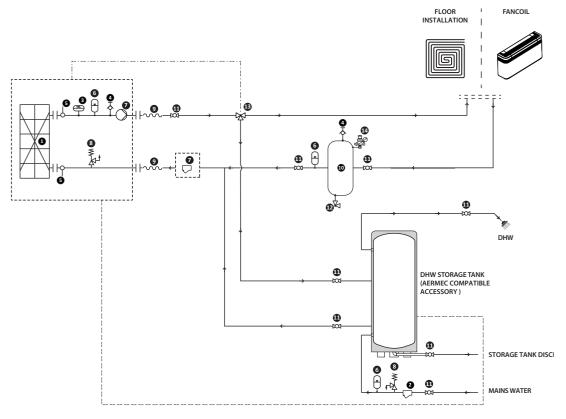
VMF-E6: White flush-mounting panel with 4.3 inch colour touchscreen. For the centralised command/control of a complete hydronic/aeraulic system consisting of: fan coils (up to 64 fan coil zones formed of 1 master + max. 5 slaves), heat pumps (up to 4), MZC accessories (up to 5) for the management of radiant panels (using a suitable number of VMF-REB accessories, up to 64 radiant panels associated with the fan coil zones and up to 32 radiant panels associated with the zones served by MZC), the complete management of DHW production, control of the RAS heater and/or the boiler, management of digital I/Os, control of heat recovery units and VOC probes (up to 4).


LOGATW: Diagnostic tool for air-water heat pumps.

DHWT300S: (220-240V~50Hz) DHW storage tank in enamelled steel. Single-phase power supply, tank capacity 300 litres with main and secondary coils and 3 kW back-up electric heater. Magnesium sacrificial anode. Indoor installation.


For more information about VMF system, refer to the dedicated documentation.

Accessory	HMI180T	HMI220T
LOGATW	•	•
Accessory	HMI180T	HMI220T
HMICB15	•	•
Accessory	HMI180T	HMI220T
IC-2P	•	•
VMF-485LINK	•	•
VMF-E5	•	•
VMF-E6	•	•


Connection with VMF-485LINK

Connection with third party supervision systems

Accessories compatibility

COMPONENTS AS STANDARD

- 1 Plate heat exchanger
- 2 Water filter (as standard)
- 3 Flow switch
- 4 Air drain valve
- 5 Water temperature sensor (IN/OUT)
- 6 Expansion vessel
- 7 Pump
- 8 Pressure relief valve

$\label{thm:components} \mbox{ recommended outside the unit (at the installer's responsibility)}$

- 4 Air drain valve
- 9 Anti-vibration joints
- 10 System storage tank (recommended installation if the system water content is lower than that indicated in the technical manual).
- 11 Flow shut-off valves
- 6 Expansion vessel
- 12 Drain valve
- 13 3 way valve
- 14 Loading unit

In case of a free-standing system, the bypass valve must be installed to ensure the circulation of a minimum amount of water to the system.

PERFORMANCE SPECIFICATIONS

		HMI180T	HMI220T
Cooling performance 12 °C / 7 °C (1)			
Cooling capacity	kW	17,50	21,00
Input power	kW	5,65	7,00
EER	W/W	3,10	3,00
Water flow rate	l/h	3010	3612
Useful head	kPa	59,1	55,2
Heating performance 40 °C / 45 °C (2)			
Heating capacity	kW	18,00	22,00
Input power	kW	5,00	6,29
COP	W/W	3,60	3,50
Water flow rate	I/h	3096	3784
Useful head	kPa	62,4	57,9

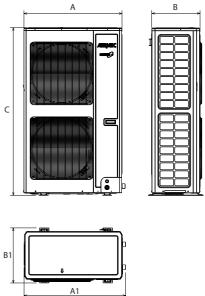
(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40°C / 45°C; Outside air 7°C d.b. / 6°C w.b.

		HMI180T	HMI220T
Cooling performance 23 °C / 18 °C (1)			
Cooling capacity	kW	18,50	23,00
Input power	kW	3,85	4,89
EER	W/W	4,80	4,70
Water flow rate	l/h	3182	3956
Useful head	kPa	56,1	53,5
Heating performance 30 °C / 35 °C (2)			
Heating capacity	kW	18,00	22,00
Input power	kW	3,75	4,89
COP	W/W	4,80	4,50
Water flow rate	l/h	3096	3784
Useful head	kPa	62,2	58,0

(1) Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/ 35 °C; External air 7 °C d.b. / 6 °C w.b.

GENERAL TECHNICAL DATA

		HMI180T	HMI220T
Electric data			
Rated power input	W	10000	10800
Compressor			
Туре	type	Rotativo Inverter	Rotativo Inverter
Number	no.	1	1
Circuits	no.	1	1
Refrigerant	type	R32	R32
Potential global heating	GWP	675 kgCO₂eq	675 kgCO₂eq
Refrigerant charge	kg	4,0	4,0
Oil	Туре	FW68S	FW68S
Total oil charge		1,9	1,9
System side heat exchanger			
Туре	type	Brazed plate	Brazed plate
Number	no.	1	1
Connections (in/out)	Туре	Gas Maschio	Gas Maschio
Size (in)	Ø	1″1/4	1″1/4
Size (out)	Ø	1″1/4	1″1/4
Fan			
Туре	type	Axial	Axial
Fan motor	type	Inverter	Inverter
Number	no.	2	2
Air flow rate	m³/h	9700	9700
Sound data calculated in cooling mode			
Sound pressure level (1 m)	dB(A)	57,0	58,0
Sound data calculated in heating mode			
Sound power level	dB(A)	65,0	65,0
Sound pressure level (1 m)	dB(A)	56,0	57,0
Sound power by centre octave band dB(A)			
63 Hz	dB(A)	42,1	42,6
125 Hz	dB(A)	52,8	54,9
250 Hz	dB(A)	59,2	54,1
500 Hz	dB(A)	60,4	56,6
1000 Hz	dB(A)	58,0	55,8
4000 Hz	dB(A)	48,6	50,2
8000 Hz	dB(A)	42,7	45,2
Power supply			
Power supply		380-415V 3N ~ 50Hz	380-415V 3N ~ 50Hz


- The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
- The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
- $\boldsymbol{-}$ Sound power: calculated in agreement with the Standard UNI EN ISO 9614-2, in compliance with that requested by Eurovent certification.
- Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.

ENERGY DATA

		HMI180T	HMI220T				
UE 811/2013 performance in average ambient conditions (average) - 35 °C - Pdesignh ≤ 70 kW (1)							
Pdesignh	kW	19	22				
ηsh	%	181,00	180,00				
Efficiency energy class		A+++	A+++				
UE 811/2013 performance in average a	ambient conditions (average) - 55 °C - Pd	lesignh ≤ 70 kW (2)					
Pdesignh	kW	18	20				
ηsh	%	127,00	127,00				
Efficiency energy class		A++	A++				

⁽¹⁾ Efficiencies for low temperature applications (35 °C) (2) Efficiencies for average temperature applications (55 °C)

DIMENSIONS

HMI180T-HMI220T

Example of packaging

	'	HMI180T	HMI220T
Dimensions and weights			
A	mm	943	943
A1	mm	977	977
В	mm	464	464
B1	mm	530	530
C	mm	1615	1615
D	mm	1073	1073
E	mm	593	593
F	mm	1760	1760
Net weight	kg	205,0	205,0
Weight for transport	kg	221,0	221,0

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.

Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

BHP

Reversible air/water split heat pump

Cooling capacity 3,2 ÷ 11,5 kW – Heating capacity 4,0 ÷ 16,0 kW

- Indoor unit available in two versions, with and without DHW
- New R32 ecological refrigerant gas
- Production of hot water up to 60 °C
- · Anti-legionella function
- Multi-language touch-screen control panel

DESCRIPTION

BHP It's the new "split" type inverter heat pump system, more efficient than standard boiler systems as it guarantees sustainable, efficient heating, cooling and domestic hot water supply in every season.

BHP is designed to meet the needs of both the new constructions market and the renovation market, replacing or working alongside conventional boilers

The system can be installed in systems with any hydronic terminal, and is already supplied with the main hydraulic components, thus facilitating final installation.

The indoor unit comes in two versions:

- BHP_W wall-mounting, without DHW storage tank but complete with a 3-way DHW-system diverting valve. For the production of DHW it is mandatory to combine it with a domestic hot water storage tank Aermec compatibile.
- BHP_F with base, complete with DHW storage tank.

FEATURES

Main hydraulic components

BHP outdoor unit

- inverter compressor,
- finned pack heat exchanger with copper pipes and aluminium louvers, with protective golden fin treatment,
- economizer,
- electronic valve,
- DC axial brushless fan.
- electric heater for the base.

BHP W wall indoor unit

- plate heat exchanger,
- flow switch,
- inverter pump,
- expansion tank,
- drain valve,
- safety valve,
- Electric resistance system side,
- 3 way valve,
- DHW-system connections,
- water filter supplied (mandatory installation).

BHP_F indoor base unit

- plate heat exchanger,
- flow switch,
- inverter pump,expansion tank,
- expansion tank, — drain valve,
- safety valve,
- Electric resistance system side,
- 3 way valve,
- DHW-system connections,
- water filter supplied (mandatory installation),
- DHW storage tank of 185 litres with coil and supplementary electric heater, and anti-legionella function,
- tank with Titanium electronic sacrificial anode.

The indoor and outdoor units are connected by means of suitably sized cooling lines (supplied by the installer).

Cooling circuit use R32 (A2L) refrigerant with low GWP.

Operating limits

Full load operation down to -25°C (outside air temperature in winter), and up to 48° C in summer.

Regulations

Adjustment via **multi-language touch-screen control panel**:

- ganagement of a 3-way diverting valve for the production of domestic hot water,
- management of a 2 way valve (not supplied) for shutting off part of the system,
- weekly programming in time periods,
- auto-restart function,
- emergency operation,
- function **quick water heating** for a quick heating of domestic hot water
- forced operating **mode**,
- intelligent operation based on weather conditions for climate adjustment.
- quiet function for reduced noise operation (programmable with a timer),
- Anti-freeze function,
- condensation check,

- when the anti-legionella cycle is activated (it's easily set via the control panel), the whole tank is heated once a week to a temperature (max. 70 °C) that weakens the bacteria responsible for the infection,
- pre heating function of the floor to pre-heat the floor system before unit commissioning.

Special golden fin coil

Unlike normal batteries, this special golden epoxy coating silicon free is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

Smart APP Ewpe

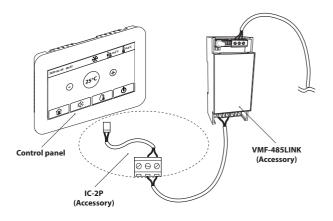
The system is equipped standard with the Wi-Fi module; using this module and the app for iOS and Android devices (available free on Apple Store and Google Play, the system can be directly controlled from a distance on your smartphone or tablet. Remote control is possible via Cloud, using a wireless router connected to the Internet.

ACCESSORIES

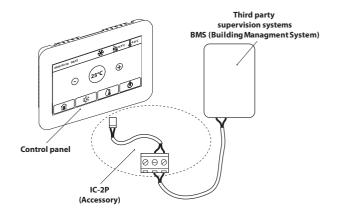
IC-2P: Connector for communication via Mod Bus or VMF -485LINK. Accessory compulsory if combined with VMF-485LINK, or for third party supervision systems.

VMF-485LINK: Expansion to interface the unit with the VMF communication protocol, making it possible to manage it from the VMF-E5 or VMF-E6 supervisors.

LOGATW: Diagnostic tool for air-water heat pumps.

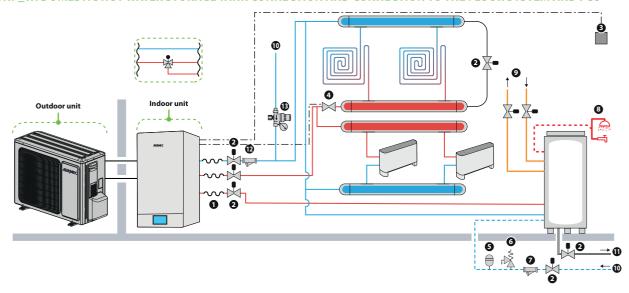

DHWT300S: (220-240V~50Hz) DHW storage tank in enamelled steel. Single-phase power supply, tank capacity 300 litres with main and secondary coils and 3 kW back-up electric heater. Magnesium sacrificial anode. Indoor installation.

For the production of DHW it is mandatory to combine it with BHP_W.


Compatibility with VMF system

For more information about VMF system, refer to the dedicated documentation.

Connection with VMF-485LINK


Connection with third party supervision systems

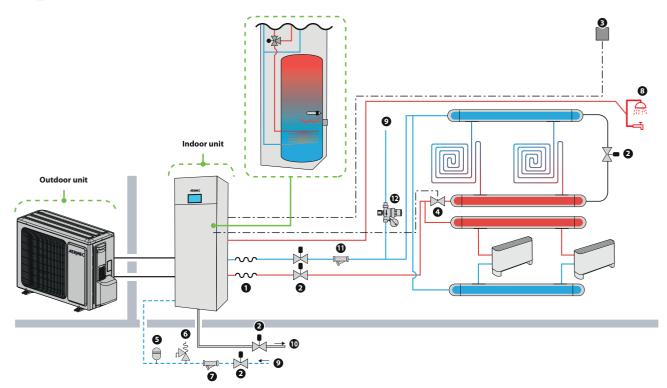
Compatibility with DHW storage tank

	BHP060W	BHP100W	BHP100WT	BHP160W	BHP160WT
DHWT300S	•	•	•	•	•

BHP_W: DOMESTIC HOT WATER STORAGE TANK CONNECTION AND CONNECTION TO THE FLOOR SYSTEM AND FCU

HYDRAULIC COMPONENTS SUPPLIED AS STANDARD IN THE INDOOR UNIT

- Plate heat exchanger
- Flow switch
- Inverter circulator
- Expansion vessel
- Drain valve
- Pressure relief valve
- Electric resistance system side
- 3 way valve
- DHW-system connections


SUPPLIED HYDRAULIC COMPONENTS

12. Water filter supplied (mandatory installation)

HYDRAULIC COMPONENTS RECOMMENDED OUTSIDE THE UNIT (AT THE **INSTALLER'S RESPONSIBILITY)**

- 1. Anti-vibration joints
- 2. Shut-off tap
- 3. Ambient thermostat
- 4. 2 way valve
- 5. Expansion tank NOT supplied
- 6. Safety valve supplied with Aermec ACS storage system compatible (installation is mandatory)
- 7. Water filter NOT supplied (installation is mandatory)
- 8. Hot domestic water
- 9. Auxiliary heat sources
- **10.** Aqueduct
- 11. Storage discharge
- **13.** Loading unit

BHP_F: CONNECTION TO THE FLOOR SYSTEM AND FCU

HYDRAULIC COMPONENTS SUPPLIED AS STANDARD IN THE INDOOR UNIT

- Plate heat exchanger
- Flow switch
- Inverter pump
- Expansion vessel
- Drain valve
- Pressure relief valve
- Electric resistance system side
- 3 way valve
- DHW-system connections

SUPPLIED HYDRAULIC COMPONENTS

11. Water filter supplied (mandatory installation) HYDRAULIC COMPONENTS RECOMMENDED OUTSIDE THE UNIT (AT THE

INSTALLER'S RESPONSIBILITY)

- 1. Anti-vibration joints
- 2. Shut-off tap
- 3. Ambient thermostat
- 4. 2 way valve
- 5. Expansion tank NOT supplied
 6. Safety valve NOT supplied (installation is mandatory)
- Water filter NOT supplied (installation is mandatory)
- 8. Hot domestic water
- 9. Aqueduct
- **10.** Storage discharge
- 12. Loading unit

PERFORMANCE SPECIFICATIONS

Technical data Wall unit

Indoor unit		BHP060W	BHP060W	BHP100W	BHP100W	BHP160W	BHP160W	BHP160W
Outdoor unit		BHP040	BHP060	BHP080	BHP100	BHP120	BHP140	BHP160
Cooling performance 12 °C/7 °C (1)								
Cooling capacity	kW	3,20	4,09	5,30	6,50	10,07	11,30	11,60
Input power	kW	0,94	1,28	1,73	2,27	3,65	4,04	4,38
EER	W/W	3,42	3,20	3,06	2,86	2,93	2,80	2,65
Water flow rate system side	l/h	550	703	912	1118	1840	1944	1995
Useful head system side	kPa	76	74	70	63	56	54	48
Heating performance 40 °C / 45 °C (2)								
Heating capacity	kW	4,00	5,90	8,00	9,50	12,40	14,50	16,10
Input power	kW	1,02	1,51	2,14	2,64	3,22	3,87	4,41
COP	W/W	3,92	3,91	3,74	3,60	3,85	3,75	3,65
Water flow rate system side	l/h	688	1015	1376	1634	2133	2494	2769
Useful head system side	kPa	74	67	51	36	45	26	11
Cooling performance 23 °C / 18 °C (3)								
Cooling capacity	kW	3,80	5,80	7,00	8,52	11,00	12,60	13,00
Input power	kW	0,82	1,32	1,75	2,25	2,50	3,41	3,60
EER	W/W	4,63	4,40	4,00	3,79	4,40	3,70	3,61
Water flow rate system side	l/h	655	992	1204	1465	1892	2167	2236
Useful head system side	kPa	74	67	60	46	54	40	34
Heating performance 30 °C / 35 °C (4)								
Heating capacity	kW	4,00	6,00	8,00	9,50	12,00	14,00	15,50
Input power	kW	0,78	1,20	1,70	2,07	2,40	2,98	3,44
COP	W/W	5,13	5,00	4,71	4,59	5,00	4,70	4,50
Water flow rate system side	l/h	688	1032	1376	1634	2064	2408	2666
Useful head system side	kPa	74	66	51	36	45	26	15
Heating performance 47 °C / 55 °C (5)								
Heating capacity	kW	3,60	5,40	7,20	8,55	12,00	14,00	16,00
Input power	kW	1,40	2,16	3,05	3,72	3,81	4,52	5,42
COP	W/W	2,57	2,50	2,36	2,30	3,15	3,10	2,95
Useful head system side	kPa	27	19	19	12	65	60	53

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Data EN 14511:2022; System side water heat exchanger 23 °C / 18 °C; External air 35 °C (4) Data EN 14511:2022; System side water heat exchanger 30 °C / 35 °C; External air 7 °C d.b. / 6 °C w.b. (5) Data EN 14511:2022; System side water heat exchanger 47 °C / 55 °C; External air 7 °C d.b. / 6 °C w.b.

Three-phase Wall unit technical data

Indoor unit		BHP100WT	BHP100WT	BHP160WT	BHP160WT	BHP160WT
Outdoor unit		BHP080T	BHP100T	BHP120T	BHP140T	BHP160T
Cooling performance 12 °C / 7 °C (1)						
Cooling capacity	kW	7,60	8,20	10,07	11,30	11,60
Input power	kW	2,35	2,73	3,65	4,04	4,38
EER	W/W	3,23	3,00	2,93	2,80	2,65
Water flow rate system side	l/h	1307	1410	1840	1944	1995
Useful head system side	kPa	66	58	56	54	48
Heating performance 40 °C / 45 °C (2)						
Heating capacity	kW	8,00	10,20	12,40	14,50	16,13
Input power	kW	1,93	2,55	3,22	3,87	4,42
COP	W/W	4,15	4,00	3,85	3,75	3,65
Water flow rate system side	l/h	1376	1720	2133	2494	2774
Useful head system side	kPa	60	45	45	26	11
Cooling performance 23 °C / 18 °C (3)						
Cooling capacity	kW	8,50	10,00	11,00	12,60	13,00
nput power	kW	1,74	2,33	2,50	3,41	3,60
EER	W/W	4,89	4,29	4,40	3,70	3,61
Water flow rate system side	l/h	1462	1720	1892	2167	2236
Jseful head system side	kPa	54	41	54	40	34
Heating performance 30 °C / 35 °C (4)						
Heating capacity	kW	8,00	10,00	12,00	14,00	15,54
nput power	kW	1,63	2,15	2,40	2,98	3,45
COP	W/W	4,91	4,65	5,00	4,70	4,50
Water flow rate system side	l/h	1376	1754	2064	2408	2673
Useful head system side	kPa	60	46	46	26	14
Heating performance 47 °C / 55 °C (5)	·					
Heating capacity	kW	8,00	10,00	12,00	14,00	16,00
Input power	kW	2,78	3,80	3,81	4,52	5,42
COP	W/W	2,88	2,63	3,15	3,10	2,95
Useful head system side	kPa	74	70	65	60	53

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Data EN 14511:2022; System side water heat exchanger 23 °C / 18 °C; External air 35 °C (4) Data EN 14511:2022; System side water heat exchanger 30 °C / 35 °C; External air 7 °C d.b. / 6 °C w.b. (5) Data EN 14511:2022; System side water heat exchanger 47 °C / 55 °C; External air 7 °C d.b. / 6 °C w.b.

Technical data base unit

Indoor unit		BHP060F	BHP060F	BHP100F	BHP100F
Outdoor unit		BHP040	BHP060	BHP080	BHP100
Cooling performance 12 °C / 7 °C (1)					
Cooling capacity	kW	3,20	4,09	5,30	6,50
Input power	kW	0,94	1,28	1,73	2,27
EER	W/W	3,42	3,20	3,06	2,86
Water flow rate system side	l/h	550	703	912	1118
Useful head system side	kPa	76	74	70	63
Heating performance 40 °C / 45 °C (2)					
Heating capacity	kW	4,00	5,90	8,00	9,50
Input power	kW	1,02	1,51	2,14	2,64
COP	W/W	3,92	3,91	3,74	3,60
Water flow rate system side	I/h	688	1015	1376	1634
Useful head system side	kPa	74	67	51	36
Cooling performance 23 °C / 18 °C (3)					
Cooling capacity	kW	3,80	5,80	7,00	8,52
Input power	kW	0,82	1,32	1,75	2,25
EER	W/W	4,63	4,40	4,00	3,79
Water flow rate system side	l/h	655	992	1204	1465
Useful head system side	kPa	74	69	60	46
Heating performance 30 °C / 35 °C (4)					
Heating capacity	kW	4,00	6,00	8,00	9,50
Input power	kW	0,78	1,20	1,70	2,07
COP	W/W	5,13	5,00	4,71	4,59
Water flow rate system side	l/h	688	1032	1376	1634
Useful head system side	kPa	74	66	51	36
Heating performance 47 °C / 55 °C (5)					
Heating capacity	kW	3,60	5,40	7,20	8,55
Input power	kW	1,40	2,16	3,05	3,72
COP	W/W	2,57	2,50	2,36	2,30
Useful head system side	kPa	27	19	19	12

- (1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Data EN 14511:2022; System side water heat exchanger 23 °C / 18 °C; External air 35 °C (4) Data EN 14511:2022; System side water heat exchanger 30 °C / 35 °C; External air 7 °C d.b. / 6 °C w.b. (5) Data EN 14511:2022; System side water heat exchanger 47 °C / 55 °C; External air 7 °C d.b. / 6 °C w.b.

ENERGY DATA

Energy data Wall unit

Indoor unit		BHP060W	BHP060W	BHP100W	BHP100W	BHP160W	BHP160W	BHP160W
Outdoor unit		BHP040	BHP060	BHP080	BHP100	BHP120	BHP140	BHP160
UE 811/2013 performance in average ambient of	onditions (average) - 35 °C - Pdesignh ≤	≤ 70 kW (1)					
Pdesignh	kW	5	6	7	9	11	12	13
SCOP	W/W	4,66	4,54	4,60	4,60	4,63	4,65	4,61
ηsh	%	183,50	178,70	181,00	181,00	182,00	183,00	181,20
Efficiency energy class		A+++	A+++	A+++	A+++	A+++	A+++	A+++
UE 811/2013 performance in average ambient of	onditions (average) - 55 °C - Pdesignh ≤	70 kW (2)					
Pdesignh	kW	5	5	7	8	11	13	13
SCOP	W/W	3,27	3,25	3,30	3,25	3,24	3,50	3,50
ηsh	%	128,10	127,40	129,00	127,00	126,40	137,00	137,00
Efficiency energy class		A++	A++	A++	A++	A++	A++	A++
Performance as combined heat generator								
Bleeding profile		XL	XL	XL	XL	XL	XL	XL
Efficiency energy class		A	A	A	A	A	A	A

(1) Efficiencies for low temperature applications (35 °C) (2) Efficiencies for average temperature applications (55 °C)

Indoor unit	BHI	P060W	BHP060W	BHP100W	BHP100W	BHP160W	BHP160W	BHP160W
Outdoor unit	BH	IP040	BHP060	BHP080	BHP100	BHP120	BHP140	BHP160
Indoor unit quantity		1	1	1	1	1	1	1
Outdoor unit quantity		1	1	1	1	1	1	1
Cooling capacity with low leaving water temp (UE n° 2	2016/2281)							
SEER	W/W	1,21	4,12	4,11	4,12	4,90	4,91	4,78
ηςς	% 16	55,00	162,00	161,00	162,00	193,00	193,00	188,00

Three-phase Wall unit energy data

Indoor unit		BHP100WT	BHP100WT	BHP160WT	BHP160WT	BHP160WT
Outdoor unit		BHP080T	BHP100T	BHP120T	BHP140T	BHP160T
UE 811/2013 performance in average ambient o	conditions (average)	· 35 °C - Pdesignh ≤ 70 kW	(1)			
Pdesignh	kW	8	9	11	12	13
SCOP	W/W	4,53	4,70	4,48	4,48	4,45
ηsh	%	178,10	185,20	176,00	176,00	175,00
Efficiency energy class		A+++	A+++	A+++	A+++	A+++
UE 811/2013 performance in average ambient o	conditions (average)	· 55 °C - Pdesignh ≤ 70 kW	(2)			
Pdesignh	kW	9	10	11	13	13
SCOP	W/W	3,48	3,49	3,23	3,38	3,38
ηsh	%	136,10	136,70	126,00	132,00	132,00
Efficiency energy class		A++	A++	A++	A++	A++
Performance as combined heat generator						
Bleeding profile		XL	XL	XL	XL	XL
Efficiency energy class		A	A	A	A	A

 ⁽¹⁾ Efficiencies for low temperature applications (35 °C)
 (2) Efficiencies for average temperature applications (55 °C)

Indoor unit		BHP100WT	BHP100WT	BHP160WT	BHP160WT	BHP160WT
Outdoor unit		BHP080T	BHP100T	BHP120T	BHP140T	BHP160T
Cooling capacity with low leaving water temp	(UE n° 2016/2281)					
SEER	W/W	4,11	4,12	4,74	4,76	4,64
ŋsc	%	161,00	162,00	187,00	187,00	183,00

Energy data base unit

Indoor unit		BHP060F	BHP060F	BHP100F	BHP100F
Outdoor unit		BHP040	BHP060	BHP080	BHP100
UE 811/2013 performance in average a	mbient conditions (average) - 3	5 °C - Pdesignh ≤ 70 kW (1)			
Pdesignh	kW	5	6	7	9
SCOP	W/W	4,66	4,54	4,60	4,60
ηsh	%	183,50	178,70	181,00	181,00
Efficiency energy class		A+++	A+++	A+++	A+++
UE 811/2013 performance in average a	mbient conditions (average) - 5	5 °C - Pdesignh ≤ 70 kW (2)			
Pdesignh	kW	5	5	7	8
SCOP	W/W	3,28	3,26	3,30	3,25
ηsh	%	128,10	127,40	129,00	127,00
Efficiency energy class		A++	A++	A++	A++
Performance as combined heat genera	tor				
Bleeding profile		L	L	L	L
Efficiency energy class		A	A	A	A

⁽¹⁾ Efficiencies for low temperature applications (35 °C) (2) Efficiencies for average temperature applications (55 °C)

Indoor unit		BHP060F	BHP060F	BHP100F	BHP100F
Outdoor unit		BHP040	BHP060	BHP080	BHP100
Cooling capacity with low leaving water tem	p (UE n° 2016/2281)				
SEER	W/W	4,21	4,12	4,11	4,12
ηsc	%	165,00	162,00	161,00	162,00

INDOOR UNIT

BHP_W indoor wall unit

		BHP060W	BHP100W	BHP160W
Electric data				
Rated power input (1)	kW	3,10	6,10	6,10
Electric heater				
Number	no.	2	2	2
Power of the single heater	kW	1,50	3,00	3,00
System side heat exchanger				
Туре	type		Brazed plate	
Number	no.	1	1	1
Unit / system input	type		G1 male	
Unit / system output	type		G1 male	
DHW output	type		G1 male	
Circulator				
Quantity	no.	1	1	1
Motor	type		DC brushless	
Expansion vessel				
Number	no.	1	1	1
Volume	I	10,0	10,0	10,0
Maximum pressure	bar	2,5	2,5	2,5
Sound data calculated in cooling mode (2)				
Sound power level	dB(A)	42,0	42,0	42,0
Sound pressure level	dB(A)	14,0	14,0	14,0
Power supply				
Power supply			230V ~ 50Hz	

Three-phase wall unit BHP_WT

		BHP100WT	BHP160WT
Electric data			
Rated power input (1)	kW	6,10	6,10
Electric heater			
Number	no.	2	2
Power of the single heater	kW	3,00	3,00
System side heat exchanger			
Туре	type		Brazed plate
Number	no.	1	1
Unit / system input	type	·	G1 male
Unit / system output	type		G1 male
DHW output	type		G1 male
Circulator			
Quantity	no.	1	1
Motor	type		DC brushless
Expansion vessel			
Number	no.	1	1
Volume	I	10,0	10,0
Maximum pressure	bar	2,5	2,5
Sound data calculated in cooling mode ((2)		
Sound power level	dB(A)	42,0	42,0
Sound pressure level	dB(A)	14,0	14,0
Power supply			
Power supply		·	400V ~ 3N 50Hz

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

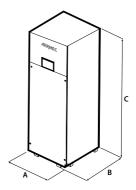
⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

BHP_F indoor base unit

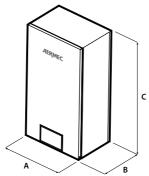
		BHP060F		BHP100F	
Electric data					
Rated power input (1)	kW	3,10		6,10	
Electric heater					
Number	no.	2		2	
Power of the single heater	kW	1,50		3,00	
System side heat exchanger					
Туре	type		Brazed plate		_
Number	no.	1		1	
Unit / system input	type		G1 male		
Mains water input	type		G1 male		
Unit / system output	type		G1 male		
DHW output	type		G1 male		
Circulator					
Quantity	no.	1		1	
Motor	type		DC brushless		
Expansion vessel					
Number	no.	1		1	
Volume		10,0		10,0	
Maximum pressure	bar	2,5		2,5	_
Storage tank (DHW)					
Volume		185		185	
Sound data calculated in cooling mode (2)					
Sound power level	dB(A)	42,0		42,0	
Sound pressure level	dB(A)	14,0		14,0	
Power supply					
Power supply			230V ~ 50Hz		

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

OUTDOOR UNIT


		BHP040	BHP060	BHP080	BHP080T	BHP100	BHP100T
Electric data							
Rated current input (1)	Α	10,0	10,0	19,0	7,5	22,0	7,5
Compressor							
Туре	type				io stadio inverter		
Number	no.	1	1	1	1	1	1
Circuits	no.	1	1	1	1	1	1
Refrigerant	type				R32		
Refrigerant charge	kg	1,00	1,00	1,60	1,84	1,60	1,84
otential global heating	GWP			675k	rgCO₂eq		
Dil							
ype	type			FW	/68DA		
Quantity		0,47	0,47	0,84	0,84	0,84	0,84
lefrigeration pipework							
Diameter of liquid refrigerant connections	mm (inch)			6,35	5 (1/4")		
liameter of refrigerant gas connections	mm (inch)				(1/2")		
xchanger				,			
ype	type			Finn	ned coil		
ouvers type	type				den fin		
		1	1	1	1	1	1
umber	no.	ı	I	I	I	I	ı
xpansion vessel	4			ri	umamatam yelee		
ype	type	1	Ä		xpansion valve	Ä	
lumber	no.	1	1	1	1	1	1
an							
уре	type				ter axial		
an motor	type				rushless		
lumber	no.	1	1	1	1	1	1
ir flow rate	m³/h	3200	3200	3300	3300	3300	3300
ound data calculated in cooling mode (2)							
ound power level	dB(A)	62,0	62,0	67,0	68,0	68,0	68,0
ound pressure level (1 m)	dB(A)	52,0	52,0	55,0	55,0	55,0	55,0
ound pressure level (10 m)	dB(A)	34,0	34,0	39,0	40,0	40,0	40,0
ower supply	==(: 4)	,-	,-		,-		
ower supply			230V ~ 50Hz		400V 3N ~ 50Hz	230V ~ 50Hz	400V 3N ~ 50Hz
			2501 5011E		1001 511 50112	2501 50112	1001 511 50112
VII. (1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		RHP120	RHP120T	RHP140	RHP140T	RHP160	RHP160T
		BHP120	BHP120T	BHP140	BHP140T	BHP160	BHP160T
lectric data	A						
Electric data Lated current input (1)	A	BHP120 25,6	BHP120T 9,2	BHP140 28,7	BHP140T 11,5	BHP160 30,3	BHP160T 11,5
Electric data lated current input (1) Compressor				28,7	11,5		
Electric data lated current input (1) Compressor ype	type	25,6	9,2	28,7 Rotativo dopp	11,5 io stadio inverter	30,3	11,5
lectric data ated current input (1) ompressor ype umber	type no.	25,6	9,2	28,7 Rotativo dopp 1	11,5 io stadio inverter 1	30,3	11,5
clectric data lated current input (1) compressor ype lumber ircuits	type no. no.	25,6	9,2	28,7 Rotativo dopp 1 1	11,5 io stadio inverter 1 1	30,3	11,5
lectric data ated current input (1) compressor ype umber ircuits efrigerant	type no. no. type	25,6 1 1	9,2	28,7 Rotativo dopp 1 1	11,5 io stadio inverter 1 1	30,3 1 1	11,5
Electric data lated current input (1) Compressor Input Sype Itumber Ircuits Lefrigerant Lefrigerant charge	type no. no. type kg	25,6	9,2	28,7 Rotativo dopp 1 1 1 1 1,84	11,5 io stadio inverter 1 1 1 R32	30,3	11,5
Electric data Lated current input (1) Lompressor Lype Lumber Lircuits Lefrigerant Lefrigerant charge Otential global heating	type no. no. type	25,6 1 1	9,2	28,7 Rotativo dopp 1 1 1 1 1,84	11,5 io stadio inverter 1 1	30,3 1 1	11,5
Electric data Lated current input (1) Compressor Lype Lumber Lircuits Lefrigerant Lefrigerant charge Otential global heating	type no. no. type kg GWP	25,6 1 1	9,2	28,7 Rotativo dopp 1 1 1 1 1,84 675k	11,5 io stadio inverter	30,3 1 1	11,5
Electric data Lated current input (1) Compressor Lype Lumber Lircuits Lefrigerant Lefrigerant charge Otential global heating	type no. no. type kg	25,6 1 1	9,2	28,7 Rotativo dopp 1 1 1 1 1,84 675k	11,5 io stadio inverter 1 1 1 R32	30,3 1 1	11,5
ilectric data lated current input (1) compressor ype lumber ircuits lefrigerant lefrigerant charge lotential global heating bil lype	type no. no. type kg GWP	25,6 1 1	9,2	28,7 Rotativo dopp 1 1 1 1 1,84 675k	11,5 io stadio inverter	30,3 1 1	11,5
ilectric data lated current input (1) compressor ype lumber ircuits lefrigerant lefrigerant charge lotential global heating bil lype	type no. no. type kg GWP	25,6 1 1 1,84	9,2 1 1 1,84	28,7 Rotativo dopp 1 1 1 1,84 675k	11,5 io stadio inverter 1 1 1 R32 1,84 tgCO ₂ eq	30,3 1 1 1,84	11,5 1 1 1,84
lectric data ated current input (1) ompressor ype lumber ircuits efrigerant efrigerant charge otential global heating bil ype luantity lefrigeration pipework	type no. no. type kg GWP	25,6 1 1 1,84	9,2 1 1 1,84	28,7 Rotativo dopp 1 1 1 1,84 675k FW 1,05	11,5 io stadio inverter 1 1 1 R32 1,84 tgCO ₂ eq	30,3 1 1 1,84	11,5 1 1 1,84
lectric data ated current input (1) ompressor ype lumber ircuits efrigerant efrigerant charge otential global heating bil ype luantity lefrigeration pipework iameter of liquid refrigerant connections	type no. no. type kg GWP	25,6 1 1 1,84 1,05	9,2 1 1 1,84 1,05	28,7 Rotativo dopp 1 1 1 1,84 675k FW 1,05	11,5 io stadio inverter 1 1 1 R32 1,84 tgCO ₂ eq 1/68DA 1,05	30,3 1 1 1,84	11,5 1 1 1,84
lectric data ated current input (1) compressor ype lumber ircuits efrigerant efrigerant charge otential global heating bil ype luantity lefrigeration pipework liameter of liquid refrigerant connections liameter of refrigerant gas connections	type no. no. type kg GWP type I	25,6 1 1 1,84 1,05	9,2 1 1 1,84	28,7 Rotativo dopp 1 1 1 1,84 675k FW 1,05	11,5 io stadio inverter 1 1 1 R32 1,84 tgCO ₂ eq 1/68DA 1,05	30,3 1 1 1,84	11,5 1 1 1,84
lectric data ated current input (1) compressor yype lumber ircuits efrigerant efrigerant charge otential global heating bil ype lumity lefrigeration pipework liameter of liquid refrigerant connections liameter of refrigerant gas connections xchanger	type no. no. type kg GWP type I mm (inch) mm (inch)	25,6 1 1 1,84 1,05	9,2 1 1 1,84 1,05	28,7 Rotativo dopp 1 1 1 1,84 675k FW 1,05	11,5 io stadio inverter 1 1 1 R32 1,84 tgCO ₂ eq 1/68DA 1,05 is (1/4") 15,87 (1	30,3 1 1 1,84	11,5 1 1 1,84
ilectric data lated current input (1) compressor lype lumber ircuits lefrigerant lefrigerant charge lotential global heating liti lype lumtity lefrigeration pipework lotential pipework lotential global deating liti lype lumtity lefrigeration pipework lotential global connections lotential global connections lotential global connections lotential global deating liti lype lumtity lefrigeration pipework lotential global connections lotential global c	type no. no. type kg GWP type I mm (inch) mm (inch)	25,6 1 1 1,84 1,05	9,2 1 1 1,84 1,05	28,7 Rotativo dopp 1 1 1 1,84 675k FW 1,05	11,5 io stadio inverter 1 1 1 R32 1,84 tgCO ₂ eq (68DA 1,05 is (1/4") 15,87 (1	30,3 1 1 1,84	11,5 1 1 1,84
lectric data ated current input (1) compressor yype lumber ircuits efrigerant charge otential global heating iii ype lumity tefrigeration pipework liameter of liquid refrigerant connections liameter of refrigerant gas connections xchanger ype ouvers type	type no. no. type kg GWP type I mm (inch) mm (inch)	25,6 1 1 1,84 1,05	9,2 1 1 1,84 1,05	28,7 Rotativo dopp 1 1 1 1,84 675k FW 1,05	11,5 io stadio inverter 1 1 1 R32 1,84 tgCO ₂ eq 1/68DA 1,05 is (1/4") 15,87 (1 ded coil den fin	30,3 1 1 1,84 1,05	11,5 1 1 1,84 1,05
lectric data ated current input (1) compressor ype lumber ircuits efrigerant charge otential global heating iil ype luantity lefrigeration pipework itameter of liquid refrigerant connections itameter of refrigerant gas connections xchanger ype ouvers type lumber	type no. no. type kg GWP type I mm (inch) mm (inch)	25,6 1 1 1,84 1,05	9,2 1 1 1,84 1,05	28,7 Rotativo dopp 1 1 1 1,84 675k FW 1,05	11,5 io stadio inverter 1 1 1 R32 1,84 tgCO ₂ eq (68DA 1,05 is (1/4") 15,87 (1	30,3 1 1 1,84	11,5 1 1 1,84
lectric data ated current input (1) compressor yype lumber ircuits efrigerant charge otential global heating iii ype lumity tefrigeration pipework diameter of liquid refrigerant connections diameter of refrigerant gas connections exchanger ype ouvers type lumber xpansion vessel	type no. no. type kg GWP type I mm (inch) mm (inch)	25,6 1 1 1,84 1,05	9,2 1 1 1,84 1,05	28,7 Rotativo dopp 1 1 1,84 675k FW 1,05 6,35	11,5 io stadio inverter 1 1 R32 1,84 tgCO ₂ eq 1/68DA 1,05 is (1/4") 15,87 (1/4") 11,84	30,3 1 1 1,84 1,05	11,5 1 1 1,84 1,05
lectric data ated current input (1) compressor ype lumber ircuits efrigerant charge otential global heating iil ype luantity lefrigeration pipework itameter of liquid refrigerant connections itameter of refrigerant gas connections xchanger ype ouvers type lumber xpansion vessel ype	type no. no. type kg GWP type I mm (inch) mm (inch) type type no.	25,6 1 1 1,84 1,05	9,2 1 1 1,84 1,05 (1/2")	28,7 Rotativo dopp 1 1 1 1,84 675k FW 1,05 6,35 Finn Gold 1 Electronic et	11,5 io stadio inverter 1 1 832 1,84 tg(O ₂ eq 1/68DA 1,05 is (1/4") 15,87 (1/4") 15,87 (1/4") 15,87 (1/4") 15,87 (1/4")	30,3 1 1,84 1,05	11,5 1 1 1,84 1,05
lectric data ated current input (1) ompressor ype umber ircuits efrigerant charge otential global heating il ype uantity efrigeration pipework iameter of liquid refrigerant connections iameter of refrigerant gas connections vchanger ype ouvers type umber xpansion vessel ype umber	type no. no. type kg GWP type I mm (inch) mm (inch)	25,6 1 1 1,84 1,05	9,2 1 1 1,84 1,05	28,7 Rotativo dopp 1 1 1,84 675k FW 1,05 6,35	11,5 io stadio inverter 1 1 R32 1,84 tgCO ₂ eq 1/68DA 1,05 is (1/4") 15,87 (1/4") 11,84	30,3 1 1 1,84 1,05	11,5 1 1 1,84 1,05
lectric data ated current input (1) ompressor ype umber ircuits efrigerant charge otential global heating il ype uantity efrigeration pipework iameter of liquid refrigerant connections iameter of refrigerant gas connections xchanger ype ouvers type umber xpansion vessel ype umber umber an	type no. no. type kg GWP type I mm (inch) mm (inch) type type no.	25,6 1 1 1,84 1,05	9,2 1 1 1,84 1,05 (1/2")	28,7 Rotativo dopp 1 1 1 1,84 675k FW 1,05 6,35 Finn Gold 1 Electronic et	11,5 io stadio inverter 1 1 1832 1,84 tgCO ₂ eq 168DA 1,05 is (1/4") 15,87 (1/4") 14 (1/4") 15,87 (1/4") 15,87 (1/4") 15,87 (1/4") 15,87 (1/4")	30,3 1 1,84 1,05	11,5 1 1 1,84 1,05
lectric data ated current input (1) compressor ype lumber ircuits efrigerant charge otential global heating il ype luantity lefrigeration pipework itameter of liquid refrigerant connections itameter of refrigerant gas connections xxhanger ype ouvers type lumber xxpansion vessel ype lumber an	type no. no. type kg GWP type I mm (inch) mm (inch) type type no. type	25,6 1 1 1,84 1,05	9,2 1 1 1,84 1,05 (1/2")	28,7 Rotativo dopp 1 1 1 1,84 675k FW 1,05 6,35 Finn Gold 1 Electronic et 1	11,5 io stadio inverter 1 1 1832 1,84 cgC0 ₂ eq //68DA 1,05 io (1/4") 15,87 (interpretation of the control of	30,3 1 1,84 1,05	11,5 1 1 1,84 1,05
lectric data ated current input (1) compressor ype lumber ircuits efrigerant charge otential global heating il ype luantity lefrigeration pipework itameter of liquid refrigerant connections itameter of refrigerant gas connections ixxhanger ype ouvers type lumber xpansion vessel ype lumber an ype an motor	type no. no. type kg GWP type I mm (inch) mm (inch) type type no.	25,6 1 1 1,84 1,05	9,2 1 1 1,84 1,05 (1/2")	28,7 Rotativo dopp 1 1 1 1,84 675k FW 1,05 6,35 Finn Gold 1 Electronic et 1	11,5 io stadio inverter 1 1 1832 1,84 tgCO ₂ eq 168DA 1,05 is (1/4") 15,87 (1/4") 14 (1/4") 15,87 (1/4") 15,87 (1/4") 15,87 (1/4") 15,87 (1/4")	30,3 1 1,84 1,05	11,5 1 1 1,84 1,05
lectric data ated current input (1) compressor ype lumber ircuits efrigerant charge otential global heating il ype luantity lefrigeration pipework itameter of liquid refrigerant connections itameter of refrigerant gas connections ixxhanger ype ouvers type lumber xpansion vessel ype lumber an ype an motor	type no. no. type kg GWP type I mm (inch) mm (inch) type type no. type no.	25,6 1 1 1,84 1,05	9,2 1 1 1,84 1,05 (1/2")	28,7 Rotativo dopp 1 1 1 1,84 675k FW 1,05 6,35 Finn Gold 1 Electronic et 1	11,5 io stadio inverter 1 1 1832 1,84 cgC0 ₂ eq //68DA 1,05 io (1/4") 15,87 (interpretation of the control of	30,3 1 1,84 1,05	11,5 1 1 1,84 1,05
lectric data ated current input (1) compressor ype lumber ircuits efrigerant charge otential global heating il ype luantity lefrigeration pipework itameter of liquid refrigerant connections itameter of refrigerant gas connections xxhanger ype ouvers type lumber xxpansion vessel ype lumber an ype an motor	type no. no. type kg GWP type I mm (inch) mm (inch) type type no. type type	25,6 1 1 1,84 1,05 12,7	9,2 1 1 1,84 1,05 (1/2")	28,7 Rotativo dopp 1 1 1 1,84 675k FW 1,05 6,35 Finn Gold 1 Electronic et 1	11,5 io stadio inverter 1 1 1832 1,84 tgCO ₂ eq 168DA 1,05 is (1/4") 15,87 (1/4") 15,87 (1/4") 1 ter axial tushless	30,3 1 1 1,84 1,05 1 1	11,5 1 1 1,84 1,05
lectric data ated current input (1) compressor ype lumber ircuits efrigerant charge otential global heating il ype luantity lefrigeration pipework liameter of liquid refrigerant connections liameter of refrigerant gas connections xxhanger ype lumber xype lumber xype lumber xype lumber xype lumber an ype an motor lumber ir flow rate	type no. no. type kg GWP type I mm (inch) mm (inch) type type no. type no.	25,6 1 1 1,84 1,05 12,7	9,2 1 1 1,84 1,05 (1/2") 1	28,7 Rotativo dopp 1 1 1 1,84 675k FW 1,05 6,35 Finn Gold 1 Electronic et 1 Inver DC bi 1	11,5 io stadio inverter	30,3 1 1 1,84 1,05 1,05 1	11,5 1 1 1,84 1,05
lectric data ated current input (1) compressor ype lumber ircuits efrigerant charge otential global heating il ype luantity lefrigeration pipework liameter of liquid refrigerant connections liameter of refrigerant gas connections xxhanger ype lumber xype lumber xype lumber xype lumber xype lumber an ype an motor lumber ir flow rate ound data calculated in cooling mode (2)	type no. no. type kg GWP type I mm (inch) mm (inch) type type no. type no.	25,6 1 1 1,84 1,05 12,7 1 1 1 1 5044	9,2 1 1 1,84 1,05 (1/2") 1 1 1 5044	28,7 Rotativo dopp 1 1 1,84 675k FW 1,05 6,35 Finn Gold 1 Electronic et 1 Inver DC bi 1 5044	11,5 io stadio inverter	1 1 1,84 1,05 1,05 1 1 1 1 1 1 5044	11,5 1 1 1,84 1,05 1 1 1 1 1 1 5044
Electric data Alated current input (1) Compressor Yype Jumber Joint John John John John John John John John	type no. no. type kg GWP type I mm (inch) mm (inch) type type no. type no. type type no.	1 1 1 1 1 1 1 1 1 5044 68,0	9,2 1 1 1,84 1,05 (1/2") 1 1 5044 68,0	28,7 Rotativo dopp 1 1 1 1,84 675k FW 1,05 6,35 Finn Gole 1 Electronic et 1 Inver DC bi 1 5044	11,5 io stadio inverter 1 1 1832 1,84 igC0 ₂ eq 1/68DA 1,05 is (1/4") 15,87 (1/4") 16,87 (1/4") 17,87 (1/4") 18,87 (1/4")	1,05 1,05 1 1 1 1 1 1 1 1 68,0	11,5 1
ilectric data lated current input (1) compressor ype lumber ircuits lefrigerant charge lotential global heating bil lype luantity lefrigeration pipework loameter of liquid refrigerant connections loameter of refrigerant gas connections fixchanger lype lumber lumber lype lumber lumb	type no. no. type kg GWP type I mm (inch) mm (inch) type type no. type no. type dB(A) dB(A)	1 1 1 1 1 1 1 1 1 5044 68,0 60,0 60,0	9,2 1 1 1,84 1,05 (1/2") 1 1 5044 68,0 60,0	28,7 Rotativo dopp 1 1 1 1,84 675k FW 1,05 6,35 Finn Gole 1 Electronic et 1 Inver DC bi 1 5044 68,0 61,0	11,5 io stadio inverter 1 1 1832 1,84 igC02eq 168DA 1,05 is (1/4") 15,87 (1/4") 14 (1/4") 15 (1/4") 15 (1/4") 15 (1/4") 15 (1/4") 15 (1/4") 16 (1/4") 17 (1/4") 18 (1/4") 18 (1/4") 19 (1/4") 19 (1/4") 10 (1/4") 10 (1/4") 10 (1/4") 11 (1/4") 11 (1/4") 12 (1/4") 13 (1/4") 14 (1/4") 15 (1/4") 16 (1/4") 17 (1/4") 18 (1/4") 18 (1/4") 19 (1/4") 19 (1/4") 19 (1/4") 19 (1/4") 19 (1/4") 10 (1/4") 10 (1/4") 11 (1	1,05 1,05 1 1 1 1 1 1 1 1 68,0 61,0	11,5 1 1 1 1,84 1,05 1 1 1 1 5044 68,0 61,0
Electric data Alated current input (1) Compressor Yype Jumber John Harris	type no. no. type kg GWP type I mm (inch) mm (inch) type type no. type no. type type no.	1 1 1 1 1 1 1 1 1 5044 68,0	9,2 1 1 1,84 1,05 (1/2") 1 1 5044 68,0	28,7 Rotativo dopp 1 1 1 1,84 675k FW 1,05 6,35 Finn Gole 1 Electronic et 1 Inver DC bi 1 5044	11,5 io stadio inverter 1 1 1832 1,84 igC0 ₂ eq 1/68DA 1,05 is (1/4") 15,87 (1/4") 16,87 (1/4") 17,87 (1/4") 18,87 (1/4")	1,05 1,05 1 1 1 1 1 1 1 1 68,0	11,5 1 1 1,84 1,05 1 1 1 1 1 68,0

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).


DIMENSIONS AND WEIGHTS

Indoor units

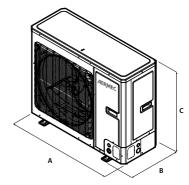
BHP_F

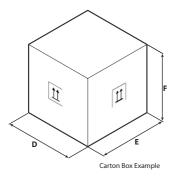
BHP_W

BHP_W

		BHP060W	BHP100W	BHP160W
Indoor unit				
A	mm	460	460	460
В	mm	318	318	318
C	mm	860	860	860
D	mm	568	568	568
E	mm	390	390	390
F	mm	1133	1133	1133
Net weight	kg	62,0	62,0	58,0
Weight for transport	kg	71,0	71,0	71,0

BHP_WT


		BHP100WT	BHP160WT
Indoor unit			
A	mm	460	460
В	mm	318	318
C	mm	860	860
D	mm	568	568
E	mm	390	390
F	mm	1133	1133
Net weight	kg	60,0	60,0
Weight for transport	kg	71,0	71,0


BHP_F

		BHP060F	BHP100F
Indoor unit			
A	mm	600	600
В	mm	600	600
(mm	1756	1756
D	mm	803	803
E	mm	683	683
F	mm	2000	2000
Net weight	kg	210,0	210,0
Weight for transport	kg	233,0	233,0

Outdoor units

BHP

	BHP040	BHP060	BHP080	BHP080T	BHP100	BHP100T
mm	975	975	982	982	982	982
mm	396	396	427	360	427	360
mm	702	702	787	787	787	787
mm	1028	1028	1097	1097	1097	1097
mm	458	458	478	478	478	478
mm	830	830	937	937	937	937
kg	55,0	55,0	82,0	88,0	82,0	88,0
kg	65,0	65,0	92,0	98,0	92,0	98,0
	BHP120	BHP120T	BHP140	BHP140T	BHP160	BHP160T
	mm mm mm	mm 396 mm 702 mm 1028 mm 458 mm 830 kg 55,0 kg 65,0	mm 396 396 mm 702 702 mm 1028 1028 mm 458 458 mm 830 830 kg 55,0 55,0 kg 65,0 65,0	mm 396 396 427 mm 702 702 787 mm 1028 1028 1097 mm 458 458 478 mm 830 830 937 kg 55,0 55,0 82,0 kg 65,0 65,0 92,0	mm 396 396 427 360 mm 702 702 787 787 mm 1028 1028 1097 1097 mm 458 458 478 478 mm 830 830 937 937 kg 55,0 55,0 82,0 88,0 kg 65,0 65,0 92,0 98,0	mm 396 396 427 360 427 mm 702 702 787 787 787 mm 1028 1028 1097 1097 1097 mm 458 458 478 478 478 mm 830 830 937 937 937 kg 55,0 55,0 82,0 88,0 82,0 kg 65,0 65,0 92,0 98,0 92,0

		BHP120	BHP120T	BHP140	BHP140T	BHP160	BHP160T
Outdoor unit	,						
A	mm	940	940	940	940	940	940
3	mm	460	460	460	460	460	460
C	mm	820	820	820	820	820	820
)	mm	1103	1103	1103	1103	1103	1103
	mm	573	573	573	573	573	573
-	mm	973	973	973	973	973	973
Net weight	kg	104,0	110,0	104,0	110,0	104,0	110,0
Veight for transport	kg	114,0	121,0	114,0	121,0	114,0	121,0

HMG-HMG P

Reversible air/water heat pump

HMG: Cooling capacity 32 ÷ 60 kW – Heating capacity 35 ÷ 65 kW HMG_P: Cooling capacity 33 ÷ 60 kW - Heating capacity 36 ÷ 65 kW

- R32 ecological refrigerant gas.
- Touch-screen control panel
- · Easy and quick to install
- Reliability and compactness
- Hermetically sealed equipment
- Modularity

HMG and HMG_P are the new outdoor reversible inverter heat pump system for producing chilled and heated water.

These units are designed to meet the plant engineering needs of residential or commercial contexts, or industrial applications.

HMG and HMG_P Are designed to meet the needs of both the new constructions market and the renovation market, replacing or working alongside conventional boilers.

They can be combined with low-temperature emission systems such as floor heating or fan coils.

They are formed of fully independent modules that can be linked together to create a modular system.

The base, the structure and the panels are made of galvanized steel treated with polyester paint.

HMG_P comes supplied with the main hydraulic components needed, thereby facilitating the final installation and is supplied with Integrated hydronic kit

FEATURES

Operating limits

Operation from -20°C outside air temperature (winter) to 52°C (summer). Production of hot water up to 50 °C.

For more information about the operating limits of these units, refer to the specific paragraph on this product data sheet.

Modularity

HMG and HMG_P unit can be installed in a modular system of reversible inverter heat pumps for producing hot and chilled water, with connectable base modules purposely designed to minimise the overall dimensions.

For HMG units it is possible to connect units with different capacity.

For HMG_P units, connection is only possible between units of the

Modularity allows the installation of these units to be adapted to the real system development requirements, so the installed power can be increased over time in a simple and cost effective manner.

On the basis of these requirements, the user can choose either: homogeneous modularity or sequential modularity.

Homogeneous modularity

Made possible with the use of a control panel TCP (mandatory accessory) to be connected to the master unit of the system.

This type of modularity allows the modules to work with a homogeneous capacity control logic whilst still guaranteeing delay switch-on and switchoff to avoid power consumption peaks and intelligent defrosting (the simultaneous defrosting of up to 1/3 of the modules installed).

Up to 16 modules for HMG also of different capacity., and 3 modules for HMG_P modules of equal capacity, can be linked together with this operating mode.

For HMG

To take full advantage of the characteristics of this working mode, you are advised to use it in systems with a pump (or a group of pumps) that serves all the units. The control logic manages the switch-on and switch-off of the pump(s) on the basis of the operating conditions of the generation system.

Sequential modularity

Made possible with the use of accessories TCP (mandatory accessory), IC-2P, VMF-485LINK and VMF-E6.

This type of modularity allows the HMG and HMG P units to be added to the control system of the whole hydraulic/aeraulic system, so DHW can also be managed.

Unit switch-on and switch-off is managed in a sequential manner, according to a selected control logic (free regulation, regulation by load or regulation by temperature difference).

For more information about VMF system, refer to the dedicated documen-

Up to 4 modules for HMG also of different capacity., and 3 modules for HMG_P modules of equal capacity, can be linked together with this oper-

Management is optimised for systems where each unit HMG commands its own pump.

Main components

HMG

- Flow switch.
- DC brushless axial flow fans designed for aerodynamic optimisation, reducing the noise level whilst at the same time increasing the efficiency and air flow rate.
- Compressor twin rotary inverter.
- Special coil with fin golden coating.
- High-efficiency shell & tube heat exchanger (system side) for excellent reliability and a long lifespan.
- Electronic expansion valve.
- Fitted with a electrical anti-freeze heater (in unit base) to avoid the formation of ice and encourage the drainage of condensate during heating operation.

HMG P

- DC brushless axial flow fans designed for aerodynamic optimisation, reducing the noise level whilst at the same time increasing the efficiency and air flow rate.
- Compressor twin rotary inverter.
- Special coil with fin golden coating.
- High-efficiency plate heat exchanger (system side) for excellent reliability and a long lifespan.
- Electronic expansion valve.
- Fitted with a electrical anti-freeze heater (in unit base) to avoid the formation of ice and encourage the drainage of condensate during heating operation.

Main hydraulic components HMG_P

- Flow switch.
- Inverter pump.
- Expansion tank.
- Drain valve.
- Safety valve.
- Water filter supplied (mandatory installation).

Regulation

Adjustment via touch-screen control panel (TCP accessory compulsory)::

- Only for HMG: management of (up to) two pumps (not supplied) that can work alternately, boosting the reliability of the system,
- management of (up to) two auxiliary electric resistors (not supplied),
- Quiet function for reduced noise operation,
- climatic regulation function,
- unit anti-freeze protection at low temperatures,
- weekly programming in time periods,
- high and low pressure protection,
- smart compressor control, extending the lifespan of the unit and enhancing its reliability,
- alarm history.

Special golden fin coil

Unlike normal batteries, this special golden epoxy coating silicon free is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

ACCESSORIES

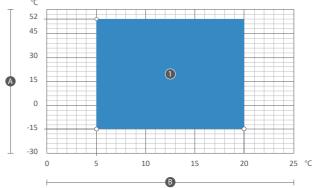
TCP: Touch-screen control panel. (Accessory compulsory).

IC-2P: Connector for communication via Mod Bus or VMF -485LINK. Accessory compulsory if combined with VMF-485LINK, or for third party supervision systems.

VMF-485LINK: Expansion to interface the unit with the VMF communication protocol, making it possible to manage it from the VMF-E5 or VMF-E6 supervisors.

VMF-E6: White flush-mounting panel with 4.3 inch colour touchscreen. For the centralised command/control of a complete hydronic/aeraulic system consisting of: fan coils (up to 64 fan coil zones formed of 1 master + max. 5 slaves), heat pumps (up to 4), MZC accessories (up to 5) for the management of radiant panels (using a suitable number of VMF-REB accessories, up to 64 radiant panels associated with the fan coil zones and up to 32 radiant panels associated with the zones served by MZC), the complete management of DHW production, control of the RAS heater and/or the boiler, management of digital I/Os, control of heat recovery units and VOC probes (up to 4).

LOGATW: Diagnostic tool for air-water heat pumps.


SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

COMPATIBILITY WITH VMF SYSTEM

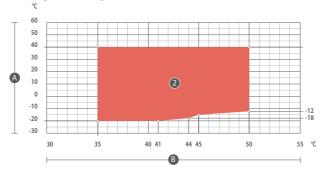
For more information about VMF system, refer to the dedicated documentation.

OPERATING LIMITS

Cooling mode

KEY

1 cooling mode

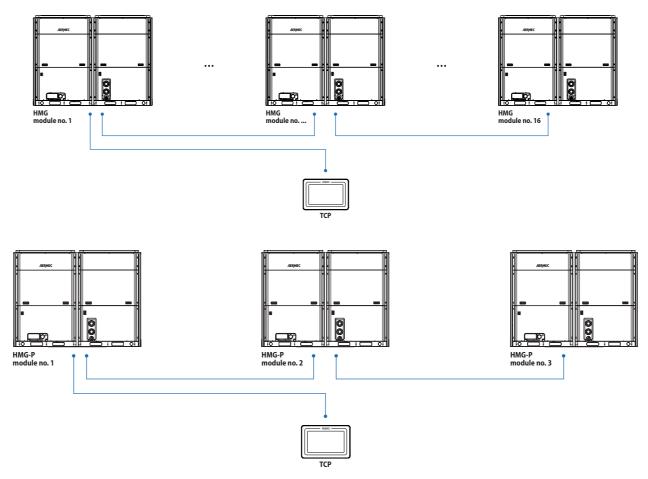

A outdoor air temperature (°C)

B water produced temperature (°C)

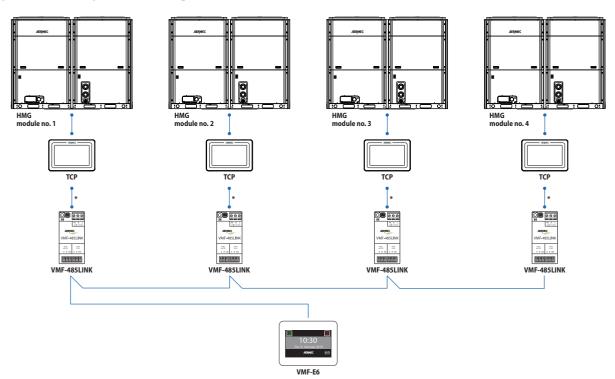
MODULARITY

For HMG units it is possible to connect units with different capacity.

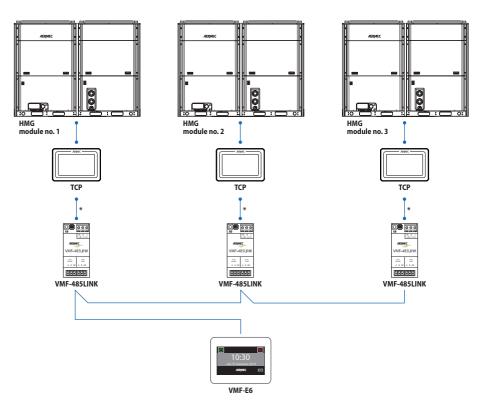
Heating mode range


KEY

2 heating mode


A outdoor air temperature (°C)
B water produced temperature (°C)

For HMG_P units, connection is only possible between units of the same capacity.


Homogeneous modularity - connection diagram

Sequential modularity - connection diagram

^{*} Connection to be made with the aid of the accessory IC-2P.

^{*} Connection to be made with the aid of the accessory IC-2P.

PERFORMANCE SPECIFICATIONS

		HMG0350	HMG0600
Cooling performance 12 °C/7 °C(1)			
Cooling capacity	kW	32,0	60,0
Input power	kW	11,7	20,8
Water flow rate system side	l/h	5528	10346
Pressure drop system side	kPa	80	55
Cooling total input current	A	19,2	32,9
EER	W/W	2,74	2,88
Heating performance 40 °C / 45 °C (2)			
Heating capacity	kW	35,0	65,0
Input power	kW	10,6	19,9
Water flow rate system side	l/h	6039	11249
Heating total input current	A	17,5	30,7
COP	W/W	3,30	3,27
Cooling performance 23 °C / 18 °C (3)			
Cooling capacity	kW	41,4	72,5
Input power	kW	10,5	19,1
Water flow rate system side	l/h	7198	12574
Cooling total input current	A	16,2	31,0
EER	W/W	3,94	3,80
Heating performance 30 °C / 35 °C (4)			
Heating capacity	kW	36,0	62,6
Input power	kW	8,8	15,1
Water flow rate system side	l/h	6191	10798
Heating total input current	A	12,4	24,2
COP	W/W	4,09	4,15

- (1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Data EN 14511:2022; System side water heat exchanger 23 °C / 18 °C; External air 35 °C (4) Data EN 14511:2022; System side water heat exchanger 30 °C / 35 °C; External air 7 °C d.b. / 6 °C w.b.

		HMG0350P	HMG0600P
Cooling performance 12 °C/7 °C(1)			
Cooling capacity	kW	33,0	60,0
Input power	kW	11,4	21,1
Water flow rate system side	l/h	5680	10320
Useful head	kPa	203,0	210,0
Cooling total input current	A	18,7	33,2
EER	W/W	2,89	2,84
Heating performance 40 °C / 45 °C (2)			
Heating capacity	kW	36,0	65,0
Input power	kW	10,9	19,7
Water flow rate system side	l/h	6190	11180
Useful head	kPa	180,0	200,0
Heating total input current	A	18,1	32,3
COP	W/W	3,30	3,30
Cooling performance 23 °C / 18 °C (3)			
Cooling capacity	kW	32,8	64,0
Input power	kW	8,0	18,0
Water flow rate system side	l/h	5648	11015
Cooling total input current	A	13,3	28,4
EER	W/W	4,10	3,57
Heating performance 30 °C / 35 °C (4)			
Heating capacity	kW	33,4	61,6
Input power	kW	8,4	16,0
Water flow rate system side	l/h	5729	10650
Heating total input current	A	13,8	25,4
СОР	W/W	4,00	3,86

- (1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Data EN 14511:2022; System side water heat exchanger 23 °C / 18 °C; External air 35 °C (4) Data EN 14511:2022; System side water heat exchanger 30 °C / 35 °C; External air 7 °C d.b. / 6 °C w.b.

ENERGY DATA

		HMG0350	HMG0600
UE 811/2013 performance in average	ambient conditions (average) - 35 °C - Pde	signh ≤ 70 kW (1)	
Pdesignh	kW	24	51
SCOP	W/W	3,90	3,90
ηsh	%	153,00	153,00
Efficiency energy class		A++	A++
Cooling capacity with low leaving wa	ter temp (UE n° 2016/2281)		
ηςς	%	173,00	181,00
SEER	W/W	4,40	4,60
(1) Efficiencies for low temperature appli	cations (35 °C)		

()					
		HMG0350P	HMG0600P		
UE 811/2013 performance in average	UE 811/2013 performance in average ambient conditions (average) - 35 °C - Pdesignh ≤ 70 kW (1)				
Pdesignh	kW	24	52		
SCOP	W/W	4,00	4,01		
ηsh	%	157,00	157,50		
Efficiency energy class		A++	A++		
Cooling capacity with low leaving wa	ater temp (UE n° 2016/2281)				
ηςς	%	183,00	186,60		
SEER	W/W	4,65	4,74		

⁽¹⁾ Efficiencies for low temperature applications (35 $^{\circ}$ C)

ELECTRIC DATA

		HMG0350	HMG0600
Electric data			
Rated current input (1)	A	22,0	52,0
Power supply			
Power supply		380-415V 3N ~ 50Hz	380-415V 3N ~ 50Hz
(1) The rated power input (rated current in	put) is the maximum input electrical pow	rer (maximum current input) from the system, in accordance witl	h the Standards EN 60335-1 and EN 60335-2-40.
		HMG0350P	HMG0600P
Electric data			

 Electric data
 HM G060P

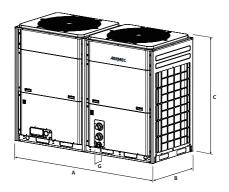
 Rated power input (1)
 kW
 13,40
 25,60

 Power supply
 380-415V 3N ~ 50Hz
 380-415V 3N ~ 50Hz

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

GENERAL TECHNICAL DATA

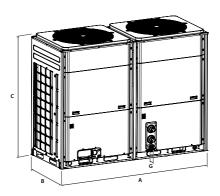
		HMG0350	HMG0600	
Compressor				
Туре	type		Inverter rotary	
Number	no.	1	2	
Circuits	no.	1	2	
Refrigerant	type		R32	
Refrigerant load circuit 1 (1)	kg	5,5	5,5	
Refrigerant load circuit 2 (1)	kg	-	5,5	
System side heat exchanger				
Туре	type		Shell and tube	
Number	no.	1	1	
Connections (in/out)	Туре	G1"1/2 (male)	G2" (male)	
Fan				
Туре	type		Axial	
Fan motor	type		Inverter	
Number	no.	2	2	
Air flow rate	m³/h	12600	24000	
Sound data calculated in cooling mode (2)			
Sound power level	dB(A)	81,0	86,0	
Sound pressure level (10 m)	dB(A)	49,5	54,3	
Sound pressure level (1 m)	dB(A)	65,0	69,0	


(1) The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

		HMG0350P		HMG0600P	
Compressor					
Туре	type		Inverter rotary		
Number	no.	1		2	
Circuits	no.	1		2	
Refrigerant	type		R32		
Compressor					
Refrigerant load circuit 1	kg	5,20		5,35	
Refrigerant load circuit 2	kg	-		5,35	
System side heat exchanger					
Туре	type		Brazed plate		
Number	no.	1		1	
Connections (in/out)	Туре		Gas maschio		
Fan					
Туре	type		Axial		
Fan motor	type		Inverter		
Number	no.	2		2	
Air flow rate	m³/h	12600		24000	
Sound data calculated in cooling mode (1)				
Sound power level	dB(A)	81,0		86,0	
Sound pressure level (10 m)	dB(A)	-		-	
Sound pressure level (1 m)	dB(A)	-		-	

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS


HMG

		HMG0350	HMG0600
Dimensions and weights			_
A	mm	1340	2200
В	mm	765	880
C	mm	1605	1675
G	mm	80	85
D	mm	1420	2267
E	mm	920	1030
F	mm	1775	1867
Net weight	kg	405,0	686,0
Weight for transport	kg	422,0	722,0

G: tap protrusion

HMG_P

		HMG0350P	HMG0600P
Dimensions and weights			
A	mm	1340	2200
В	mm	765	880
C	mm	1605	1675
G	mm	37	57
D	mm	1775	1867
E	mm	1420	2267
F	mm	905	1030
Net weight	kg	323,0	609,0
Weight for transport	kg	340,0	645,0

G: tap protrusion

Reversible air/water heat pump

Cooling capacity 29,0 ÷ 42,3 kW - Heating capacity 31,4 ÷ 33,3 kW

- Version with built-in hydronic kit inverter
- · High efficiency also at partial loads
- Production of hot domestic water (d.H.W.)

DESCRIPTION

Reversible inverter heat pump for outdoor use suitable for responding to heating / cooling requests and the production of domestic hot water. Equipped with inverter compressor, axial fans, external copper coils with aluminum fins, plate heat exchanger on the system side.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

It can be combined in systems with hydronic terminals or even with traditional radiators and perfectly meets the needs of the residential market: low noise, easy installation.

VERSIONS

° Standard

P With on/off pump

X With inverter pump

FEATURES

Operating field

Work at full load up to 42 $^{\circ}$ C outside air temperature in the summer season with the possibility of producing hot water up to 60 $^{\circ}$ C (for more details refer to the technical documentation).

Components

- High efficiency scroll and Twin rotary compressors with permanent magnet DC motors of "high side" type (with high pressure casing), designed for variable speed operation
- Differential pressure switch / flow switch as standard
- Water filter
- High efficiency heat exchangers
- Axial flow fan units for extremely quiet operation
- Fitted with EMC filters

Integrated hydronic kit

The built-in hydraulic kit includes:

- Expansion vessel
- Safety valve water side
- Air vent valve

Inverter pumps variable speed pump with water side pressure transducer installed and unit mounted microprocessor, capable of controlling various operating modes:

- ΔP constant: the differential pressure between pump inlet and outlet is kept constant, the number of revolutions is reduced with the progressive closing of the terminals;
- ΔP variable: the differential pressure is reduced as the flow rate decreases, to take into account the lower pressure drops along the supply pipes to the terminals (recommended if the development of these pipes is high).

MODUCONTROL CONTROL

The command panel of the unit allows the rapid setting of the working parameters of the machine, and their visualisation. The display consists of 4 figures and various LEDs for indicating the type of operational mode, the visualisation of the parameters set and of any alarms triggered. The card stores all the default settings and any modifications.

- Capable of variable water flow rates on primary circuit (terminals with 2-way valves);
- Perfect water temperature control even in systems with low water content;
- Suitable for heat pump mode summer operation to provide domestic hot water (DHW) with the DCPX fan speed controller accessory (when provided).

ACCESSORIES

AERBAC-MODU: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP. The accessory is supplied with the unit and must be installed on an external electrical panel.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERSET: It makes it possible to automatically compensate for the operation setting of the unit to which it is connected, based on a 0-10V MODBUS input signal. Mandatory accessory MODU-485BL.

MODU-485BL: RS-485 interface for supervision systems with MODBUS protocol.

MULTICONTROL: Allows the simultaneous control of several units (up to 4), installed in the same hydraulic system.

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

SAF: Thermal buffer tank kit with instantaneous Domestic Hot Water production. For more information about SAF refer to the dedicated documentation.

SDHW: Domestic hot water sensor. To be used with a storage tank for the control of water temperature produced.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

SPLW: System water temperature sensor. In most cases the loose supplied sensors for each chiller/heat pump are sufficient. In cases of a common flow/ return header this sensor can be used to control the common system supply water temperature for the chillers connected to the header, or it can be used for temperature monitoring

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with the VMF-E6 panel, the VMF-CRP modules will be able to manage heat recovery units, RAS, boiler, sanitary management, I/O control, pumps.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ For the installation of the PR4 remote panel, the MODU-485BL communication interface is indispensable.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

VT: Anti-vibration supports.

BSKW: Electric heaters kit with IP44 panel for remote mounting in a sheltered area.

■ NB: if the SAF thermo-accumulator is used, the MOD485-BL accessory is not required.

FACTORY FITTED ACCESSORIES

KR: Anti-freeze electric heater for the plate heat exchanger.

KRB: Electric anti-freeze resistance kit for base.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

H. J.J		101	
Model	Ver	101	
AERBAC-MODU	°,P,X	•	
AERLINK	°,P,X	•	
AERSET	°,P,X	•	
MODU-485BL	°,P,X	•	
MULTICONTROL	°,P,X	•	
PR3	°,P,X	•	
SAF (1)	°,P,X	•	
SDHW (2)	°,P,X	•	
SGD	°,P,X	•	
SPLW (3)	°,P,X	•	
VMF-CRP	°,P,X	•	

- (1) For more information about SAF refer to the dedicated documentation.
- (2) Probe required for MULTICONTROL for managing the domestic hot water system.
 (3) Probe required for MULTICONTROL to manage the secondary circuit system.
- Remote panel

Model	Ver	101
PR4	°,P,X	•

 $For the installation of the PR4\ remote\ panel, the\ MODU-485BL\ communication\ interface\ is\ in dispensable.$

BSKW: Electric heater kit

Model	Ver	101
BS6KW400T	°,P,X	•
RS9KW400T	° рү	

DCPX: Condensation control temperature Ver

°, P, X	DCPX53
VT: Antivibration	
Ver	101
°, P, X	VT15

101

KR: electric heater for the heat exchanger

Ver	101
°, P, X	KR100

A grey background indicates the accessory must be assembled in the factory

KRB: Electric heater for the base

Ver	101
°, P, X	KRB3 (1)

(1) Incompatible with the condensate collection basin accessory with integrated resistance. A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3,4	ANLI
5,6,7	Size 101
8	Model
Н	Heat pump
9	Version
٥	Standard
Р	With on/off pump
Χ	With inverter pump
10	Heat recovery
0	Without heat recovery
11	Coils
R	Copper pipes-copper fins
S	Tinned copper
V	Copper pieps-Coated aluminium fins
0	Alluminium
12	Operating field (1)
0	Electronic thermostatic expansion valve
13	Evaporator
0	Standard
14	Power supply
T	400V 3N ~ 50Hz

⁽¹⁾ Water produced up to +4 °C. For different temperature please contact the factory.

PERFORMANCE SPECIFICATIONS 12 °C/ 7 °C - 40 °C/ 45 °C

ANLI - (H°)

Size		101
Cooling performance 12 °C/7 °C(1)		
Cooling capacity	kW	28,9
Input power	kW	11,7
Cooling total input current	A	16,0
EER	W/W	2,48
Water flow rate system side	l/h	4986
Pressure drop system side	kPa	50
Heating performance 40 °C/45 °C (2)		
Heating capacity	kW	31,5
Input power	kW	11,3
Heating total input current	A	16,0
COP	W/W	2,78
Water flow rate system side	I/h	5458
Pressure drop system side	kPa	59

ANLI - (HX)

Size		101
Cooling performance 12 °C/7 °C (1)		
Cooling capacity	kW	29,3
Input power	kW	11,9
Cooling total input current	A	18,0
EER	W/W	2,47
Water flow rate system side	l/h	4986
Useful head system side	kPa	175
Heating performance 40 °C / 45 °C (2)		
Heating capacity	kW	31,2
Input power	kW	11,5
Heating total input current	A	17,0
COP	W/W	2,70
Water flow rate system side	l/h	5458
Useful head system side	kPa	158

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

ANLI - (HP)

Size		101
Cooling performance 12 °C/7 °C(1)		
Cooling capacity	kW	29,2
Input power	kW	11,7
Cooling total input current	A	17,0
EER	W/W	2,49
Water flow rate system side	l/h	4986
Useful head system side	kPa	92
Heating performance 40 °C/45 °C(2)		
Heating capacity	kW	31,2
Input power	kW	11,4
Heating total input current	A	17,0
COP	W/W	2,74
Water flow rate system side	l/h	5458
Useful head system side	kPa	76

PERFORMANCE SPECIFICATIONS 23 °C/ 18 °C - 30 °C/ 35 °C

ANLI - (H°)

Size		101
Cooling performance 23 °C / 18 °C (1)		
Cooling capacity	kW	42,3
Input power	kW	13,1
Cooling total input current	A	19,0
EER	W/W	3,22
Water flow rate system side	l/h	7301
Pressure drop system side	kPa	107
Heating performance 30 °C/35 °C(2)		
Heating capacity	kW	33,3
Input power	kW	9,5
Heating total input current	A	13,0
COP	W/W	3,51
Water flow rate system side	l/h	5763
Pressure drop system side	kPa	66

ANLI - (HX)

Size	<u> </u>	101
Cooling performance 23 °C / 18 °C (1)		
Cooling capacity	kW	42,3
Input power	kW	14,3
Cooling total input current	A	21,0
EER	W/W	2,96
Water flow rate system side	l/h	7301
Useful head system side	kPa	81
Heating performance 30 °C / 35 °C (2)		
Heating capacity	kW	33,3
Input power	kW	10,5
Heating total input current	A	15,0
COP	W/W	3,17
Water flow rate system side	l/h	5763
Useful head system side	kPa	147

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C / 35 °C; External air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C / 35 °C; External air 7 °C d.b. / 6 °C w.b.

ANLI - (HP)

Size		101
Cooling performance 23 °C / 18 °C (1)		
Cooling capacity	kW	42,3
Input power	kW	14,3
Cooling total input current	A	21,0
EER	W/W	2,96
Water flow rate system side	l/h	7301
Useful head system side	kPa	81
Heating performance 30 °C/35 °C(2)		
Heating capacity	kW	33,3
Input power	kW	10,5
Heating total input current	A	15,0
COP	W/W	3,17
Water flow rate system side	l/h	5763
Useful head system side	kPa	147

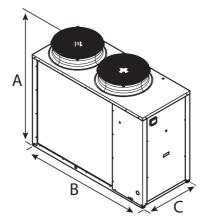
ENERGY DATA

Size			101
Cooling capacity with low leaving	water temp (UE n° 2016/2281)		
SEER	0	W/W	3,81
DEEN	P,X	W/W	3,57
	0	%	149,20
ηςς	P,X	%	139,80
JE 811/2013 performance in aver	age ambient conditions (average) -	35 °C - Pdesignh ≤ 70 kW (1)	
Pdesignh	°,P,X	kW	- -
SCOP	°,Х	W/W	3,23
otor	P	W/W	3,25
ηsh	°,X	%	126,00
	Р	%	127,00
Efficiency energy class	°,P,X		A+

⁽¹⁾ Efficiencies for low temperature applications (35 °C)

ELECTRIC DATA

Size			101
Electric data			
	0	A	21,0
Maximum current (FLA)	Р	A	24,4
	Х	A	25,5
Peak current (LRA)	°,P,X	A	-


GENERAL TECHNICAL DATA

Size			101
Compressor			
Туре	°,P,X	type	Scroll
Number	°,P,X	no.	1
Compressor regulation	°,P,X	Туре	Inverter
Circuits	°,P,X	no.	1
Refrigerant	°,P,X	type	R410A
Refrigerant charge (1)	°,P,X	kg	4,5
System side heat exchanger			
Туре	°,P,X	type	Brazed plate
Number	°,P,X	no.	1
Hydraulic connections			
Connections (in/out)	°,P,X	Туре	Gas - F
Sizes (in/out)	°,P,X	Ø	1″1/4
Fan			
Туре	°,P,X	type	Axial
Fan motor	°,P,X	type	On/Off
Number	°,P,X	no.	2
Air flow rate	°,P,X	m³/h	13200
Sound data calculated in cooling n			
Sound power level	°,P,X	dB(A)	76,0
Sound pressure level (10 m)	°,P,X	dB(A)	44,5

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			101
Dimensions and weights			
A	°,P,X	mm	1450
В	°,P,X	mm	1750
C	°,P,X	mm	750
Frankissishk	٥	kg	293
Empty weight	P,X	kg	308

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italy Tel. 0442633111 - Telefax 044293577 www.aermec.com

ANK 020-150

Reversible air/water heat pump

Cooling capacity 6,8 ÷ 39,8 kW – Heating capacity 8,0 ÷ 35,3 kW

- Production of hot water up to 60 °C
- Production of hot domestic water with external temperatures from -20 °C up to 42 °C
- Compact dimensions
- · Quick & easy installation

DESCRIPTION

Reversible air/water heat pump for air conditioning systems with cold water production for cooling rooms and hot water for heating and/or domestic hot water services, suitable for connection with small or medium users.

It's optimised for use in heating mode, and can be combined not only with low-temperature emission systems such as floor heating or fan coils, but also conventional radiators.

Equipped with scroll compressors, axial fans, external coil with aluminium louvers, plate heat exchanger on the side.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A With storage tank and pump

P With pump

FEATURES

Operating field

Working at full load up to -20°C outside air temperature in winter, and up to 46° C in summer. Possibility production technical hot water production up to 60° C (for more information see the technical documentation).

Soft-start

Version with Integrated hydronic kit

To have a Plug & Play solution is also available the version with the integrated Hydronic group that contains the main hydraulic components including the water filter.

Inverter fan

Inverter fans as standard in size up 020 to 085 in all versions.

■ The DCPX accessory is not required for these sizes.

MODUCONTROL CONTROL

The command panel of the unit allows the rapid setting of the working parameters of the machine, and their visualisation. The display consists of 4 figures and various LEDs for indicating the type of operational mode, the

visualisation of the parameters set and of any alarms triggered. The card stores all the default settings and any modifications.

ACCESSORIES

AERBAC-MODU: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP. The accessory is supplied with the unit and must be installed on an external electrical panel.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERSET: It makes it possible to automatically compensate for the operation setting of the unit to which it is connected, based on a 0-10V MODBUS input signal. Mandatory accessory MODU-485BL.

MODU-485BL: RS-485 interface for supervision systems with MODBUS protocol

MULTICONTROL: Allows the simultaneous control of several units (up to 4), installed in the same hydraulic system.

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

SDHW: Domestic hot water sensor. To be used with a storage tank for the control of water temperature produced.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

SPLW: System water temperature sensor. In most cases the loose supplied sensors for each chiller/heat pump are sufficient. In cases of a common flow/ return header this sensor can be used to control the common system supply water temperature for the chillers connected to the header, or it can be used for temperature monitoring

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with the

VMF-E6 panel, the VMF-CRP modules will be able to manage heat recovery units, RAS, boiler, sanitary management, I/O control, pumps.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ For the installation of the PR4 remote panel, the MODU-485BL communication interface is indispensable.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

VT: Anti-vibration supports.

BSKW: Electric heaters kit with IP44 panel for remote mounting in a shel-

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction. KRB: Electric anti-freeze resistance kit for base.

BDX: Condensate drip with resistance

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	020	030	040	045	050	085	100	150
AERBAC-MODU	°,A,P	•	•	•	•		•		•
AERLINK	°,A,P	•	•	•	•	•	•	•	•
AERSET	°,A,P	•	•	•	•	•	•		•
MODU-485BL	°,A,P	•	•	•	•		•	•	•
MULTICONTROL	°,A,P	•	•	•	•	•	•	•	•
PR3	°,A,P	•	•	•	•		•		•
SDHW (1)	°,A,P	•	•	•	•	•	•	•	•
SGD	°,A,P	•	•	•	•	•	•	•	•
SPLW (2)	°,A,P	•	•	•	•	•	•	•	•
VMF-CRP	°,A,P	•	•	•	•	•	•	•	

⁽¹⁾ Probe required for MULTICONTROL for managing the domestic hot water system.

Remote panel

Model	Ver	020	030	040	045	050	085	100	150
PR4	°,A,P	•	•	•	•	•	•	•	•

For the installation of the PR4 remote panel, the MODU-485BL communication interface is indispensable.

Condensation control temperature

Ver	020	030	040	045	050	085	100	150
°, A, P	-	-	-	-	-	-	DCPX53	DCPX53

The accessory cannot be fitted on the configurations indicated with -

Electric heater kit with case IP44

Ver	020	030	040	045	050	085	100	150
Power supply: M	,							
0.4.0	BS4KW230M,	BS4KW230M,	BS4KW230M,					
°, A, P	BS6KW230M	BS6KW230M	BS6KW230M	-	-	-	-	-
Power supply: °								
0.4.0	BS6KW400T,							
°, A, P	BS9KW400T							
Antivibration								
Ver	020	030	040	045	050	085	100	150
°, P	VT9	VT9	VT9	VT9	VT9	VT9	VT15	VT15
A	VT15A	VT15A	VT15A	VT15A	VT15A	VT15A	VT15	VT15

Device for peak current reduction.

Ver	020	030	040	045	050	085	100	150
°, A, P	DRE5 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)					

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Electric heater for the base.

Ver	020	030	040	045	050	085	100	150
°, A, P	KRB1 (1)	KRB2 (1)	KRB3 (1)	KRB3 (1)				

⁽¹⁾ Incompatible with the condensate collection basin accessory with integrated resistance.

A grey background indicates the accessory must be assembled in the factory

Condensate drip

Ver	020	030	040	045	050	085	100	150
°, A, P	BDX8	BDX9	BDX9	BDX9	BDX9	BDX9	-	-

The accessory cannot be fitted on the configurations indicated with -A grey background indicates the accessory must be assembled in the factory

⁽²⁾ Probe required for MULTICONTROL to manage the secondary circuit system

CONFIGURATOR

Field	Description
1,2,3	ANK
4,5,6	Size 020, 030, 040, 045, 050, 085, 100, 150
7	Model
Н	Heat pump
8	Version
0	Standard
Α	With storage tank and pump
Р	With pump
9	Execution
0	Standard
10	Coils
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
0	Copper-aluminium
11	Operating field
Υ	Low temperature mechanic thermostatic valve (1)
Z	Low temperature electronic thermostatic valve (2)
0	Standard mechanic thermostatic valve (3)
12	Evaporator
0	Standard
13	Power supply
М	230V ~ 50Hz (4)
0	400V 3N ~ 50Hz (5)

PERFORMANCE SPECIFICATIONS 12 °C/7 °C - 40 °C/45 °C

ANK - (°) / 12/7 °C - 40/45 °C

Size		020	030	040	045	050	085	100	150
Power supply: M	'								
Cooling performance 12 °C/7 °C (1)									
Cooling capacity	kW	6,8	8,2	9,6	11,7	-	-	-	-
Input power	kW	2,3	2,8	3,2	3,7	-	-	-	-
Cooling total input current	A	11,0	13,0	16,0	19,0	-	-	-	-
EER	W/W	2,92	2,91	2,97	3,16	-	-	-	-
Water flow rate system side	I/h	1179	1406	1649	2018	-	-	-	-
Pressure drop system side	kPa	16	9	14	14	-	-	-	-
Heating performance 40 °C / 45 °C (2)									
Heating capacity	kW	8,0	10,0	10,9	13,5	-	-	-	-
Input power	kW	2,5	3,1	3,4	3,8	-	-	-	-
Heating total input current	A	12,0	15,0	17,0	19,0	-	-	-	-
COP	W/W	3,16	3,24	3,15	3,50	-	-	-	-
Water flow rate system side	l/h	1376	1738	1881	2332	-	-	-	-
Pressure drop system side	kPa	22	14	18	19	-	-	-	-

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

Size		020	030	040	045	050	085	100	150
Power supply: °	·								
Cooling performance 12 °C/7 °C(1)									
Cooling capacity	kW	6,8	8,2	10,5	11,6	13,1	15,5	25,3	29,3
Input power	kW	2,3	2,8	3,5	4,0	4,3	5,2	8,1	10,0
Cooling total input current	A	4,3	5,6	7,1	7,7	8,7	11,0	17,0	20,0
EER	W/W	2,93	2,91	2,98	2,93	3,03	3,00	3,12	2,92
Water flow rate system side	l/h	1169	1406	1811	1997	2253	2677	4362	5056
Pressure drop system side	kPa	16	9	16	14	18	24	32	36
Heating performance 40 °C / 45 °C (2)									
Heating capacity	kW	8,0	10,0	12,2	14,0	15,3	17,4	27,1	33,3
Input power	kW	2,5	3,1	3,8	4,2	4,4	5,0	8,3	10,5
Heating total input current	A	4,7	6,2	7,6	8,0	9,0	10,0	18,0	21,0
COP	W/W	3,21	3,24	3,25	3,38	3,48	3,46	3,24	3,19
Water flow rate system side	I/h	1376	1738	2117	2430	2656	3021	4689	5774
Pressure drop system side	kPa	22	14	22	21	25	31	37	47

⁽¹⁾ Water produced from 0 °C \div -8 °C (2) Water produced from +4 °C up to +0 °C (3) Water produced up to +4 °C

⁽⁴⁾ Only for ANK 020 ÷ 045 sizes (5) For ANK 020 ÷ 045 sizes

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

ANK - (A/P) / 12/7 °C - 40/45 °C

Size		020	030	040	045	050	085	100	150
Power supply: M									
Cooling performance 12 °C / 7 °C (1)									
Cooling capacity	kW	6,9	8,2	9,7	11,8	-	-	-	-
Input power	kW	2,3	2,8	3,2	3,7	-	-	-	-
Cooling total input current	A	12,0	14,0	16,0	20,0	-	-	-	-
EER	W/W	2,99	2,96	3,02	3,17	-	-	-	-
Water flow rate system side	I/h	1179	1406	1649	2018	-	-	-	-
Useful head system side	kPa	78	71	62	70	-	-	-	-
Heating performance 40 °C / 45 °C (2)									
Heating capacity	kW	7,9	9,9	10,8	13,4	-	-	-	-
Input power	kW	2,5	3,1	3,4	3,9	-	-	-	-
Heating total input current	A	13,0	15,0	18,0	20,0	-	-	-	-
COP	W/W	3,17	3,25	3,16	3,45	-	-	-	-
Water flow rate system side	I/h	1376	1738	1881	2332	-	-	-	-
Useful head system side	kPa	72	58	52	57	-	-	-	-

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

Size		020	030	040	045	050	085	100	150
Power supply: °									
Cooling performance 12 °C/7 °C(1)									
Cooling capacity	kW	6,9	8,2	10,6	11,7	13,2	15,7	25,6	29,7
Input power	kW	2,3	2,8	3,5	4,0	4,3	5,2	8,2	10,4
Cooling total input current	A	4,6	6,0	7,5	8,3	9,3	11,0	18,0	22,0
EER	W/W	3,00	2,97	3,05	2,95	3,06	3,03	3,12	2,87
Water flow rate system side	l/h	1169	1406	1811	1997	2253	2677	4362	5056
Useful head system side	kPa	78	82	70	81	74	63	115	144
Heating performance 40 °C / 45 °C (2)									
Heating capacity	kW	7,9	9,9	12,1	13,9	15,2	17,3	26,8	33,0
Input power	kW	2,4	3,0	3,7	4,2	4,4	5,0	8,4	10,8
Heating total input current	A	5,0	6,6	8,0	8,6	9,6	11,0	19,0	23,0
COP	W/W	3,22	3,26	3,27	3,35	3,46	3,44	3,18	3,05
Water flow rate system side	l/h	1376	1738	2117	2430	2656	3021	4689	5774
Useful head system side	kPa	72	76	61	68	59	50	105	109

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

PERFORMANCE SPECIFICATIONS 23 °C/ 18 °C - 30 °C/ 35 °C

ANK - (°) / 23/18 °C - 30/35 °C

Size		020	030	040	045	050	085	100	150
Power supply: M	'								
Cooling performance 23 °C / 18 °C (1)									
Cooling capacity	kW	9,5	11,4	13,3	16,3	-	-	-	-
Input power	kW	2,5	2,9	3,4	3,9	-	-	-	-
Cooling total input current	A	12,0	14,0	17,0	19,0	-	-	-	-
EER	W/W	3,86	3,86	3,94	4,19	-	-	-	-
Water flow rate system side	I/h	1652	1969	2310	2826	-	-	-	-
Pressure drop system side	kPa	31	18	27	27	-	-	-	-
Heating performance 30 °C / 35 °C (2)									
Heating capacity	kW	8,5	10,6	11,6	14,0	-	-	-	-
Input power	kW	2,2	2,6	2,8	3,3	-	-	-	-
Heating total input current	A	10,0	12,0	14,0	16,0	-	-	-	-
COP	W/W	3,96	4,04	4,08	4,30	-	-	-	-
Water flow rate system side	l/h	1473	1830	2001	2424	-	-	-	-
Pressure drop system side	kPa	25	15	21	20	-	-	-	-

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/ 35 °C; External air 7 °C d.b. / 6 °C w.b.

Size	'	020	030	040	045	050	085	100	150
Power supply: °									
Cooling performance 23 °C / 18 °C (1)									
Cooling capacity	kW	9,5	11,4	14,7	16,2	18,2	21,7	34,0	39,4
Input power	kW	2,4	2,9	3,7	4,2	4,5	5,5	8,8	10,9
Cooling total input current	A	4,5	5,8	7,4	8,0	9,1	11,0	18,0	22,0
EER	W/W	3,88	3,86	3,95	3,89	4,02	3,96	3,86	3,61
Water flow rate system side	I/h	1637	1969	2536	2797	3155	3749	5889	6826
Pressure drop system side	kPa	31	18	31	27	35	47	58	66
Heating performance 30 °C / 35 °C (2)									
Heating capacity	kW	8,5	10,6	13,0	14,6	16,2	18,2	29,2	35,6
Input power	kW	2,1	2,6	3,1	3,5	3,8	4,3	6,9	8,8
Heating total input current	A	4,0	5,2	6,2	6,8	7,7	8,9	15,0	18,0
COP	W/W	4,03	4,04	4,20	4,15	4,31	4,18	4,21	4,07
Water flow rate system side	l/h	1473	1830	2253	2525	2799	3137	5041	6147
Pressure drop system side	kPa	25	15	25	22	28	33	43	53

ANK - (A/P) / 23/18 °C - 30/35 °C

Size		020	030	040	045	050	085	100	150
Power supply: M	'								
Cooling performance 23 °C / 18 °C (1)									
Cooling capacity	kW	9,6	11,5	13,4	16,4	-	-	-	-
Input power	kW	2,4	2,9	3,4	3,9	-	-	-	-
Cooling total input current	A	12,0	14,0	17,0	20,0	-	-	-	-
EER	W/W	3,99	3,93	4,00	4,18	-	-	-	-
Water flow rate system side	I/h	1652	1969	2310	2826	-	-	-	-
Useful head system side	kPa	62	47	29	32	-	-	-	-
Heating performance 30 °C / 35 °C (2)									
Heating capacity	kW	8,6	10,8	11,9	13,8	-	-	-	-
Input power	kW	2,2	2,6	2,9	3,4	-	-	-	-
Heating total input current	A	11,0	13,0	15,0	17,0	-	-	-	-
COP	W/W	3,88	4,11	4,10	4,11	-	-	-	-
Water flow rate system side	I/h	1486	1877	2061	2397	-	-	-	-
Useful head system side	kPa	58	65	58	79	-	-	-	-

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

Size	•	020	030	040	045	050	085	100	150
Power supply: °									
Cooling performance 23 °C / 18 °C (1)									
Cooling capacity	kW	9,5	11,5	14,8	16,3	18,4	21,8	34,3	39,8
Input power	kW	2,4	2,9	3,6	4,2	4,5	5,5	8,9	11,4
Cooling total input current	A	5,1	6,5	8,1	9,2	10,0	12,0	19,0	24,0
EER	W/W	4,00	3,98	4,06	3,92	4,05	3,99	3,85	3,48
Water flow rate system side	l/h	1637	1969	2536	2797	3155	3749	5889	6826
Useful head system side	kPa	62	70	45	55	38	16	66	51
Heating performance 30 °C/35 °C(2)									
Heating capacity	kW	8,4	10,5	12,9	14,5	16,1	18,0	28,9	35,3
Input power	kW	2,1	2,6	3,0	3,5	3,8	4,3	7,0	9,2
Heating total input current	A	4,6	5,9	6,9	7,9	8,8	10,0	16,0	20,0
COP	W/W	4,07	4,08	4,26	4,12	4,28	4,16	4,11	3,85
Water flow rate system side	l/h	1473	1830	2253	2525	2799	3137	5041	6147
Useful head system side	kPa	69	73	56	65	54	45	95	90

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

ENERGY DATA

Energy index ANK - 400V

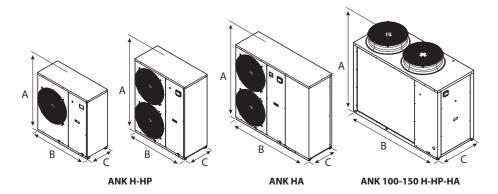
Size			020	030	040	045	050	085	100	150
Power supply: °										
SEER - 12/7 (EN14825: 2018) (1)										
C	0	%	119,80	124,10	129,80	129,80	135,00	135,00	149,40	142,30
Seasonal efficiency	A,P	%	120,70	125,00	132,50	130,10	135,40	137,10	146,60	137,00
CLLD	0	W/W	3,07	3,18	3,32	3,32	3,45	3,45	3,81	3,63
SEER	A,P	W/W	3,09	3,20	3,59	3,33	3,46	3,50	3,74	3,50
UE 811/2013 performance in average	ambient conditio	ıs (average) - 35	°C - Pdesignh ≤ 7	0 kW (2)						
F##	0	-	A+	A+	A+	A+	A+	A+	A++	A++
Efficiency energy class	A,P		A+	A+	A+	A+	A+	A+	A++	A+
l	0	%	132,00	133,00	137,00	136,00	141,00	133,00	153,00	153,00
ηsh	A,P	%	135,00	137,00	140,00	138,00	143,00	135,00	150,00	145,00
CCOD	0	W/W	3,38	3,40	3,50	3,48	3,60	3,40	3,90	3,90
SCOP	A,P	W/W	3,45	3,50	3,58	3,53	3,65	3,45	3,83	3,70

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Efficiencies for low temperature applications (35 °C)

Energy index ANK - 230V

Size			020	030	040	045
Power supply: M						
SEER - 12/7 (EN14825: 2018) (1)						
Canada officiana	0	%	119,60	124,10	127,80	139,00
Seasonal efficiency	A,P	%	121,10	125,00	130,70	138,40
CLLD	0	W/W	3,07	3,18	3,27	3,55
SEER	A,P	W/W	3,10	3,20	3,34	3,54
UE 811/2013 performance in aver	age ambient conditions (average) - 35 °C - Pdesignh	ı ≤ 70 kW (2)			
Efficiency energy class	°,A,P		A+	A+	A+	A+
Pdesignh	°,A,P	kW	7	9	10	12
l	0	%	130,00	133,00	134,00	139,00
ηsh	A,P	%	133,00	137,00	137,00	141,00
CCOD	0	W/W	3,33	3,40	3,43	3,55
SCOP	A,P	W/W	3,40	3,50	3,50	3,60

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Efficiencies for low temperature applications (35 °C)


ELECTRIC DATA

#										
Size			020	030	040	045	050	085	100	150
Power supply: M										
Electric data										
	0	А	14,0	19,0	22,0	25,0	-	-	-	-
Maximum current (FLA)	Α	А	14,6	20,1	22,9	26,3	-	-	-	-
	Р	Α	14,6	20,1	22,9	26,3	-	-	-	-
Deals assument (LDA)	°,P	А	-	-	-	-	-	-	-	-
Peak current (LRA)	A	А	-	-	-	-	-	-	-	-
	0	А	45,0	45,0	45,0	45,0	-	-	-	-
Peak current with Soft-start	A	А	45,7	45,7	45,7	46,3	-	-	-	-
	Р	A	45,7	45,7	45,7	46,3	-	-	-	-
Size			020	030	040	045	050	085	100	150
Power supply: °										
Electric data										
. (514)	0	Α	6,0	8,0	9,0	11,0	12,0	12,0	22,0	26,0
Maximum current (FLA)	A,P	A	6,8	8,4	9,8	11,9	13,1	13,6	23,6	28,9
0 1 (//04)	0	А	40,0	40,0	54,0	61,0	71,0	91,0	73,0	105,0
Peak current (LRA)	A,P	A	40,4	41,0	55,0	62,6	72,6	92,6	74,6	107,8
Peak current with Soft-start	°,A,P	A	-	-	-	-	-	-	-	-

GENERAL TECHNICAL DATA

Size			020	030	040	045	050	085	100	150
Compressor										
Туре	°,A,P	type				Sc	roll			
Compressor regulation	°,A,P	Туре				0n	-off			
Number	°,A,P	no.	1	1	1	1	1	1	2	2
Circuits	°,A,P	no.	1	1	1	1	1	1	1	1
Refrigerant	°,A,P	type				R4	10A			
Refrigerant charge (1)	°,A,P	kg	2,9	4,3	4,3	5,5	6,0	6,0	12,0	12,6
System side heat exchanger										
Туре	°,A,P	type				Braze	d plate			
Number	°,A,P	no.	1	1	1	1	1	1	1	1
Hydraulic connections										
Connections (in/out)	°,A,P	Туре				Gas	s - F			
Size (in)	°,A,P	Ø				1′	11/4			
Size (out)	°,A,P	Ø				1′	11/4			
Fan										
Туре	°,A,P	type				A	rial			
Fan motor	°,A,P	type	Inverter	Inverter	Inverter	Inverter	Inverter	Inverter	Asynchronous	Asynchronous
Number	°,A,P	no.	1	1	2	2	2	2	2	2
Air flow rate	°,A,P	m³/h	3500	8000	8000	7500	7500	7500	14500	14500
Sound data calculated in cooling										
Sound power level	°,A,P	dB(A)	68,0	70,5	70,5	70,5	70,5	70,5	77,0	78,0
Sound pressure level (10 m)	°,A,P	dB(A)	36,7	39,2	39,1	39,1	39,1	39,1	72,6	73,6

DIMENSIONS

Size			020	030	040	045	050	085	100	150
Dimensions and weights										
A	°,A,P	mm	1028	1281	1281	1281	1281	1281	1450	1450
D	°,P	mm	1000	1000	1000	1000	1000	1000	1750	1750
D	A	mm	1358	1450	1450	1450	1450	1450	1750	1750
C	°,A,P	mm	400	400	450	450	450	450	750	750
	٥	kg	118	149	152	165	172	174	296	341
Empty weight	A	kg	160	211	214	232	238	241	364	412
	Р	kg	123	154	157	175	182	184	314	362

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

SHW

Heat pump water heater

- New R290 ecological refrigerant gas.
- Production of hot water up to 65°C (75°C with the electric heater)
- Full inverter system
- Enamelled tank
- Electronic anode
- · Micro-channel exchanger

DESCRIPTION

The heat pump water heater line Aermec represents a sustainable solution for domestic hot water production, ensuring high energy savings due to their high efficiency.

Unlike conventional water heaters, heat pump water heaters generate hot water by utilising heat in the air, thus reducing electricity costs.

The new air to water heat pump water heaters SHW feature a new natural refrigerant R290, a cutting-edge choice in domestic solutions, to provide hot water in a sustainable, environmentally friendly and comfortable manner. R290 is a natural refrigerant with a global warming potential (GWP) of 3.

The series SHW is an innovation that perfectly combines silent operation and compact design with unrivalled efficiency. Its space-saving design lends itself to any home environment, while its advanced heat pump technology optimises energy saving, ensuring high energy performance.

The units SHW200S and SHW250S are also equipped with an additional coil that enables integration of an auxiliary heat source.

FEATURES

The heat pump water heater SHW is designed to provide the best possible experience and maximum savings by means of:

- optimised to reduce noise and energy consumption
- **coil for integral sources**: (only for models SHW200S and SHW250S)
- automatic anti-legionella cycle: to eliminate and prevent potential legionella formation
- ductable up to 40m: for models with wall installation and up to 11m for models with floor installation
- standard electric heater
- The units SHW080 SHW110 SHW150 are equipped with an electric power supply cable with Schuko plug

All units in the series SHW are equipped with a micro-channel heat exchanger. This fully covers the tank, significantly increasing the exchange surface area with respect to a classic tank with an internal coil. Furthermore, the heat exchanger is made up of high-quality materials that increase its resistance to high temperatures and corrosion.

VERSIONS

Wall-mount installation/ductable unit.

SHW080 - SHW110 - SHW150

Floor installation/ductable unit.

SHW150 - SHW200 - SHW250 Floor installation/ductable unit with solar coil.

SHW200S - SHW250S

special functions

Eco: allows the user to set time periods during which priority for DHW production is assigned to the heat pump.

Boost: this function enables to heat water faster by using both the heat pump and the electric heater simultaneously.

Holiday Mode: this function ensures hot water is available when returning home after a holiday period, preventing the tank from remaining operational during the absence period. Furthermore, the unit activates the anti-legionella cycle to obtain hot, bacteria-free water.

Quantity display: the dedicated icon on the display enables to immediately check the amount of water available in the tank

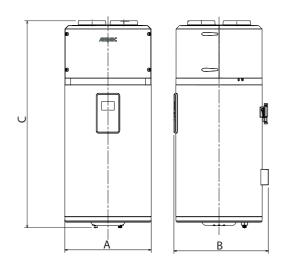
Photovoltaic Contact: when this contact is enabled, the unit's set point is increased, enabling electrical heater and compressor simultaneous operation.

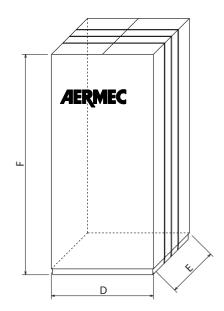
External Contact: When this contact is enabled, the unit can start according to the set point.

TECHNICAL DATA

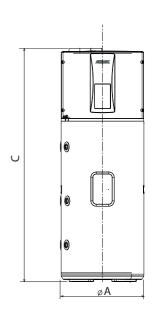
Character L (DUNA)		SHW080	SHW110	SHW150	SHW200	SHW200S	SHW250	SHW250S
Storage tank (DHW)		02	102	140	102	105	346	240
Nominal volume of the tank	L	82	102	149	192	185	246	240
Operating range	°C	-7 ~ 45	-7 ~ 45	-7 ~ 45	-7 ~ 45	-7 ~ 45	-7 ~ 45	-7 ~ 45
Power supply		220-240V~50Hz	220-240V~50Hz	220-240V~50Hz	220-240V~50Hz	220-240V~50Hz	220-240V~50Hz	220-240V~50Hz
Maximum operating pressure	Мра	0,8	0,8	0,8	0,7	0,7	0,7	0,7
Solar heat exchanger		no	no .	no	no no	Si	no no	si
Anode type		Electronic anode	Electronic anode	Electronic anode	Electronic anode	Electronic anode	Electronic anode	Electronic anode
Protection rating		IPX4	IPX4	IPX4	IPX4	IPX4	IPX4	IPX4
Insulation thickness	mm	40	40	40	50	50	50	50
Set temperature	°C	56	56	56	56	56	56	56
Rated power input (PdC)	W	370	370	370	535	535	535	535
Rated power input (electrical heater)	W	1200	1200	1200	1500	1500	1500	1500
Rated total power input	W	1570	1570	1570	2035	2035	2035	2035
DHW temperature produced (heat pump only)	°C	35 ~ 65	35 ~ 65	35 ~ 65	35 ~ 65	35 ~ 65	35 ~ 65	35 ~ 65
DHW temperature produced (heat pump only + electrical	°C	35 ~ 75	35 ~ 75	35 ~ 75	35 ~ 75	35 ~ 75	35 ~ 75	35 ~ 75
heater) Refrigerant gas								
Type	type	R290	R290	R290	R290	R290	R290	R290
Refrigerant charge	kg	0,12	0,12	0,12	0,15	0,15	0,15	0,15
GWP	- NY	3,0	3,0	3,0	3,0	3,0	3,0	3,0
Sound data		3,0	3,0	3,0	3,0	3,0	3,0	3,0
Sound power level	dB(A)	50,0	50,0	50,0	50,0	50,0	50,0	50,0
Sound pressure level (1 m)	dB(A)	37,7	37,7	37,7	36,0	36,0	36,0	36,0
Electric data	uD(A)	1,10	31,1	1,10	30,0	30,0	30,0	30,0
Type of electrical connection	type	Schuko	Schuko	Schuko	Al magnetotermico	Al magnetotermico	Al magnetotermico	Al magnetotermico
Magnet circuit breaker	A	16	16	16	16	16	16	16
Section of the power cable	mm ²	3*1.5	3*1.5	3*1.5	3*1.5	3*1.5	3*1.5	3*1.5
Performance specifications	111111	J 1.J	J 1.J	3 1.3	J 1.J	J 1.J	J 1.J	3 1.3
COP (external air 2°C)	W/W	2,38	2,55	2,65	2,80	2,43	2,67	2,81
COP (external air 7°C)	W/W	2,36	2,79	3,03	3,27	3,27	3,20	3,29
COP (external air 14°C)	W/W	3,07	3,32	3,39	3,52	3,55	3,45	3,46
Heating time (external air 7°C)	h	4h26	5,32 5h38	8h37	8h20	6h43	3,45 10h31	3,40 10h5
Heating time (external air 14°C)	h m³/h	3h48	4h47	7h11	6h55	6h07	9h02	8h42
Air flow rate	m·/n	180	180	180	300	300	300	300
Load Profile of Water Heaters, type		M	M	L	L	L	XL	L
Input power in standby (Pes)	W	15,3	19,3	22,5	22,0	35,0	43,0	35,0
Maximum volume of usable hot water at 40°C / V40	ı	103,8	133,0	190,0	221,0	229,0	314,0	313,0
Efficiency energy class		A+	A+	A+	A+	A+	A+	A+
Reference temperature of hot water (θ'WH)	°C	53,75	53,88	52,98	54,11	53,11	54,05	53,70
Connections								
Water outlet	inch	R 1/2"M	R 1/2" M	R 1/2" M	Rp 3/4	Rp 3/4	Rp 3/4	Rp 3/4
Inlet water / Condensate drainage	inch	R 1/2"M	R 1/2" M	R 1/2" M	Rp 3/4	Rp 3/4	Rp 3/4	Rp 3/4
Safety valve	inch	R 1/2"M	R 1/2" M	R 1/2" M	Rp 3/4	Rp 3/4	Rp 3/4	Rp 3/4
Maximum length of ducts (supply + exhaust) (Ø160 - PVC pipe)	m	40	40	40	11	11	11	11
Maximum length of ducts (supply + exhaust) (Ø160 -	m	22	22	22	6	6	6	6
corrugated pipe)	**	 -			-	-		
Maximum length of ducts (supply + exhaust) (Ø180 - PVC pipe)	m	-	-	-	22	22	22	22
Maximum length of ducts (supply + exhaust) (Ø180 - corrugated pipe)	m	-	-	-	13	13	13	13
Maximum working pressure of auxiliary coil	MPa				_	2,0		2,0
		-	-	-				
Auxiliary serpentine surface	m ²	-	-	-	-	0,585	-	0,585
Dimensions and weights	l	F1	F.4	(4	07	07		100
Empty weight	kg	51	54	64	87	97	99	108
Weight for transport	kg	58,0	62,0	83,0	110,0	120,0	122,0	132,0

Performance specifications: in accordance EN 16147;

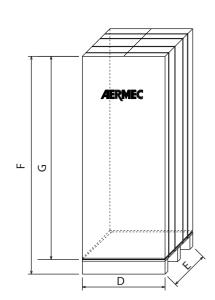

COP and noise data are calculated in the laboratory: The COP value is obtained with an outside air temperature of 2°C - 7°C - 14°C, inlet water temperature 10°C and the produced water set of 55°C for the (units SHW080-SHW110 according to EN 16147), inlet water temperature of 10°C and produced water set of 54°C for the (units SHW150-SHW200-SHW200-SHW250-SHW250S).


Sound power level: measured with an outdoor air temperature of 7° C, an inlet water temperature of 10° C, and a supply water temperature setpoint of 55° C in accordance with EN12102.

In addition to the electronic anode, the unit is also equipped with a magnesium rod to protect the unit in the event of a power outage.


DIMENSIONS

SHW080 - SHW110 - SHW150



SHW200 - SHW200S - SHW250 - SHW250S

		SHW080	SHW110	SHW150	SHW200	SHW200S	SHW250	SHW250S
Dimensions and weig	hts							
A	mm	492	492	492	600	600	600	600
В	mm	538	538	538	615	615	615	615
C	mm	1184	1334	1694	1697	1697	1985	1985
Net weight	kg	51,0	54,0	64,0	87,0	97,0	99,0	108,0
Dimensions and weig	hts for transpo	rt						
D	mm	587	587	587	736	736	736	736
E	mm	587	587	587	695	695	695	695
F	mm	1247	1397	1894	1940	1940	2250	2250
G	mm	-	-	-	1810	1810	2120	2120
Weight for transport	kg	58,0	62,0	83,0	110,0	120,0	122,0	132,0

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

MIC

Air-water chiller

Cooling capacity 3 kW

- Easy and quick to install compact
- Separable hydraulic circuit and refrigerant
- AISI304 stainless steel tank and pump impeller
- R513A refrigerant gas in A1 class with low GWP

DESCRIPTION

Air-cooled modular refrigerant to produce chilled water, designed and created to satisfy the cooling needs of industrial buildings.

Unit with alternative hermetic compressor and coaxial heat exchanger positioned in a 20-litre AlSI304 stainless steel tank.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

FEATURES

Operating field

Operation at full load up to 45 °C external air temperature. Unit can produce chilled water 20 °C up to -10 °C.

Refrigerant circuit

The refrigerant circuit is in the upper part of the machine and can be lifted up to be cleaned, or completely removed if a broken module needs to be replaced, leaving the hydronic part in place to ensure the system works properly.

Hydraulic components

 $\textbf{Standard configuration:} is \ fitted \ as \ standard$

- One differential pressure switch
- An interception tap on the heat exchanger, used to remove the upper part of the machine or to balance the load.
- An AISI304 STAINLESS steel tank
- Connection pipes made of copper
- Brass valves
- 4 STAINLESS steel grooved joints and 2 caps. The water input and output can only be defined in a unit without pumps by the client at the installation stage.

In the configuration with pumps, as well as the components supplied as standard, there is a choice between two pumps with different head.

Modularity

Thanks to its modular construction, the installation can be adapted to suit specific system development needs whilst guaranteeing improved safety and reliability.

As a result, the cooling capacity can be easily increased over time, at a limited cost.

The modules are easy to install and link together from the hydronic point of view, thanks to the connections with grooved joints.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

Modularity

There are 3 solutions for dealing with several modules:

Solution 1: no interconnection between modules

Each module works independently on its own set point.

If it is necessary to switch all the machines on or off, each module must be operated.

Solution 2: through remote ON-OFF contact (Master/Slave)

With this solution, several modules can be connected in parallel and, where necessary, the start-up and switch-off of all modules can be coordinated with a single command.

The electrical panel has a contact for remote ON/OFF, which can be used to connect several modules in parallel, so that the start-up of the first unit (Master) results in the cascade start-up of all subsequent connected units (Slaves).

Each module works independently on its own set point.

Solution 3: via an external supervisor (BMS)

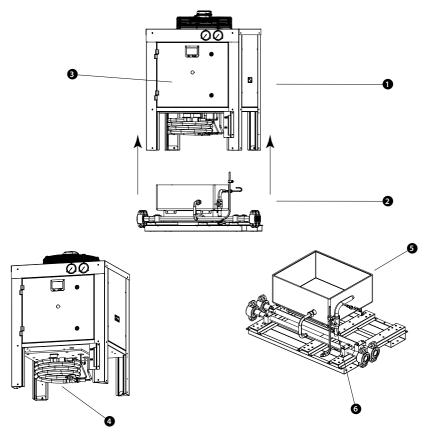
The modules can be controlled with an external supervisor with this solution using a ModBus (accessory) communication module.

ACCESSORIES

ETHERNET-RS485: Gateway to change a Modbus RS485 serial into a TCP-IP social

FB_MIC: Air filter to protect the coils. Formed of a frame and a composite baffle in micro-expanded aluminium mesh, with particularly low pressure drops.

MIC_RUE: Swivel wheels with locking system

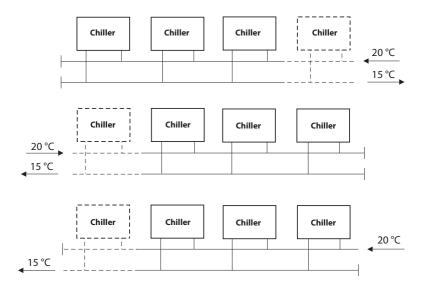

MODBUSMICS: This accessory allows you to manage up to multiple units, making available a serial in ModBus RTU protocol on RS485, for supervision with an external BMS.

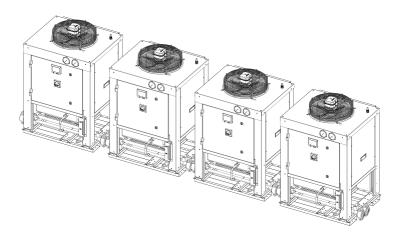
DCPXMICS: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

ACCESSORIES COMPATIBILITY

Accessory	MIC01°	MICO1P1	MICO1P2
ETHERNET-RS485	•	•	•
FB_MIC	•	•	•
MODBUSMICS	•	•	•
Accessory	MIC01°	MICO1P1	MICO1P2
DCPXMICS	•	•	•

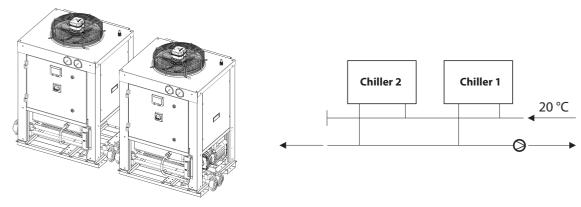
SEPARABLE HYDRAULIC CIRCUIT AND REFRIGERANT


Key:


- Refrigerant circuit Hydraulic circuit 1
- 3 Electric power board
- Conduit pipe evaporator AISI304 stainless steel tank 4
- 5
- Shut-off tap

393

MODULARITY OPTIONS


Units without pumps

■ Each machine is supplied with 4 grooved joints and two caps (machine input and output defined by the user depending on where the caps are positioned).

Several units and only one with a pump

■ The chiller with pump needs to be the first in the «chain» and the water entry position is secured.

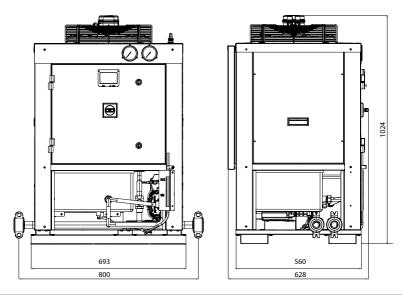
CONFIGURATOR

Field	Description
1,2,3	MIC
4,5	Size 01
6	Version
•	Cooling only
7	Coils
V	Copper pieps-Coated aluminium fins
0	Copper-aluminium
8	Fans
F	Phase cut
0	Standard
9,10	Integrated hydronic kit
00	With storage tank without pumps
P1	With storage tank and low head pump
P2	With storage tank and high head pump
11	Power supply
M	230V ~ 50Hz (without Schuko plug)
N	230V ~ 50Hz (with Schuko plug)

PERFORMANCE SPECIFICATIONS

		MICO1°	MICO1P1	MICO1P2			
Cooling performances 20 °C / 15 °C - (145	Cooling performances 20 °C / 15 °C - (14511:2022) (1)						
Cooling capacity	kW	3,0	2,9	2,9			
Input power	kW	1,3	1,5	1,6			
Input current	A	5,8	7,7	8,7			
EER	W/W	2,31	2,01	1,83			
Water flow rate system side	l/h	516	483	469			
Pressure drop system side	kPa	10	-	-			
Useful head system side	kPa	-	328	529			

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 20 °C / 15 °C;; External air 32 °C


ELECTRIC DATA

		MICO1°	MICO1P1	MICO1P2
Cooling only mode				
Maximum current (FLA)	A	9,0	12,1	13,4
Peak current (LRA)	A	30,0	33,0	34,3

GENERAL TECHNICAL DATA

		MICO1°	MICO1P1	MICO1P2
System side hydraulic connections				
Sizes (in/out)	Ø		1"	
System side heat exchanger				
Туре	type		Coassiale	
Number	no.	1	1	1
Water content	I	0,8	0,8	0,8
Minimum water flow rate	l/h	100	100	100
Maximum water flow rate	l/h	1200	1200	1200
Hydronic kit				
Storage tank capacity		20	20	20
Fan				
Туре	type		Axial	
Fan motor	type		Asynchronous	
Number	no.	1	1	1
Air flow rate	m³/h	1500	1500	1500
Total fan input power	W	120	120	120
Total fan input current	A	0,4	0,4	0,4

DIMENSIONS

		MICO1°	MICO1P1	MICO1P2
Dimensions and weights				
A	mm	1024	1024	1024
В	mm	628	628	628
C	mm	800	800	800

ANL 021-202

Air-water chiller

Cooling capacity 5,7 ÷ 43,3 kW

- Standard version
- Version with Integrated hydronic kit system side

DESCRIPTION

Chillers for external installation for chilled water production with scroll compressors, axial fans, external copper coils with aluminum louvers from size 020 to 090, microchannel from size 102 to 202.

The base, the structure and the panels are made of steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A With storage tank and pump

N With increased pump

P With pump

Q With storage tank and increased pump

FEATURES

Operating field

Operation at full load up to 46° C external air temperature. Unit can produce chilled water up to -10 $^{\circ}$ C.

Version with Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations to obtain a solution that allows you to facilitate installation.

Hot water production

In the configuration with desuperheater, it is also possible to produce free-hot water.

Double mechanical thermostat

On the configurator it is also possible to select the option "W" double mechanical thermostatic valve for low temperatures.

Using two electronic valves in parallel guarantees a precise and efficient control in a wide operating range. This allows them to produce chilled water from -10 $^{\circ}$ C to +18 $^{\circ}$ C.

The option is only available for sizes from 050 to 090 in the °-A-Q versions and from size 102 to 202 in all versions.

MODUCONTROL CONTROL

The command panel of the unit allows the rapid setting of the working parameters of the machine, and their visualisation. The display consists of 4 figures and various LEDs for indicating the type of operational mode, the visualisation of the parameters set and of any alarms triggered. The card stores all the default settings and any modifications.

ACCESSORIES

AERBAC-MODU: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP. The accessory is supplied with the unit and must be installed on an external electrical panel.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

MODU-485BL: RS-485 interface for supervision systems with MODBUS protocol

MULTICONTROL: Allows the simultaneous control of several units (up to 4), installed in the same hydraulic system.

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

SPLW: System water temperature sensor. In most cases the loose supplied sensors for each chiller/heat pump are sufficient. In cases of a common flow/return header this sensor can be used to control the common system supply water temperature for the chillers connected to the header, or it can be used for temperature monitoring

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with the VMF-E6 panel, the VMF-CRP modules will be able to manage heat recovery units, RAS, boiler, sanitary management, I/O control, pumps.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ For the installation of the PR4 remote panel, the MODU-485BL communication interface is indispensable.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

VT: Anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction. **RA:** Anti-freeze electric heater for the buffer tank.

KR: Anti-freeze electric heater for the plate heat exchanger.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Accessories

Model	Ver	021	026	031	041	050	070	080	090	102	152	202
	°,A,P	•	•	•	•	•	•	•	•	•	•	
AERBAC-MODU	N									•	•	
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•	•	•	•	•	•	•	•	
ERLINK	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
10DU-485BL	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
ULTICONTROL	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
PR3	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
GGD	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
PLW (1)	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
MF-CRP	N									•	•	•
	Q											

 $^{(1) \ \} Probe\ required\ for\ MULTICONTROL\ to\ manage\ the\ secondary\ circuit\ system.$

Remote panel

Model	Ver	021	026	031	041	050	070	080	090	102	152	202
	°,A,P	•	•	•	•	•	•	•	•	•		•
PR4	N									•	•	•
	Q					•	•	•	•	•	•	

For the installation of the PR4 remote panel, the MODU-485BL communication interface is indispensable.

DCPX: Condensation control temperature

Ver	021	026	031	041	050	070	080	090	102	152	202
°, A, P	DCPX50	DCPX52	DCPX52	DCPX52							
N	-	-	-	-	-	-	-	-	DCPX52	DCPX52	DCPX52
Q	-	-	-	-	DCPX50	DCPX50	DCPX50	DCPX50	DCPX52	DCPX52	DCPX52

VT: Antivibration

Ver	021	026	031	041	050	070	080	090	102	152	202
°, P	VT9	VT9	VT9	VT9	VT9	VT9	VT9	VT9	VT15	VT15	VT15
A	VT9	VT9	VT9	VT9	VT15						
N	-	-	-	-	-	-	-	-	VT15	VT15	VT15
0	-	-	-	-	VT15						

DRE: Device for peak current reduction

Ver	021	026	031	041	050	070	080	090	102	152	202
°, A, P, Q	-	-	-	-	DRE5 (1)	DRE5 (1)	DRE5 (1)	DRE5 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)
N	-	-	-	-	-	-	-	-	DRE5 x 2 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

KR: electric heater for the plate heat exchanger

Ver	021	026	031	041	050	070	080	090	102	152	202
°, P	KR2	KR100	KR100	KR100							
A, Q	-	-	-	-	KR2	KR2	KR2	KR2	KR100	KR100	KR100
N	-	-	-	-	-	-	-	-	KR100	KR100	KR100

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

RA: electric heater for the buffer tank

Ver	021	026	031	041	050	070	080	090	102	152	202
A	RA	RA100	RA100	RA100							
Q	-	-	-	-	RA	RA	RA	RA	RA100	RA100	RA100

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	ANL
4,5,6	Size 021, 026, 031, 041, 050, 070, 080, 090, 102, 152, 202
7	Model
0	Cooling only
8	Version
0	Standard
Α	With storage tank and pump
N	With increased pump (1)
Р	With pump
Q	With storage tank and increased pump (2)
9	Heat recovery
D	With desuperheater (3)
0	Without heat recovery
10	Coils
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
0	Copper-aluminium (4)
11	Operating field
W	Double mechanical thermostat for low temperature (5)
Υ	Low temperature mechanic thermostatic valve (6)
Z	Low temperatures mechanic thermostatic valve (7)
•	Standard mechanic thermostatic valve (8)
12	Evaporator
0	Standard
13	Power supply
М	230V ~ 50Hz (9)
•	400V 3N ~ 50Hz (10)

PERFORMANCE SPECIFICATIONS

ANL - $^{\circ}$ (400V 3N \sim 50Hz / 230V \sim 50Hz)

Size		021	026	031	041	050	070	080	090	102	152	202
Cooling performance 12 °C/7 °C (1)												
Cooling capacity	kW	5,7	6,2	7,5	9,6	13,4	16,4	20,4	22,2	26,5	32,9	42,8
Input power	kW	1,9	2,0	2,5	3,3	4,1	4,9	6,4	6,8	8,0	10,2	13,5
Cooling total input current	A	4,0	4,0	5,0	6,0	9,0	10,0	12,0	13,0	16,0	19,0	25,0
EER	W/W	3,03	3,04	2,99	2,90	3,26	3,33	3,18	3,28	3,32	3,21	3,18
Water flow rate system side	l/h	979	1065	1288	1649	2302	2834	3522	3831	4570	5669	7387
Pressure drop system side	kPa	21	21	22	24	30	30	36	50	58	61	68

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ANL - P (400V 3N ~ 50Hz / 230V ~ 50Hz)

	021	026	021	0.41	UEU	070	000	000	102	153	202
	UZ I	020	031	041	030	0/0	<u> </u>	090	102	132	202
kW	5,7	6,2	7,6	9,7	13,5	16,6	20,6	22,4	26,8	33,2	43,2
kW	1,8	2,0	2,5	3,2	4,1	4,9	6,4	6,7	8,1	10,5	13,8
A	4,0	5,0	5,0	7,0	10,0	11,0	13,0	14,0	17,0	21,0	27,0
W/W	3,11	3,12	3,07	2,97	3,31	3,38	3,23	3,35	3,32	3,15	3,13
l/h	979	1065	1288	1649	2302	2834	3522	3831	4570	5669	7387
kPa	73	73	71	65	76	72	57	52	84	115	91
	kW A W/W I/h	kW 1,8 A 4,0 W/W 3,11 I/h 979	kW 5,7 6,2 kW 1,8 2,0 A 4,0 5,0 W/W 3,11 3,12 I/h 979 1065	kW 5,7 6,2 7,6 kW 1,8 2,0 2,5 A 4,0 5,0 5,0 W/W 3,11 3,12 3,07 I/h 979 1065 1288	kW 5,7 6,2 7,6 9,7 kW 1,8 2,0 2,5 3,2 A 4,0 5,0 5,0 7,0 W/W 3,11 3,12 3,07 2,97 I/h 979 1065 1288 1649	kW 5,7 6,2 7,6 9,7 13,5 kW 1,8 2,0 2,5 3,2 4,1 A 4,0 5,0 5,0 7,0 10,0 W/W 3,11 3,12 3,07 2,97 3,31 I/h 979 1065 1288 1649 2302	kW 5,7 6,2 7,6 9,7 13,5 16,6 kW 1,8 2,0 2,5 3,2 4,1 4,9 A 4,0 5,0 5,0 7,0 10,0 11,0 W/W 3,11 3,12 3,07 2,97 3,31 3,38 I/h 979 1065 1288 1649 2302 2834	kW 5,7 6,2 7,6 9,7 13,5 16,6 20,6 kW 1,8 2,0 2,5 3,2 4,1 4,9 6,4 A 4,0 5,0 5,0 7,0 10,0 11,0 13,0 W/W 3,11 3,12 3,07 2,97 3,31 3,38 3,23 I/h 979 1065 1288 1649 2302 2834 3522	kW 5,7 6,2 7,6 9,7 13,5 16,6 20,6 22,4 kW 1,8 2,0 2,5 3,2 4,1 4,9 6,4 6,7 A 4,0 5,0 5,0 7,0 10,0 11,0 13,0 14,0 W/W 3,11 3,12 3,07 2,97 3,31 3,38 3,23 3,35 I/h 979 1065 1288 1649 2302 2834 3522 3831	kW 5,7 6,2 7,6 9,7 13,5 16,6 20,6 22,4 26,8 kW 1,8 2,0 2,5 3,2 4,1 4,9 6,4 6,7 8,1 A 4,0 5,0 5,0 7,0 10,0 11,0 13,0 14,0 17,0 W/W 3,11 3,12 3,07 2,97 3,31 3,38 3,23 3,35 3,32 I/h 979 1065 1288 1649 2302 2834 3522 3831 4570	kW 5,7 6,2 7,6 9,7 13,5 16,6 20,6 22,4 26,8 33,2 kW 1,8 2,0 2,5 3,2 4,1 4,9 6,4 6,7 8,1 10,5 A 4,0 5,0 5,0 7,0 10,0 11,0 13,0 14,0 17,0 21,0 W/W 3,11 3,12 3,07 2,97 3,31 3,38 3,23 3,35 3,32 3,15 I/h 979 1065 1288 1649 2302 2834 3522 3831 4570 5669

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

⁽¹⁾ Only for ANL 102 ÷ 202 sizes
(2) Only for ANL 050 ÷ 202 sizes
(3) If the unit is also fitted with one of the low temperature valves in addition to the desuperheater, it is (4) If the unit's also inteed with one of the low temperature valves in addition to the despendence, it is necessary to always guarantee a water temperature of 35°C at the inlet of the heat exchanger. The desuperheater is only available in sizes from 050 to 090 in the version with storage tank "A", and from size 102 to 202 in all versions.
 (4) Sizes from 102 to 202 have a micro-channel coil

⁽⁵⁾ Water produced from -10 °C to 18 °C; Option available only for sizes starting from 050 to 090 in the °-A-Q versions and from 102 to 202 in all versions

(6) Water produced from 0 °C up to -10 °C

(7) Water produced from +4 °C up to +0 °C

(8) Water produced up to +4 °C

(9) Only for ANL 021 ÷ 041 sizes

(10) For all sizes

ANL - N (400V 3N ~ 50Hz)

Size		021	026	031	041	050	070	080	090	102	152	202
Cooling performance 12 °C / 7 °C (1)												
Cooling capacity	kW	-	-	-	-	-	-	-	-	26,8	33,3	43,3
Input power	kW	-	-	-	-	-	-	-	-	8,5	10,6	13,8
Cooling total input current	A	-	-	-	-	-	-	-	-	18,0	21,0	27,0
EER	W/W	-	-	-	-	-	-	-	-	3,17	3,15	3,13
Water flow rate system side	l/h	-	-	-	-	-	-	-	-	4570	5669	7387
Useful head system side	kPa	-	-	-	-	-	-	-	-	140	185	159

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ANL - A (400V 3N ~ 50Hz / 230V ~ 50Hz)

Size	'	021	026	031	041	050	070	080	090	102	152	202
Cooling performance 12 °C/7 °C(1)	,											
Cooling capacity	kW	5,7	6,2	7,6	9,7	13,5	16,6	20,6	22,4	26,8	33,2	43,2
Input power	kW	1,8	2,0	2,5	3,2	4,1	4,9	6,4	6,7	8,1	10,5	13,8
Cooling total input current	A	4,0	5,0	5,0	7,0	10,0	11,0	13,0	14,0	17,0	21,0	27,0
EER	W/W	3,11	3,12	3,07	2,97	3,31	3,38	3,23	3,35	3,32	3,15	3,13
Water flow rate system side	l/h	979	1065	1288	1649	2302	2834	3522	3831	4570	5669	7387
Useful head system side	kPa	73	73	71	65	76	72	57	52	84	115	91

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ANL - Q (400V 3N ~ 50Hz)

Size		021	026	031	041	050	070	080	090	102	152	202
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	-	-	-	-	13,6	16,7	20,7	22,5	26,8	33,3	43,3
Input power	kW	-	-	-	-	4,2	5,0	6,5	6,8	8,5	10,6	13,8
Cooling total input current	A	-	-	-	-	10,0	11,0	13,0	14,0	18,0	21,0	27,0
EER	W/W	-	-	-	-	3,24	3,33	3,19	3,31	3,17	3,15	3,13
Water flow rate system side	l/h	-	-	-	-	2302	2834	3522	3831	4570	5669	7387
Useful head system side	kPa	-	-	-	-	160	159	144	140	140	185	159

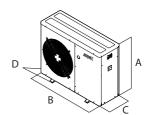
⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

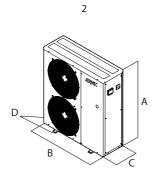
ENERGY INDICES (REG. 2016/2281 EU)

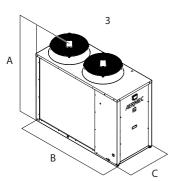
Size			021	026	031	041	050	070	080	090	102	152	202
SEER - 12/7 (EN14825:2018) with sta	andard fans (1)												
	0	W/W	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
CLLD	A,P	W/W	4,18	4,20	4,17	4,10	4,16	4,34	4,19	4,31	4,11	4,11	4,10
SEER	N	W/W	-	-	-	-	-	-	-	-	- (2)	- (2)	- (2)
	Q	W/W	-	-	-	-	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	٥	%	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
Casanal afficiency	A,P	%	164,00	164,80	163,60	161,00	163,40	170,70	164,60	169,40	161,30	161,20	161,10
Seasonal efficiency	N	%	-	-	-	-	-	-	-	-	- (2)	- (2)	- (2)
	Q	%	-	-	-	-	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
SEER - 23/18 (EN14825: 2018) with s	tandard fans (3)												
	٥	W/W	4,34	4,35	4,31	4,21	4,55	4,68	4,49	4,61	4,83	4,73	4,69
CLLD	A,P	W/W	4,49	4,51	4,48	4,47	4,55	4,64	4,57	4,66	4,49	4,25	4,28
SEER	N	W/W	-	-	-	-	-	-	-	-	4,15	4,18	4,23
	Q	W/W	-	-	-	-	4,18	4,44	4,35	4,49	4,15	4,18	4,23
	٥	%	170,40	170,90	169,20	165,20	179,10	184,30	176,60	181,50	190,30	186,00	184,70
C	A,P	%	176,70	177,50	176,00	175,60	179,00	182,40	179,80	183,50	176,60	167,00	168,00
Seasonal efficiency	N	%	-	-	-	-	-	-	-	-	163,10	164,20	166,00
	Q	%	-	-	-	-	164,30	174,50	171,10	176,70	163,10	164,20	166,00
SEPR - (EN14825: 2018) High tempe	rature with standa	rd fans (3)											
	0	W/W	5,92	5,92	5,85	5,69	6,36	6,50	6,21	6,43	6,79	6,58	6,49
SEPR	A,P	W/W	6,56	6,57	6,45	6,21	6,74	6,90	6,55	6,78	6,68	6,18	6,17
PR	N	W/W	-	-	-	-	-	-	-	-	5,91	6,09	6,10
	Q	W/W	-	-	-	-	6,03	6,28	6,08	6,30	5,91	6,09	6,10

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C/7°C
(3) Calculation performed with FIXED water flow rate.

ELECTRIC DATA


Size			021	026	031	041	050	070	080	090	102	152	202
Electric data													
Maximum current (FLA)	°,A,N,P,Q	Α	-	-	-	-	-	-	-	-	-	-	-
Peak current (LRA)	°,A,N,P,Q	Α	-	-	-	-	-	-	-	-	-	-	-


GENERAL TECHNICAL DATA


		ANL021	ANL026	ANL031	ANL041	ANL050	ANL070	ANL080	ANL090	ANL102	ANL152	ANL202
Compressor												
Туре	type						Scroll					
Compressor regulation	Туре						0n-0ff					
Number	no.	1	1	1	1	1	1	1	1	2	2	2
Circuits	no.	1	1	1	1	1	1	1	1	1	1	1
Refrigerant	type						R410A					
Refrigerant charge (1)	kg	1,2	1,2	1,2	1,3	2,8	2,8	3,0	3,9	5,9	5,9	5,9
System side heat exchanger												
Туре	type						Brazed plate					
Number	no.	1	1	1	1	1	1	1	1	1	1	1
System side hydraulic connections												
Sizes (in/out)	Ø						1″1/4					
Fan												
Туре	type						Axial					
Fan motor	type					Asynch	ronous with p	nase cut				
Number	no.	1	1	1	1	2	2	2	2	2	2	2
Air flow rate	m³/h	2500	2500	3500	3500	7200	7200	7300	7200	14000	13500	13500
Sound data calculated in cooling mode (2)												
Sound power level	dB(A)	61,0	61,0	68,0	68,0	69,0	69,0	69,0	68,0	76,0	77,0	78,0
Sound pressure level (1 m)	dB(A)	29,8	29,8	36,8	36,8	37,6	37,6	37,6	36,6	44,5	45,5	46,5

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

- ANL 021-041
- ANL 050-070 2
- 3 ANL 102-202

Size			021	026	031	041	050	070	080	090	102	152	202
Dimensions and weights													
	°,P	mm	1000	1000	1000	1000	1252	1252	1252	1252	1450	1450	1450
Λ	Α	mm	1015	1015	1015	1015	1281	1281	1281	1281	1450	1450	1450
A	N	mm	-	-	-	-	-	-	-	-	1450	1450	1450
	Q	mm	-	-	-	-	1281	1281	1281	1281	1450	1450	1450
	°,P	mm	900	900	900	900	1124	1124	1124	1124	1750	1750	1750
n	A	mm	1124	1124	1124	1124	1165	1165	1165	1165	1750	1750	1750
В	N	mm	-	-	-	-	-	-	-	-	1750	1750	1750
	Q	mm	-	-	-	-	1165	1165	1165	1165	1750	1750	1750
	°,P	mm	310	310	310	310	384	384	384	384	750	750	750
	A	mm	384	384	384	384	550	550	550	550	750	750	750
	N	mm	-	-	-	-	-	-	-	-	750	750	750
	Q	mm	-	-	-	-	550	550	550	550	750	750	750
	°,P	mm	354	354	354	354	428	428	428	428	-	-	-
n	A	mm	428	428	428	428	-	-	-	-	-	-	-
D	N	mm	-	-	-	-	-	-	-	-	-	-	-
	Q	mm	-	-	-	-	-	-	-	-	-	-	-
	٥	kg	86	86	86	86	120	120	120	156	270	293	329
	A	kg	103	103	103	103	147	147	147	183	338	364	400
Empty weight	N	kg	-	-	-	-	-	-	-	-	338	364	400
	Р	kg	91	91	91	91	127	127	163	163	288	314	350
	Q	kg	-	-	-	-	151	151	151	187	338	364	400

ANL 021H -203H

Reversible air/water heat pump

Cooling capacity 5,7 ÷ 49,1 kW – Heating capacity 6,2 ÷ 43,3 kW

- It is possible to produce hot domestic water
- Compact dimensions
- · Quick & easy installation

DESCRIPTION

Reversible air/water heat pump for air conditioning systems with cold water production for cooling rooms and hot water for heating and/or domestic hot water services, suitable for connection with small or medium users. Equipped with scroll compressors, axial fans, external coil with aluminium louvers, plate heat exchanger on the side.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A With storage tank and pump

N With increased pump

P With pump

Q With storage tank and increased pump

FEATURES

Operating field

Full load up to 46 °C ambient air temperature with the possibility to produce chilled water down to -10°C in cooling mode (for more details refer to the technical documentation).

Version with Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations to obtain a solution that allows you to facilitate installation.

Inverter fans

Inverter fans from size 031 to 091 for all sizes.

■ The DCPX accessory is not required for these sizes.

Double mechanical thermostat

On the configurator it is also possible to select the option "W" double mechanical thermostatic valve for low temperatures.

Using two electronic valves in parallel guarantees a precise and efficient control in a wide operating range. This allows them to produce chilled water from -10 $^{\circ}$ C to +18 $^{\circ}$ C.

The option is available only for sizes starting from 051 to 091 in the °-A-Q versions and from size 103 to 203 in all versions.

MODUCONTROL CONTROL

The command panel of the unit allows the rapid setting of the working parameters of the machine, and their visualisation. The display consists of 4 figures and various LEDs for indicating the type of operational mode, the visualisation of the parameters set and of any alarms triggered. The card stores all the default settings and any modifications.

ACCESSORIES

AERBAC-MODU: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP. The accessory is supplied with the unit and must be installed on an external electrical panel.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

MODU-485BL: RS-485 interface for supervision systems with MODBUS protocol

MULTICONTROL: Allows the simultaneous control of several units (up to 4), installed in the same hydraulic system.

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

SDHW: Domestic hot water sensor. To be used with a storage tank for the control of water temperature produced.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

SPLW: System water temperature sensor. In most cases the loose supplied sensors for each chiller/heat pump are sufficient. In cases of a common flow/ return header this sensor can be used to control the common system supply

water temperature for the chillers connected to the header, or it can be used for temperature monitoring

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with the VMF-E6 panel, the VMF-CRP modules will be able to manage heat recovery units, RAS, boiler, sanitary management, I/O control, pumps.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ For the installation of the PR4 remote panel, the MODU-485BL communication interface is indispensable.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

VT: Anti-vibration supports.

BDX: Condensate drip.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction. **RA:** Anti-freeze electric heater for the buffer tank.

KR: Anti-freeze electric heater for the plate heat exchanger.

KRB: Electric anti-freeze resistance kit for base.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	021	026	031	041	051	071	081	091	103	153	203
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
AERBAC-MODU	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•		•	•		•	•	•		•	•
AERLINK	N										•	•
	Q					•	•	•	•	•	•	•
	°,A,P			•						•		
MODU-485BL	N									•	•	•
	Q					•	•		•		•	•
	°,A,P			•	•		•		•		•	•
MULTICONTROL	N									•	•	•
	Q					•	•	•		•	•	•
	°,A,P	•	•		•	•	•			•	•	•
PR3	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
SDHW (1)	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
SGD	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•			•	•	•	•	•	•
SPLW (2)	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•		•	•	•	•	•	•	•	•	•
VMF-CRP	N									•	•	•
	Q					•	•	•		•		•

⁽¹⁾ Probe required for MULTICONTROL for managing the domestic hot water system.
(2) Probe required for MULTICONTROL to manage the secondary circuit system.

Remote panel

Model	Ver	021	026	031	041	051	071	081	091	103	153	203
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
PR4	N											•
	Q									•		•

For the installation of the PR4 remote panel, the MODU-485BL communication interface is indispensable.

DCPX: Condensation control temperature

Ver	021	026	031	041	051	071	081	091	103	153	203
°, A, P	DCPX51	DCPX51	-	-	-	-	-	-	DCPX53	DCPX53	DCPX53
0	-	-	-	-	-	-	-	-	DCPX53	DCPX53	DCPX53

The accessory cannot be fitted on the configurations indicated with -

Antivibration

Ver	021	026	031	041	051	071	081	091	103	153	203
°, P	VT9	VT9	VT9	VT9	VT9	VT9	VT9	VT9	VT15	VT15	VT15
A	VT9	VT9	VT9	VT9	VT15						
N	-	-	-	-	-	-	-	-	VT15	VT15	VT15
Q	-	-	-	-	VT15						

Condensate drip

Ver	021	026	031	041	051	071	081	091	103	153	203
°, P	BDX5	-	-	-							
A	BDX5	BDX5	BDX5	BDX5	BDX6	BDX6	BDX6	BDX6	-	-	-
Q	-	-	-	-	BDX6	BDX6	BDX6	BDX6	-	-	-

The accessory cannot be fitted on the configurations indicated with -

DRE: Device for peak current reduction

Ver	021	026	031	041	051	071	081	091	103	153	203
°, A, P, Q	-	-	-	-	DRE5 (1)	DRE5 (1)	DRE5 (1)	DRE5 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)
N	-	-	-	-	-	-	-	-	DRE5 x 2 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered.

A grey background indicates the accessory must be assembled in the factory

KR: electric heater for the heat exchanger

Ver	021	026	031	041	051	071	081	091	103	153	203
°,P	KR2	KR100	KR100	KR100							
A	-	-	-	-	KR2	KR2	KR2	KR2	KR100	KR100	KR100
N, 0	-	-	-	-	-	-	-	-	KR100	KR100	KR100

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

RA: Anti-freeze electric heater for the buffer tank

Ver	021	026	031	041	051	071	081	091	103	153	203
A	RA	RA100	RA100	RA100							
0	-	-	-	-	RA	RA	RA	RA	RA100	RA100	RA100

A grey background indicates the accessory must be assembled in the factory

KRB: Electric heater for the base

Ver	021	026	031	041	051	071	081	091	103	153	203
°, A, N, P, Q	-	-	-	-	-	-	-	-	KRB3 (1)	KRB3 (1)	KRB3 (1)

(1) Incompatible with the condensate collection basin accessory with integrated resistance.

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	ANL
4,5,6	Size 021, 026, 031, 041, 051, 071, 081, 091, 103, 153, 203
7	Model
Н	Heat pump
8	Version
0	Standard
Α	With storage tank and pump
N	With increased pump (1)
Р	With pump
Q	With storage tank and increased pump (2)
9	Heat recovery
D	With desuperheater (3)
٥	Without heat recovery
10	Coils
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
0	Copper-aluminium
11	Operating field
W	Double mechanical thermostat for low temperature (4)
٥	Standard mechanic thermostatic valve
12	Evaporator
0	Standard
13	Power supply
М	230V ~ 50Hz (5)
0	400V 3N ~ 50Hz (6)

⁽¹⁾ Only for ANL 103 ÷ 203 sizes
(2) Only for ANL 051 ÷ 203 sizes
(3) The desuperheater must be intercepted during heating mode. If the unit is also fitted with one of the low temperature valves in addition to the desuperheater, during cold operation, it is necessary to always guarantee a water temperature of 35° cal the inlet of the heat exchanger. It is only available in sizes from 051 to 091 in the version with storage tank "A", and from size 103 to 203 in all versions.
(4) Water produced from -10 °C to 18 °C; Option available only for sizes starting from 051 to 091 in the °-A-Q versions and from 103 to 203 in all versions
(5) Only for ANL 021 ÷ 041 sizes
(6) Only for ANL 021 ÷ 203 sizes

PERFORMANCE SPECIFICATIONS 12 °C/ 7 °C - 40 °C/ 45 °C

ANL - (°) / 12/7 °C - 40/45 °C (400V 3N ~ 50Hz / 230V ~ 50Hz)

Size		021	026	031	041	051	071	081	091	103	153	203
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	5,7	6,2	7,5	9,6	13,4	16,3	20,1	21,6	25,6	31,8	40,3
Input power	kW	1,8	2,0	2,5	3,2	4,3	5,8	6,5	6,6	9,0	10,8	13,8
Cooling total input current	A	3,7	4,2	4,7	6,2	8,7	9,7	12,0	13,0	16,0	19,0	25,0
EER	W/W	3,10	3,10	3,05	2,95	3,12	2,82	3,07	3,30	2,85	2,94	2,92
Water flow rate system side	l/h	979	1065	1289	1649	2294	2807	3452	3713	4398	5467	6929
Pressure drop system side	kPa	30	31	32	30	34	35	44	60	55	57	62
Heating performance 40 °C / 45 °C (2)												
Heating capacity	kW	6,2	7,0	8,4	9,8	13,2	17,3	20,9	22,0	26,1	35,3	41,8
Input power	kW	1,9	2,1	2,6	3,0	4,0	5,1	5,9	6,2	8,6	10,8	12,3
Heating total input current	A	3,8	4,4	5,4	6,8	9,5	10,0	13,0	14,0	17,0	19,0	25,0
COP	W/W	3,26	3,33	3,23	3,27	3,26	3,37	3,56	3,56	3,05	3,28	3,40
Water flow rate system side	l/h	1078	1217	1460	1700	2294	3007	3638	3827	4529	6137	7265
Pressure drop system side	kPa	36	40	41	37	38	39	53	72	70	70	78

ANL - (A) / 12/7 °C - 40/45 °C (400V 3N ~ 50Hz / 230V ~ 50Hz)

Size		021	026	031	041	051	071	081	091	103	153	203
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	5,7	6,2	7,5	9,6	13,4	16,3	20,1	21,6	25,6	31,8	40,3
Input power	kW	1,9	2,1	2,5	3,3	4,5	6,0	6,7	6,7	9,6	11,8	14,9
Cooling total input current	A	4,0	4,5	5,0	6,6	9,3	10,0	13,0	13,0	17,0	21,0	27,0
EER	W/W	2,98	2,99	2,95	2,88	3,00	2,74	2,99	3,21	2,67	2,69	2,70
Water flow rate system side	l/h	979	1065	1289	1649	2294	2807	3452	3713	4398	5467	6929
Useful head system side	kPa	73	73	71	65	76	72	57	52	88	125	111
Heating performance 40 °C / 45 °C (2)												
Heating capacity	kW	6,2	7,0	8,4	9,8	13,2	17,3	20,9	22,0	26,1	35,3	41,8
Input power	kW	2,0	2,2	2,7	3,1	4,2	5,3	6,1	6,4	9,2	11,8	13,4
Heating total input current	A	4,1	4,7	5,8	7,2	10,0	11,0	14,0	14,0	18,0	21,0	27,0
СОР	W/W	3,14	3,21	3,13	3,18	3,13	3,26	3,45	3,45	2,85	2,98	3,11
Water flow rate system side	l/h	1078	1217	1460	1700	2294	3007	3638	3827	4529	6137	7265
Useful head system side	kPa	68	67	65	58	72	65	46	40	64	94	68

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C /7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

ANL - (P) / 12/7 °C - 40/45 °C (400V 3N ~ 50Hz / 230V ~ 50Hz)

Size		021	026	031	041	051	071	081	091	103	153	203
Cooling performance 12 °C/7 °C (1)												
Cooling capacity	kW	5,7	6,2	7,5	9,6	13,4	16,3	20,1	21,6	25,6	31,8	40,3
Input power	kW	1,9	2,1	2,5	3,3	4,5	6,0	6,7	6,7	9,6	11,8	14,9
Cooling total input current	A	4,0	4,5	5,0	6,6	9,3	10,0	13,0	13,0	17,0	21,0	27,0
EER	W/W	2,98	2,99	2,95	2,88	3,00	2,74	2,99	3,21	2,67	2,69	2,70
Water flow rate system side	l/h	979	1065	1289	1649	2294	2807	3452	3713	4398	5467	6929
Useful head system side	kPa	73	73	71	65	76	72	57	52	88	125	111
Heating performance 40 °C / 45 °C (2)												
Heating capacity	kW	6,2	7,0	8,4	9,8	13,2	17,3	20,9	22,0	26,1	35,3	41,8
Input power	kW	2,0	2,2	2,7	3,1	4,2	5,3	6,1	6,4	9,2	11,8	13,4
Heating total input current	A	4,1	4,7	5,8	7,2	10,0	11,0	14,0	14,0	18,0	21,0	27,0
COP	W/W	3,14	3,21	3,13	3,18	3,13	3,26	3,45	3,45	2,85	2,98	3,11
Water flow rate system side	l/h	1078	1217	1460	1700	2294	3007	3638	3827	4529	6137	7265
Useful head system side	kPa	68	67	65	58	72	65	46	40	64	94	68

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

ANL - (Q) / 12/7 °C - 40/45 °C (400V 3N \sim 50Hz)

Size		021	026	031	041	051	071	081	091	103	153	203
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	-	-	-	-	13,4	16,3	20,1	21,6	25,6	31,8	40,3
Input power	kW	-	-	-	-	4,8	6,3	7,1	7,1	10,1	12,0	15,2
Cooling total input current	A	-	-	-	-	9,7	11,0	13,0	14,0	18,0	21,0	27,0
EER	W/W	-	-	-	-	2,81	2,59	2,83	3,04	2,54	2,64	2,66
Water flow rate system side	l/h	-	-	-	-	2294	2807	3452	3713	4398	5467	6929
Useful head system side	kPa	-	-	-	-	160	159	144	140	147	192	170
Heating performance 40 °C / 45 °C (2)												
Heating capacity	kW	-	-	-	-	13,2	17,3	20,9	22,0	26,1	35,3	41,8
Input power	kW	-	-	-	-	4,5	5,7	6,4	6,8	9,7	12,1	13,7
Heating total input current	A	-	-	-	-	10,0	11,0	14,0	15,0	19,0	21,0	28,0
COP	W/W	-	-	-	-	2,92	3,06	3,24	3,26	2,69	2,92	3,06
Water flow rate system side	l/h	-	-	-	-	2294	3007	3638	3827	4529	6137	7265
Useful head system side	kPa	-	-	-	-	154	151	131	126	107	169	141

ANL - (N) / 12/7 °C - 40/45 °C (400V 3N \sim 50Hz)

Size		021	026	031	041	051	071	081	091	103	153	203
Cooling performance 12 °C/7 °C (1)												
Cooling capacity	kW	-	-	-	-	-	-	-	-	25,8	32,1	40,6
Input power	kW	-	-	-	-	-	-	-	-	9,6	11,4	14,5
Cooling total input current	A	-	-	-	-	-	-	-	-	18,0	21,0	27,0
EER	W/W	-	-	-	-	-	-	-	-	2,68	2,82	2,81
Water flow rate system side	l/h	-	-	-	-	-	-	-	-	4398	5467	6929
Useful head system side	kPa	-	-	-	-	-	-	-	-	147	192	170
Heating performance 40 °C / 45 °C (2)												
Heating capacity	kW	-	-	-	-	-	-	-	-	26,1	35,3	41,8
Input power	kW	-	-	-	-	-	-	-	-	9,7	12,1	13,7
Heating total input current	A	-	-	-	-	-	-	-	-	19,0	21,0	28,0
COP	W/W	-	-	-	-	-	-	-	-	2,69	2,92	3,06
Water flow rate system side	l/h	-	-	-	-	-	-	-	-	4529	6137	7265
Useful head system side	kPa	-	-	-	-	-	-	-	-	107	169	141

PERFORMANCE SPECIFICATIONS 23 °C/ 18 °C - 30 °C/ 35 °C

ANL - (°) / 23/18 °C - 30/35 °C (400V 3N \sim 50Hz / 230V \sim 50Hz)

Size		021	026	031	041	051	071	081	091	103	153	203
Cooling performance 23 °C / 18 °C (1)												
Cooling capacity	kW	6,9	7,5	9,1	11,6	16,1	19,8	24,3	26,1	31,0	38,5	48,8
Input power	kW	1,9	2,1	2,5	3,4	4,4	6,0	6,8	6,8	9,3	11,2	14,3
Cooling total input current	A	3,8	4,3	4,9	6,4	9,0	10,0	13,0	13,0	16,0	19,0	26,0
EER	W/W	3,62	3,62	3,56	3,45	3,64	3,30	3,59	3,85	3,33	3,44	3,41
Water flow rate system side	l/h	1189	1293	1564	2002	2784	3407	4189	4506	5338	6636	8410
Pressure drop system side	kPa	44	46	47	44	50	52	65	88	81	84	92
Heating performance 30 °C / 35 °C (2)												
Heating capacity	kW	6,5	7,3	8,8	10,2	13,8	18,1	21,8	23,0	27,2	36,8	43,6
Input power	kW	1,6	1,8	2,2	2,7	3,5	4,6	5,2	5,5	7,6	9,6	10,9
Heating total input current	A	3,3	3,8	4,6	6,0	8,1	9,1	11,0	12,0	15,0	17,0	22,0
COP	W/W	3,98	4,06	3,94	3,84	3,97	3,96	4,18	4,18	3,58	3,85	4,00
Water flow rate system side	I/h	1120	1265	1518	1767	2385	3126	3782	3979	4709	6381	7553
Pressure drop system side	kPa	39	43	44	40	41	42	57	78	76	76	84
(4) 8 80144844444	05/ 05											

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C /7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

ANL - (A) / 23/18 °C - 30/35 °C (400V 3N \sim 50Hz / 230V \sim 50Hz)

Size		021	026	031	041	051	071	081	091	103	153	203
Cooling performance 23 °C / 18 °C (1)												
Cooling capacity	kW	6,9	7,5	9,1	11,6	16,1	19,8	24,3	26,1	31,0	38,5	48,8
Input power	kW	2,0	2,2	2,6	3,5	4,6	6,2	7,0	7,0	9,9	12,3	15,5
Cooling total input current	Α	4,2	4,7	5,2	6,8	9,7	11,0	13,0	14,0	17,0	21,0	28,0
EER	W/W	3,48	3,49	3,45	3,36	3,50	3,20	3,49	3,75	3,11	3,13	3,14
Water flow rate system side	l/h	1189	1293	1564	2002	2784	3407	4189	4506	5338	6636	8410
Useful head system side	kPa	63	63	60	51	60	53	31	24	47	63	41
Heating performance 30 °C / 35 °C (2)												
Heating capacity	kW	6,5	7,3	8,8	10,2	13,8	18,1	21,8	23,0	27,2	36,8	43,6
Input power	kW	1,7	1,9	2,3	2,7	3,6	4,7	5,4	5,7	8,2	10,6	12,1
Heating total input current	Α	3,6	4,1	5,0	6,4	8,8	9,8	12,0	13,0	16,0	19,0	24,0
COP	W/W	3,80	3,89	3,79	3,72	3,78	3,81	4,03	4,04	3,31	3,46	3,61
Water flow rate system side	l/h	1120	1265	1518	1767	2385	3126	3782	3979	4709	6381	7553
Useful head system side	kPa	67	64	62	55	69	61	41	34	55	81	53

ANL - (P) / 23/18 °C - 30/35 °C (400V 3N \sim 50Hz / 230V \sim 50Hz)

Size	,	021	026	031	041	051	071	081	091	103	153	203
Cooling performance 23 °C / 18 °C (1)												
Cooling capacity	kW	6,9	7,5	9,1	11,6	16,1	19,8	24,3	26,1	31,0	38,5	48,8
Input power	kW	2,0	2,2	2,6	3,5	4,6	6,2	7,0	7,0	9,9	12,3	15,5
Cooling total input current	A	4,2	4,7	5,2	6,8	9,7	11,0	13,0	14,0	17,0	21,0	28,0
EER	W/W	3,48	3,49	3,45	3,36	3,50	3,20	3,49	3,75	3,11	3,13	3,14
Water flow rate system side	l/h	1189	1293	1564	2002	2784	3407	4189	4506	5338	6636	8410
Useful head system side	kPa	63	63	60	51	60	53	31	24	47	63	41
Heating performance 30 °C / 35 °C (2)												
Heating capacity	kW	6,5	7,3	8,8	10,2	13,8	18,1	21,8	23,0	27,2	36,8	43,6
Input power	kW	1,7	1,9	2,3	2,7	3,6	4,7	5,4	5,7	8,2	10,6	12,1
Heating total input current	Α	3,6	4,1	5,0	6,4	8,8	9,8	12,0	13,0	16,0	19,0	24,0
COP	W/W	3,80	3,89	3,79	3,72	3,78	3,81	4,03	4,04	3,31	3,46	3,61
Water flow rate system side	l/h	1120	1265	1518	1767	2385	3126	3782	3979	4709	6381	7553
Useful head system side	kPa	67	64	62	55	69	61	41	34	55	81	53

ANL - (Q) / 23/18 °C - 30/35 °C (400V 3N ~ 50Hz)

Size		021	026	031	041	051	071	081	091	103	153	203
Cooling performance 23 °C / 18 °C (1)												
Cooling capacity	kW	-	-	-	-	16,1	19,8	24,3	26,1	31,0	38,5	48,8
Input power	kW	-	-	-	-	4,9	6,5	7,4	7,4	10,5	12,5	15,8
Cooling total input current	Α	-	-	-	-	10,0	11,0	14,0	14,0	18,0	22,0	28,0
EER	W/W	-	-	-	-	3,27	3,02	3,30	3,53	2,95	3,07	3,08
Water flow rate system side	l/h	-	-	-	-	2784	3407	4189	4506	5338	6636	8410
Useful head system side	kPa	-	-	-	-	136	135	114	108	79	146	114
Heating performance 30 °C/35 °C(2)												
Heating capacity	kW	-	-	-	-	13,8	18,1	21,8	23,0	27,2	36,8	43,6
Input power	kW	-	-	-	-	4,0	5,1	5,8	6,1	8,7	10,9	12,3
Heating total input current	Α	-	-	-	-	9,1	10,0	13,0	13,0	17,0	19,0	25,0
COP	W/W	-	-	-	-	3,49	3,55	3,77	3,78	3,11	3,38	3,54
Water flow rate system side	l/h	-	-	-	-	2385	3126	3782	3979	4709	6381	7553
Useful head system side	kPa	-	-	-	-	149	146	125	119	92	159	129

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C / 35 °C; External air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18°C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/ 35 °C; External air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

ANL - (N) / 23/18 °C - 30/35 °C (400V 3N \sim 50Hz)

Size		021	026	031	041	051	071	081	091	103	153	203
Cooling performance 23 °C / 18 °C (1)												
Cooling capacity	kW	-	-	-	-	-	-	-	-	31,1	38,7	49,0
Input power	kW	-	-	-	-	-	-	-	-	10,2	11,9	15,2
Cooling total input current	A	-	-	-	-	-	-	-	-	18,0	22,0	28,0
EER	W/W	-	-	-	-	-	-	-	-	3,07	3,25	3,23
Water flow rate system side	l/h	-	-	-	-	-	-	-	-	5338	6636	8410
Useful head system side	kPa	-	-	-	-	-	-	-	-	79	146	114
Heating performance 30 °C / 35 °C (2)												
Heating capacity	kW	-	-	-	-	-	-	-	-	27,0	36,6	43,4
Input power	kW	-	-	-	-	-	-	-	-	8,4	10,2	11,7
Heating total input current	A	-	-	-	-	-	-	-	-	17,0	19,0	25,0
COP	W/W	-	-	-	-	-	-	-	-	3,22	3,57	3,71
Water flow rate system side	l/h	-	-	-	-	-	-	-	-	4709	6381	7553
Useful head system side	kPa	-	-	-	-	-	-	-	-	92	159	129

ENERGY DATA

LINERGI DAIA													
Size			021	026	031	041	051	071	081	091	103	153	203
Cooling capacity with low leaving wate	r temp (UE n° 20	16/2281)											
	0	W/W	3,13	3,19	3,28	3,34	3,76	3,49	3,80	3,91	3,58	3,74	3,73
SEER	A,P	W/W	3,29	3,36	3,45	3,50	3,89	3,69	3,99	4,16	3,55	3,53	3,55
SEEK	N	W/W	-	-	-	-	-	-	-	-	3,14	3,48	3,53
	Q	W/W	-	-	-	-	3,30	3,24	3,53	3,75	3,14	3,48	3,53
	٥	%	122,00	125,00	128,00	131,00	147,00	137,00	149,00	153,00	140,00	146,00	146,00
nce	A,P	%	129,00	131,00	135,00	137,00	153,00	145,00	157,00	163,00	139,00	138,00	139,00
ηςς	N	%	-	-	-	-	-	-	-	-	123,00	136,00	138,00
	Q	%	-	-	-	-	129,00	127,00	138,00	147,00	123,00	136,00	138,00
UE 811/2013 performance in average at	nbient conditio	ns (average)	- 35 °C - Pdes	ignh ≤ 70 kV	V (1)								
Pdesignh	°,A,N,P,Q	kW	-	-	-	-	-	-	-	-	-	-	-
	0	W/W	3,31	3,39	3,33	3,26	3,44	3,43	3,56	3,50	3,53	3,57	3,69
CCOD	A,P	W/W	3,40	3,48	3,41	3,34	3,48	3,48	3,61	3,52	3,45	3,45	3,61
SCOP	N	W/W	-	-	-	-	-	-	-	-	3,22	3,35	3,52
	Q	W/W	-	-	-	-	3,22	3,28	3,43	3,39	3,22	3,35	3,52
	۰	%	129,47	132,68	130,12	127,57	134,49	134,10	139,54	137,05	138,02	139,67	144,75
	A,P	%	133,00	136,00	133,00	131,00	136,00	136,00	141,00	138,00	135,00	135,00	141,00
ηsh	N	%	-	-	-	-	-	-	-	-	126,00	131,00	138,00
	Q	%	-	-	-	-	126,00	128,00	134,00	133,00	126,00	131,00	138,00
	٥		A+	A+	A+	A+	A+	A+	A+	A+	A+	A++	A++
Efficiency energy dass	A,P		A+	A+	A+	A+	A+	A+	A+	A+	A+	A+	A+
Efficiency energy class	N		-	-	-	-	-	-	-	-	A+	A+	A+
	Q		-	-	-	-	A+						

⁽¹⁾ Efficiencies for low temperature applications (35 °C)

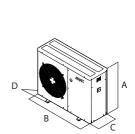
ELECTRIC DATA

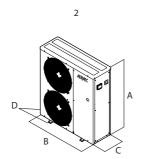
ELECTRIC DATA													
Size			021	026	031	041	051	071	081	091	103	153	203
Electric data													
	0	A	7,0	7,0	7,7	9,7	11,3	13,5	16,3	17,3	22,0	26,0	32,0
	A	A	7,7	7,7	8,4	10,4	12,6	14,8	17,6	18,6	23,9	29,1	35,1
Maximum current (FLA)	N	Α	-	-	-	-	-	-	-	-	26,2	30,2	36,2
	P	A	69,0	67,0	65,0	63,0	12,6	14,8	17,6	18,6	83,0	194,0	182,0
	Q	Α	-	-	-	-	12,8	15,1	17,8	18,8	26,2	30,2	36,2
	0	A	27,5	33,5	36,7	49,7	65,3	75,3	102,3	96,3	76,0	87,0	117,0
Dook current (LDA)	A,P	А	28,2	34,2	37,4	50,4	66,6	76,6	103,6	97,6	77,9	90,1	120,1
Peak current (LRA)	N	A	-	-	-	-	-	-	-	-	80,2	91,2	121,2
	Q	A	-	-	-	-	66,8	76,8	103,8	97,8	80,2	91,2	121,2

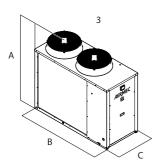
GENERAL TECHNICAL DATA

Size		021	026	031	041	051	071	081	091	103	153	203
Compressor												
Туре	type						Scroll					
Compressor regulation	Туре						On-Off					
Number	no.	1	1	1	1	1	1	1	1	2	2	2
Circuits	no.	1	1	1	1	1	1	1	1	1	1	1
Refrigerant	type						R410A					
Refrigerant charge (1)	kg	1,8	1,8	2,0	2,0	2,9	2,9	3,1	3,9	4,6	5,4	5,7

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/ 35 °C; External air 7 °C d.b. / 6 °C w.b.


⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).


Size		021	026	031	041	051	071	081	091	103	153	203
System side heat exchanger												
Туре	type						Brazed plate					
Number	no.	1	1	1	1	1	1	1	1	1	1	1
Hydraulic connections												
Connections (in/out)	Туре						Gas - F					
Sizes (in/out)	Ø						1"1/4					
Fan												
Туре	type						Axial					
Fan motor	type	Asynchronous	Asynchronous	Asynchronous	Inverter	Inverter	Inverter	Inverter	Inverter	Asynchronous	Asynchronous	Asynchronous
Number	no.	1	1	1	1	1	2	2	2	2	2	2
Air flow rate	m³/h	2500	2500	3500	3500	7200	7200	7300	7200	14000	13500	13500
Sound data calculated in cooling	mode (2)											
Sound power level	dB(A)	61,0	61,0	68,0	68,0	69,0	69,0	69,0	68,0	76,0	77,0	78,0
Sound pressure level (10 m)	dB(A)	29,8	29,8	36,8	36,8	37,6	37,6	37,6	36,6	44,5	45,5	46,5


(1) The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

1 ANL 021 - 041 ANL 051 - 091 2

ANL 103 - 203

Size			021	026	031	041	051	071	081	091	103	153	203
Dimensions and weights													
	°,P	mm	1000	1000	1000	1000	1252	1252	1252	1252	1450	1450	1450
Α.	A	mm	1015	1015	1015	1015	1281	1281	1281	1281	1450	1450	1450
A	N	mm	-	-	-	-	-	-	-	-	1450	1450	1450
	Q	mm	-	-	-	-	1281	1281	1281	1281	1450	1450	1450
	°,P	mm	900	900	900	900	1124	1124	1124	1124	1750	1750	1750
В	A	mm	1124	1124	1124	1124	1165	1165	1165	1165	1750	1750	1750
D	N	mm	-	-	-	-	-	-	-	-	1750	1750	1750
	Q	mm	-	-	-	-	1165	1165	1165	1165	1750	1750	1750
	°,P	mm	310	310	310	310	384	384	384	384	750	750	750
r	A	mm	384	384	384	384	550	550	550	550	750	750	750
C	N	mm	-	-	-	-	-	-	-	-	750	750	750
	Q	mm	-	-	-	-	550	550	550	550	750	750	750
	°,P	mm	354	354	354	354	428	428	428	428	-	-	-
n	A	mm	428	428	428	428	-	-	-	-	-	-	-
D	N	mm	-	-	-	-	-	-	-	-	-	-	-
	Q	mm	-	-	-	-	-	-	-	-	-	-	-
	0	kg	86	86	86	86	120	120	120	156	270	293	329
	A	kg	103	103	103	103	147	147	183	183	338	364	400
Empty weight	N	kg	-	-	-	-	-	-	-	-	338	364	400
· · · · ·	P	kg	91	91	91	91	127	127	163	163	288	314	350
	Q	kg	-	-	-	-	147	147	183	183	338	364	400

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRK 0090-0150

Reversible air/water heat pump

Cooling capacity 18,4 ÷ 31,0 kW – Heating capacity 20,8 ÷ 34,4 kW

- Cooling / heating / high-temperature water production even for DHW production.
- Water produced up to +65 °C
- Heating operations with external temperatures down to -20 °C
- Optimised for heating mode

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential, commercial complexes or industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° High efficiency

FEATURES

Operating field

Working at full load up to -20 °C outside air temperature in winter, and up to 48 °C in summer. Hot water production up to 65 °C.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one pumps or storage tank to obtain a solution that allows you to save money and to facilitate installation.

Components

Water filter, flow switch, low and high pressure transducers as standard supply on all units.

Hot water production

In the configuration with desuperheater, it is also possible to produce free-hot water.

DCPX as standard

Phase-cut device that regulates the fan speed to ensure optimum unit operation in all conditions.

CONTROL

MODUCONTROL control type.

The command panel of the unit allows the rapid setting of the working parameters of the machine, and their visualisation. The display consists of 4 figures and various LEDs for indicating the type of operational mode, the visualisation of the parameters set and of any alarms triggered. The card stores all the default settings and any modifications.

ACCESSORIES

AERBAC-MODU: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP. The accessory is supplied with the unit and must be installed on an external electrical panel.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

BMConverter: The BMConverter accessory consists of the FPC-N54 network device which allows units that communicate via the Modbus RTU protocol on RS485, to be controlled by a third-party BMS system via the BACNet TCP-IP protocol

 $\begin{tabular}{ll} \textbf{MODU-485BL:} RS-485 interface for supervision systems with MODBUS protocol. \\ \end{tabular}$

MULTICONTROL: Allows the simultaneous control of several units (up to 4), installed in the same hydraulic system.

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

SAF: Thermal buffer tank kit with instantaneous Domestic Hot Water production. For more information about SAF refer to the dedicated documentation.

SDHW: Domestic hot water sensor. To be used with a storage tank for the control of water temperature produced.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating

system during the photovoltaic production phase and release it at times when heating demand is highest.

SPLW: System water temperature sensor. In most cases the loose supplied sensors for each chiller/heat pump are sufficient. In cases of a common flow/ return header this sensor can be used to control the common system supply water temperature for the chillers connected to the header, or it can be used for temperature monitoring

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with the VMF-E6 panel, the VMF-CRP modules will be able to manage heat recovery units, RAS, boiler, sanitary management, I/O control, pumps.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ For the installation of the PR4 remote panel, the MODU-485BL communication interface is indispensable.

VT: Anti-vibration supports.

BSKW: Electric heaters kit with IP44 panel for remote mounting in a sheltered area.

■ Refer to the specific "SAF" datasheet for more information about correct system operation, and about the required or recommended accessories. Please consult the VMF system for the production of DHW with a thermal storage tank not supplied by Aermec.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0090	0100	0150
AERBAC-MODU	0		•	•
AERLINK	0	•	•	
AERNET	0	•	•	•
BMConverter	0	•	•	•
MODU-485BL	0	•	•	
MULTICONTROL	0	•	•	•
PR3	0		•	
SAF (1)	0	•	•	•
SDHW (2)	0	•	•	
SGD	0	•	•	•
SPLW (3)	0	•	•	•
VMF-CRP	0	•	•	•

- (1) For more information about SAF refer to the dedicated documentation.
 (2) Probe required for MULTICONTROL for managing the domestic hot water system.
- (3) Probe required for MULTICONTROL to manage the secondary circuit system.

Remote panel

Model	Ver	0090	0100	0150
PR4	0	•	•	

For the installation of the PR4 remote panel, the MODU-485BL communication interface is indispensable.

BSKW: Electric heater kit

Model	Ver	0090	0100	0150
BS6KW400T	0	•	•	•
BS9KW400T	0	•	•	•

BS6KW400T (6kW, 400V 3); BS9KW400T (9kW, 400V 3)

VT: Antivibration

Ver	0090	0100	0150
Integrated hydronic kit: 00, 01, 03, P1, P3	3		
0	VT15	VT15	VT15

DRE: Device for peak current reduction

Ver	0090	0100	0150
0	DRE10 (1)	DRE10 (1)	DRE15 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NRK
4,5,6,7	Size 0090, 0100, 0150
8	Operating field (1)
0	Standard mechanic thermostatic valve
9	Model
Н	Heat pump
10	Heat recovery
D	With desuperheater (2)
0	Without heat recovery
11	Version
0	High efficiency
12	Coils
R	Copper pipes-copper fins

Field	Description
S	Tinned copper
V	Copper pieps-Coated aluminium fins
0	Alluminium
13	Fans
0	Standard
14	Power supply
٥	400V ~ 3N 50Hz
15,16	Integrated hydronic kit
00	Without hydronic kit
01	Storage tank with low head pump
03	Storage tank with high head pump
P1	Single pump low head
P3	Single pump high head

⁽¹⁾ Water produced up to +4 ℃.

⁽²⁾ The desuperheater can only be used with cold running.

PERFORMANCE SPECIFICATIONS

NRK - (°) / 12/7 °C - 40/45 °C

Size		0090	0100	0150
		0090	0100	0130
Cooling performance 12 °C/7 °C(1)				
Cooling capacity	kW	18,4	26,4	31,0
Input power	kW	5,8	8,4	9,8
Cooling total input current	A	13,0	18,0	20,0
EER	W/W	3,19	3,15	3,15
Water flow rate system side	l/h	3172	4546	5338
Pressure drop system side	kPa	19	39	54
Heating performance 40 °C / 45 °C (2)				
Heating capacity	kW	20,8	28,7	34,4
Input power	kW	6,1	8,3	10,3
Heating total input current	A	14,0	17,0	21,0
COP	W/W	3,40	3,45	3,34
Water flow rate system side	I/h	3601	4965	5953
Pressure drop system side	kPa	24	45	65

NRK - (°) / 23/18 °C - 30/35 °C

Size		0090	0100	0150
Cooling performance 23 °C / 18 °C (1)				
Cooling capacity	kW	24,5	34,9	40,9
Input power	kW	6,1	9,0	10,6
Cooling total input current	A	14,0	18,0	22,0
EER	W/W	4,03	3,88	3,86
Water flow rate system side	l/h	4236	6040	7093
Pressure drop system side	kPa	34	69	95
Heating performance 30 °C / 35 °C (2)				
Heating capacity	kW	20,4	28,2	33,8
Input power	kW	5,0	6,7	8,3
Heating total input current	A	11,0	14,0	17,0
COP	W/W	4,11	4,22	4,09
Water flow rate system side	l/h	3521	4866	5833
Pressure drop system side	kPa	23	43	-

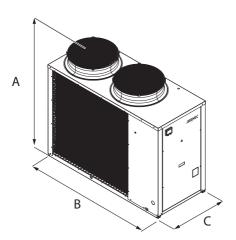
ENERGY DATA

Size			0090	0100	0150
Cooling capacity with low leaving	g water temp (UE n° 2016/2	281)			
SEER	0	W/W	3,35	3,39	3,42
ηςς	٥	%	131,10	132,60	133,80
Size			0090	0100	0150
Integrated hydronic ki	t: 00				
UE 811/2013 performance in ave	rage ambient conditions (a	verage) - 55 °C - Pdesignh ≤ 70 k\	W (1)		
Efficiency energy class	0		A+	A+	A+
Pdesignh	٥	kW	22,00	28,00	34,00
SCOP	0	W/W	3,03	2,98	2,90
ηsh	0	%	118,00	116,00	113,00
UE 811/2013 performance in ave	rage ambient conditions (a	verage) - 35 °C - Pdesignh ≤ 70 kl	W (2)		
Efficiency energy class	0		A+	A+	A+
Pdesignh	0	kW	21,00	27,00	32,00
SCOP	0	W/W	3,70	3,68	3,60
ηsh	٥	%	145,00	144,00	141,00

⁽¹⁾ Efficiencies for average temperature applications (55 °C) (2) Efficiencies for low temperature applications (35 °C)

ELECTRIC DATA

Size			0090	0100	0150
Electric data					
Maximum current (FLA)	0	A	19,1	24,6	29,5
Peak current (LRA)	0	A	104,2	121,2	143,2


⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C / 35 °C; External air 7 °C d.b. / 6 °C w.b.

GENERAL TECHNICAL DATA

Size			0090	0100	0150
Compressor				•	
Туре	0	type		Scroll	
Compressor regulation	٥	Туре		On-Off	
Number	0	no.	1	1	1
Circuits	٥	no.	1	1	1
Refrigerant	٥	type		R410A	
Refrigerant charge (1)	0	kg	13,0	14,0	16,0
System side heat exchanger					
Туре	0	type		Brazed plate	
Number	٥	no.	1	1	1
Hydraulic connections					
Connections (in/out)	0	Туре		Gas-F	
Size (in)	٥	Ø		1½"	
Size (out)	0	Ø		1½"	
Fan					
Гуре	0	type		axials	
Fan motor	٥	type		Asynchronous	
Number	0	no.	2	2	2
Air flow rate	0	m³/h	14200	14200	13700
Sound data calculated in cooling mo	ode (2)				
Sound power level	0	dB(A)	78,0	78,0	78,0
Sound pressure level (10 m)	0	dB(A)	46,5	46,5	46,5

DIMENSIONS

Size			0090	0100	0150
Dimensions and weights					
A	٥	mm	1450	1450	1450
В	٥	mm	1750	1750	1750
(٥	mm	750	750	750
Empty weight	٥	kg	289	328	372

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

NRK 0200-0700

Reversible air/water heat pump

Cooling capacity 35,5 ÷ 148 kW Heating capacity 42,31 ÷ 175 kW

- Water produced up to +65 °C
- Heating operations with external temperatures down to -20 °C
- Optimized for operation in heating mode

DESCRIPTION

Reversible air/water heat pump for air conditioning systems with cold water production for cooling rooms and hot water for heating and/or domestic hot water services, suitable for connection with small or medium users.

It's optimised for use in heating mode, and can be combined not only with low-temperature emission systems such as floor heating or fan coils, but also conventional radiators.

Equipped with scroll compressors, axial fans, external coil with aluminium louvers, plate heat exchanger on the side.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency **E** Silenced high efficiency

FEATURES

Operating field

Working at full load up to -20 °C outside air temperature in winter, and up to 48 °C in summer. Hot water production up to 65 °C.

Version with Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations to obtain a solution that allows you to facilitate installation.

Components

Water filter, flow switch, low and high pressure transducers as standard supply on all units.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- Adjustment includes complete management of the alarms and their log.
- Possibility to control two units in a Master-Slave configuration

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

BMConverter: The BMConverter accessory consists of the FPC-N54 network device which allows units that communicate via the Modbus RTU protocol on RS485, to be controlled by a third-party BMS system via the BACNet TCP-IP protocol.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

GP: Anti-intrusion grid. **VT:** Anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

T6: Double safety valve with exchange cock, both on the high and low pressure branches

PRM1: It is a manual pressure switch electrically wired in series with the existing automatic high pressure switch on the compressor discharge pipe. **C-TOUCH:** 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time.

AERCALM: The aim of the accessory installed in the electric box of the unit is to provide a clean contact for commanding - on the basis of the outside air temperature - a boiler to replace the heat pump. Aercalm must be requested at the time of ordering, as it is installed in the factory.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
AFD40FD1	A					•	•	•	•	•	•
AER485P1	E	•	•	•	•	•	•	•	•	•	•
AERBACP	A					•	•	•	•	•	•
AENDACP	E	•	•	•	•	•	•	•	•	•	
A EDI INIV	A					•	•	•	•	•	•
AERLINK	E			•				•			
AERNET	Α					•	•	•	•	•	•
AEKNEI	E	•	•	•	•	•	•	•	•	•	
BMConverter	Α					•	•	•	•	•	•
SWConverter	E	•	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	A					•	•	•	•	•	•
WULTICHILLER-EVU	E	•	•	•	•	•	•	•	•	•	•
OCD1	A							•		•	
PGD1	E	•	•	•	•	•	•	•	•	•	•
5GD	A					•					
עטפ	E	•	•	•	•	•					

Remote panel

Model	Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
PR4	A					•	•	•	•	•	•
PK4	F										

 $The accessory\ PR4\ should\ only\ be\ combined\ with\ the\ RS485\ communication\ interface\ when\ the\ serial\ port\ is\ occupied\ by\ another\ device.$

GP: anti-intrusion grid

<u> </u>										
Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
A	-	-	-	-	GP2 x 2 (1)	GP2 x 3 (1)	GP2 x 3 (1)			
E	GP3	GP3	GP4	GP4	GP2 x 2 (1)	GP2 x 3 (1)	GP2 x 3 (1)			

(1) x _ indicates the quantity to buy

VT: Antivibration

VI. Allelvibración										
Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Integrated hydronic kit: 00, P1, P2	, P3, P4									
A	-	-	-	-	VT11	VT11	VT11	VT11	VT22	VT22
E	VT17	VT17	VT17	VT17	VT11	VT11	VT11	VT11	VT22	VT22
Integrated hydronic kit: 01, 02, 03	, 04, 05, 06, 07, 08									
A	-	-	-	-	VT11	VT11	VT11	VT11	VT22	VT22
E	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT22	VT22

DRE: Device for peak current reduction

Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
A	-	-	-	-	DRE351 (1)	DRE501 (1)	DRE551 (1)	DRE601 (1)	DRE651 (1)	DRE701 (1)
E	DRE201 (1)	DRE281 (1)	DRE301 (1)	DRE331 (1)	DRE351 (1)	DRE501 (1)	DRE551 (1)	DRE601 (1)	DRE651 (1)	DRE701 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered.

A grey background indicates the accessory must be assembled in the factory

RIF: Power factor correction

Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
A	-	-	-	-	RIF65	RIF58	RIF59	RIF60	RIF61	RIF61
E	RIF55	RIF56	RIF54	RIF57	RIF65	RIF58	RIF59	RIF60	RIF61	RIF61

A grey background indicates the accessory must be assembled in the factory

Double safety valves

Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
A	-	-	-	-	T6NRK1	T6NRK2	T6NRK3	T6NRK3	T6NRK3	T6NRK3
E	T6NRK1	T6NRK1	T6NRK1	T6NRK1	T6NRK1	T6NRK2	T6NRK3	T6NRK3	T6NRK3	T6NRK3

A grey background indicates the accessory must be assembled in the factory

PRM1: Manually reset pressure switch

Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
A	-	-	-	-	PRM1	PRM1	PRM1	PRM1	PRM1	PRM1
F	PRM1									

A grey background indicates the accessory must be assembled in the factory

7", touch screen keyboard

Model	Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
C TOLICII	A					•	•	•	•	•	•
C-TOUCH	E	•		•	•	•					

Clean contact for controlling a boiler.

Model	Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
AFRICALIA	A					•	•	•	•	•	•
AERCALM	E	•	•		•	•					•

CONFIGURATOR

Field	Description
1,2,3	NRK
4,5,6,7	Size 0200, 0280, 0300, 0330, 0350, 0500, 0550, 0600, 0650, 0700
8	Operating field (1)
0	Standard mechanic thermostatic valve
9	Model
Н	Heat pump
10	Heat recovery
D	With desuperheater (2)
0	Without heat recovery
11	Version
Α	High efficiency
Е	Silenced high efficiency
12	Coils
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
0	Copper-aluminium
13	Fans
J	Inverter (3)
М	Oversized (4)
0	Standard (5)
14	Power supply

Field	Description
0	400V 3N ~ 50Hz
15,16	Integrated hydronic kit
00	Without hydronic kit
01	Storage tank with low head pump
02	Storage tank with low head pump + stand-by pump
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
05	Storage tank with holes for heaters and single low head pump (6)
06	Storage tank with holes for heaters and pump low head + stand-by pump (6)
07	Storage tank with holes for heaters and single high head pump (6)
08	Storage tank with holes for heaters and pump high head + stand-by pump (6)
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump

- (1) Water produced up to +4 °C
 (2) The desuperheater must be isolated in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
 (3) Standard for size 0200÷0330, without useful static pressure. Option for size 0350÷0700 with useful static pressure.
 (4) Option available only for size 0200÷0330.
 (5) As standard in sizes fom 0350÷0700.
 (6) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.

PERFORMANCE SPECIFICATIONS 12 °C/7 °C - 40 °C/45 °C

NRK - A / 12/7 °C - 40/45 °C

Size		0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	-	-	-	-	75,4	88,8	101,6	117,4	133,4	148,1
Input power	kW	-	-	-	-	25,4	29,5	34,4	41,0	45,0	52,6
Cooling total input current	A	-	-	-	-	55,0	61,0	66,0	72,0	87,0	107,0
EER	W/W	-	-	-	-	2,97	3,01	2,95	2,86	2,97	2,82
Water flow rate system side	l/h	-	-	-	-	12983	15278	17488	20211	22975	25516
Pressure drop system side	kPa	-	-	-	-	23	26	32	28	34	42
Heating performance 40 °C / 45 °C (2)											
Heating capacity	kW	-	-	-	-	87,9	103,9	118,9	136,6	155,6	174,4
Input power	kW	-	-	-	-	25,5	30,2	34,7	39,9	45,6	51,7
Heating total input current	A	-	-	-	-	54,0	59,0	64,0	70,0	85,0	106,0
COP	W/W	-	-	-	-	3,45	3,44	3,42	3,42	3,41	3,37
Water flow rate system side	l/h	-	-	-	-	15236	18010	20602	23680	26988	30254
Pressure drop system side	kPa	-	-	-	-	32	36	44	37	45	57

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

NRK - E / 12/7 °C - 40/45 °C

Size		0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	35,6	50,4	59,5	66,1	74,4	87,4	99,8	114,5	130,8	145,3
Input power	kW	11,7	17,4	19,5	22,3	27,6	32,4	38,1	45,8	49,5	58,1
Cooling total input current	А	28,0	38,0	42,0	49,0	60,0	67,0	73,0	72,0	95,0	119,0
EER	W/W	3,05	2,90	3,05	2,96	2,69	2,70	2,62	2,50	2,64	2,50
Water flow rate system side	l/h	6131	8670	10235	11379	12801	15035	17175	19713	22512	25033
Pressure drop system side	kPa	18	17	23	19	22	25	30	27	32	41
Heating performance 40 °C / 45 °C (2)											
Heating capacity	kW	42,2	59,7	69,4	78,2	87,9	103,9	118,9	136,6	155,6	174,4
Input power	kW	12,0	17,0	19,9	22,4	25,5	30,2	34,7	39,9	45,6	51,7
COP	W/W	3,50	3,50	3,49	3,49	3,45	3,44	3,42	3,42	3,41	3,37
Heating total input current	A	24,0	34,0	38,0	44,0	54,0	59,0	64,0	70,0	85,0	106,0
Water flow rate system side	l/h	7318	10355	12032	13569	15236	18010	20602	23680	26988	30254
Pressure drop system side	kPa	24	22	30	25	32	36	44	37	45	57

PERFORMANCE SPECIFICATIONS 23 °C/ 18 °C - 30 °C/ 35 °C

NRK - A / 23/18 °C - 30/35 °C

Size		0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Cooling performance 23 °C / 18 °C (1)											
Cooling capacity	kW	-	-	-	-	93,2	108,2	122,7	143,0	165,0	181,0
Input power	kW	-	-	-	-	26,4	30,7	35,9	43,3	47,0	55,1
Cooling total input current	A	-	-	-	-	57,0	63,0	69,0	75,0	90,0	112,0
EER	W/W	-	-	-	-	3,54	3,53	3,42	3,30	3,51	3,28
Water flow rate system side	l/h	-	-	-	-	16111	18705	21231	24719	28513	31266
Pressure drop system side	kPa	-	-	-	-	35	39	47	42	52	63
Heating performance 30 °C / 35 °C (2)											
Heating capacity	kW	-	-	-	-	86,4	101,5	114,6	132,6	150,2	170,5
Input power	kW	-	-	-	-	20,6	24,5	27,8	31,7	37,0	41,9
Heating total input current	A	-	-	-	-	44,0	48,0	51,0	55,0	68,0	85,0
COP	W/W	-	-	-	-	4,19	4,15	4,13	4,19	4,06	4,06
Water flow rate system side	I/h	-	-	-	-	14931	17533	19787	22919	25938	29467
Pressure drop system side	kPa	-	-	-	-	31	34	41	35	42	54

NRK - E / 23/18 °C - 30/35 °C

Size		0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Cooling performance 23 °C / 18 °C (1)											
Cooling capacity	kW	44,2	61,5	72,1	80,9	91,9	106,5	120,6	139,5	161,7	177,5
Input power	kW	12,2	18,2	20,4	23,5	28,7	33,6	39,7	48,3	51,7	60,8
Cooling total input current	А	29,0	40,0	44,0	51,0	62,0	69,0	76,0	75,0	99,0	124,0
EER	W/W	3,64	3,37	3,53	3,44	3,20	3,16	3,04	2,89	3,13	2,92
Water flow rate system side	l/h	7643	10631	12470	13977	15886	18408	20850	24110	27939	30673
Pressure drop system side	kPa	28	26	34	29	34	37	44	40	49	62
Heating performance 30 °C / 35 °C (2)											
Heating capacity	kW	41,4	57,2	67,2	75,7	86,4	101,5	114,6	132,6	150,2	170,5
Input power	kW	9,4	13,3	15,8	18,1	20,6	24,5	27,8	31,7	37,0	41,9
Heating total input current	А	19,0	26,0	30,0	35,0	44,0	48,0	51,0	55,0	68,0	85,0
COP	W/W	4,41	4,31	4,26	4,18	4,19	4,15	4,13	4,19	4,06	4,06
Water flow rate system side	I/h	7156	9895	11628	13083	14931	17533	19787	22919	25938	29467
Pressure drop system side	kPa	23	20	28	23	31	34	41	35	42	54

ELECTRIC DATA

Size			0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Electric data												
Maximum aument (FLA)	Α	A	-	-	-	-	75,0	85,0	94,0	114,0	144,0	147,0
Maximum current (FLA)	E	A	40,0	49,0	61,0	74,0	75,0	85,0	94,0	114,0	144,0	147,0
Deals surrent (LDA)	А	A	-	-	-	-	216,0	226,0	191,0	228,0	285,0	288,0
Peak current (LRA)	Е	A	124,0	146,0	175,0	215,0	216,0	226,0	191,0	228,0	285,0	288,0

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/ 35 °C; External air 7 °C d.b. / 6 °C w.b.

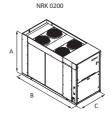
⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

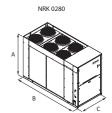
ENERGY DATA

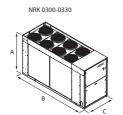
Size			0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Cooling capacity with low leaving water	temp (UE n° 2	016/2281)										
CLED	Α	W/W	-	-	-	-	3,45	3,52	3,46	3,42	3,44	3,33
SEER	E	W/W	3,40	3,30	3,48	3,39	3,35	3,42	3,34	3,29	3,35	3,27
	А	%	-	-	-	-	134,80	137,60	135,20	133,70	134,60	130,00
ηςς	E	%	133,00	128,80	136,10	132,50	130,90	133,70	130,60	128,70	130,90	127,90
Size					0200			0280			0300	

Size			0200	0280	0300
UE 811/2013 performance in avera	age ambient conditions (a	verage) - 35 °C - Pdesignh ≤ 70 k	:W (1)		
r# :	A		-	-	-
Efficiency energy class	E		A++	A+	A+
Dalasianda	A	kW	-	-	-
Pdesignh	E	kW	42,00	58,00	67,00
CCOD	A	W/W	-	-	-
SCOP	E	W/W	3,88	3,75	3,70
	A	%	-	-	-
ηsh	E	%	152,00	147,00	145,00
UE 811/2013 performance in avera	age ambient conditions (a	verage) - 55 °C - Pdesignh ≤ 70 k	W (2)		
recional and an area	A		-	-	-
Efficiency energy class	E		A+	A+	A+
Dalasianah	A	kW	-	-	-
Pdesignh	E	kW	44,00	62,00	70,00
CCOD	A	W/W	-	-	-
SCOP	E	W/W	3,08	3,03	3,00
t	A	%	-	-	-
ηsh	E	%	120,00	118,00	117,00

⁽¹⁾ Efficiencies for low temperature applications (35 °C) (2) Efficiencies for average temperature applications (55 °C)


Size			0330	0350	0500	0550	0600	0650	0700
UE 813/2013 performance in av	verage ambient condition	ns (average) - 55 °C	C - Pdesignh ≤ 400 k	(W (1)					
Ddocianh	A	kW	-	89,00	106,00	121,00	137,00	157,00	178,00
Pdesignh	E	kW	80,00	89,00	106,00	121,00	137,00	157,00	178,00
SCOP	A	W/W	-	2,88	2,90	3,03	3,03	2,93	2,90
SCOP	E	W/W	3,03	2,88	2,90	3,03	3,03	2,93	2,90
nch	A	%	-	112,00	113,00	118,00	118,00	114,00	113,00
ηsh	E	%	118,00	112,00	113,00	118,00	118,00	114,00	113,00
UE 813/2013 performance in av	erage ambient condition	ns (average) - 35 °	C - Pdesignh ≤ 400 l	(W (2)					
Ddacianh	A	kW	-	84,00	99,00	113,00	131,00	149,00	168,00
Pdesignh	E	kW	75,00	84,00	99,00	113,00	131,00	149,00	168,00
COD	A	W/W	-	3,43	3,40	3,70	3,70	3,38	3,33
SCOP	E	W/W	3,68	3,43	3,40	3,70	3,70	3,38	3,33
ηsh	A	%	-	134,00	133,00	145,00	145,00	132,00	130,00
	E	%	144,00	134,00	133,00	145,00	145,00	132,00	130,00


⁽¹⁾ Efficiencies for average temperature applications (55 °C) (2) Efficiencies for low temperature applications (35 °C)


GENERAL TECHNICAL DATA

Size			0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Compressor												
Туре	A,E	type					Sc	roll				
Compressor regulation	A,E	Туре					0n	-Off				
Number	A,E	no.	2	2	2	2	2	3	4	4	4	4
Circuits	A,E	no.	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E	type					R4	10A				
Definement sharms (1)	A	kg	-	-	-	-	23,0	28,0	29,0	29,0	39,0	40,0
Refrigerant charge (1)	E	kg	14,0	16,0	16,0	16,0	23,0	28,0	29,0	29,0	39,0	40,0
System side heat exchanger		-										
Туре	A,E	type					Braze	d plate				
Number	A,E	no.	1	1	1	1	1	1	1	1	1	1
Hydraulic connections												
Connections (in/out)	A,E	Туре					Groove	d joints				
Sizes (in/out)	A,E	Ø					21	1/2"				
Fan												
Туре	A,E	type					ax	ials				
	A	no.	-	-	-	-	2	2	2	2	3	3
Number	E	no.	4	6	8	8	2	2	2	2	3	3
L'- 0	Α	m³/h	-	-	-	-	37000	36500	36500	36500	58000	58000
Air flow rate	E	m³/h	14000	20000	26000	26000	21100	21400	22400	22400	31900	31900
Sound data calculated in cooling mod	le (2)											
C	A	dB(A)	-	-	-	-	82,0	82,0	82,0	83,0	85,0	85,0
Sound power level	E	dB(A)	74,0	74,0	75,0	75,0	74,0	74,0	74,0	75,0	77,0	77,0
C	A	dB(A)	-	-	-	-	50,1	50,1	50,1	51,1	53,0	53,0
Sound pressure level (10 m)	E	dB(A)	42,3	42,3	43,2	43,2	42,1	42,1	42,1	43,1	45,0	45,0

DIMENSIONS

Size			0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Dimensions and weights	'											
	A	mm	-	-	-	-	1875	1875	1875	1875	1875	1875
A	E	mm	1606	1606	1606	1606	1875	1875	1875	1875	1875	1875
n	A	mm	-	-	-	-	3330	3330	3330	3330	4330	4330
В	E	mm	2700	2700	3200	3200	3330	3330	3330	3330	4330	4330
r	A	mm	-	-	-	-	1100	1100	1100	1100	1100	1100
L	E	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Dimensions and weights for trans	port											
A	A	mm	-	-	-	-	2027	2027	2027	2027	2039	2039
A	E	mm	1735	1735	1758	1758	2027	2027	2027	2027	2039	2039
	A	mm	-	-	-	-	3395	3395	3395	3395	4387	4387
В	E	mm	2760	2760	3260	3260	3395	3395	3395	3395	4387	4387
r	A	mm	-	-	-	-	1170	1170	1170	1170	1170	1170
L	E	mm	1160	1160	1160	1160	1170	1170	1170	1170	1170	1170
Size			0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Integrated hydronic kit	t: 00											
Weights												
Empty weight	A	kg	-	-	-	-	1067	1213	1274	1316	1495	1530
	E	ka	761	833	913	920	1067	1213	1274	1316	1495	1530

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

NRV 0550

Air-water chiller

Cooling capacity 108,3 kW

- Easy and quick to install compact
- Reliability and modularity
- Microchannel coils

DESCRIPTION

NRV is made up of independent 108kW modules that can be connected to each other up to a power of 970kW. Every single module is an outdoor chiller to produce chilled water.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to $\,47^{\circ}\text{C}\,$ external air temperature. Unit can produce chilled water up to $\,4\,^{\circ}\text{C}.$

Maximum yield at full load but even partial load, thanks to the partialisation steps that increase as the number of connected modules increases this ensures continuous adaptation to the actual system requirements.

Modularity

It is possible to couple up to 9 chillers designed to reduce the overall unit dimensions to a minimum.

The combination of the various chillers allows all the strengths of the individual module to be maintained.

Modularity allows you to adapt installation to the actual development needs of the system. This way the cooling capacity can be increased over time simply and affordably.

Modularity is essential when component redundancy is required, as it allows for a safer system design and increased reliability.

Hot water production

In the configuration with desuperheater, it is also possible to produce free-hot water.

Microchannel coils

Microchannel heat exchanger that guarantees higher thermal exchange yield. Circuit that optimises the liquid distribution in the coil, which is arranged with V beam geometry with open angle.

Components

Unit is already equipped with a water filter, differential pressure switch and butterfly check valves, useful to cut off the hydraulic circuit for maintenance; for instance, to clean the filter.

In the event of variable flow rate, the motorised hydronic valves can intercept one or more modules to reduce the flow rate in low heat load conditions.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- Adjustment includes complete management of the alarms and their log.
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night mode: only in the non-silenced versions with the fan to be, inverter or phase-cut or with the DCPX accessory, a silenced operation profile can be set, which is useful, for example, at night for greater acoustic comfort, but always ensures performance even at peak load hours.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

GPNYB_SIDE: kit with 2 anti-intrusion grids for the long side of the unit. **GPNY_BACK:** kit with 1 anti-intrusion grid for the short side of the unit.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

KNYB: Pair of caps with grooved joints assembled on the unit manifold.

KREC: Accessory kit to remote the electric power supply input to the back RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0550
AER485P1	A,E	•
AERBACP	A,E	•
AERLINK	A,E	•
GPNYB_SIDE	A,E	•
GPNY_BACK	A,E	•
MULTICHILLER-EVO	A,E	•
PGD1	A,E	•

Condensation control temperature

Ver	0550					
Fans: M						
A	DCPXNRV0550					
E	As standard					

DRE: electronic device for peak current reduction

Ver	0550
A, E	DRE (1)

(1) Contact the factory
A grey background indicates the accessory must be assembled in the factory

KNYB: Pair of caps with grooved joints assembled on the unit manifold

Ver	0550
A, E	KNYB

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

KREC: kit to remote the electric power supply input to the back

	1 11 / 1
Ver	0550
A, E	KREC

A grey background indicates the accessory must be assembled in the factory

RIF: Power factor correction

Ver	0550
A, E	RIF (1)

(1) Contact the factory
A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NRV
4,5,6,7	Size 0550
8	Operating field
X	Electronic thermostatic expansion valve
0	Standard mechanic thermostatic valve (1)
9	Model
0	Cooling only
10	Heat recovery
D	With desuperheater
0	Without heat recovery
11	Version
Α	High efficiency
E	Silenced high efficiency
12	Coils
I	Copper-aluminium
0	Coated aluminium microchannel
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
•	Aluminium microchannel
13	Fans
J	Inverter (2)
М	Oversized
14	Power supply (3)
0	400V 3 ~ 50Hz
15,16	Integrated hydronic kit
00	Without hydronic kit

PERFORMANCE SPECIFICATIONS

Size			0550
Fans: J, M			
Cooling performance 12 °C/7 °C(1)			
Cooling canacity	A	kW	108,3
Cooling capacity	E	kW	103,8
Input namer	A	kW	34,8
Input power	E	kW	36,2
Cooling total input current	A,E	A	62,0
EED	A	W/W	3,11
EER	E	W/W	2,86
Water day, rate and an aid a	A	l/h	18646
Water flow rate system side	E	l/h	17862
Draceura dran cuetam cida	A	kPa	32
Pressure drop system side	E	kPa	30

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0550
Fans: J			
SEER - 12/7 (EN14825: 2018) (1)			
CCCD	A	W/W	4,51
SEER	E	W/W	4,45
C	A	%	177,20
Seasonal efficiency	E	%	174,80
SEPR - (EN 14825: 2018) (2)			
SEPR	A,E	W/W	5,60

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

⁽¹⁾ Water produced up to +4 °C (2) With "J" fan is unnecessary DCPX accessory

⁽³⁾ With magnet circuit breakers

'		0550
A	W/W	4,39
E	W/W	4,33
A	%	172,60
E	%	170,30
A,E	W/W	5,62
	A E A,E	E W/W A % E %

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Calculation performed with FIXED water flow rate.

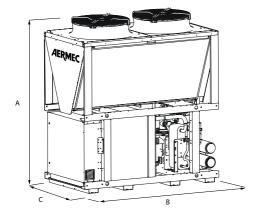
ELECTRIC DATA

Size			0550
Electric data	,		
Maximum current (FLA)	A,E	A	95,6
Peak current (LRA)	A,E	A	280,6

GENERAL TECHNICAL DATA

Size			0550
Compressor			
Туре	A,E	type	Scroll
Number	A,E	no.	2
Circuits	A,E	no.	1
Refrigerant	A,E	type	R410A
System side heat exchanger			
Туре	A,E	type	Brazed plate
Number	A,E	no.	1
System side hydraulic connecti	ons		
Connections (in/out)	A,E	Туре	Grooved joints
Sizes (in/out)	A,E	Ø	6"

Fan


Size			0550
Fans: J			
Fan			
Туре	A,E	type	axials
Fan motor	A,E	type	On-Off
Number	A,E	no.	2
A:- 0	A	m³/h	32000
Air flow rate	E	m³/h	24000
High static pressure	A,E	Pa	0
Sound data calculated in coolin	g mode (1)		
Sound power level	A	dB(A)	85,0
	E	dB(A)	81,8

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

Size			0550
Fans: M			
Fan			
Туре	A,E	type	axials
Fan motor	A,E	type	Asynchronous
Number	A,E	no.	2
Air flow rate	A	m³/h	36000
Air now rate	E	m³/h	24000
High static pressure	A,E	Pa	0
Sound data calculated in coolin	g mode (1)		
Complement of	A	dB(A)	86,9
Sound power level	E	dB(A)	81,8

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0550
Dimensions and weights			
A	A,E	mm	2480
В	A,E	mm	2200
C A,E mm			1190
Empty weight	A,E	kg	1105

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

PRM

Air-cooled reversible modular heat pump

Cooling capacity 95,6 kW Heating capacity 101,7 kW

- · R290 natural refrigerant gas
- Low refrigerant charge
- Production of hot water up to 75 °C
- High efficiency also at partial loads
- · Reliable and modular

DESCRIPTION

Reversible outdoor heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Working at full load up to -20 °C outside air temperature in winter, and up to 48 °C in summer. Hot water production up to 75 °C.

Modularity

It is possible to couple up to 9 units designed to reduce the overall unit dimensions to a minimum.

Modularity is essential when component redundancy is required, as it allows for a safer system design and increased reliability.

Flexibility

Modularity allows you to adapt installation to the actual development needs of the system. This way the capacity can be increased over time simply and affordably.

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Two scroll compressors are installed in each circuit in a tandem configuration.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Refrigerant HC R290

Using the natural R290 refrigerant, classified A3 to ISO 817 (non-toxic, odourless and flammable refrigerant), the unit's environmental impact drops significantly.

Combining low refrigerant load (less than 5 kg per circuit) with ultra-low Global Warming Potential (GWP), these units boast practically negligible direct equivalent CO2 emissions.

The refrigerant gas detector, the double pressure relief valve (with exchange isolation valve) and the battery protection grilles are standard.

New condensing Coils

The whole range uses copper - aluminium condensation coils with reduced diameter rows, allowing a lower quantity of gas to be used compared to traditional coils.

Electronic expansion valve

The use of the electronic expansion valve offers significant benefits (especially when the unit is working with partial loads), increasing the seasonal energy efficiency of the unit.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation.

It's available in various configurations, with storage tank or pumps.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Swing HP and LP controls: available for all models with inverter fan or with DCPX. By continuously modulating the fans, they streamline operation of the unit at any work point both in cooling and heating mode. This results in enhanced energy efficiency of the unit at partial loads.

 Night mode: only in the non-silenced versions is it possible to set a silenced operating mode, which is useful for example at night for greater acoustic comfort but always guarantees performance even at peak load times.

CONFIGURATOR

Field	Description
1,2,3	PRM
4,5,6,7	Size 0504
8	Operating field
χ	Electronic thermostatic expansion valve (1)
Z	Low temperature electronic thermostatic valve (2)
9	Model
Н	Heat pump
10	Heat recovery
D	With desuperheater (3)
0	Without heat recovery
11	Version
Α	High efficiency
E	Silenced high efficiency
12	Coils
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
0	Copper-aluminium
13	Fans

ACCESSORIES

■ The units PRM must be controlled remotely through an appropriate accessory (remote control panelPGD1,,AERNET MULTICHILL-ER-EVO, AERLINK orPR4) to be obligatorily and separately. Only in this way is it possible to modify some basic operating parameters or view the presence of any alarms, which avoids accessing risk and restricted access areas.

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured

- "Noise Demand Limit" function: only in non-quiet versions, this function limits the compressors within a time band to set a quiet operation profile, useful for example at night for greater acoustic comfort.
- Possibility to control two units in Master Slave parallel mode. In this
 case, it is possible to use only one accessory PGD1 for both units.

Field	Description
J	Inverter (4)
0	Standard with DCPX
14	System type
N	Version without modular pipes
0	Modular version
15,16	Integrated hydronic kit
00	Without hydronic kit
01	Storage tank with low head pump
02	Storage tank with low head pump + stand-by pump
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
09	Storage tank with double loop and intermediate heat exchanger
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump

- (1) Water produced up to $+4\,^{\circ}\text{C}$
- (2) Processed water temperature -10 °C
- (2) The desuperheater must be intercepted in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
- (4) Standard from the E version.

as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

VT: Anti-vibration supports.

KTUBES: Pipe kits required to connect more than one unit. Available only for modular units (unit type °).

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

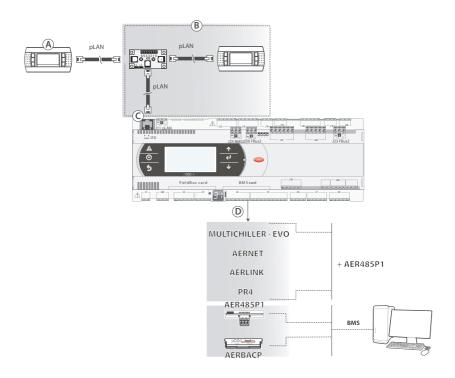
RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

KNYB: Pair of caps with grooved joints assembled on the unit manifold.

BRC1R_PRM: Condensate drip with resistance

BRC1_PRM: Condensate drip.

COMPATIBILITY WITH VMF SYSTEM


For more information about VMF system, refer to the dedicated documentation.

COMPATIBILITY BETWEEN CONTROL ACCESSORIES

Model	Ver	0504	
	VCI	0304	
AER485P1	A,Ł	•	
AERBACP	A,E	•	
AERLINK	A,E	•	
AERNET	A,E	•	
MULTICHILLER-EVO	A,E	•	
PGD1	A,E	•	

Remote panel

Model	Ver	0504
PR4	A,E	•

Key:

- A Display on the unit.
- B Control panel accessory "PGD1".
- C Control panel connection port "PGD1".
- D **BMS Card serial port:** where to connect 1 among the accessories "MULTICHILLER-EVO AERNET, ,AERLINK, PR4 but to be connected also must also have "AER485P1"; in the case of BMS communication with the accessories "AER485P1 or AERBACP" the only mandatory compatible accessory is the control panel "PGD1".

ACCESSORIES COMPATIBILITY

Antivibration

	Ver	0504
Integrated hydroni	ic kit: 00, 01, 02, 03, 04, 09, P1, P2, P3, P4	
	A, E	VT11
Pipe kits requ	ired to connect more than one unit	
	Ver	0504
System type: °	Ver	0504

Pair of caps with grooved joints assembled on the unit manifold

Ver	0504
System type: °	
A, E	KNYB

A grey background indicates the accessory must be assembled in the factory

Condensate drip with resistance

Ver	0504
A, E	BRC1R_PRM

A grey background indicates the accessory must be assembled in the factory

Condensate drip

Ver	0504
A, E	BRC1_PRM

A grey background indicates the accessory must be assembled in the factory

Device for peak current reduction

Ver	0504	
A, E	DREPRM504	

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Power factor correction

Ver	0504		
A, E	RIFPRM504		

A grey background indicates the accessory must be assembled in the factory

PERFORMANCE SPECIFICATIONS

PRM - A

Size		0504
Fans: °	,	
Cooling performance 12 °C/7 °C(1)		
Cooling capacity	kW	95,6
Input power	kW	35,5
Cooling total input current	A	69,6
EER	W/W	2,69
Water flow rate system side	l/h	16444
Pressure drop system side	kPa	22
Heating performance 40 °C / 45 °C (2)		
Heating capacity	kW	101,8
Input power	kW	31,9
Heating total input current	A	65,9
COP	W/W	3,19
Water flow rate system side	l/h	17655
Pressure drop system side	kPa	24

■ With the J fan option, the data are equivalent

PRM - E

11011 E		
Size		0504
Fans: J		
Cooling performance 12 °C/7 °C(1)		
Cooling capacity	kW	92,8
Input power	kW	35,8
Cooling total input current	A	67,5
EER	W/W	2,59
Water flow rate system side	l/h	15965
Pressure drop system side	kPa	21
Heating performance 40 °C/45 °C(2)		
Heating capacity	kW	101,8
Input power	kW	31,9
Heating total input current	A	64,2
COP	W/W	3,19
Water flow rate system side	l/h	17655
Pressure drop system side	kPa	24

ENERGY DATA - STANDARD/INVERTER FANS

Size			0504
Fans: J			
SEER - 12/7 (EN 14825: 2018) (1)			
SEER	A	W/W	4,08
JEEN	E	W/W	4,03
Seasonal efficiency	A	%	160,00
Jeasonal eniciency	E	%	158,10
SEER - 23/18 (EN 14825: 2018) (1)			
SEER	A	W/W	4,93
DEEN	E	W/W	4,82
Seasonal efficiency	A	%	194,26
Jeasonal eniciency	E	%	189,80
(1) Calculation performed with VAR	IABLE water flow rate		
Size			0504
Fans: °			
SEER - 12/7 (EN 14825: 2018) (1)			
SEER	A	W/W	3,96
DEEN	E	W/W	-
Cassanal afficiency	A	%	155,55
Seasonal efficiency	E	%	-
SEER - 23/18 (EN 14825: 2018) (1)			
	A	W/W	4,85
SEER	E	W/W	-
Casanal offician su	A	%	190,96
Seasonal efficiency	E	%	-

⁽¹⁾ Calculation performed with VARIABLE water flow rate

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

ENERGY DATA - STANDARD/INVERTER FANS (35°C)

Size			0504
Fans: J			
UE 813/2013 performance in average a	mbient conditions (average)	- 35 °C - Pdesignh ≤ 400 kW (1)	
SCOP	A,E	W/W	4,10
ηsh	A,E	%	161,00
Pdesignh	A,E	kW	82,81
(1) Efficiencies for low temperature applica	itions (35 °C)		
Size			0504
Fans: °			
UE 813/2013 performance in average a	mbient conditions (average)	- 35 °C - Pdesignh ≤ 400 kW (1)	
SCOP	A	W/W	3,86
SCOP	E	W/W	-
n.a.b.	A	%	151,41
ηsh	E	%	-
Ddaoinah	A	kW	82,81
Pdesignh	E	kW	-

⁽¹⁾ Efficiencies for low temperature applications (35 °C)

ENERGY DATA - STANDARD/INVERTER FANS (55°C)

- STATE		1115 (55 4)	
Size			0504
Fans: J			
UE 813/2013 performance in average	e ambient conditions (average)	- 55 °C - Pdesignh ≤ 400 kW (1)	
SCOP	A,E	W/W	3,30
ηsh	A,E	%	128,91
Pdesignh	A,E	kW	80,58
(1) Efficiencies for average temperature	applications (55 °C)		
Size			0504
Fans: °	,		
UE 813/2013 performance in average	e ambient conditions (average)	- 55 °C - Pdesignh ≤ 400 kW (1)	
SCOP	A	W/W	3,14
SCOP	E	W/W	-
	A	%	122,74
ηsh	E	%	-
Dilastant	A	kW	80,58
Pdesignh	E	kW	-

⁽¹⁾ Efficiencies for average temperature applications (55 °C)

GENERAL TECHNICAL DATA

Size			0504
Fans: °			
Compressor			
Туре	A,E	type	Scroll
Compressor regulation	A,E	Туре	On-Off
Number	A,E	no.	4
Circuits	A,E	no.	2
Refrigerant	A,E	type	R290
Refrigerant load circuit 1 (1)	A,E	kg	3,8
Refrigerant load circuit 2 (1)	A,E	kg	3,8
Potential global heating	A,E	GWP	3kgCO₂eq

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

■ With the J fan option, the data are equivalent

Size			0504
System side heat exchanger	,		
Туре	A,E	type	Brazed plate
Number	A,E	no.	1
Size	1		0504
System type: N			
Hydraulic connections without	hydronic kit		
Sizes (in/out)	A,E	Ø	2"1/2
Connections (in/out)	A,E	Туре	Grooved joints
Size			0504
System type: °			
Hydraulic connections without	hydronic kit		
Sizes (in/out)	A,E	Ø	6"
Connections (in/out)	A,E	Туре	Grooved joints

SOUND DATA

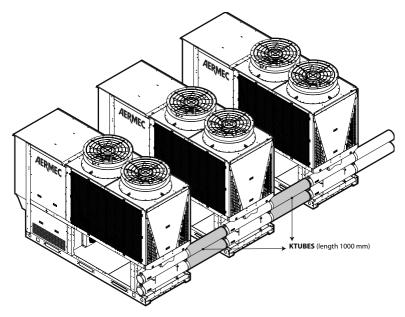
Size			0504
Fans: J	'		
Sound data calculated in coolir	ng mode (1)		
Sound power level	A	dB(A)	87,8
	E	dB(A)	84,8
Sound data calculated in heati	ng mode (1)		
Sound power level	A,E	dB(A)	87,8

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Size			0504
Fans: °			
Sound data calculated in cooling mode	(1)		
Count manual and	A	dB(A)	87,8
Sound power level	E	dB(A)	-
Sound data calculated in heating mode	(1)		
Country of the country of	A	dB(A)	87,8
Sound power level	E	dB(A)	-

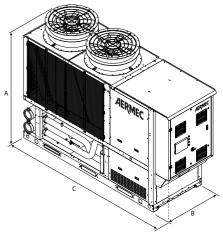
⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

ELECTRIC DATA

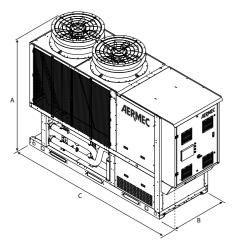

Size			0504
Electric data			
Maximum current (FLA)	A,E	A	115,2
Peak current (LRA)	A,E	A	235,2

Data calculated without hydronic kit and accessories.

FANS DATA


Size			0504
Fans: J			·
Fan			
Туре	A,E	type	Axial
Fan motor	A,E	type	Inverter
Number	A,E	no.	2
A:	A	m³/h	38500
Air flow rate	E	m³/h	27500
Size	1		0504
Fans: °			·
Fan			
	A	type	Axial
Туре	E	type	-
Fan motor	A	type	Asynchronous + DCPX
	E	type	-
Number	A	no.	2
	E	no.	-
Air flow rate	A	m³/h	38500
	F	m³/h	-

MODULAR INSTALLATION



It is possible to couple up to 9 units designed to reduce the overall unit dimensions to a minimum.

DIMENSIONS

Modular version (°)

Version without modular pipes (N)

Size			0504
Integrated hydronic	kit: 00		
Dimensions and weights			
A	A,E	mm	2520
В	A,E	mm	1198
(A,E	mm	3583
Size	,		0504
Integrated hydronic	kit: 00		
Modular version (°)			
Empty weight	A,E	kg	1502
Weight functioning	A,E	kg	1567
Version without modular pipes	s (N)		
Empty weight	A,E	kg	1441
Weight functioning	A,E	kg	1451

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

PRG-0282H-0654H

Reversible air/water heat pump

Cooling capacity 49 ÷ 143 kW Heating capacity 51 ÷ 143 kW

- · R290 natural refrigerant gas
- Low refrigerant charge
- Production of hot water up to 75 °C
- · High efficiency also at partial loads
- Compact dimensions

DESCRIPTION

Reversible outdoor heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Working at full load up to -20° C outside air temperature in winter, and up to 48° C in summer. Hot water production up to 75° C.

Units mono or dual-circuit

The units are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Two scroll compressors are installed in each circuit in a tandem configuration.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Refrigerant HC R290

Using the natural R290 refrigerant, classified A3 to ISO 817 (non-toxic, odourless and flammable refrigerant), the unit's environmental impact drops significantly.

Combining low refrigerant load (less than 5 kg per circuit) with ultra-low Global Warming Potential (GWP), these units boast practically negligible direct equivalent CO2 emissions.

The refrigerant gas detector, the double pressure relief valve (with exchange isolation valve) and the battery protection grilles are standard.

New condensing Coils

The whole range uses copper - aluminium condensation coils with reduced diameter rows, allowing a lower quantity of gas to be used compared to traditional coils.

Electronic expansion valve

The use of the electronic expansion valve offers significant benefits (especially when the unit is working with partial loads), increasing the seasonal energy efficiency of the unit.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation.

It is available in different configurations with storage tank or with fixed or variable pumps also inverter.

VARIABLE FLOW RATE: Correctly adjust the speed of the inverter-controlled pumps according to the load demand of the system, in order to reduce power consumption.

CONTROL PCO⁵

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Swing HP and LP controls: available for all models with inverter fan or with DCPX. By continuously modulating the fans, they streamline operation of the unit at any work point both in cooling and heating mode. This results in enhanced energy efficiency of the unit at partial loads.
- Night mode: only in the non-silenced versions is it possible to set a silenced operating mode, which is useful for example at night for greater acoustic comfort but always guarantees performance even at peak load times.
- "Noise Demand Limit" function: only in non-quiet versions, this function limits the compressors within a time band to set a quiet operation profile, useful for example at night for greater acoustic comfort.

432 www.aermec.com PRG-0282H-0654H_Y_UN50_03

Possibility to control two units in Master - Slave parallel mode. In this
case, it is possible to use only one accessory PGD1 for both units.

ACCESSORIES

■ The units PRG-0282H-0654H must be controlled remotely through an appropriate accessory (remote control panelPGD1,,AERNET MULTICHILLER-EVO, AERLINK orPR4) to be obligatorily and separately. Only in this way is it possible to modify some basic operating parameters or view the presence of any alarms, which avoids accessing risk and restricted access areas.

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

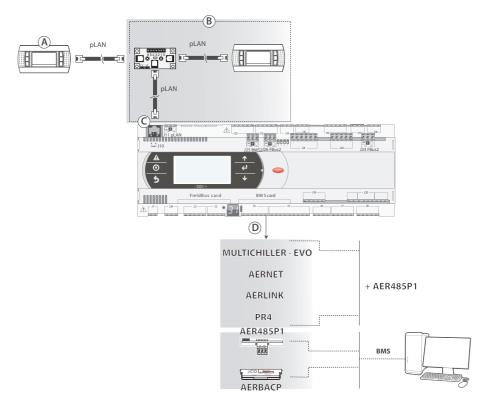
VT: Anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

RXBAS: Heater for finned coil heat exchanger.


COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

COMPATIBILITY BETWEEN CONTROL ACCESSORIES

Model	Ver	0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
AER485P1	A,E	•	•	•	•	•	•	•	•	•	•
AERBACP	A,E			•							
AERLINK	A,E	•	•	•	•	•			•	•	•
AERNET	A,E	•	•	•	•	•	•	•			
MULTICHILLER-EVO	A,E	•	•	•	•	•					•
PGD1	A,E	•	•	•	•	•	•	•	•	•	•

Remote panel											
Model	Ver	0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
PR4	A,E	•									

Key:

- Α
- Display on the unit.
 Control panel accessory "PGD1". В
- Control panel connection port "PGD1".
- **BMS Card serial port:** where to connect 1 among the accessories "MULTICHILLER-EVO AERNET, ,AERLINK, PR4 but to be connected also must also have "AER485P1"; in the case of BMS communication with the accessories "AER485P1 or AERBACP" the only mandatory compatible accessory is the control panel "PGD1".

ACCESSORIES COMPATIBILITY

Antivibration

Alltiviblation										
Ver	0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
ntegrated hydronic kit: 00, l1, l2, l3, l4	, P1, P2, P3, P4									
A, E	VT13	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11
ntegrated hydronic kit: 01, 02, 03, 04, 0	9, K1, K2, K3, K4,	W1, W2, W3, W4								
A, E	VT10	VT10	VT10	VT10	VT10	VT11	VT11	VT11	VT11	VT11
Device for peak current redu	ıction									
Ver	02	182	0292		0302		0322		0332	
A, E	DREP	RG282	DREPRG292		DREPRG302		DREPRG322		DREPRG332	
grey background indicates the accessory n	nust be assembled	in the factory								
Ver	05	04	05	54	06	504	06	i34	06	54
A, E	DREP	RG504	DREPI	RG554	DREP	RG604	DREP	RG634	DREP	RG654
grey background indicates the accessory n	nust be assembled	in the factory								
Power factor correction										
Ver	02	182	02	92	03	302	03	322	03	32
A, E	RIFPI	RG282	RIFPF	RIFPRG292		RG302	RIFPI	RG322	RIFPF	RG332
grey background indicates the accessory n	nust be assembled	in the factory								
Ver	05	i04	05	54	06	504	06	i34	06	54
A, E	RIFPI	RG504	RIFPF	RG554	RIFPI	RG604	RIFPI	RG634	RIFPF	RG654

A grey background indicates the accessory must be assembled in the factory

Heater	for	finned	coil	heat	exchanger
--------	-----	--------	------	------	-----------

Ver	0282	0292	0302	0322	0332
A, E	RXBAS10	RXBAS10	RXBAS10	RXBAS10	RXBAS10
A grey background indicates the accessory	must be assembled in the factory				
Ver	0504	0554	0604	0634	0654
A, E	RXBAS11	RXBAS11	RXBAS12	RXBAS12	RXBAS12

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	PRG
	Size
4,5,6,7	0282, 0292, 0302, 0322, 0332, 0504, 0554, 0604, 0634, 0654
8	Operating field
Χ	Electronic thermostatic expansion valve (1)
Z	Low temperature electronic thermostatic valve (2)
9	Model
Н	Heat pump
10	Heat recovery
D	With desuperheater (3)
0	Without heat recovery
11	Version
Α	High efficiency
E	Silenced high efficiency (4)
12	Coils
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
0	Copper-aluminium
13	Fans
J	Inverter
•	Standard with DCPX (5)
14	Power supply
0	400V ~ 3N 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit
00	Without hydronic kit
	Kit with storage tank and pump/s
01	Storage tank with low head pump
02	Storage tank with low head pump + stand-by pump
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
	Kit with pump/s and storage tank with holes for heaters
05	Storage tank with holes for heaters and single low head pump (6)
06	Storage tank with holes for heaters and pump low head + stand-by pump (6)
07	Storage tank with holes for heaters and single high head pump (6)
08	Storage tank with holes for heaters and pump high head + stand-by pump (6)
	Double loop
09	Storage tank with double loop and intermediate heat exchanger
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with inverter pump/s to fixed speed
I1	Single low head pump + fixed speed inverter
I2	Single low head pump with fixed speed inverter + stand-by pump
	Single high head pump + fixed speed inverter
I4	Single high head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and inverter pump/s to fixed speed
K1	Single low head pump + storage tank + fixed speed inverter
K2	Storage tank and low head pump with fixed speed inverter + stand-by pump
K3	Single high head pump + storage tank + fixed speed inverter
K5	Storage tank and low head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and variable speed inverter pump/s
W1	Single low head pump + Storage tank + variable speed inverter (7)
W2	Double low head pump + Storage tank + variable speed inverter (7)
W2 W3	Single high head pump + Storage tank + variable speed inverter (7)
W3	Double high head pump + Storage tank + variable speed inverter (7)
****	pounte right nead partip 1 protuge turk 1 turium speed interter (7)

www.aermec.com

⁽¹⁾ Water produced from 4 °C ÷ 20 °C
(2) Processed water temperature 8 °C ÷ -10 °C. The option is not compatible with hydronic kits W1-W2-W3-W4. Not compatible with a desuperheater.
(3) The desuperheater must be intercepted in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
(4) Sizes 0282-0292-0302-0322-0332 are only available in low noise version (E).
(5) Option not available only for size 0504-0554-0604-0634-0654 version E
(6) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.
(7) Not available with Low temperature electronic thermostatic valve "Z"

PERFORMANCE SPECIFICATIONS 12 °C/ 7 °C - 40 °C/ 45 °C

PRG - A

rng-A											
Size		0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
Fans: J, °											
Cooling performance 12 °C/7 °C (1)											
Cooling capacity	kW	-	-	-	-	-	94,5	103,9	123,7	133,6	143,1
Input power	kW	-	-	-	-	-	35,8	40,5	40,8	45,1	49,5
Cooling total input current	A	-	-	-	-	-	67,6	81,8	92,2	105,8	119,4
EER	W/W	-	-	-	-	-	2,64	2,56	3,04	2,96	2,89
Water flow rate system side	l/h	-	-	-	-	-	16267	17888	21319	23015	24641
Pressure drop system side	kPa	-	-	-	-	-	30	36	47	54	62
Heating performance 40 °C / 45 °C (2)											
Heating capacity	kW	-	-	-	-	-	102,3	113,2	124,7	134,1	143,1
Input power	kW	-	-	-	-	-	32,0	35,5	39,6	43,4	47,0
Heating total input current	A	-	-	-	-	-	63,8	77,0	91,2	104,8	117,8
COP	W/W	-	-	-	-	-	3,20	3,19	3,15	3,09	3,04
Water flow rate system side	I/h	-	-	-	-	-	17738	19623	21615	23253	24809
Pressure drop system side	kPa	-	-	-	-	-	31	37	48	55	63

PRG - E

Size		0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
Fans: J											
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	49,3	54,3	60,5	65,2	70,3	91,8	101,6	119,1	128,3	137,0
Input power	kW	16,5	18,6	20,3	22,6	25,0	35,7	40,6	40,1	44,8	49,6
Cooling total input current	A	35,3	42,2	50,1	56,9	63,8	67,5	82,0	91,0	104,8	118,8
EER	W/W	2,99	2,92	2,98	2,88	2,81	2,57	2,50	2,97	2,87	2,76
Water flow rate system side	l/h	8486	9361	10417	11227	12117	15797	17489	20523	22099	23601
Pressure drop system side	kPa	30	37	37	42	49	28	35	43	50	56
Heating performance 40 °C / 45 °C (2)											
Heating capacity	kW	51,2	55,9	61,9	66,3	70,7	102,3	113,2	124,7	134,1	143,1
Input power	kW	15,4	17,1	18,8	20,4	22,2	32,1	35,6	39,6	43,4	47,0
Heating total input current	A	34,6	41,1	49,2	55,5	62,0	64,1	77,3	91,8	105,4	118,5
СОР	W/W	3,33	3,27	3,28	3,25	3,19	3,19	3,18	3,15	3,09	3,04
Water flow rate system side	I/h	8872	9688	10728	11490	12242	17738	19623	21616	23254	24810
Pressure drop system side	kPa	33	39	39	44	50	36	44	48	55	62

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

	0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
kW	49,3	54,3	60,5	65,2	70,3	-	-	-	-	-
kW	16,5	18,6	20,3	22,6	25,0	-	-	-	-	-
A	35,3	42,2	50,1	56,9	63,8	-	-	-	-	-
W/W	2,99	2,92	2,98	2,88	2,81	-	-	-	-	-
l/h	8486	9361	10417	11227	12117	-	-	-	-	-
kPa	30	37	37	42	49	-	-	-	-	-
kW	51,2	55,9	61,9	66,3	70,7	-	-	-	-	-
kW	15,4	17,1	18,8	20,4	22,2	-	-	-	-	-
A	34,6	41,1	49,2	55,5	62,0	-	-	-	-	-
W/W	3,33	3,27	3,28	3,25	3,19	-	-	-	-	-
I/h	8872	9688	10728	11490	12242	-	-	-	-	-
kPa	33	39	39	44	50	-	-	-	-	-
	kW A W/W I/h kPa kW kW A W/W I/h	kW 49,3 kW 16,5 A 35,3 W/W 2,99 I/h 8486 kPa 30 kW 51,2 kW 15,4 A 34,6 W/W 3,33 I/h 8872	kW 49,3 54,3 kW 16,5 18,6 A 35,3 42,2 W/W 2,99 2,92 I/h 8486 9361 kPa 30 37 kW 51,2 55,9 kW 15,4 17,1 A 34,6 41,1 W/W 3,33 3,27 I/h 8872 9688	kW 49,3 54,3 60,5 kW 16,5 18,6 20,3 A 35,3 42,2 50,1 W/W 2,99 2,92 2,98 I/h 8486 9361 10417 kPa 30 37 37 kW 51,2 55,9 61,9 kW 15,4 17,1 18,8 A 34,6 41,1 49,2 W/W 3,33 3,27 3,28 I/h 8872 9688 10728	kW 49,3 54,3 60,5 65,2 kW 16,5 18,6 20,3 22,6 A 35,3 42,2 50,1 56,9 W/W 2,99 2,92 2,98 2,88 I/h 8486 9361 10417 11227 kPa 30 37 37 42 kW 51,2 55,9 61,9 66,3 kW 15,4 17,1 18,8 20,4 A 34,6 41,1 49,2 55,5 W/W 3,33 3,27 3,28 3,25 I/h 8872 9688 10728 11490	kW 49,3 54,3 60,5 65,2 70,3 kW 16,5 18,6 20,3 22,6 25,0 A 35,3 42,2 50,1 56,9 63,8 W/W 2,99 2,92 2,98 2,88 2,81 I/h 8486 9361 10417 11227 12117 kPa 30 37 37 42 49 kW 51,2 55,9 61,9 66,3 70,7 kW 15,4 17,1 18,8 20,4 22,2 A 34,6 41,1 49,2 55,5 62,0 W/W 3,33 3,27 3,28 3,25 3,19 I/h 8872 9688 10728 11490 12242	kW 49,3 54,3 60,5 65,2 70,3 - kW 16,5 18,6 20,3 22,6 25,0 - A 35,3 42,2 50,1 56,9 63,8 - W/W 2,99 2,92 2,98 2,88 2,81 - I/h 8486 9361 10417 11227 12117 - kPa 30 37 37 42 49 - kW 51,2 55,9 61,9 66,3 70,7 - kW 15,4 17,1 18,8 20,4 22,2 - A 34,6 41,1 49,2 55,5 62,0 - W/W 3,33 3,27 3,28 3,25 3,19 - I/h 8872 9688 10728 11490 12242 -	kW 49,3 54,3 60,5 65,2 70,3 - - kW 16,5 18,6 20,3 22,6 25,0 - - A 35,3 42,2 50,1 56,9 63,8 - - W/W 2,99 2,92 2,98 2,88 2,81 - - I/h 8486 9361 10417 11227 12117 - - kPa 30 37 37 42 49 - - kW 51,2 55,9 61,9 66,3 70,7 - - kW 15,4 17,1 18,8 20,4 22,2 - - A 34,6 41,1 49,2 55,5 62,0 - - W/W 3,33 3,27 3,28 3,25 3,19 - - I/h 8872 9688 10728 11490 12242 - -	kW 49,3 54,3 60,5 65,2 70,3 - - - kW 16,5 18,6 20,3 22,6 25,0 - - - A 35,3 42,2 50,1 56,9 63,8 - - - W/W 2,99 2,92 2,98 2,88 2,81 - - - I/h 8486 9361 10417 11227 12117 - - - kPa 30 37 37 42 49 - - - kW 51,2 55,9 61,9 66,3 70,7 - - - kW 15,4 17,1 18,8 20,4 22,2 - - - A 34,6 41,1 49,2 55,5 62,0 - - - W/W 3,33 3,27 3,28 3,25 3,19 - - - I/h 8872 9688 10728 11490 12242 - -	kW 49,3 54,3 60,5 65,2 70,3 - - - - kW 16,5 18,6 20,3 22,6 25,0 - - - - - A 35,3 42,2 50,1 56,9 63,8 - - - - - W/W 2,99 2,92 2,98 2,88 2,81 - - - - - I/h 8486 9361 10417 11227 12117 - - - - - kPa 30 37 37 42 49 - - - - kW 51,2 55,9 61,9 66,3 70,7 - - - - kW 15,4 17,1 18,8 20,4 22,2 - - - - M/W 3,33 3,27 3,28 3,25 3,19 - - - - I/h 8872 9688 10728 11490 12242

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

PERFORMANCE SPECIFICATIONS 23 °C/ 18 °C - 30 °C/ 35 °C

PRG - A

Size		0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
Fans: J, °											
Cooling performance 23 °C / 18 °C (1)											
Cooling capacity	kW	-	-	-	-	-	130,8	144,0	173,7	185,8	197,2
Input power	kW	-	-	-	-	-	39,8	45,0	44,4	49,4	54,5
Cooling total input current	A	-	-	-	-	-	74,4	90,0	98,9	114,0	129,2
EER	W/W	-	-	-	-	-	3,29	3,20	3,91	3,76	3,62
Water flow rate system side	l/h	-	-	-	-	-	22619	24890	30031	32116	34090
Pressure drop system side	kPa	-	-	-	-	-	58	70	93	105	118
Heating performance 30 °C / 35 °C (2)											
Heating capacity	kW	-	-	-	-	-	104,9	115,3	127,0	135,5	144,1
Input power	kW	-	-	-	-	-	27,3	30,0	33,7	37,0	40,1
Heating total input current	A	-	-	-	-	-	54,2	64,9	77,2	89,0	100,1
COP	W/W	-	-	-	-	-	3,85	3,84	3,77	3,66	3,60
Water flow rate system side	I/h	-	-	-	-	-	18135	19911	21938	23418	24903
Pressure drop system side	kPa	-	-	-	-	-	32	38	49	56	63

PRG - E

Size		0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
Fans: J											
Cooling performance 23 °C / 18 °C (1)											
Cooling capacity	kW	68,5	75,4	84,3	90,1	97,0	126,2	139,9	166,0	176,9	187,2
Input power	kW	18,3	20,8	22,5	25,1	27,6	40,3	45,7	44,3	49,7	55,3
Cooling total input current	А	38,5	46,4	54,4	62,1	69,2	75,6	91,4	99,1	114,8	130,6
EER	W/W	3,75	3,62	3,75	3,59	3,51	3,13	3,06	3,75	3,56	3,38
Water flow rate system side	l/h	11856	13054	14611	15584	16779	21823	24180	28702	30587	32356
Pressure drop system side	kPa	59	72	72	81	94	54	66	85	95	106
Heating performance 30 °C / 35 °C (2)											
Heating capacity	kW	52,5	56,8	63,0	66,9	72,0	104,8	115,1	126,9	135,5	144,0
Input power	kW	13,0	14,4	15,9	17,2	18,7	27,2	30,3	33,5	36,7	39,7
Heating total input current	A	29,1	34,5	41,3	46,6	52,1	54,2	65,5	77,2	88,7	99,8
СОР	W/W	4,04	3,94	3,97	3,88	3,85	3,86	3,80	3,79	3,69	3,63
Water flow rate system side	I/h	9062	9817	10889	11546	12426	18110	19882	21926	23404	24884
Pressure drop system side	kPa	34	40	40	45	52	37	45	50	56	63

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

Size		0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
Fans: °											
Cooling performance 23 °C / 18 °C (1)											
Cooling capacity	kW	68,5	75,4	84,3	90,1	97,0	-	-	-	-	-
Input power	kW	18,3	20,8	22,5	25,1	27,6	-	-	-	-	-
Cooling total input current	A	38,5	46,4	54,4	62,1	69,2	-	-	-	-	-
EER	W/W	3,75	3,62	3,75	3,59	3,51	-	-	-	-	-
Water flow rate system side	l/h	11856	13054	14611	15584	16779	-	-	-	-	-
Pressure drop system side	kPa	59	72	72	81	94	-	-	-	-	-
Heating performance 30 °C / 35 °C (2)											
Heating capacity	kW	52,5	56,8	63,0	66,9	72,0	-	-	-	-	-
Input power	kW	13,0	14,4	15,9	17,2	18,7	-	-	-	-	-
Heating total input current	A	29,1	34,5	41,3	46,6	52,1	-	-	-	-	-
COP	W/W	4,04	3,94	3,97	3,88	3,85	-	-	-	-	-
Water flow rate system side	l/h	9062	9817	10889	11546	12426	-	-	-	-	-
Pressure drop system side	kPa	34	40	40	45	52	-	-	-	-	-

ENERGY DATA - STANDARD/INVERTER FANS

Size			0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
Fans: J												
SEER - 12/7 (EN 14825: 2018) (1)												
CLLD	A	W/W	-	-	-	-	-	4,11	4,01	4,61	4,55	4,43
SEER	E	W/W	4,36	4,38	4,37	4,34	4,35	4,06	3,97	4,54	4,49	4,37
C	A	%	-	-	-	-	-	161,47	157,50	181,28	179,15	174,34
Seasonal efficiency	E	%	171,34	172,18	171,98	170,59	171,01	159,56	155,60	178,73	176,80	171,92
SEER - 23/18 (EN 14825: 2018) (1)												
CEED	A	W/W	-	-	-	-	-	5,06	4,93	5,62	5,52	5,31
SEER	E	W/W	5,45	5,45	5,31	5,26	5,24	4,06	3,97	4,54	4,49	4,37

 $[\]begin{tabular}{ll} \textbf{(1)} & \textbf{Calculation performed with VARIABLE water flow rate} \\ \end{tabular}$

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/ 35 °C; External air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C / 35 °C; External air 7 °C d.b. / 6 °C w.b.

Size	Α		0282	0292	0302	0322	0332	100.20	104.04	0604	0634	200.47
Seasonal efficiency	A E	% %	214,82	215,18	209,56	207,44	206,66	199,20 159,56	194,04 155,60	221,76 178,73	217,92 176,80	209,47 171,92
(1) Calculation performed with VARIABLE	water flow rate											
Size			0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
Fans: °												
SEER - 12/7 (EN 14825: 2018) (1)	A	W/W			_		_	3,96	3,86	4,49	4,43	4,32
SEER	E	W/W	4,29	4,31	4,31	4,27	4,28	-	-	- -	-	
Seasonal efficiency	A	%	-	-	-	-	-	155,35	151,49	176,41	174,29	169,62
	E	%	168,62	169,41	169,27	167,75	168,28	-	-	-	-	-
SEER - 23/18 (EN 14825: 2018) (1)						-						
SEER	A E	W/W W/W	5,38	5,39	5,26	5,20	5,17	4,85	4,73	5,49	5,40	5,21
	A	%		-	-		-	191,06	186,20	216,59	212,83	205,36
Seasonal efficiency	E		212,20	212,61	207,30	204,96	203,76	-	-	-	-	-
(1) Calculation performed with VARIABLE	water flow rate				·							
Size			0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
Fans: J	,	,						,				
UE 811/2013 performance in average a		ns (average) -	- 35 °C - Pdesig	nh ≤ 70 kW (1)								
Efficiency energy class	A		- A	- A	Α	- A	- A	-	-	-	-	-
	E A	%	A++ -	A++ -	A++ -	A++ -	A++ -	-	-	-	-	
ηsh	E		156,55	155,98	155,53	155,63	157,12	-		-		
SCOP	A	W/W	-	-	-	-	-	-	-	-	-	-
JCUI	E	W/W	3,99	3,97	3,96	3,97	4,00	-	-	-	-	-
Pdesignh	A E	kW	- 40.05	- 42.26		- 52.10		-	-	-	-	-
UE 811/2013 performance in average a		ns (average) .	40,85	43,36 nh < 70 kW (2)	50,06	52,18	53,99	-	-	-	-	
	A	iis (average)	- JJ C-ruesiy	IIII ≥ 70 KW (2)	-	_					_	
Efficiency energy class	E		A+	A+	A+	A+	A++	-	-	-	-	-
nch	A	%	-	-	-	-	-	-	-	-	-	-
ηsh	E	%	123,14	122,78	123,70	123,84	125,66	-	-	-	-	-
SCOP	A	W/W	-		-	-	-	-	-	-	-	-
	<u>Е</u> А	W/W kW	3,15	3,14	3,17	3,17	3,22	-		-	-	-
Pdesignh	E	kW	39,90	42,10	49,10	51,20	52,90					
UE 813/2013 performance in average a						31,20	32,70					
SCOP	A,E	W/W	-	-	-	-	-	4,08	3,87	4,04	3,95	4,02
ηsh	A,E	%	-	-	-	-	-	160,04	151,64	158,46	154,90	157,62
Pdesignh	A	kW	-	-	-	-	-	81,43	87,59	97,03	103,17	111,52
	E	kW	-	-	-	-	-	81,60	87,81	97,02	103,18	111,52
UE 813/2013 performance in average a			- 55 °C - Pdesig	nh ≤ 400 kW (2	2)			2.20	2.14	2.21	2.20	2.24
SCOP nsh	A,E	W/W %	-		-		-	3,30 129,04	3,14 122,74	3,31 129,26	3,30 128,91	3,34 130,63
	A	kW	-	-	-	-	-	79,70	85,10	94,00	102,70	111,00
Pdesignh	E	kW	-	-	-	-	-	80,00	85,40	94,10	102,80	111,20
(1) Efficiencies for low temperature applic(2) Efficiencies for average temperature application												
Size			0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
Fans: °												
UE 811/2013 performance in average a		ns (average) -	- 35 °C - Pdesig	nh ≤ 70 kW (1)								
Efficiency energy class	A		Α	- A	- A	- A	- A	-	-	-	-	-
	<u>Е</u> А	%	A++ -	A++ -	A++ -	A++ -	A++ -	-		-	-	-
ηsh	E		153,35	152,80	152,36	152,45	155,47	-		-	-	
CCOD	A	W/W	-	-	-	-	-	-	-	-	-	-
SCOP	E	W/W	3,91	3,90	3,88	3,86	3,96	-	-	-	-	-
Pdesignh	A	kW	-	-	-	-	-	-	-	-	-	-
	E mhiant canditio	kW	40,84	43,36	50,06	52,18	53,99	-	-	-	-	-
UE 811/2013 performance in average a		ııs (average) -	· >> C-raesig	nn ≤ /U KW (2)	_		_					
Efficiency energy class	A E		A+	- A+	A+	- A+	A+	-			-	
	A	%	-	-	-	-	-	-	_	-	-	
nsh	E	%	120,95	120,95	121,68	122,25	124,65	-	-	-	_	-
SCOP	A	W/W	-	-	-	-	-	-	-	-	-	-
	E	W/W	3,10	3,09	3,12	3,13	3,19	-	-	-	-	-
Pdesignh	A	kW	- 20.00	- 42.10	- 40.10			-	-	-	-	-
(1) Efficiencies for low temperature applic	E ations (25 °C)	kW	39,90	42,10	49,10	51,20	52,90	-	-	-	-	-

⁽¹⁾ Efficiencies for low temperature applications (35 °C) (2) Efficiencies for average temperature applications (55 °C)

Size	·		0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
UE 813/2013 performance in average am	bient conditi	ons (average) -	35 °C - Pdesig	nh ≤ 400 kW	(1)							
SCOP	A	W/W	-	-	-	-	-	3,95	3,75	3,92	3,83	3,90
SCOP	E	W/W	-	-	-	-	-	-	-	-	-	-
	A	%	-	-	-	-	-	155,15	147,00	153,61	150,17	152,80
ηsh	E	%	-	-	-	-	-	-	-	-	-	-
Danianh	A	kW	-	-	-	-	-	81,43	87,59	97,03	103,17	111,52
Pdesignh	E	kW	-	-	-	-	-	-	-	-	-	-
UE 813/2013 performance in average am	bient conditi	ons (average) -	55 °C - Pdesig	nh ≤ 400 kW	(2)							-
SCOP	A	W/W	-	-	-	-	-	3,22	3,06	3,23	3,20	3,30
SCOP	E	W/W	-	-	-	-	-	-	-	-	-	-
	A	%	-	-	-	-	-	125,67	119,30	126,09	125,15	128,88
ηsh	E	%	-	-	-	-	-	-	-	-	-	-
Danianh	A	kW	-	-	-	-	-	79,70	85,10	94,00	102,70	111,00
Pdesignh	E	kW	-	-	-	-	-	-	-	-	-	-

ELECTRIC DATA

Size			0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
Electric data												
Maximum current /FLA)	A	Α	-	-	-	-	-	115,8	123,8	135,7	147,7	159,7
Maximum current (FLA)	E	A	57,3	61,3	66,4	72,4	78,4	115,8	123,8	135,7	147,7	159,7
Deale comment (LDA)	A	A	-	-	-	-	-	235,8	250,8	262,7	307,7	319,7
Peak current (LRA)	E	A	177.3	188.3	193.4	232.4	238.4	235.8	250.8	262.7	307.7	319.7

Data calculated without hydronic kit and accessories.

GENERAL TECHNICAL DATA

Size			0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
Compressor												
Туре	A,E	type					Sci	roll				
Compressor regulation	A,E	Туре					On-	-Off				
Number	A	no.	-	-	-	-	-	4	4	4	4	4
Number	E	no.	2	2	2	2	2	4	4	4	4	4
Circuite	A	no.	-	-	-	-	-	2	2	2	2	2
Circuits	E	no.	1	1	1	1	1	2	2	2	2	2
Refrigerant	A,E	type			-		R2	90				
Definement lead singuist 1 (1)	A	kg	-	-	-	-	-	4,2	4,2	4,9	4,9	4,9
Refrigerant load circuit 1 (1)	E	kg	4,2	4,2	4,9	4,9	4,9	4,2	4,2	4,9	4,9	4,9
Refrigerant load circuit 2 (1)	A,E	kg	-	-	-	-	-	4,2	4,2	4,9	4,9	4,9
Potential global heating	A,E	GWP					3kg(:0,eq				
System side heat exchanger												
Туре	A,E	type					Brazeo	d plate				
Number	A	no.	-	-	-	-	-	1	1	1	1	1
Number	E	no.	1	1	1	1	1	1	1	1	1	1

Size			0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
System side heat exchanger												
Туре	A,E	type					Brazeo	d plate				
Number	A	no.	-	-	-	-	-	1	1	1	1	1
Number	E	no.	1	1	1	1	1	1	1	1	1	1
Size	,		0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
Integrated hydronic ki	it: 00											
System side hydraulic connection	ns											
Connections (in/out)	A,E	Туре					Groove	d joints				
C:=== /:= /==+\	A	Ø	-	-	-	-	-	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2
Sizes (in/out)	E	Ø					21	/2"				
Size			0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
Fans: J												
Sound data calculated in cooling	mode (1)											
Complement	A	dB(A)	-	-	-	-	-	86,6	86,6	87,2	87,2	87,2
Sound power level	E	dB(A)	82,0	82,0	82,2	84,0	84,0	84,6	84,6	84,7	85,3	85,3
Sound data calculated in heating	g mode (1)											
Ca.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A	dB(A)	-	-	-	-	-	86,6	86,6	87,2	87,2	87,2
Sound power level	- г	dR(A)	82.0	82.0	87.7	84.0	84.0	86.0	86.0	86.6	87.7	87.7

^{82,2} (1) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

84,0

84,0

86,0

86,0

86,6

87,2

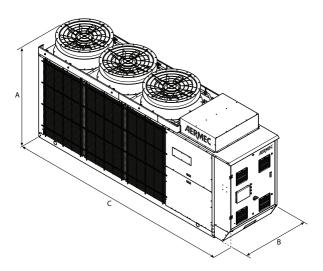
87,2

dB(A)

82,0

82,0

⁽¹⁾ Efficiencies for low temperature applications (35 °C) (2) Efficiencies for average temperature applications (55 °C)


Size			0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
Fans: °												
Sound data calculated in cooling mode (1)											
County account and	А	dB(A)	-	-	-	-	-	86,6	86,6	87,2	87,2	87,2
Sound power level –	E	dB(A)	82,0	82,0	82,2	84,0	84,0	-	-	-	-	-
Sound data calculated in heating mode (1)											
County account and	Α	dB(A)	-	-	-	-	-	86,6	86,6	87,2	87,2	87,2
Sound power level -	E	dB(A)	82,0	82,0	82,2	84,0	84,0	-	-	-	-	-

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

FANS DATA

Size			0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
Fans: J												
Fan		-										
Tuno	A	type	-	-	-	-	-	Axial	Axial	Axial	Axial	Axial
Туре	E	type	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial
Fan motor	A	type	-	-	-	-	-	Inverter	Inverter	Inverter	Inverter	Inverter
rali iliutui	E	type	Inverter	Inverter	Inverter	Inverter	Inverter	Inverter	Inverter	Inverter	Inverter	Inverter
Number	A	no.	-	-	-	-	-	2	2	3	3	3
Nullipel	E	no.	6	6	8	8	8	2	2	3	3	3
Air flow rate	A	m³/h	-	-	-	-	-	38211	38211	58970	58970	58970
All flow rate	E	m³/h	22937	22937	28830	28830	28830	31935	31935	42553	42553	42553
Size			0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
Fans: °												
Fan		-										
Tuna	A	type	-	-	-	-	-	Axial	Axial	Axial	Axial	Axial
Туре	E	type	Axial	Axial	Axial	Axial	Axial	-	-	-	-	-
	Λ	tuno						Asynchronous	Asynchronous	Asynchronous	Asynchronous	Asynchronous
Fam	A	type	-	-	-	-	-	+ DCPX				
Fan motor	E	type	Asynchronous + DCPX	Asynchronous + DCPX	Asynchronous + DCPX	Asynchronous + DCPX	Asynchronous + DCPX	-	-	-	-	-
	A	no.	-	-	-	-	-	2	2	3	3	3
Number	E	no.	6	6	8	8	8	-	-	-	-	-
1: 0	A	m³/h	-	-	-	-	-	38211	38211	58970	58970	58970
Air flow rate	F	m ³ /h	22937	22937	28830	28830	28830	_	_		_	

DIMENSIONS

Size			0282	0292	0302	0322	0332	0504	0554	0604	0634	0654
Integrated hydronic kit: 00												
Dimensions and weights												
Λ	Α	mm	-	-	-	-	-	1980	1980	1980	1980	1980
А —	E	mm	1920	1920	1920	1920	1920	1980	1980	1980	1980	1980
D	Α	mm	-	-	-	-	-	1108	1108	1108	1108	1108
В —	E	mm	1108	1108	1108	1108	1108	1108	1108	1108	1108	1108
	Α	mm	-	-	-	-	-	3635	3635	4423	4423	4423
_	E	mm	3375	3375	3375	3375	3375	3635	3635	4423	4423	4423

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRB 0282-0754

Air-water chiller

Cooling capacity 56 ÷ 202 kW

- · High seasonal efficiency
- Night mode
- · Low refrigerant charge
- Compact dimensions

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to 51°C external air temperature. Unit can produce chilled water (up to -10°C of water produced in some versions).

Dual-circuit unit

The units according to the size are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

New condensing Coils

The whole range uses copper - aluminium condensation coils with reduced diameter rows, allowing a lower quantity of gas to be used compared to traditional coils.

Electronic expansion valve

The possibility to use electronic expansion valve, available to configurator, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, with high or low head and storage tank, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: available for all models with inverter fans or with DCPX. Allows, with continuous fan modulation, to optimize the operation of the unit in any operating point, ensuring an increase in the energy efficiency at partial load.
- Night mode: only in the non-silenced versions with the fan to be, inverter or phase-cut or with the DCPX accessory, a silenced operation profile can be set, which is useful, for example, at night for greater acoustic comfort, but always ensures performance even at peak load hours.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

GP: Anti-intrusion grid.

VT: Anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

C-TOUCH: 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
	°,A					•	•	•	•	•	•	•	•	•	•	•
AER485P1	E,L,N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	U				•	•	•	•	•	•	•	•	•	•	•	•
	°,A					•	•	•	•	•			•	•	•	•
AERBACP	E,L,N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	U				•	•	•	•	•	•	•	•	•	•	•	•
	°,A					•	•	•	•	•	•	•	•	•	•	•
AERLINK	E,L,N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	U				•	•	•	•	•	•		•	•	•	•	•
	^^,A					•	•	•	•	•	•	•	•	•	•	•
AERNET	E,L,N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	U				•	•	•	•	•	•	•	•	•	•	•	•
	°,A					•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	E,L,N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	U				•	•	•	•	•	•	•	•	•	•	•	•
	°,A					•	•	•	•				•		•	•
PGD1	E,L,N	•		•	•	•		•	•	•	•	•	•	•	•	•
	U				•	•	•	•	•							•
ccp	E,L,N	•	•	•	•											
SGD	U															

Model	Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
	°,A					•	•	•	•	•	•	•	•	•	•	•
PR4	E,L,N		•	•	•	•	•	•	•	•	•	•	•	•		•
	U				•	•	•	•	•	•	•	•	•	•	•	•

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Condensation control temperature

Ver	0282	0302	0332	0352	0502	0552	0602	0604
ns: M								
°, A	-	-	-	-	DCPX142	DCPX142	DCPX142	DCPX142
E, L	DCPX141	DCPX141	DCPX141	DCPX141	As standard	As standard	As standard	As standard
N	DCPX141	DCPX141	DCPX141	As standard				
U	-	-	-	DCPX142	DCPX142	DCPX142	DCPX143	DCPX143
ns: °								
E, L	DCPX140	DCPX140	DCPX140	DCPX140	-	-	-	-
N	DCPX140	DCPX140	DCPX140	-	-	-	-	-
Ver	0652	0654	0682	0702		0704	0752	0754
ns: M		'					'	
0	DCPX142	DCPX142	DCPX143	DCPX14	3	DCPX143	DCPX143	DCPX143
А	DCPX142	DCPX143	DCPX143	DCPX14	3	DCPX143	DCPX143	DCPX143
E, L, N	As standard	As standard	As standard	As standa	ard	As standard	As standard	As standard
U	DCPX143	DCPX143	DCPX143	DCPX14	3	DCPX143	DCPX143	DCPX143

Antivibration

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Integrated hydronic kit: 00, I1, I2, I3, I4	, P1, P2, P3,	P4													
0	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22
A	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT22
E	VT17	VT17	VT17	VT17	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT22
L	VT17	VT17	VT17	VT17	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22
N	VT17	VT17	VT17	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT23	VT23	VT23	VT23

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
U	-	-	-	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT23	VT23	VT23	VT23
Integrated hydronic kit: 01, 02, 03,	04, 05, 06, 07, 0	B, 09, K1, K	2, K3, K4												
0	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22
A	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT22
E	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT22
L	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22
N	VT13	VT13	VT13	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT23	VT23	VT23	VT23
U	-	-	-	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT23	VT23	VT23	VT23

Anti-intrusion grid

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
0	-	-	-	-	GP2 x 2 (1)	GP2 x 3 (1)									
A	-	-	-	-	GP2 x 2 (1)	GP2 x 3 (1)									
E	GP3	GP4	GP4	GP4	GP2 x 2 (1)	GP2 x 3 (1)									
L	GP3	GP3	GP4	GP4	GP2 x 2 (1)	GP2 x 3 (1)									
N	GP4	GP4	GP4	GP2 x 2 (1)	CD2 v 2 (1)	GP14 x	GP14 x	GP14 x	GP14 x						
IN .	ur4	ur4	ur4	GP2 X Z (1)	GP2 X Z (1)	GPZ X Z (1)	GP2 X 3 (1)	urz x 5 (1)	4 (1)	4 (1)	4 (1)	4 (1)			
II.				CD2 v 2 (1)	GP2 x 2 (1)	CD2 v 2 (1)	GP14 x	GP14 x	GP14 x	GP14 x					
U	-			GP2 X Z (1)	GPZ X Z (1)	GP2 X Z (1)	GP2 X 3 (1)	4 (1)	4(1)	4(1)	4 (1)				

(1) x_i indicates the quantity to buy The accessory cannot be fitted on the configurations indicated with -

Power factor correction

Ver	0282	0302	0332	0352	0502	0552	0602	0604
°, A	-	-	-	-	RIF0502	RIF0552	RIF0602	RIF0604
E, L, N	RIF0282	RIF0302	RIF0332	RIF0352	RIF0502	RIF0552	RIF0602	RIF0604
U	-	-	-	RIF0352	RIF0502	RIF0552	RIF0602	RIF0604

The accessory cannot be fitted on the configurations indicated with -A grey background indicates the accessory must be assembled in the factory

Ver	0652	0654	0682	0702	0704	0752	0754
°, A, E, L, N, U	RIF0652	RIF0654	RIF0682	RIF0702	RIF0704	RIF0752	RIF0754

A grey background indicates the accessory must be assembled in the factory

Device for peak current reduction

Ver	0282	0302	0332	0352	0502	0552	0602	0604
°, A	-	-	-	-	DRENRB502 (1)	DRENRB552 (1)	DRENRB602 (1)	DRENRB604 (1)
E, L, N	DRENRB282 (1)	DRENRB302 (1)	DRENRB332 (1)	DRENRB352 (1)	DRENRB502 (1)	DRENRB552 (1)	DRENRB602 (1)	DRENRB604 (1)
U	-	-	-	DRENRB352 (1)	DRENRB502 (1)	DRENRB552 (1)	DRENRB602 (1)	DRENRB604 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

	/er	0652	0654	0682	0702	0704	0752	0754
°, A,	., L, N, U	DRENRB652 (1)	DRENRB654 (1)	DRENRB682 (1)	DRENRB702 (1)	DRENRB704 (1)	DRENRB752 (1)	DRENRB754 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Double safety valves

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
°, A	-	-	-	-	T6NRB8	T6NRB8	T6NRB8	T6NRB11	T6NRB8	T6NRB11	T6NRB9	T6NRB10	T6NRB12	T6NRB10	T6NRB12
E, L	T6NRB6	T6NRB6	T6NRB6	T6NRB6	T6NRB8	T6NRB8	T6NRB8	T6NRB11	T6NRB8	T6NRB11	T6NRB9	T6NRB10	T6NRB12	T6NRB10	T6NRB12
N	T6NRB6	T6NRB6	T6NRB6	T6NRB8	T6NRB8	T6NRB8	T6NRB8	T6NRB11	T6NRB8	T6NRB11	T6NRB9	T6NRB10	T6NRB12	T6NRB10	T6NRB12
U	-	-	-	T6NRB8	T6NRB8	T6NRB8	T6NRB8	T6NRB11	T6NRB8	T6NRB11	T6NRB9	T6NRB10	T6NRB12	T6NRB10	T6NRB12

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Touch screen keyboard

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
°. A. F. I . N. IJ	C-TOUCH														

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Fiel	d	Description
1,2,	.3	NRB
4,5,	6,7	Size 0282, 0302, 0332, 0352, 0502, 0552, 0602, 0604, 0652, 0654, 0682, 0702, 0704 0752, 0754
8		Operating field
	Χ	Electronic thermostatic expansion valve (1)
	Υ	Double mechanical thermostat for low temperature (2)
	Z	Low temperature electronic thermostatic valve (3)
	0	Standard mechanic thermostatic valve (1)
9		Model
	C	Motocondensing unit
	0	Cooling only
10		Heat recovery
	D	With desuperheater (4)
	T	With total recovery (4)
	0	Without heat recovery
11		Version
	0	Standard
	Α	High efficiency
	Ε	Silenced high efficiency
	L	Standard silenced
	N	Silenced very high efficiency
	U	Very high efficiency
12		Coils
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	٧	Copper pieps-Coated aluminium fins
	0	Copper-aluminium
13		Fans
	J	Inverter
	М	Oversized (5)
	0	Standard (6)
14		Power supply
	0	400V ~ 3N 50Hz with magnet circuit breakers
15,	16	Integrated hydronic kit
		Without hydronic kit
	00	Without hydronic kit
		Kit with storage tank and pump/s
	01	Storage tank with low head pump

Field	Description
02	Storage tank with low head pump + stand-by pump
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
	Kit with pump/s and storage tank with holes for heaters
05	Storage tank with holes for heaters and single low head pump (7)
06	Storage tank with holes for heaters and pump low head + stand-by pump (7)
07	Storage tank with holes for heaters and single high head pump (7)
08	Storage tank with holes for heaters and pump high head + stand-by pump (7)
	Double loop
09	Double loop
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with inverter pump/s to fixed speed
11	Single low head pump + fixed speed inverter
12	Single low head pump with fixed speed inverter + stand-by pump
I3	Single high head pump + fixed speed inverter
14	Single high head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and inverter pump/s to fixed speed
K1	Single low head pump + storage tank + fixed speed inverter
K2	Storage tank and low head pump with fixed speed inverter + stand-by pump
K3	Single high head pump + storage tank + fixed speed inverter
K4	Storage tank and low head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and variable speed inverter pump/s
W1	Single low head pump + Storage tank + variable speed inverter (8)
W2	Double low head pump + Storage tank + variable speed inverter (8)
W3	Single high head pump + Storage tank + variable speed inverter (8)
W4	Double high head pump + Storage tank + variable speed inverter (8)

- (1) Water produced from 4 °C ÷ 18 °C
 (2) Water produced from 4 °C ÷ 18 °C
 (3) Water produced from -10 °C ÷ 18 °C
 (3) Water produced from -10 °C ÷ 18 °C
 (4) For "YT" "ZT" ""YD" and "ZD" recovery versions, contact the headquarters; Waming: on the recovery side, a minimum input temperature of 35 °C must always be guaranteed on the heat exchanger. For more information about the unit operating range, refer to the Magellano selection program
 (5) As standard in sizes fom 0502 to 0754 version ° A E L, in sizes from 0352 to 0754 version N U
 (6) As standard in sizes from 0252 to 0352 versions E L and in size from 0252 to 0332 version N
 (7) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.
 (8) Options Y and Z are not compatible with W1/W2/W3/W4

PERFORMANCE SPECIFICATIONS

Included units with 101 fans.

NRB - L

Size		0282	0302	0332	0352
Fans: °					
Cooling performance 12 °C/7 °C(1)					
Cooling capacity	kW	56,5	64,3	73,9	85,5
Input power	kW	19,8	22,2	24,8	29,6
Cooling total input current	A	35,0	41,0	46,0	54,0
EER	W/W	2,85	2,90	2,98	2,89
Water flow rate system side	l/h	9734	11090	12722	14734
Pressure drop system side	kPa	37	48	39	52

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - E

Size		0282	0302	0332	0352
Fans: °					
Cooling performance 12 °C/7 °C(1)					
Cooling capacity	kW	60,6	68,4	77,0	89,2
Input power	kW	18,6	21,1	23,8	28,3
Cooling total input current	A	32,0	36,0	41,0	46,0
EER	W/W	3,26	3,24	3,23	3,16
Water flow rate system side	l/h	10429	11774	13258	15372
Pressure drop system side	kPa	26	33	30	40

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - N

Size	'	0282	0302	0332
Fans: °				
Cooling performance 12 °C/7 °C(1)				
Cooling capacity	kW	60,8	69,0	76,9
Input power	kW	17,8	20,5	22,9
Cooling total input current	A	33,0	39,0	44,0
EER	W/W	3,42	3,37	3,36
Water flow rate system side	l/h	10460	11884	13249
Pressure drop system side	kPa	27	25	31

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

Included units with 'M' fans.

NRB - °

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Fans: M																
Cooling performance 12 °C/7 °C(1)																
Cooling capacity	kW	-	-	-	-	98,4	107,0	125,9	125,5	135,1	141,0	159,7	178,9	170,7	195,7	193,5
Input power	kW	-	-	-	-	33,2	37,5	41,6	45,6	47,4	52,2	54,8	60,8	58,3	71,8	67,2
Cooling total input current	Α	-	-	-	-	59,0	65,0	71,0	80,0	81,0	92,0	93,0	102,0	104,0	117,0	117,0
EER	W/W	-	-	-	-	2,96	2,85	3,03	2,75	2,85	2,70	2,92	2,95	2,93	2,73	2,88
Water flow rate system side	l/h	-	-	-	-	16941	18444	21694	21620	23270	24282	27502	30805	29385	33700	33309
Pressure drop system side	kPa	-	-	-	-	39	46	42	50	49	48	52	66	71	78	65

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - L

Size		0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Fans: M												
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	96,3	104,5	122,6	121,5	131,1	134,8	156,1	174,3	166,4	189,9	187,4
Input power	kW	34,0	38,6	42,9	47,6	49,2	55,0	56,0	62,5	60,0	74,7	69,5
Cooling total input current	A	59,0	65,0	72,0	82,0	82,0	95,0	93,0	102,0	105,0	119,0	119,0
EER	W/W	2,83	2,71	2,86	2,55	2,67	2,45	2,79	2,79	2,78	2,54	2,70
Water flow rate system side	l/h	16583	18007	21114	20937	22592	23230	26870	30010	28645	32685	32255
Pressure drop system side	kPa	37	43	40	46	45	44	50	62	66	73	61

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - A

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Fans: M																
Cooling performance 12 °C / 7 °C (1)																
Cooling capacity	kW	-	-	-	-	103,9	114,8	130,1	129,7	140,0	150,2	167,9	186,9	176,8	207,6	198,8
Input power	kW	-	-	-	-	31,4	35,4	40,3	43,5	45,0	47,6	51,9	59,2	56,6	69,6	63,8
Cooling total input current	А	-	-	-	-	55,0	59,0	68,0	73,0	74,0	77,0	86,0	94,0	98,0	103,0	107,0
EER	W/W	-	-	-	-	3,31	3,24	3,23	2,98	3,11	3,16	3,24	3,16	3,12	2,98	3,11
Water flow rate system side	l/h	-	-	-	-	17889	19764	22404	22344	24116	25867	28897	32172	30430	35736	34210
Pressure drop system side	kPa	-	-	-	-	30	36	35	42	40	57	46	56	55	60	58

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - E

Size		0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Fans: M	·											
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	100,4	110,5	123,9	122,2	132,4	144,8	161,4	178,0	168,2	195,9	187,7
Input power	kW	32,5	36,9	42,7	46,6	48,2	49,4	54,0	62,6	59,7	74,7	68,0
Cooling total input current	A	54,0	59,0	69,0	75,0	77,0	77,0	86,0	95,0	100,0	107,0	110,0
EER	W/W	3,09	3,00	2,90	2,62	2,75	2,93	2,99	2,84	2,82	2,62	2,76
Water flow rate system side	l/h	17275	19020	21329	21052	22807	24939	27779	30648	28950	33719	32307
Pressure drop system side	kPa	27	33	32	36	36	52	42	51	49	53	52

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - U

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Fans: M																
Cooling performance 12 °C/7 °C(1)																
Cooling capacity	kW	-	-	-	92,7	104,5	117,2	132,1	137,9	146,8	152,9	171,6	191,4	180,5	209,6	202,9
Input power	kW	-	-	-	27,1	30,8	34,5	38,8	41,3	44,2	45,5	50,7	59,3	56,2	67,2	63,1
Cooling total input current	А	-	-	-	51,0	56,0	61,0	68,0	76,0	76,0	86,0	88,0	101,0	104,0	116,0	115,0
EER	W/W	-	-	-	3,42	3,39	3,40	3,40	3,34	3,32	3,36	3,39	3,23	3,21	3,12	3,21
Water flow rate system side	l/h	-	-	-	15945	17984	20172	22745	23741	25275	26327	29532	32945	31067	36076	34915
Pressure drop system side	kPa	-	-	-	24	30	29	38	34	36	42	41	51	48	61	56

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - N

Size		0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Fans: M													
Cooling performance 12 °C / 7 °C (1)													
Cooling capacity	kW	89,7	100,8	112,4	128,6	133,5	142,2	147,1	164,5	185,1	174,5	201,1	195,1
Input power	kW	27,8	31,9	36,1	39,4	42,4	45,3	47,2	52,9	60,9	57,5	70,2	65,3
Cooling total input current	A	50,0	55,0	62,0	66,0	74,0	75,0	85,0	88,0	100,0	102,0	116,0	114,0
EER	W/W	3,23	3,16	3,12	3,26	3,15	3,14	3,11	3,11	3,04	3,03	2,87	2,99
Water flow rate system side	I/h	15444	17352	19347	22150	22978	24481	25334	28325	31856	30031	34611	33586
Pressure drop system side	kPa	22	28	27	36	32	34	39	38	48	45	56	52

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Fans: J																	
SEER - 12/7 (EN14825: 2018) (1)																	
	0	W/W	-	-	-	-	4,34	4,23	4,39	4,12	4,26	4,11	4,28	4,26	4,13	4,24	4,12
	A	W/W	-	-	-	-	4,48	4,48	4,59	4,20	4,48	4,13	4,49	4,40	4,34	4,44	4,16
SEER	E	W/W	4,59	4,69	4,60	4,52	4,48	4,46	4,53	4,16	4,34	4,18	4,51	4,32	4,13	4,33	4,11
SEEK	L	W/W	4,38	4,37	4,46	4,35	4,36	4,24	4,38	4,11	4,18	4,12	4,32	4,23	4,13	4,19	4,11
	N	W/W	4,79	4,84	4,73	4,81	4,68	4,76	4,84	4,53	4,72	4,39	4,77	4,60	4,35	4,56	4,31
	U	W/W	-	-	-	4,74	4,71	4,82	4,65	4,33	4,66	4,31	4,76	4,53	4,22	4,52	4,29
	0	%	-	-	-	-	170,60	166,20	172,60	161,80	167,30	161,40	168,20	167,40	162,20	166,60	161,80
	Α	%	-	-	-	-	176,20	176,20	180,60	165,00	176,20	162,20	176,60	173,00	170,60	174,60	163,40
C	E	%	180,60	184,60	181,00	177,80	176,20	175,40	178,20	163,40	170,60	164,20	177,40	169,80	162,20	170,20	161,40
Seasonal efficiency	L	%	172,20	171,80	175,40	171,00	171,40	166,60	172,20	161,40	164,20	161,80	169,80	166,20	162,20	164,60	161,40
	N	%	188,60	190,60	186,20	189,40	184,20	187,40	190,60	178,20	185,80	172,60	187,80	181,00	171,00	179,40	169,40
	U	%	-	-	-	186,80	185,40	189,80	183,00	170,20	183,40	169,40	187,40	178,20	165,80	177,80	168,60
SEER - 23/18 (EN14825: 2018) (2)																	
	0	W/W	-	-	-	-	5,31	5,07	5,29	4,89	5,04	4,93	5,13	5,12	5,01	4,99	4,95
	A	W/W	-	-	-	-	5,55	5,42	5,54	5,06	5,36	5,11	5,43	5,23	5,30	5,24	5,03
SEER	E	W/W	5,50	5,62	5,55	5,58	5,47	5,41	5,37	4,88	5,10	5,05	5,37	5,06	4,93	5,02	4,88
DEEN	L	W/W	5,17	5,22	5,34	5,22	5,27	5,00	5,12	4,81	4,89	4,82	5,13	4,92	4,91	4,83	4,84
	N	W/W	5,75	5,82	5,73	5,91	5,72	5,68	5,88	5,49	5,67	5,29	5,71	5,46	5,27	5,38	5,21
	U	W/W	-	-	-	5,92	5,86	5,85	5,72	5,32	5,68	5,30	5,79	5,45	5,22	5,41	5,21

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Calculation performed with FIXED water flow rate.

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
	0	%	-	-	-	-	209,30	199,60	208,40	192,70	198,50	194,20	202,20	201,60	197,50	196,50	194,80
	A	%	-	-	-	-	219,00	213,90	218,60	199,50	211,30	201,30	214,10	206,30	208,80	206,60	198,20
Concernal officiency	E	%	216,80	221,60	218,80	220,00	215,70	213,30	211,80	192,00	200,80	199,10	211,60	199,30	194,00	197,90	192,20
Seasonal efficiency	L	%	203,80	205,90	210,60	205,60	207,70	197,10	201,70	189,40	192,70	189,70	202,00	193,60	193,20	190,00	190,40
	N	%	227,00	229,80	226,30	233,30	225,80	224,10	232,30	216,40	223,70	208,50	225,30	215,30	207,60	212,10	205,20
	U	%	-	-	-	233,80	231,40	231,10	225,80	209,60	224,00	209,00	228,70	214,90	205,70	213,40	205,40
SEPR - (EN 14825: 2018) (2)																	
	0	W/W	-	-	-	-	5,79	5,61	5,74	5,62	5,66	5,57	5,59	5,84	5,94	5,45	5,76
	A	W/W	-	-	-	-	6,10	5,97	6,00	5,73	5,97	5,74	5,92	5,79	5,89	5,75	5,78
SEPR	E	W/W	6,46	6,42	6,13	6,36	5,98	5,95	5,79	5,41	5,72	5,68	5,83	5,67	5,69	5,51	5,47
SERK	L	W/W	6,15	6,00	5,97	6,07	5,79	5,65	5,61	5,31	5,55	5,28	5,58	5,60	5,77	5,37	5,53
	N	W/W	6,71	6,53	6,23	6,54	6,22	6,21	6,16	6,12	6,14	5,93	6,09	5,97	6,08	5,83	5,90
	U	W/W	-	-	-	6,43	6,30	6,31	6,01	6,15	6,09	5,88	6,19	5,88	6,05	5,85	6,07

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Fans: M		'															
SEER - 12/7 (EN14825: 2018) (1)																	
	0	W/W	-	-	-	-	4,23	4,13	4,29	- (2)	4,16	- (2)	4,18	4,16	- (2)	4,14	- (2)
	A	W/W	-	-	-	-	4,37	4,37	4,48	- (2)	4,37	- (2)	4,38	4,29	- (2)	4,33	- (2)
SEER	E	W/W	4,48	4,58	4,49	4,42	4,37	4,35	4,42	- (2)	4,24	- (2)	4,40	4,21	- (2)	4,23	- (2)
SEEK	L	W/W	4,28	4,27	4,35	4,27	4,25	4,14	4,27	- (2)	4,11	- (2)	4,22	4,13	- (2)	4,11	- (2)
	N	W/W	4,68	4,72	4,62	4,69	4,56	4,65	4,72	4,42	4,61	4,28	4,65	4,49	4,24	4,45	4,20
	U	W/W	-	-	-	4,62	4,59	4,71	4,54	4,22	4,54	4,20	4,64	4,42	4,11	4,41	4,18
		%	-	-	-	-	166,20	162,20	168,40	- (2)	163,40	- (2)	164,10	163,40	- (2)	162,50	- (2)
	A	%	-	-	-	-	171,90	171,60	176,10	- (2)	171,70	- (2)	172,20	168,70	- (2)	170,20	- (2)
Seasonal efficiency	E	%	176,20	180,20	176,40	173,60	171,70	171,00	173,80	- (2)	166,50	- (2)	172,80	165,50	- (2)	166,00	- (2)
Seasonal efficiency	L	%	168,10	167,80	171,10	167,00	167,00	162,50	167,80	- (2)	161,20	- (2)	165,70	162,10	- (2)	161,30	- (2)
	N	%	184,00	185,70	181,70	184,70	179,50	182,90	185,90	173,70	181,20	168,20	182,90	176,40	166,70	174,90	165,10
	U	%		-		181,70	180,60	185,20	178,50	165,60	178,70	165,10	182,50	173,80	161,40	173,30	164,30
SEER - 23/18 (EN14825: 2018) (3)																	
		W/W	-	-	-	-	5,17	4,95	5,16	4,77	4,95	4,80	5,01	4,99	4,86	4,82	4,90
	A	W/W	-	-	-	-	5,42	5,28	5,40	4,91	5,22	4,94	5,29	5,10	4,95	5,11	4,99
SEER	E	W/W	5,36	5,48	5,40	5,44	5,33	5,27	5,24	4,68	4,97	4,93	5,23	4,93	4,81	4,90	4,74
J.E.I.	L	W/W	5,05	5,10	5,21	5,09	5,13	4,88	4,99	4,65	4,77	4,52	5,00	4,79	4,78	4,67	4,74
	N	W/W	5,61	5,67	5,59	5,76	5,58	5,54	5,74	5,35	5,53	5,12	5,56	5,32	5,13	5,24	5,07
	U	W/W	-		-	5,77	5,71	5,71	5,58	5,18	5,53	5,17	5,64	5,32	5,08	5,27	5,07
	0	%	-	-	-	-	203,90	194,80	203,30	187,70	195,10	189,00	197,30	196,70	191,50	189,90	193,00
	A	- %	-	-	-	-	213,60	208,30	213,10	193,50	205,80	194,60	208,70	201,10	194,90	201,30	196,70
Seasonal efficiency	E	%	211,40	216,30	213,10	214,70	210,20	207,90	206,50	184,00	195,90	194,00	206,10	194,20	189,20	193,00	186,50
Seasonal emerciney	L	%	199,00	201,10	205,30	200,70	202,30	192,30	196,60	183,10	187,90	177,60	197,10	188,70	188,10	183,80	186,40
	N	%	221,40	223,80	220,60	227,50	220,00	218,70	226,60	210,90	218,20	203,00	219,50	209,70	202,20	206,70	199,90
	U	%	-	-	-	227,60	225,50	225,40	220,30	204,00	218,30	203,60	222,70	209,60	200,00	207,90	199,90
SEPR - (EN 14825: 2018) (3)	,																
		W/W	-	-	-	-	5,79	5,61	5,74	5,62	5,66	5,57	5,59	5,84	5,94	5,45	5,76
	A	W/W	-	-	-	-	6,10	5,97	6,00	5,73	5,97	5,74	5,92	5,79	5,89	5,75	5,78
SEPR	E	W/W	6,46	6,42	6,13	6,36	5,98	5,95	5,79	5,41	5,72	5,68	5,83	5,67	5,69	5,51	5,47
JEI II	L	W/W	6,15	6,00	5,97	6,07	5,79	5,65	5,61	5,31	5,55	5,28	5,58	5,60	5,77	5,37	5,53
	N	W/W	6,71	6,53	6,23	6,54	6,22	6,12	6,16	6,12	6,14	5,93	6,09	5,97	6,08	5,83	5,90
	U	W/W	-	-	-	6,43	6,30	6,31	6,01	6,15	6,09	5,88	6,19	5,88	6,05	5,85	6,07

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C/7°C
(3) Calculation performed with FIXED water flow rate.

(3) Calculation performed with Fixed water	- Thow rate.																
Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Fans: °																	
SEER - 12/7 (EN14825: 2018) (1)																	
	°,A,U	W/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SEER	E	W/W	4,48	4,58	4,49	4,42	-	-	-	-	-	-	-	-	-	-	-
SEEK	L	W/W	4,28	4,27	4,35	4,25	-	-	-	-	-	-	-	-	-	-	-
	N	W/W	4,68	4,72	4,62	-	-	-	-	-	-	-	-	-	-	-	-
	°,A,U	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Casanal officiana	E	%	176,20	180,20	176,40	173,60	-	-	-	-	-	-	-	-	-	-	-
Seasonal efficiency	L	%	168,10	167,80	171,10	167,00	-	-	-	-	-	-	-	-	-	-	-
	N	%	184,00	185,70	181,70	-	-	-	-	-	-	-	-	-	-	-	-
SEER - 23/18 (EN14825: 2018) (2)																	
	°,A,U	W/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CEED	E	W/W	5,36	5,48	5,40	5,44	-	-	-	-	-	-	-	-	-	-	-
SEER	L	W/W	5,05	5,10	5,21	5,09	-	-	-	-	-	-	-	-	-	-	-
	N	W/W	5,61	5,67	5,59	-	-	-	-	-	-	-	-	-	-	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Calculation performed with FIXED water flow rate.

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
	°,A,U	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Seasonal efficiency	E	%	211,40	216,30	213,10	214,70	-	-	-	-	-	-	-	-	-	-	-
Seasonal efficiency	L	%	199,00	201,10	205,30	200,70	-	-	-	-	-	-	-	-	-	-	-
	N	%	221,40	223,80	220,60	-	-	-	-	-	-	-	-	-	-	-	-
SEPR - (EN 14825: 2018) (2)																	
	°,A,U	W/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SEPR	E	W/W	6,46	6,42	6,13	6,36	-	-	-	-	-	-	-	-	-	-	-
SERN	L	W/W	6,15	6,00	5,97	6,07	-	-	-	-	-	-	-	-	-	-	-
	N	W/W	6,71	6,53	6,23	-	-	-	-	-	-	-	-	-	-	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Electric data																	
	0	Α	-	-	-	-	72,2	77,1	86,0	98,2	94,9	111,3	112,7	127,3	131,4	144,0	141,2
	Α	Α	-	-	-	-	72,2	77,1	86,0	98,2	94,9	114,5	112,7	127,3	131,4	144,0	141,2
Maximum surrent (FLA)	E	Α	42,6	49,2	56,9	65,3	72,2	77,1	86,0	98,2	94,9	114,5	112,7	127,3	131,4	144,0	141,2
Maximum current (FLA)	L	Α	41,5	49,2	55,8	65,3	72,2	77,1	86,0	98,2	94,9	111,3	112,7	127,3	131,4	144,0	141,2
	N	Α	42,6	50,3	56,9	67,3	72,2	77,1	89,2	101,3	98,1	114,5	112,7	130,5	134,6	147,2	144,4
	U	Α	-	-	-	67,3	72,2	77,1	89,2	101,3	98,1	114,5	112,7	130,5	134,6	147,2	144,4
	0	Α	-	-	-	-	277,6	282,5	329,2	211,9	338,1	225,1	363,8	378,4	274,9	476,4	346,6
	A	Α	-	-	-	-	277,6	282,5	329,2	211,9	338,1	228,3	363,8	378,4	274,9	476,4	346,6
Peak current (LRA)	E	Α	148,0	163,0	170,6	208,9	277,6	282,5	329,2	211,9	338,1	228,3	363,8	378,4	274,9	476,4	346,6
reak current (LKA)	L	Α	146,9	163,0	169,5	208,9	277,6	282,5	329,2	211,9	338,1	225,1	363,8	378,4	274,9	476,4	346,6
	N	A	148,0	164,1	170,6	210,8	277,6	282,5	332,4	215,1	341,3	228,3	363,8	381,6	278,1	479,6	349,8
	U	Α	-	-	-	210,8	277,6	282,5	332,4	215,1	341,3	228,3	363,8	381,6	278,1	479,6	349,8

GENERAL TECHNICAL DATA

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Compressor																	
Туре	°,A,E,L,N,U	type								Scroll							
	°,A	no.	-	-	-	-	2	2	2	4	2	4	2	2	4	2	4
Number	E,L,N	no.	2	2	2	2	2	2	2	4	2	4	2	2	4	2	4
	U	no.	-	-	-	2	2	2	2	4	2	4	2	2	4	2	4
	°,A	no.	-	-	-	-	1	1	1	2	1	2	1	1	2	1	2
Circuits	E,L,N	no.	1	1	1	1	1	1	1	2	1	2	1	1	2	1	2
	U	no.	-	-	-	1	1	1	1	2	1	2	1	1	2	1	2
Refrigerant	°,A,E,L,N,U	type								R410A							
System side heat	exchanger																
Туре	°,A,E,L,N,U	type								Brazed plate	j						
	°,A	no.	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1
Number	E,L,N	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	U	no.	-	-	-	1	1	1	1	1	1	1	1	1	1	1	1
Hydraulic connec	tions																
	°,A	Ø	-	-	-	-	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2
Sizes (in/out)	E,L,N	Ø								2" 1/2							
	U	Ø	-	-	-	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2

 $G.s. = Grooved\ joints$

Axial

Axial

Axial

Axial

Fans													
Size				0282	0302	0332	0352	0502	0552	0602	0604	0652	0654
Fan													
Туре	(A,E,L,N,U	type	Axial									
		0	no.	-	-	-	-	2	2	2	2	3	3
		٨	no.					7		2	7		- 3

no.

no.

no.

N

U

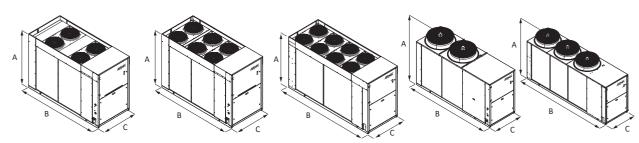
Number

Fans: M

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Fans: °																	
Fan																	
Fan mater	°,A,U	type							A	synchrono	us						
Fan motor —	E,L,N	type							Asynchro	nous with	phase cut						
	°,A,U	m³/h	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A: 4	E	m³/h	20700	22200	27500	24800	-	-	-	-	-	-	-	-	-	-	-
Air flow rate —	L	m³/h	15200	20700	22200	27500	-	-	-	-	-	-	-	-	-	-	-
_	N	m³/h	22200	27500	24800	-	-	-	-	-	-	-	-	-	-	-	-
Sound data calculated in cooling mode (1)																	
	°,A,U	dB(A)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
- Country accordance	E	dB(A)	72,4	72,9	73,7	73,9	-	-	-	-	-	-	-	-	-	-	-
Sound power level –	L	dB(A)	71,8	72,9	73,3	73,9	-	-	-	-	-	-	-	-	-	-	-
_	N	dB(A)	72,4	73,3	73,7	-	-	_	-	-	_	_	_	_	-	_	-

(1) Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

Size


0282
0392
0392
0392
0392
0592
0602
0604
0652
0654
0682
0702
0704
0752
0754

i ulist m																	
Increased fan																	
Fan motor	°,A,U	type							A	synchrono	us						
rall illutur	E,L,N	type							Asynchro	nous with	phase cut						
With static pressure																	
	٥	m³/h	-	-	-	-	36600	36600	35100	35100	35100	33700	55200	53100	53100	53100	53100
	A	m³/h	-	-	-	-	35100	35100	33800	33800	33700	53100	53100	51100	51100	51100	51100
A!- G	E	m³/h	20700	22200	27500	24800	26800	26800	25600	25600	25600	40500	40500	38800	38800	38800	38800
Air flow rate	L	m³/h	15200	20700	22200	27500	30900	30900	29500	29500	46500	44600	44600	29500	28300	44600	44600
	N	m³/h	22200	27500	24800	26800	25600	25600	40500	40500	40500	38800	38800	54600	54600	54600	54600
	U	m³/h	-	-	-	35100	33700	33700	53100	53100	53100	51100	51100	71200	71200	71200	71200
	°,A,U	Pa	-	-	-	-	50	50	50	50	50	50	50	50	50	50	50
High static pressure	E,L	Pa	80	80	80	80	50	50	50	50	50	50	50	50	50	50	50
-	N	Pa	80	80	80	50	50	50	50	50	50	50	50	50	50	50	50
	0	dB(A)	-	-	-	-	84,5	85,0	85,3	84,2	85,5	84,3	86,9	87,0	85,9	87,7	87,5
	A	dB(A)	-	-	-	-	84,5	85,0	85,3	84,2	85,5	85,9	86,9	87,0	85,9	87,7	87,5
	E	dB(A)	72,4	72,9	73,7	73,9	80,7	81,5	82,1	76,1	82,5	77,2	83,6	83,8	77,4	85,0	83,0
Sound power level	L	dB(A)	71,8	72,9	73,3	73,9	80,7	81,5	82,1	76,1	82,5	76,5	83,6	83,8	77,4	85,0	83,5
	N	dB(A)	72,4	73,3	73,7	79,7	80,7	81,5	83,0	76,9	83,4	77,2	83,6	84,5	77,9	85,5	83,3
	U	dB(A)	-	-	-	84,0	84,5	85,0	86,6	85,8	86,8	85,9	86,9	87,9	87,0	88,5	88,5
Without Static pressure						,			,			,	,	,	,	,	
	٥	m³/h	-	-	-	-	42300	42300	40400	40400	40400	38700	63700	61000	61000	61000	61000
	A	m³/h	-	-	-	-	40400	40400	38600	38600	38600	61100	61000	58500	58500	58500	58500
	E	m³/h	-	-	-	-	26800	26800	25600	25600	25600	40500	40500	38800	38800	38800	38800
Air flow rate	L	m³/h	-	-	-	-	30900	30900	29500	29500	29500	28300	46500	44600	44600	44600	44600
	N	m³/h	-	-	-	26800	25600	25600	40500	40500	40500	38800	38800	54600	54600	54600	54600
	U	m³/h	-	-	-	45700	44000	44000	69000	69000	69000	66500	69000	66500	66500	66500	66500
	°,A,E,L	Pa	-	-	-	-	0	0	0	0	0	0	0	0	0	0	0
High static pressure	N,U	Pa	-	-	-	0	0	0	0	0	0	0	0	0	0	0	0
	0	dB(A)	-	-	-	-	86,6	86,8	87,0	86,0	87,1	86,0	88,2	88,3	87,7	88,6	88,5
	A	dB(A)	-	-	-	-	86,6	86,8	87,0	86,0	87,1	87,7	88,2	88,3	87,7	88,6	88,5
	E	dB(A)	-	-	-	-	80,7	81,5	82,1	76,1	82,5	77,2	83,6	83,8	77,4	85,0	83,0
Sound power level	L	dB(A)	-	-	-	-	80,7	81,5	82,1	76,1	82,5	76,5	83,6	83,8	77,4	85,0	83,5
	N	dB(A)	-	-	-	79,7	80,7	81,5	83,0	76,9	83,4	77,2	83,6	84,5	77,9	85,5	83,3
	U	dB(A)			_	86,4	86,6	86,8	88,5	87,7	88,6	87,7	88,2	89,3	88,9	89,6	89,6

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Fans: J																	
Inverter fan																	
Fan motor	°,A,E,L,N,U	type								Inverter							
	•	m³/h	-	-	-	-	36600	36600	35100	35100	35100	33700	55200	53100	53100	53100	53100
	A	m³/h	-	-	-	-	35100	35100	33800	33800	33700	53100	53100	51100	51100	51100	51100
Air flow rate	E	m³/h	20700	22200	27500	24800	26800	26800	25600	25600	25600	40500	40500	38800	38800	38800	38800
All flow fale	L	m³/h	15200	20700	22200	27500	30900	30900	29500	29500	29500	28300	46500	44600	44600	44600	44600
	N	m³/h	22200	27500	24800	26800	25600	25600	40500	40500	40500	38800	38800	54600	54600	54600	54600
	U	m³/h	-	-	-	35100	33700	33700	53100	53100	51100	71200	71200	53100	51100	71200	71200
	°,A	Pa	-	-	-	-	120	120	120	120	120	120	120	120	120	120	120
High static processo	E,L	Pa	20	20	20	20	120	120	120	120	120	120	120	120	120	120	120
High static pressure	N	Pa	20	20	20	120	120	120	120	120	120	120	120	120	120	120	120
	U	Pa	-	-	-	120	120	120	120	120	120	120	120	120	120	120	120
Sound data calculated in cooling mode (1)																
	0	dB(A)	-	-	-	-	84,5	85,0	85,3	85,5	86,9	87,0	87,7	84,2	84,3	85,9	87,5
	A	dB(A)	-	-	-	-	84,5	85,0	85,3	85,5	86,9	87,0	87,7	84,2	85,9	85,9	87,5
ound power level - -	E	dB(A)	72,4	72,9	73,7	73,9	80,7	81,5	82,1	82,5	83,6	83,8	85,0	76,1	77,2	77,4	83,0
	L	dB(A)	71,8	72,9	73,3	73,9	80,7	81,5	82,1	82,5	83,6	83,8	85,0	76,1	76,5	77,4	83,5
	N	dB(A)	72,4	73,3	73,7	79,7	80,7	81,5	83,0	83,4	83,6	84,5	85,5	76,9	77,2	77,9	83,3
	U	dB(A)	-	-	-	84,0	84,5	85,0	86,6	86,8	86,9	87,9	88,5	85,8	85,9	87,0	88,5

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Dimensions and weights																	
	°,A	mm	-	-	-	-	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898
1	E,L	mm	1680	1680	1680	1680	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898
A	N	mm	1680	1680	1680	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898
	U	mm	-	-	-	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898
	0	mm	-	-	-	-	3200	3200	3200	3200	3200	3200	4010	4010	4010	4010	4010
	A	mm	-	-	-	-	3200	3200	3200	3200	3200	4010	4010	4010	4010	4010	4010
В	E	mm	2450	2950	2950	2950	3200	3200	3200	3200	3200	4010	4010	4010	4010	4010	4010
В	L	mm	2450	2450	2950	2950	3200	3200	3200	3200	3200	3200	4010	4010	4010	4010	4010
	N	mm	2950	2950	2950	3200	3200	3200	4010	4010	4010	4010	4010	5200	5200	5200	5200
	U	mm	-	-	-	3200	3200	3200	4010	4010	4010	4010	4010	5200	5200	5200	5200
	°,A	mm	-	-	-	-	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
C	E,L,N	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	U	mm	-	-	-	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Weights																	
	0	kg	-	-	-	-	993	1018	1075	1160	1075	1210	1267	1427	1331	1440	1392
	A	kg	-	-	-	-	1046	1072	1116	1200	1116	1325	1347	1507	1410	1531	1471
Without hydronic bit	E	kg	828	889	912	962	1046	1072	1116	1116	1347	1507	1531	1200	1325	1410	1471
Without hydronic kit	L	kg	810	828	894	907	993	1018	1075	1160	1075	1210	1267	1427	1331	1440	1392
	N	kg	884	907	957	1020	1076	1109	1232	1243	1426	1647	1660	1327	1415	1549	1607
	U	kg	-		-	1020	1076	1109	1232	1243	1426	1647	1660	1327	1415	1549	1607

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577

www.aermec.com

NRB 0282H-0754H

Reversible air/water heat pump

Cooling capacity 52 ÷ 261 kW Heating capacity 57 ÷ 193 kW

- · High efficiency also at partial loads
- Components redundancy for greater safety
- · Low refrigerant charge
- Compact dimensions

DESCRIPTION

Reversible outdoor heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

FEATURES

Operating field

Working at full load up to -15° C outside air temperature in winter, and up to 48° C in summer. Hot water production up to 55° C (for more information see the technical documentation).

Units mono or dual-circuit

The units are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

New condensing Coils

The whole range uses copper - aluminium condensation coils with reduced diameter rows, allowing a lower quantity of gas to be used compared to traditional coils.

Electronic expansion valve

The possibility to use electronic expansion valve, available to configurator, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation.

It is available in different configurations with storage tank or with fixed or variable pumps also inverter.

 VARIABLE FLOW RATE: Correctly adjust the speed of the inverter-controlled pumps according to the load demand of the system, in order to reduce power consumption.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: the function can be activated with inverter fans or
 with DCPX which allows unit operation to be optimised at any operating
 point through continuous modulation of the fan speed. In addition, the
 use of inverter fans ensures an increase in energy efficiency at partial
 loads
- Night mode: only in the non-silenced versions with the fan to be, inverter or phase-cut or with the DCPX accessory, a silenced operation profile can be set, which is useful, for example, at night for greater acoustic comfort, but always ensures performance even at peak load hours.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud con-

nection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another **DCPX:** Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

GP: Anti-intrusion grid.

VT: Anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

C-TOUCH: 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time.

AERCALM: The aim of the accessory installed in the electric box of the unit is to provide a clean contact for commanding - on the basis of the outside air temperature - a boiler to replace the heat pump. Aercalm must be requested at the time of ordering, as it is installed in the factory.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
AER485P1	°,A					•	•	•	•	•	•	•	•	•	•	•
AER403F1	E,L	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	°,A					•	•	•	•	•	•	•	•	•	•	•
AENDACY	E,L	•	•	•	•	•	•	•	•	•	•		•	•	•	•
AERLINK	°,A					•	•	•	•	•			•	•	•	•
AEKLINK	E,L	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AFDAIFT	°,A					•	•	•	•	•	•	•	•	•	•	•
AERNET	E,L				•	•	•	•	•	•	•	•	•	•		•
MULTICUUL ED EVO	°,A					•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	E,L	•		•	•	•	•	•	•	•	•	•	•	•		
DCD1	°,A					•	•	•		•	•	•	•	•	•	•
PGD1	E,L	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SGD	E,L	•			•											

Remote panel

Model	Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
PR4	°,A					•	•	•	•	•	•	•	•	•	•	•
rn4	E,L															

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Condensation control temperature

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Fans: M															
E, L	DCPX141	DCPX141	DCPX141	DCPX141	-	-	-	-	-	-	-	-	-	-	-
Fans: °															
0	-	-	-	-	DCPX142	DCPX142	DCPX142	DCPX142	DCPX142	DCPX142	DCPX143	DCPX143	DCPX143	DCPX143	DCPX143
A	-	-	-	-	DCPX142	DCPX142	DCPX142	DCPX142	DCPX142	DCPX143	DCPX143	DCPX143	DCPX143	DCPX143	DCPX143
E, L	DCPX140	DCPX140	DCPX140	DCPX140	As standard										

Antivibration

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Integrated hydronic kit: 00, I1, I2, I	3, I4, P1, P2, P3,	P4													
0	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22
A	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT22
E	VT17	VT17	VT17	VT17	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT22
L	VT17	VT17	VT17	VT17	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22
Integrated hydronic kit: 01, 02, 03,	04, 05, 06, 07, 08	3, K1, K2, K	3, K4, W1, V	V2, W3, W4											
0	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22
A	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT22
E	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT22
L	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22

Anti-intrusion grid

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
٥	-	-	-	-	GP2 x 2 (1)	GP2 x 3 (1)									
A	-	-	-	-	GP2 x 2 (1)	GP2 x 3 (1)									
E	GP3	GP4	GP4	GP4	GP2 x 2 (1)	GP2 x 3 (1)									
L	GP3	GP3	GP4	GP4	GP2 x 2 (1)	GP2 x 3 (1)									

(1) $\,x_{-}$ indicates the quantity to buy The accessory cannot be fitted on the configurations indicated with -

Device for peak current reduction

Ver	0282	0302	0332	0352	0502	0552	0602	0604
°, A	-	-	-	-	DRENRB502 (1)	DRENRB552 (1)	DRENRB602 (1)	DRENRB604 (1)
E, L	DRENRB282 (1)	DRENRB302 (1)	DRENRB332 (1)	DRENRB352 (1)	DRENRB502 (1)	DRENRB552 (1)	DRENRB602 (1)	DRENRB604 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered.

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	0652	0654	0682	0702	0704	0752	0754
°, A, E, L	DRENRB652 (1)	DRENRB654 (1)	DRENRB682 (1)	DRENRB702 (1)	DRENRB704 (1)	DRENRB752 (1)	DRENRB754 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
°, A	-	-	-	-	RIF0502	RIF0552	RIF0602	RIF0604	RIF0652	RIF0654	RIF0682	RIF0702	RIF0704	RIF0752	RIF0754
E, L	RIF0282	RIF0302	RIF0332	RIF0352	RIF0502	RIF0552	RIF0602	RIF0604	RIF0652	RIF0654	RIF0682	RIF0702	RIF0704	RIF0752	RIF0754

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Touch screen keyboard

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
°, A, E, L	C-TOUCH														

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Clean contact for controlling a boiler.

Model	Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
AERCALM	°.A.E.L								•		•			•		

CONFIGURATOR

Field	d	Description
1,2,3	3	NRB
4,5,0	6,7	Size 0282, 0302, 0332, 0352, 0502, 0552, 0602, 0604, 0652, 0654, 0682, 0702, 0704, 0752, 0754
8		Operating field
	χ	Electronic thermostatic expansion valve (1)
	Υ	Double mechanical thermostat for low temperature (2)
	Z	Low temperature electronic thermostatic valve (3)
	0	Standard mechanic thermostatic valve (1)
9		Model
	Н	Heat pump
10		Heat recovery
	D	With desuperheater (4)
	0	Without heat recovery
11		Version
	0	Standard
	Α	High efficiency
	Ε	Silenced high efficiency (5)
	L	Standard silenced (5)
12		Coils
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	V	Copper pieps-Coated aluminium fins
	0	Copper-aluminium
13		Fans
	J	Inverter
	М	Oversized (6)
	0	Standard
14		Power supply
	0	400V ~ 3N 50Hz with magnet circuit breakers
15,1	6	Integrated hydronic kit
		Without hydronic kit
	00	Without hydronic kit
		Kit with storage tank and pump/s
	01	Storage tank with low head pump
	02	Storage tank with low head pump + stand-by pump

Field	Description
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
	Kit with pump/s and storage tank with holes for heaters
05	Storage tank with holes for heaters and single low head pump (7)
06	Storage tank with holes for heaters and pump low head + stand-by pump (7)
07	Storage tank with holes for heaters and single high head pump (7)
08	Storage tank with holes for heaters and pump high head + stand-by pump (7)
	Double loop
09	Double loop
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with inverter pump/s to fixed speed
11	Single low head pump + fixed speed inverter
12	Single low head pump with fixed speed inverter + stand-by pump
13	Single high head pump + fixed speed inverter
14	Single high head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and inverter pump/s to fixed speed
K1	Single low head pump + storage tank + fixed speed inverter
K2	Storage tank and low head pump with fixed speed inverter + stand-by pump
K3	Single high head pump + storage tank + fixed speed inverter
K4	Storage tank and low head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and variable speed inverter pump/s
W1	Single low head pump + Storage tank + variable speed inverter
W2	Double low head pump + Storage tank + variable speed inverter
W3	Single high head pump + Storage tank + variable speed inverter
W4	Double high head pump + Storage tank + variable speed inverter

- (1) Water produced from 4 °C ÷ 18 °C
 (2) Water produced from 4 °C ÷ 18 °C
 (3) Water produced from 4 °C ÷ 18 °C for ° version; -10 °C for the others versions
 (4) The desuperheater must be intercepted in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
 (5) The size 0.282-0.302-0.332-0.352 are only available in the silenced versions "HL/HE"

- (5) The Size U282-9322-9332 are only available in the shericed versions. HILTHE
 (6) Only for 0282 ÷ 0352 sizes
 (7) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.

PERFORMANCE SPECIFICATIONS 12 °C/ 7 °C - 40 °C/ 45 °C

NRB H°

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 12 °C/7 °C (1)																
Cooling capacity	kW	-	-	-	-	91,2	99,7	116,0	115,4	124,7	133,4	151,0	169,9	159,9	187,2	180,8
Input power	kW	-	-	-	-	33,5	37,5	42,6	46,2	47,8	51,2	51,7	60,0	58,0	69,8	65,7
Cooling total input current	Α	-	-	-	-	61,0	67,0	74,0	83,0	83,0	92,0	90,0	102,0	105,0	116,0	116,0
EER	W/W	-	-	-	-	2,72	2,66	2,72	2,50	2,61	2,60	2,92	2,83	2,76	2,68	2,75
Water flow rate system side	l/h	-	-	-	-	15705	17177	19972	19876	21484	22988	25997	29247	27534	32236	31116
Pressure drop system side	kPa	-	-	-	-	35	42	37	44	43	44	50	61	65	74	59
Heating performance 40 °C / 45 °C (2)																
Heating capacity	kW	-	-	-	-	96,8	105,8	123,7	129,0	136,1	143,4	158,7	178,4	171,8	198,7	188,6
Input power	kW	-	-	-	-	31,0	33,8	38,7	42,7	43,3	47,7	51,2	58,2	57,3	66,0	61,8
Heating total input current	Α	-	-	-	-	56,0	60,0	68,0	77,0	76,0	87,0	89,0	99,0	104,0	110,0	111,0
COP	W/W	-	-	-	-	3,12	3,13	3,20	3,03	3,15	3,01	3,10	3,07	3,00	3,01	3,05
Water flow rate system side	I/h	-	-	-	-	16773	18334	21443	22371	23594	24863	27527	30948	29797	34460	32710
Pressure drop system side	kPa	-	-		-	40	48	43	56	52	52	56	69	76	84	65

NRR HI

INDIIL																
Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 12 °C/7 °C(1)																
Cooling capacity	kW	52,1	59,2	67,3	78,1	88,5	96,5	111,5	110,4	119,3	126,4	147,0	164,5	154,9	180,5	174,0
Input power	kW	19,5	22,0	24,8	29,5	34,1	38,3	44,1	48,4	49,9	54,2	52,3	61,5	59,2	72,5	67,8
Cooling total input current	Α	35,0	41,0	47,0	55,0	59,0	66,0	74,0	84,0	84,0	94,0	87,0	100,0	103,0	116,0	116,0
EER	W/W	2,67	2,69	2,71	2,65	2,60	2,52	2,53	2,28	2,39	2,33	2,81	2,68	2,62	2,49	2,57
Water flow rate system side	l/h	8974	10197	11584	13455	15234	16630	19200	19020	20540	21776	25312	28324	26677	31068	29958
Pressure drop system side	kPa	33	42	33	45	33	39	34	40	39	40	48	58	60	69	55
Heating performance 40 °C / 45 °C (2)																
Heating capacity	kW	57,5	65,7	75,3	84,9	96,8	105,8	123,7	129,0	136,1	143,4	158,7	178,4	171,8	198,7	188,6
Input power	kW	17,6	20,7	23,1	26,9	31,0	33,8	38,7	42,6	43,3	47,7	51,2	58,2	57,3	66,0	61,8
Heating total input current	Α	32,0	38,0	43,0	51,0	56,0	60,0	68,0	77,0	76,0	87,0	89,0	99,0	104,0	110,0	111,0
COP	W/W	3,27	3,17	3,26	3,16	3,12	3,13	3,20	3,03	3,15	3,01	3,10	3,07	3,00	3,01	3,05
Water flow rate system side	l/h	9973	11376	13056	14711	16773	18334	21443	22371	23594	24863	27527	30948	29797	34460	32710
Pressure drop system side	kPa	41	53	42	54	40	47	43	55	52	52	56	69	75	84	65

NRB HA

MADIIA																
Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 12 °C/7 °C(1)																
Cooling capacity	kW	-	-	-	-	96,9	106,5	123,6	123,1	133,6	142,1	163,9	178,5	168,0	199,9	190,0
Input power	kW	-	-	-	-	32,3	36,1	39,5	43,3	45,0	47,2	50,7	57,0	55,4	66,5	62,8
Cooling total input current	Α	-	-	-	-	57,0	61,0	68,0	73,0	74,0	79,0	85,0	94,0	99,0	102,0	106,0
EER	W/W	-	-	-	-	3,00	2,95	3,13	2,84	2,97	3,01	3,23	3,13	3,03	3,01	3,03
Water flow rate system side	l/h	-	-	-	-	16684	18331	21277	21205	23007	24462	28216	30726	28924	34406	32698
Pressure drop system side	kPa	-	-	-	-	26	31	32	38	38	50	44	52	50	56	54
Heating performance 40 °C / 45 °C (2)																
Heating capacity	kW	-	-	-	-	100,3	110,9	124,3	129,7	138,2	149,4	164,1	179,7	172,3	200,6	190,0
Input power	kW	-	-	-	-	30,7	33,5	37,6	40,5	42,0	46,7	50,2	56,3	54,3	62,9	59,5
Heating total input current	Α	-	-	-	-	56,0	60,0	67,0	73,0	74,0	86,0	87,0	96,0	99,0	106,0	107,0
COP	W/W	-	-	-	-	3,27	3,31	3,31	3,20	3,29	3,20	3,27	3,19	3,17	3,19	3,19
Water flow rate system side	l/h	-	-	-	-	17406	19230	21553	22489	23953	25914	28469	31171	29889	34800	32956
Pressure drop system side	kPa	-	-	-	-	28	34	33	42	41	56	45	54	54	57	55

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

NRB HE

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 12 °C/7 °C(1)																
Cooling capacity	kW	55,4	62,1	70,0	81,2	94,0	103,0	119,1	117,6	128,0	138,3	159,4	172,5	162,3	191,7	182,6
Input power	kW	18,5	21,0	23,7	28,3	32,8	36,9	40,7	44,7	46,9	47,7	51,4	58,5	56,7	69,3	64,9
Cooling total input current	A	32,0	37,0	42,0	47,0	56,0	61,0	68,0	74,0	75,0	76,0	83,0	93,0	98,0	102,0	106,0
EER	W/W	3,00	2,96	2,95	2,86	2,86	2,79	2,92	2,63	2,73	2,90	3,10	2,95	2,87	2,77	2,81
Water flow rate system side	l/h	9530	10696	12052	13983	16181	17722	20498	20255	22037	23819	27431	29692	27947	33000	31425
Pressure drop system side	kPa	23	29	26	35	24	29	30	34	34	48	41	49	47	51	50
Heating performance 40 °C / 45 °C (2)																
Heating capacity	kW	59,0	68,2	76,6	87,1	100,3	110,9	124,3	129,7	138,2	149,4	164,1	179,7	172,3	200,6	190,0
Input power	kW	17,5	20,3	22,9	26,4	30,7	33,5	37,6	40,5	42,0	46,7	50,2	56,3	54,3	62,9	59,5
Heating total input current	Α	33,0	38,0	44,0	50,0	56,0	60,0	67,0	73,0	74,0	86,0	87,0	96,0	99,0	106,0	107,0
COP	W/W	3,37	3,36	3,35	3,30	3,27	3,31	3,31	3,20	3,29	3,20	3,27	3,19	3,17	3,19	3,19
Water flow rate system side	l/h	10227	11816	13289	15100	17406	19230	21553	22489	23953	25914	28469	31171	29889	34800	32956
Pressure drop system side	kPa	26	35	31	41	28	34	33	42	41	56	45	54	54	57	55

PERFORMANCE SPECIFICATIONS 23 °C/ 18 °C - 30 °C/ 35 °C

NRB H°

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 23 °C / 18 °C (1)																
Cooling capacity	kW	-	-	-	-	122,6	133,3	155,1	154,9	165,6	183,4	203,5	227,9	218,9	248,3	247,3
Input power	kW	-	-	-	-	36,3	41,0	46,5	50,2	52,2	55,9	55,8	65,6	62,6	77,0	72,2
Cooling total input current	А	-	-	-	-	65,0	72,0	80,0	89,0	90,0	99,0	96,0	110,0	112,0	126,0	126,0
EER	W/W	-	-	-	-	3,38	3,25	3,33	3,08	3,17	3,28	3,65	3,48	3,50	3,23	3,42
Water flow rate system side	l/h	-	-	-	-	21190	23054	26805	26775	28622	31700	35175	39395	37837	42931	42743
Pressure drop system side	kPa	-	-	-	-	63	75	67	81	76	84	92	111	123	131	112
Heating performance 30 °C / 35 °C (2)																
Heating capacity	kW	-	-	-	-	98,8	107,2	127,4	132,8	139,6	146,7	163,5	182,9	176,8	201,7	192,4
Input power	kW	-	-	-	-	25,4	27,7	31,8	34,3	35,5	38,4	42,0	47,3	46,5	53,2	50,4
Heating total input current	Α	-	-	-	-	46,0	49,0	56,0	61,0	62,0	70,0	72,0	80,0	84,0	88,0	90,0
COP	W/W	-	-	-	-	3,89	3,87	4,01	3,87	3,93	3,82	3,90	3,87	3,80	3,79	3,82
Water flow rate system side	I/h	-	-	-	-	17058	18508	21998	22936	24118	25357	28248	31616	30551	34851	33261
Pressure drop system side	kPa	-	-	-	-	41	49	45	59	54	54	59	72	80	86	68

NRB HL

MADTIE																
Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 23 °C / 18 °C (1)																
Cooling capacity	kW	69,6	79,3	92,2	105,6	118,1	128,2	147,6	146,8	156,6	170,9	196,8	218,8	210,1	237,3	235,3
Input power	kW	21,9	24,2	27,3	32,5	37,3	42,4	48,9	53,8	55,5	60,7	57,2	68,1	64,8	81,0	75,7
Cooling total input current	Α	39,0	44,0	51,0	60,0	64,0	72,0	81,0	92,0	93,0	104,0	94,0	110,0	111,0	128,0	128,0
EER	W/W	3,18	3,27	3,37	3,25	3,17	3,02	3,02	2,73	2,82	2,82	3,44	3,22	3,24	2,93	3,11
Water flow rate system side	l/h	12041	13740	15960	18270	20427	22163	25508	25376	27064	29542	34006	37824	36327	41017	40668
Pressure drop system side	kPa	59	77	63	83	59	69	61	70	68	73	86	103	112	120	101
Heating performance 30 °C / 35 °C (2)																
Heating capacity	kW	58,9	66,7	77,1	86,8	98,8	107,2	127,4	132,8	139,6	146,7	163,5	182,9	176,8	201,7	192,4
Input power	kW	13,9	16,5	18,4	21,5	25,4	27,7	31,8	34,3	35,5	38,4	42,0	47,3	46,5	53,2	50,4
Heating total input current	Α	25,0	30,0	34,0	40,0	46,0	49,0	56,0	61,0	62,0	70,0	72,0	80,0	84,0	88,0	90,0
COP	W/W	4,25	4,06	4,19	4,03	3,89	3,87	4,01	3,87	3,93	3,82	3,90	3,87	3,80	3,79	3,82
Water flow rate system side	l/h	10168	11516	13317	14972	17058	18508	21998	22936	24118	25357	28248	31616	30551	34851	33261
Pressure drop system side	kPa	42	54	44	56	41	48	45	57	54	54	59	72	79	86	68

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C / 35 °C; External air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

NRB HA

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 23 °C / 18 °C (1)																
Cooling capacity	kW	-	-	-	-	131,3	143,6	166,5	170,4	178,7	198,2	222,3	241,2	231,6	268,1	261,3
Input power	kW	-	-	-	-	34,9	39,4	42,9	47,2	49,0	50,3	54,8	62,4	59,6	73,6	68,8
Cooling total input current	Α	-	-	-	-	61,0	66,0	74,0	79,0	80,0	82,0	91,0	101,0	105,0	112,0	115,0
EER	W/W	-	-	-	-	3,77	3,65	3,88	3,61	3,65	3,94	4,06	3,86	3,88	3,65	3,80
Water flow rate system side	l/h	-	-	-	-	22699	24821	28771	29452	30874	34255	38412	41683	40019	46336	45163
Pressure drop system side	kPa	-	-	-	-	48	57	59	73	68	98	81	97	96	102	103
Heating performance 30 °C / 35 °C (2)																
Heating capacity	kW	-	-	-	-	104,2	114,6	128,1	133,6	141,8	154,4	169,0	184,0	177,3	203,5	193,6
Input power	kW	-	-	-	-	25,2	27,6	30,9	32,6	34,4	38,0	41,2	45,8	44,1	50,7	48,5
Heating total input current	Α	-	-	-	-	46,0	49,0	54,0	59,0	60,0	69,0	71,0	78,0	80,0	85,0	87,0
COP	W/W	-	-	-	-	4,14	4,16	4,15	4,10	4,12	4,07	4,10	4,02	4,02	4,01	3,99
Water flow rate system side	l/h	-	-	-	-	18004	19795	22128	23077	24492	26674	29206	31801	30649	35173	33469
Pressure drop system side	kPa	-	-	-	-	30	36	35	45	43	60	47	56	56	58	57

NRB HE

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 23 °C / 18 °C (1)																
Cooling capacity	kW	76,4	85,7	96,8	111,4	126,2	137,5	158,5	160,4	168,9	191,5	214,3	230,5	221,2	253,2	247,4
Input power	kW	20,4	23,1	25,7	31,2	35,9	41,0	45,2	49,8	52,2	51,4	56,4	65,1	62,1	78,2	72,6
Cooling total input current	Α	35,0	40,0	45,0	51,0	61,0	66,0	75,0	81,0	82,0	81,0	90,0	102,0	106,0	114,0	117,0
EER	W/W	3,74	3,72	3,77	3,57	3,51	3,36	3,51	3,22	3,24	3,72	3,80	3,54	3,56	3,24	3,41
Water flow rate system side	l/h	13219	14836	16740	19268	21829	23767	27392	27721	29185	33098	37025	39827	38232	43759	42750
Pressure drop system side	kPa	43	55	50	66	44	52	53	64	60	92	75	88	88	91	92
Heating performance 30 °C / 35 °C (2)																
Heating capacity	kW	60,5	70,2	78,9	90,4	104,2	114,6	128,1	133,6	141,8	154,4	169,0	184,0	177,3	203,5	193,6
Input power	kW	13,8	16,1	18,2	21,1	25,2	27,6	30,9	32,6	34,4	38,0	41,2	45,8	44,1	50,7	48,5
Heating total input current	Α	26,0	30,0	35,0	40,0	46,0	49,0	54,0	59,0	60,0	69,0	71,0	78,0	80,0	85,0	87,0
COP	W/W	4,38	4,36	4,34	4,28	4,14	4,16	4,15	4,10	4,12	4,07	4,10	4,02	4,02	4,01	3,99
Water flow rate system side	l/h	10456	12125	13636	15617	18004	19795	22128	23077	24492	26674	29206	31801	30649	35173	33469
Pressure drop system side	kPa	27	37	33	43	30	36	35	45	43	60	47	56	56	58	57

ENERGY DATA

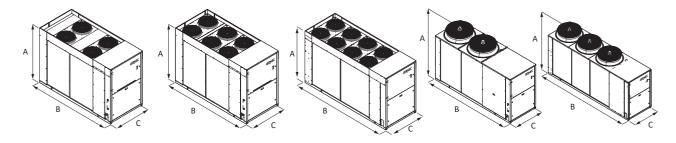
Cino			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Size	. (115 0.5	204 4 (2204)	UZOZ	0302	0332	0332	0302	0332	0002	0004	0032	0034	0002	0/02	0/04	0/32	0/34
Cooling capacity with low leaving water	r temp (UE n° 2																
		W/W	-	-	-	-	3,92	3,83	3,99	3,70	3,91	3,67	4,14	3,97	3,73	3,88	3,76
SEER	A	W/W	-	-	-	-	4,21	4,14	4,39	3,93	4,20	3,92	4,38	4,27	3,99	4,24	4,06
JLLN	E	W/W	4,28	4,32	4,22	4,24	4,17	4,10	4,33	3,86	4,12	3,93	4,35	4,21	3,98	4,16	3,92
	L	W/W	4,10	4,11	4,11	4,00	3,88	3,83	3,93	3,68	3,89	3,64	4,08	3,89	3,70	3,81	3,71
	0	%	-	-	-	-	154,00	150,00	157,00	145,00	153,00	144,00	163,00	156,00	146,00	152,00	147,00
	A	%	-	-	-	-	165,00	163,00	173,00	154,00	165,00	154,00	172,00	168,00	157,00	167,00	160,00
ηςς	E	%	168,00	170,00	166,00	167,00	164,00	161,00	170,00	151,00	162,00	154,00	171,00	165,00	156,00	163,00	154,00
	L	%	161,00	161,00	161,00	157,00	152,00	150,00	154,00	144,00	153,00	143,00	160,00	153,00	145,00	149,00	145,00
UE 813/2013 performance in average a	mbient conditi	ions (avera	ge) - 35 °C	- Pdesign		W (1)						,					
	0	kW	-	-	-	-	88,80	97,30	112,20	116,80	124,50	129,90	144,90	162,80	157,50	182,70	172,10
21.1	A	kW	-	-	-	-	90,20	99,60	112,20	116,80	125,80	135,00	149,00	164,10	157,00	183,30	173,60
Pdesignh	E	kW	53,46	53,46	53,46	78,80	90,20	99,60	112,20	116,80	125,80	135,00	149,00	164,10	157,00	183,30	173,60
	L	kW	52,20	60,22	68,44	78,20	88,80	97,30	112,20	116,80	124,50	129,90	144,90	162,80	157,50	182,70	172,10
	0	%	-	-	-	-	135,90	139,50	140,40	130,40	140,30	129,50	134,00	137,30	126,30	138,40	128,50
	A	%	-	-	_	-	138,00	142,80	143,20	133,00	143,10	132,10	139,80	141,30	128,00	142.00	133,00
ηsh	E	%	158,26	158,26	158,26	152,70	138,50	142,80	143,20	133,00	143,10	132,10	139,80	141,30	128,40	142,00	133,00
	L	%	156,16	152,79	152,22	150,00	135,90	139,50	140,40	130,50	140,30	129,50	134,00	137,30	126,30	138,40	128,50
	0	W/W	-	-	-	-	3,47	3,56	3,58	3,34	3,58	3,31	3,43	3,51	3,23	3,54	3,29
	A	W/W	-	-	-	-	3,53	3,65	3,66	3,40	3,65	3,38	3,57	3,61	3,29	3,63	3,40
SCOP	F	W/W	4.03	4,04	4,03	3,89	3,54	3,65	3,65	3,40	3,66	3,38	3,57	3,61	3,29	3,62	3,40
	<u> </u>	W/W	3,98	3,89	3,88	3,83	3,47	3,56	3,59	3,34	3,58	3,31	3,43	3,51	3,23	3,54	3,29

⁽¹⁾ Efficiencies for low temperature applications (35 °C)

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/ 35 °C; External air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/ 35 °C; External air 7 °C d.b. / 6 °C w.b.

ELECTRIC DATA


Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Electric data																	
	0	Α	-	-	-	-	74,3	79,2	88,1	100,3	97,0	113,5	115,9	130,5	134,6	147,2	144,4
Manimum gumant (FLA)	A	Α	-	-	-	-	74,3	79,2	88,1	100,3	97,0	117,7	115,9	130,5	134,6	147,2	144,4
Maximum current (FLA)	E	Α	42,6	49,2	56,9	65,3	74,3	79,2	88,1	100,3	97,0	117,7	115,9	130,5	134,6	147,2	144,4
	L	Α	41,5	49,2	55,8	65,3	74,3	79,2	88,1	100,3	97,0	113,5	115,9	130,5	134,6	147,2	144,4
	0	Α	-	-	-	-	279,8	284,7	331,4	214,1	340,3	227,2	367,0	381,6	278,1	479,6	349,8
Deals surrent (LDA)	A	Α	-	-	-	-	279,8	284,7	331,4	214,1	340,3	231,5	367,0	381,6	278,1	479,6	349,8
Peak current (LRA)	E	Α	148,0	163,0	170,6	208,9	279,8	284,7	331,4	214,1	340,3	231,5	367,0	381,6	278,1	479,6	349,8
	L	А	146,9	163,0	169,5	208,9	279,8	284,7	331,4	214,1	340,3	227,2	367,0	381,6	278,1	479,6	349,8

GENERAL TECHNICAL DATA

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Compressor																	
Туре	°,A,E,L	type								Scroll							
Compressor regulation	°,A,E,L	Туре								0n-0ff							
Musekan	°,A	no.	-	-	-	-	2	2	2	4	2	4	2	2	4	2	4
Number	E,L	no.	2	2	2	2	2	2	2	4	2	4	2	2	4	2	4
Circuits	°,A	no.	-	-	-	-	1	1	1	2	1	2	1	1	2	1	2
Circuits	E,L	no.	1	1	1	1	1	1	1	2	1	2	1	1	2	1	2
Refrigerant	°,A,E,L	type								R410A							
	0	kg	-	-	-	-	12,2	12,2	16,8	17,6	16,8	20,0	24,5	24,5	23,0	24,5	23,0
Refrigerant charge (1)	A	kg	-	-	-	-	15,9	15,8	17,8	19,8	18,4	21,6	28,6	28,6	27,0	28,6	27,0
herrigerant charge (1)	E	kg	9,1	10,7	11,1	12,5	15,9	15,8	17,8	19,8	18,4	21,6	28,6	28,6	27,0	28,6	27,0
	L	kg	8,8	9,4	10,3	11,0	12,2	12,2	16,8	17,6	16,8	20,0	24,5	24,5	23,0	24,5	23,0
System side heat exchanger																	
Туре	°,A,E,L	type							[Brazed plat	e						
Number	°,A	no.	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1
Nullibei	E,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Hydraulic connections																	
Connections (in/out)	°,A,E,L	Туре							G	rooved joir	its						
Sizes (in/out)	°,A,E,L	Ø								2"1/2							
Fan																	
Туре	°,A,E,L	type								Axial							
		no.	-	-	-	-	2	2	2	2	2	2	3	3	3	3	3
Number	A	no.	-	-	-	-	2	2	2	2	2	3	3	3	3	3	3
Number	E	no.	6	6	8	8	2	2	2	2	2	3	3	3	3	3	3
	L	no.	4	6	6	8	2	2	2	2	2	2	3	3	3	3	3
		m³/h	-	-	-	-	42785	42785	41094	41065	41094	39542	62015	61936	61936	61936	61936
Air flow rate	A	m³/h		-	-	-	41080	41080	39461	39461	39461	59684	59701	59684	59684	59684	59684
All flow fate	E	m³/h	21230	22746	28176	25787	31149	31149	29855	29855	29855	47085	45202	45187	45187	45187	45187
	L	m³/h	15574	21226	22732	28156	32650	32650	31613	31169	31161	29823	47087	47125	47125	47125	47125
Sound data calculated in cooling mode (2																	
		dB(A)	-	-	-	-	86,6	86,9	87,1	86,5	87,3	86,5	88,8	88,9	88,2	89,4	89,5
Sound power level	A	dB(A)	-	-	-	-	86,6	86,9	87,1	86,5	87,3	88,2	88,8	88,9	88,2	89,4	89,5
Journa porter level	E	dB(A)	73,0	73,5	74,3	74,5	82,2	82,9	83,3	76,7	83,7	77,8	84,9	85,0	78,0	86,1	84,0
	L	dB(A)	72,4	73,5	73,9	74,5	82,2	82,9	83,3	76,7	83,7	77,1	84,9	85,0	78,0	86,1	84,0
		dB(A)	-	-	-	-	54,8	55,0	55,2	54,6	55,4	54,6	56,8	56,9	56,2	57,4	57,5
Sound pressure level (10 m)	A	dB(A)	-	-	-	-	54,8	55,0	55,2	54,6	55,4	56,2	56,8	56,9	56,2	57,4	57,5
Journa pressure rever (10 III)	E	dB(A)	41,3	41,7	42,5	42,7	50,3	51,0	51,4	44,8	51,8	45,8	52,9	53,1	46,0	54,1	52,0
	L	dB(A)	40,7	41,7	42,1	42,7	50,3	51,0	51,4	44,8	51,8	45,3	52,9	53,1	46,0	54,1	52,0

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Dimensions and weights																	
Λ	°,A	mm	-	-	-	-	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898
A	E,L	mm	1680	1680	1680	1680	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898
	0	mm	-	-	-	-	3200	3200	3200	3200	3200	3200	4010	4010	4010	4010	4010
D	A	mm	-	-	-	-	3200	3200	3200	3200	3200	4010	4010	4010	4010	4010	4010
В	E	mm	2450	2950	2950	2950	3200	3200	3200	3200	3200	4010	4010	4010	4010	4010	4010
	L	mm	2450	2450	2950	2950	3200	3200	3200	3200	3200	3200	4010	4010	4010	4010	4010
(°,A	mm	-	-	-	-	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	E,L	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRG 0282-0804

Air-water chiller

Cooling capacity 55,8 ÷ 224,6 kW

- · High efficiency also at partial loads
- Low refrigerant charge
- Compact dimensions

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

Condensing coil with copper pipes and aluminium louvers, plate heat exchanger.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to 50°C external air temperature. Unit can produce chilled water up to -10 $^{\circ}\text{C}$.

For more information refer to the selection program and to to the dedicated documentation.

Units mono or dual-circuit

The units are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Refrigerant HFC R32

The environmental impact of the units is reduced considerably owing to the last generation R32 refrigerant.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO₂ values.

■ The leak detector is supplied as per standard.

New condensing Coils

The whole range uses copper - aluminium condensation coils with reduced diameter rows, allowing a lower quantity of gas to be used compared to traditional coils.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy seasonal efficiency of the unit.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation.

It is available in different configurations with storage tank or with fixed or variable pumps also inverter.

■ VARIABLE FLOW RATE: Correctly adjust the speed of the inverter-controlled pumps according to the load demand of the system, in order to reduce power consumption and to guarantee operation of the unit even in critical conditions.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: the function can be activated with inverter fans or
 with DCPX which allows unit operation to be optimised at any operating
 point through continuous modulation of the fan speed. In addition, the
 use of inverter fans ensures an increase in energy efficiency at partial
 loads.
- Night mode: only in the non-silenced versions with the fan to be, inverter or phase-cut or with the DCPX accessory, a silenced operation profile can be set, which is useful, for example, at night for greater acoustic comfort, but always ensures performance even at peak load

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

GP: Anti-intrusion grid.

VT: Anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Accessories

Model	Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
	°,A					•	•	•	•	•	•	•	•	•	•	•	•	•	•
AFD 40FD1	E,N		•			•		•	•				•	•	•	•	•	•	•
AER485P1	L		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
	U					•		•	•	•	•		•	•		•	•	•	•
	°,A						•			•	•	•	•	•	•		•	•	•
AFDDACD	E,N		•	•		•	•	•	•	•			•	•	•		•	•	•
AERBACP	L		•		•	•		•	•		•	•							
	U				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	°,A					•		•	•		•		•	•			•		•
AFDLINIV	E,N	•	•	•	•	•		•	•	•	•		•	•			•		
AERLINK	L		•	•	•	•	•	•	•				•		•				
	U						•												
	°,A					•	•	•	•	•	•	•	•	•	•	•	•	•	•
AFDNET	E,N	•																	
AERNET	L		•	•	•					•	•	•	•	•	•	•	•		
	U																		
	°,A						•	•		•	•			•	•		•	•	
MULTICUULED EVO	E,N						•												
MULTICHILLER-EVO	L	•																	
	U				•					•	•		•	•	•	•	•	•	
	°,A																		
DCD4	E,N	•		•				•	•	•	•		•	•	•	•	•	•	•
PGD1	L									•									
	U					•		•	•		•	•	•	•	•	•	•		•
ccn	E,L,N																		
SGD	U																		

Remote panel

Model	Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
	°,A					•	•	•	•	•	•	•	•	•	•	•	•	•	•
PR4	E,L,N		•	•	•	•			•				•	•	•	•	•	•	•
																		•	

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Condensation control temperature

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604
Fans: M									
°, A	-	-	-	-	DCPX146	DCPX146	DCPX147	DCPX146	DCPX147
E, L	-	-	-	-	As standard				
N	-	-	-	As standard					
U	-	-	-	DCPX146	DCPX146	DCPX146	DCPX147	DCPX147	DCPX147
Fans: °									
E, L	DCPX145	DCPX145	DCPX145	DCPX145	-	-	-	-	-
N	DCPX145	DCPX145	DCPX145	-	-	-	-	-	-

Ver	0652	0654	0682	0702	0704	0752	0754	0802	0804
Fans: M									
°, A	DCPX146	DCPX147							
E	As standard								
L	As standard	-	-						
N	As standard	As standard	As standard	-	-	-	-	-	-
U	DCPX147	DCPX147	DCPX147	-	-	-	-	-	-

Antivibration

Alitivibiation																		
Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Integrated hydronic kit: 00, I1, I2, I3	, I4, P1, P2, P	3, P4																
0	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT11	VT22						
A	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT22							
E	VT17	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT22							
L	VT17	VT17	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	-	-
N	VT13	VT13	VT13	VT11	VT11	VT11	VT22											
U	-	-	-	VT11	VT11	VT11	VT22											
Integrated hydronic kit: 01, 02, 03, 0	04, 05, 06, 07,	08, K1, K	2, K3, K4,	W1, W2,	W3, W4													
0	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT11	VT22						
A	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT22							
E	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT22							
L	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	-	-
N	VT13	VT13	VT13	VT11	VT11	VT11	VT22											
U	-	-	-	VT11	VT11	VT11	VT22											

Anti-intrusion grid

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604
°, A	-	-	-	-	GP2 x 2 (1)				
E	GP3	GP4	GP4	GP4	GP2 x 2 (1)				
L	GP3	GP3	GP4	GP4	GP2 x 2 (1)				
N	GP4	GP4	GP4	GP2 x 2 (1)	GP2 x 3 (1)	GP2 x 3 (1)			
U	-	-	-	GP2 x 2 (1)	GP2 x 3 (1)	GP2 x 3 (1)			

(1) x_i indicates the quantity to buy The accessory cannot be fitted on the configurations indicated with -

Ver	0652	0654	0682	0702	0704	0752	0754	0802	0804
0	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 3 (1)						
A, E	GP2 x 2 (1)	GP2 x 3 (1)							
L	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 3 (1)	-	-				
N. U	GP2 x 3 (1)								

(1) x _ indicates the quantity to buy

Device for peak current reduction

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652
°, A	-	-	DRENRG332N	-	DRENRG502	DRENRG552	DRENRG554	DRENRG602	DRENRG604	DRENRG652
E, L, N	DRENRG282	DRENRG302	DRENRG332N	DRENRG352	DRENRG502	DRENRG552	DRENRG554	DRENRG602	DRENRG604	DRENRG652
U	-	-	DRENRG332N	DRENRG352	DRENRG502	DRENRG552	DRENRG554	DRENRG602	DRENRG604	DRENRG652

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	0654	0682	0702	0704	0752	0754	0802	0804
°, A, E, N, U	DRENRG654N	DRENRG682	DRENRG702	DRENRG704	DRENRG752	DRENRG754	DRENRG802	DRENRG804
L	DRENRG654N	DRENRG682	DRENRG702	DRENRG704	DRENRG752	DRENRG754	-	-

A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652
°, A	-	-	RIFNRG332N	-	RIFNRG502	RIFNRG552	RIFNRG554	RIFNRG602	RIFNRG604	RIFNRG652
E, L, N	RIFNRG282	RIFNRG302	RIFNRG332N	RIFNRG352	RIFNRG502	RIFNRG552	RIFNRG554	RIFNRG602	RIFNRG604	RIFNRG652
U	-	-	RIFNRG332N	RIFNRG352	RIFNRG502	RIFNRG552	RIFNRG554	RIFNRG602	RIFNRG604	RIFNRG652

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	0654	0682	0702	0704	0752	0754	0802	0804
°, A, E, N, U	RIFNRG654N	RIFNRG682	RIFNRG702	RIFNRG704	RIFNRG752	RIFNRG754	RIFNRG802	RIFNRG804
L	RIFNRG654N	RIFNRG682	RIFNRG702	RIFNRG704	RIFNRG752	RIFNRG754	-	-

A grey background indicates the accessory must be assembled in the factory

Double safety valves

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
°, A, E, N, U	T6NRG1	T6NRG1	T6NRG1	T6NRG1	T6NRG1	T6NRG1	T6NRG2	T6NRG1	T6NRG2	T6NRG1	T6NRG2	T6NRG1	T6NRG1	T6NRG2	T6NRG1	T6NRG2	T6NRG1	T6NRG2
L	T6NRG1	T6NRG1	T6NRG1	T6NRG1	T6NRG1	T6NRG1	T6NRG2	T6NRG1	T6NRG2	T6NRG1	T6NRG2	T6NRG1	T6NRG1	T6NRG2	T6NRG1	T6NRG2	-	-

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field 1 2 2	Description
1,2,3	NRG Size
4,5,6,7	0282, 0302, 0332, 0352, 0502, 0552, 0554, 0602, 0604, 0652, 0654, 0682, 0702, 0704, 0752, 0754, 0802, 0804
8	Operating field
Х	Electronic thermostatic expansion valve (1)
Z	Low temperature electronic thermostatic valve (2)
9	Model
0	Cooling only
10	Heat recovery
D	With desuperheater (3)
T	With total recovery
•	Without heat recovery
11 .	Version
	Standard Use of the second sec
A E	High efficiency
E	Silenced high efficiency (4) Standard silenced (4)
N N	Silenced very high efficiency (4)
U	Very high efficiency
12	Coils
R	Copper pipes-copper fins
<u> </u>	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
0	Copper-aluminium
13	Fans
J	Inverter (5)
М	Oversized (6)
	Standard (7)
14	Power supply
	400V ~ 3N 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit
00	Without hydronic kit
	Kit with storage tank and pump/s
01	Storage tank with low head pump Storage tank with low head pump + stand-by pump
03	Storage tank with low flead pump Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
	Kit with pump/s and storage tank with holes for heaters
05	Storage tank with holes for heaters and single low head pump (8)
06	Storage tank with holes for heaters and pump low head + stand-by pump (8)
07	Storage tank with holes for heaters and single high head pump (8)
08	Storage tank with holes for heaters and pump high head + stand-by pump (8)
	Double loop
09	Double loop
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with inverter pump/s to fixed speed
<u> 11</u>	Single low head pump + fixed speed inverter
12	Single low head pump with fixed speed inverter + stand-by pump
<u>13</u>	Single high head pump + fixed speed inverter Single high head pump with fixed speed inverter + stand-by pump
	Single riigh nead pump with fixed speed inverter + stand-by pump Kit with storage tank and inverter pump/s to fixed speed
K1	Single low head pump + storage tank + fixed speed inverter
K2	Storage tank and low head pump with fixed speed inverter + stand-by pump
K3	Single high head pump + storage tank + fixed speed inverter
K4	Storage tank and low head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and variable speed inverter pump/s
	Single low head pump + Storage tank + variable speed inverter
W1	Siligle low flead pullip + Storage talk + Valiable speed lifetici
W1 W2	Double low head pump + Storage tank + variable speed inverter

⁽¹⁾ Water produced from 4 °C ÷ 20 °C.

(2) Water produced from 8 °C to -10 °C. The option is not compatible with hydronic kits W1-W2-W3-W4.

(3) Warning: on the recovery side, a minimum input temperature of 35°C must always be guaranteed on the heat exchanger. For more information about the unit operating range, refer to the Magellano selection program

(4) The size 0282-0302-0332-0352 only available in low noise versions.

(5) As standard in size 0702-0704-0752-0754-0802-0804 in the version U and N.

(6) As standard in sizes from 0502 to 0804 version ° - L - A - E and in sizes from 0352 to 0682 and in sizes

from 0554 to 0654 version N - U.

(7) As standard in sizes from 0282 to 0352 versions E - L and in size from 0282 to 0332 version N

(8) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.

PERFORMANCE SPECIFICATIONS

NRG - °

Size		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Cooling performance 12 °C / 7 °C (1)																			
Cooling capacity	kW	-	-	-	-	100,8	110,6	117,6	127,1	130,0	138,5	143,5	161,9	182,0	171,7	203,9	194,0	222,4	212,3
Input power	kW	-	-	-	-	33,4	37,8	37,8	39,7	44,2	45,1	50,7	52,5	59,4	57,4	69,6	66,5	80,4	74,8
Cooling total input current	Α	-	-	-	-	59,0	64,0	59,0	68,0	79,0	77,0	91,0	88,0	95,0	108,0	111,0	117,0	127,0	126,0
EER	W/W	-	-	-	-	3,02	2,92	3,11	3,20	2,94	3,07	2,83	3,08	3,06	2,99	2,93	2,92	2,77	2,84
Water flow rate system side	I/h	-	-	-	-	17363	19059	20268	21893	22383	23841	24712	27874	31338	29554	35100	33389	38287	36547
Pressure drop system side	kPa	-	-	-	-	40	49	46	44	56	53	50	54	69	71	68	67	81	80

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - L

Size		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 12 °C/7 °C (1)																	
Cooling capacity	kW	55,8	63,8	73,3	84,5	98,9	108,2	113,4	123,5	123,9	132,9	139,3	159,0	178,5	168,5	198,8	189,6
Input power	kW	19,7	22,1	24,4	28,6	33,9	38,6	38,5	40,9	45,2	46,7	53,6	53,5	60,3	59,0	71,8	68,2
Cooling total input current	Α	32,0	41,0	45,0	55,0	58,0	63,0	59,0	68,0	79,0	77,0	92,0	88,0	96,0	107,0	112,0	117,0
EER	W/W	2,83	2,88	3,01	2,95	2,92	2,80	2,95	3,02	2,74	2,85	2,60	2,97	2,96	2,85	2,77	2,78
Water flow rate system side	l/h	9604	10989	12618	14572	17043	18647	19537	21269	21332	22880	23984	27367	30726	29004	34224	32640
Pressure drop system side	kPa	35	46	37	50	39	46	45	43	54	50	47	52	66	69	65	64

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - A

Size		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Cooling performance 12 °C / 7 °C (1)																			
Cooling capacity	kW	-	-	-	-	105,3	116,3	118,7	129,7	132,2	141,2	151,3	167,9	186,4	177,0	208,8	199,2	228,6	218,5
Input power	kW	-	-	-	-	31,0	34,9	37,7	40,1	43,8	45,6	47,8	51,1	57,3	56,2	67,0	64,9	77,2	73,6
Cooling total input current	А	-	-	-	-	56,0	60,0	60,0	69,0	80,0	78,0	88,0	85,0	93,0	106,0	108,0	115,0	124,0	123,0
EER	W/W	-	-	-	-	3,39	3,33	3,14	3,23	3,02	3,09	3,16	3,29	3,25	3,15	3,12	3,07	2,96	2,97
Water flow rate system side	I/h	-	-	-	-	18133	20029	20437	22332	22778	24316	26053	28900	32076	30475	35940	34279	39342	37605
Pressure drop system side	kPa	-	-	-	-	30	36	34	34	42	41	56	45	57	56	62	59	74	72

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - E

Size		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Cooling performance 12 °C/7 °C(1)																			
Cooling capacity	kW	58,7	64,8	74,8	88,1	101,0	112,1	115,3	124,8	126,8	134,9	147,6	161,6	180,1	171,4	201,8	191,5	216,6	208,9
Input power	kW	18,7	21,5	23,3	27,6	31,6	35,8	38,6	40,7	45,6	46,8	49,3	52,1	59,4	58,0	70,9	67,4	81,8	77,1
Cooling total input current	Α	31,0	41,0	45,0	54,0	55,0	60,0	61,0	70,0	81,0	79,0	87,0	85,0	95,0	106,0	111,0	116,0	129,0	126,0
EER	W/W	3,14	3,02	3,21	3,19	3,20	3,13	2,98	3,07	2,78	2,88	2,99	3,10	3,03	2,96	2,85	2,84	2,65	2,71
Water flow rate system side	I/h	10097	11156	12874	15166	17382	19311	19858	21482	21840	23238	25406	27822	31004	29499	34739	32965	37282	35953
Pressure drop system side	kPa	24	29	28	37	28	34	32	32	38	37	53	43	53	52	57	55	67	65

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - U

Size		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Cooling performance 12 °C/7 °C (1)																			
Cooling capacity	kW	-	-	-	94,0	105,1	116,7	122,4	134,4	135,9	148,2	154,1	170,1	192,0	179,4	215,0	203,9	236,8	224,6
Input power	kW	-	-	-	26,8	30,6	34,4	36,1	38,2	41,9	42,9	46,5	49,5	57,5	56,2	66,4	63,6	75,7	72,1
Cooling total input current	Α	-	-	-	53,0	57,0	61,0	58,0	68,0	78,0	76,0	87,0	83,0	92,0	106,0	106,0	114,0	120,0	121,0
EER	W/W	-	-	-	3,51	3,43	3,39	3,39	3,52	3,24	3,45	3,32	3,44	3,34	3,19	3,24	3,20	3,13	3,11
Water flow rate system side	l/h	-	-	-	16172	18095	20096	21081	23146	23408	25528	26524	29288	33054	30884	37012	35090	40762	38655
Pressure drop system side	kPa	-	-	-	24	30	28	37	38	46	36	43	47	53	58	66	59	80	72

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - N

Size		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Cooling performance 12 °C/7 °C (1)																			
Cooling capacity	kW	59,7	66,0	76,0	92,0	103,0	114,9	120,1	131,5	132,9	144,6	148,5	163,6	188,0	175,9	209,5	199,0	227,4	218,5
Input power	kW	18,1	20,8	23,3	27,9	31,8	36,1	37,0	39,2	43,2	44,5	48,5	52,1	57,9	56,8	67,6	65,1	78,0	74,5
Cooling total input current	A	30,0	41,0	45,0	52,0	57,0	62,0	57,0	67,0	78,0	75,0	88,0	85,0	92,0	106,0	107,0	114,0	123,0	123,0
EER	W/W	3,29	3,17	3,26	3,30	3,24	3,18	3,25	3,35	3,07	3,25	3,06	3,14	3,25	3,10	3,10	3,06	2,92	2,93
Water flow rate system side	I/h	10270	11372	13087	15837	17726	19768	20680	22650	22893	24895	25579	28156	32351	30273	36062	34256	39138	37603
Pressure drop system side	kPa	25	31	29	23	28	26	36	36	44	34	41	44	50	56	63	57	75	68

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Fans: J																				
SEER - 12/7 (EN14825: 2018) (1)																				
	۰	W/W	-	-	-	-	4,30	4,30	4,36	4,44	4,33	4,32	4,31	4,37	4,38	4,28	4,32	4,29	4,23	4,26
	A	W/W	-	-	-	-	4,50	4,55	4,43	4,61	4,38	4,55	4,35	4,60	4,56	4,42	4,53	4,37	4,34	4,27
CLLD	E	W/W	4,56	4,40	4,56	4,48	4,54	4,46	4,44	4,53	4,40	4,33	4,37	4,55	4,38	4,40	4,37	4,39	4,25	4,27
SEER	L	W/W	4,29	4,21	4,43	4,32	4,32	4,24	4,35	4,30	4,33	4,23	4,31	4,28	4,24	4,30	4,23	4,30	-	-
	N	W/W	4,74	4,66	4,70	4,78	4,71	4,59	4,54	4,77	4,46	4,69	4,49	4,75	4,63	4,48	4,59	4,48	4,37	4,33
	U	W/W	-	-	-	4,77	4,73	4,77	4,51	4,68	4,44	4,72	4,51	4,82	4,66	4,44	4,64	4,42	4,50	4,30
	0	%	-	-	-	-	169,07	169,11	171,47	174,48	170,14	169,96	169,32	171,68	172,37	168,37	169,62	168,51	166,33	167,3
	A	%	-	-	-	-	176,81	179,08	174,25	181,27	172,29	179,03	170,93	181,13	179,44	173,98	178,17	171,94	170,64	167,8
C	E	%	179,42	172,83	179,43	176,18	178,57	175,52	174,63	178,28	173,17	170,02	171,96	179,14	172,39	172,91	171,65	172,46	166,80	167,8
Seasonal efficiency	L	%	168,77	165,30	174,27	169,95	169,78	166,72	171,12	168,86	170,11	166,28	169,22	168,35	166,67	169,00	166,22	169,06	-	-
	N	%	186,54	183,37	185,00	188,02	185,24	180,46	178,48	187,81	175,31	184,43	176,70	186,89	182,33	176,32	180,67	176,26	171,95	170,0
	U	%	-	-	-	187,91	186,30	188,00	177,39	184,10	174,64	185,66	177,42	189,79	183,53	174,64	182,68	173,97	177,05	169,0
SEER - 23/18 (EN14825: 2018) (2)																				
	0	W/W	-	-	-	-	4,99	4,86	5,09	5,02	5,00	4,85	5,02	4,90	4,97	4,91	4,88	4,88	4,78	4,71
	A	W/W	-	-	-	-	5,27	5,18	5,28	5,27	5,23	4,92	5,10	5,22	5,20	5,15	5,12	5,02	4,90	4,74
CEED	E	W/W	5,34	5,10	5,33	5,19	5,20	4,92	5,24	4,99	5,22	4,69	5,10	5,07	4,82	5,09	4,61	4,99	4,74	4,68
SEER	L	W/W	4,90	4,77	5,09	4,99	4,85	4,59	5,09	4,73	5,03	4,56	5,05	4,81	4,61	4,89	4,58	4,86	-	-
	N	W/W	5,56	5,41	5,49	5,52	5,40	5,07	5,34	5,39	5,23	5,26	5,29	5,28	5,23	5,17	5,10	5,11	4,84	4,94
	U	W/W	-	-	-	5,64	5,56	5,44	5,39	5,33	5,29	5,12	5,37	5,47	5,35	5,16	5,24	5,08	5,07	4,80
	0	%	-	-	-	-	196,60	191,50	200,50	197,80	197,10	190,80	197,70	193,00	195,90	193,20	192,10	192,30	188,00	185,2
	A	%	-	-	-	-	207,80	204,10	208,30	207,60	206,20	193,90	200,90	205,60	205,00	202,90	201,80	197,80	193,10	186,5
	E	%	210,70	200,80	210,00	204,60	204,90	193,60	206,70	196,40	205,70	184,70	201,00	199,60	189,90	200,40	181,20	196,50	186,70	184,1
Seasonal efficiency	L	%	192,90	187,90	200,70	196,60	191,10	180,50	200,70	186,30	198,30	179,40	199,10	189,20	181,20	192,50	180,20	191,50	-	-
	N	%	219,30	213,20	216,50	217,80	212,90	199,70	210,60	212,40	206,20	207,30	208,70	208,10	206,00	203,70	201,10	201,30	190,40	194,5
	U	%	-	-	-	222,70	219,50	214,60	212,60	210,30	208,40	201,80	211,60	215,60	210,80	203,50	206,70	200,30	199,60	189,0
SEPR - (EN 14825: 2018) (2)											,									
	0	W/W	-	_	-	-	5,78	5,60	6,35	5,79	6,38	5,73	6,34	5,66	6,07	6,34	5,81	6,03	5,78	5,94
	A	W/W	-	-	-	-	6,23	5,98	6,61	5,93	6,60	6,14	6,51	5,98	6,27	6,54	6,05	6,08	5,90	5,90
	E	W/W	6,66	6,39	6,59	6.52	6,30	6,03	6,47	5,93	6,55	5,79	6,41	6,01	6,13	6,44	5,85	6,06	5,21	5,87
SEPR		W/W	6,34	6,26	6,43	6,30	5,86	5,68	6,35	5,73	6,47	5,69	6,47	5,64	5,95	6,28	5,72	5,92	-	,5,
	N	W/W	6,87	6,70	6,81	6,88	6,47	6,14	6,58	6,20	6,54	6,21	6,57	6,17	6,54	6,56	6,25	6,19	5,93	6,35
		W/W	0,07	0,10	0,01	6.73	6,43	6,14	6,73	6,18	6,68	6,51	6,73	6,26	6,34	6,68	6,18	6,30	6,10	5,99

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Fans: M																				
SEER - 12/7 (EN14825: 2018) (1)																				
	•	W/W	-	-	-	-	4,18	4,18	4,23	4,31	4,20	4,20	4,18	4,24	4,26	4,16	4,19	4,16	4,11	4,14
	A	W/W	-	-	-	-	4,36	4,42	4,30	4,47	4,26	4,42	4,22	4,47	4,43	4,30	4,40	4,25	4,22	4,15
SEER	E	W/W	-	-	-	-	4,41	4,34	4,31	4,40	4,27	4,20	4,25	4,42	4,26	4,27	4,24	4,26	4,12	4,15
JEEN	L	W/W	-	-	-	-	4,19	4,12	4,22	4,17	4,20	4,11	4,18	4,16	4,12	4,18	4,11	4,18	-	-
	N	W/W	-	-	-	4,64	4,57	4,45	4,40	4,63	4,33	4,55	4,36	4,61	-	-	-	-	-	-
	U	W/W	-	-	-	4,63	4,60	4,64	4,38	4,54	4,31	4,58	4,38	4,68	-	-	-	-	-	-
		%	-	-	-	-	164,19	164,24	166,29	169,41	164,99	165,02	164,13	166,59	167,36	163,42	164,59	163,49	161,43	162,48
	A	%	-	-	-	-	171,56	173,79	169,11	175,81	167,34	173,76	166,00	175,82	174,24	168,98	173,01	166,92	165,82	162,95
Seasonal efficiency	E	%	-	-	-	-	173,34	170,47	169,31	173,05	167,98	165,00	166,82	173,83	167,44	167,75	166,62	167,42	161,90	163,00
Seasonal efficiency	L	%	-	-	-	-	164,75	161,78	165,90	163,73	165,02	161,37	164,21	163,40	161,82	164,05	161,39	164,10	-	-
	N	%	-	-	-	182,41	179,82	175,17	173,00	182,25	170,09	178,97	171,51	181,37	-	-	-	-	-	-
	U	%	-	-	-	182,34	180,84	182,53	172,00	178,62	169,50	180,31	172,13	184,18	-	-	-	-	-	-
SEER - 23/18 (EN14825: 2018) (2)																				
		W/W	-	-	-	-	4,86	4,73	4,94	4,89	4,86	4,71	4,87	4,77	4,84	4,77	4,74	4,75	4,64	4,58
	A	W/W	-	-	-	-	5,13	5,04	5,13	5,12	5,09	4,79	4,96	5,08	5,06	5,01	4,98	4,88	4,78	4,61
SEER	E	W/W	-	-	-	-	5,06	4,79	5,09	4,85	5,07	4,56	4,95	4,93	4,70	4,94	4,62	4,85	4,48	4,55
JLLN	L	W/W	-	-	-	-	4,72	4,46	4,94	4,60	4,89	4,44	4,91	4,68	4,48	4,75	4,45	4,73	-	-
	N	W/W	-	-	-	5,37	5,25	4,93	5,19	5,24	5,08	5,12	5,14	5,14	-	-	-	-	-	-
	U	W/W	-	-	-	5,49	5,41	5,29	5,23	5,19	5,14	4,98	5,21	5,31	-	-	-	-	-	
		%	-	-	-	-	191,30	186,20	194,50	192,40	191,20	185,50	191,70	187,60	190,40	187,70	186,60	186,80	182,70	180,00
	A	%	-	-	-	-	202,10	198,50	202,20	201,70	200,40	188,50	195,30	200,00	199,40	197,20	196,30	192,20	188,00	181,20
Seasonal efficiency	E	%	-	-	-	-	199,30	188,40	200,50	191,00	199,60	179,50	195,10	194,00	184,80	194,60	181,60	190,90	176,30	178,80
ocasonal efficiency	L	%	-	-	-	-	185,80	175,40	194,70	181,00	192,50	174,40	193,30	184,00	176,20	187,00	175,10	186,10	-	-
	N	%	-	-	-	211,70	207,10	194,20	204,40	206,50	200,30	201,60	202,70	202,40		-	-	-	-	
	U	%	-	-	-	216,60	213,50	208,70	206,30	204,40	202,40	196,20	205,50	209,50	-	-	-	-	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Calculation performed with FIXED water flow rate.

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
SEPR - (EN 14825: 2018) (2)																				
	0	W/W	-	-	-	-	5,78	5,60	6,35	5,79	6,38	5,73	6,34	5,66	6,07	6,34	5,81	6,03	5,78	5,94
	A	W/W	-	-	-	-	6,23	5,98	6,61	5,93	6,60	6,14	6,51	5,98	6,27	6,54	6,05	6,08	5,90	5,90
CEDD	E	W/W	-	-	-	-	6,30	6,03	6,47	5,93	6,55	5,79	6,41	6,01	6,13	6,44	5,85	6,06	5,21	5,87
SEPR	L	W/W	-	-	-	-	5,86	5,68	6,35	5,73	6,47	5,69	6,47	5,64	5,95	6,28	5,72	5,92	-	-
	N	W/W	-	-	-	6,88	6,47	6,14	6,58	6,20	6,54	6,21	6,57	6,17	-	-	-	-	-	-
	U	W/W	-	-	-	6,73	6.43	6.14	6.73	6.18	6,68	6,51	6,73	6,26	-	-	-	-	-	

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

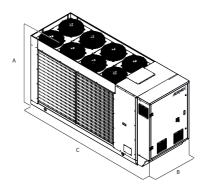
Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Fans: °																				
SEER - 12/7 (EN14825: 2018) (1)																				
	°,A,U	W/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
SEER	E	W/W	4,52	4,35	4,51	4,43	-	-	-	-	-	-	-	-	-	-	-	-	-	-
JEEN	L	W/W	4,25	4,17	4,39	4,28	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	N	W/W	4,69	4,62	4,65	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	°,A,U	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C	E	%	177,70	171,11	177,59	174,38	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Seasonal efficiency	L	%	166,98	163,66	172,63	168,23	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	N	%	184,57	181,62	183,16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SEER - 23/18 (EN14825: 2018) (2)																				
	°,A,U	W/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CEED	E	W/W	5,30	5,05	5,28	5,14	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SEER	L	W/W	4,85	4,73	5,05	4,94	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	N	W/W	5,50	5,36	5,44	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	°,A,U	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Caranal officiana	E	%	208,80	199,00	208,00	202,60	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Seasonal efficiency	L	%	190,90	186,10	198,90	194,70	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	N	%	217,10	211,30	214,40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SEPR - (EN 14825: 2018) (2)																				
	°,A,U	W/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CEDD	E	W/W	6,66	6,39	6,59	6,52	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SEPR	L	W/W	6,34	6,26	6,43	6,30	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	N	W/W	6,87	6,70	6,81	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Electric data																				
	0	Α	-	-	-	-	73,5	79,1	80,5	88,3	97,2	97,4	113,5	111,5	122,6	132,7	139,4	144,0	156,1	155,3
	A	Α	-	-	-	-	73,5	79,1	80,5	88,3	97,2	97,4	116,4	111,5	122,6	132,7	139,4	144,0	156,1	155,3
Maximum current (FLA)	E	Α	41,6	49,9	59,5	67,6	73,5	79,1	80,5	88,3	97,2	97,4	116,4	111,5	122,6	132,7	139,4	144,0	156,1	155,3
Maximum current (FLA)	L	Α	40,2	49,9	58,1	67,6	73,5	79,1	80,5	88,3	97,2	97,4	113,5	111,5	122,6	132,7	139,4	144,0	-	-
	N	Α	41,6	49,9	59,5	67,8	73,5	79,1	83,4	91,2	100,1	100,3	116,4	111,5	125,6	135,7	142,4	147,0	159,1	158,3
	U	Α	-	-	-	67,8	73,5	79,1	83,4	91,2	100,1	100,3	116,4	111,5	125,6	135,7	142,4	147,0	159,1	158,3
	0	Α	-	-	-	-	276,8	282,5	200,8	329,5	221,3	338,6	268,5	396,5	407,7	287,7	601,7	347,4	618,4	358,7
	A	Α	-	-	-	-	276,8	282,5	200,8	329,5	221,3	338,6	271,4	396,5	407,7	287,7	601,7	347,4	618,4	358,7
Dook surrout (LDA)	E	Α	161,9	174,0	214,4	222,6	276,8	282,5	200,8	329,5	221,3	338,6	271,4	396,5	407,7	287,7	601,7	347,4	618,4	358,7
Peak current (LRA)	L	Α	160,5	174,0	213,0	222,6	276,8	282,5	200,8	329,5	221,3	338,6	268,5	396,5	407,7	287,7	601,7	347,4	-	-
	N	Α	161,9	174,0	214,4	222,8	276,8	282,5	203,7	332,4	224,2	341,5	271,4	396,5	410,7	290,7	604,7	350,4	621,4	361,7
	U	Α	-	-	-	222,8	276,8	282,5	203,7	332,4	224,2	341,5	271,4	396,5	410,7	290,7	604,7	350,4	621,4	361,7

[■] Data calculated without hydronic kit and accessories.


GENERAL TECHNICAL DATA

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Compressor																				
Tuno	°,A,E,N,U	type									Sci	roll								
Туре	L	type	Scroll	-	-															
Compressor regulation	°,A,E,N,U	Туре									On-	-Off								
Compressor regulation	L	Туре	On-Off	0n-0ff	-	-														
Number	°,A,E,N,U	no.	2	2	2	2	2	2	4	2	4	2	4	2	2	4	2	4	2	4
Number	L	no.	2	2	2	2	2	2	4	2	4	2	4	2	2	4	2	4	-	-
Circuite	°,A,E,N,U	no.	1	1	1	1	1	1	2	1	2	1	2	1	1	2	1	2	1	2
Circuits	L	no.	1	1	1	1	1	1	2	1	2	1	2	1	1	2	1	2	-	-
Defrigorant	°,A,E,N,U	type									R:	32								
Refrigerant	L	type	R32	-	-															

Size					0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
System side heat exc	hanger																					
T		_	°,A,E,N,U	type	D 1	P 1	D 1	D 1	D 1	D 1.		0 1		d plate	D 1	<u> </u>	<u> </u>	D 1	D 1		1	
Туре			L	type	Brazed plate	Brazed plate	Brazed plate	Brazed plate	Brazed plate		Brazed plate	Brazed plate	Brazed plate	Brazed plate	Brazed plate	Brazed plate	Brazed plate	Brazed plate	Brazed plate	Brazed plate	-	-
			°,A,E,N,U	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Number			L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	-
System side hydrauli	connections																					
Sizes (in/out)		_	°,A,E,N,U	Ø	2// 1 /2	2"1/2	2// 1 /2	2"1/2	2"1/2	2"1/2	2// 1 /2	2// 1 / 2		1/2	2"1/2	2// 1 /2	2// 1 /2	2"1/2	2// 1 / 2	2// 1 /2		
			L	Ø	2″1/2	2″1/2	2″1/2	2″1/2	2" 1/2	2"1/2	2″1/2	2″1/2	2″1/2	2″1/2	2"1/2	2"1/2	2"1/2	2″1/2	2″1/2	2″1/2	-	
Fans																						
Size					0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Fan																						
Туре		_	°,A,E,N,U	type	Avial	Avial	Avial	Avial	Avial	Avial	Avial	Avial		xial	Avial	Avial	Avial	Avial	Avial	Avial		
				type no.	Axial	Axial	Axial	Axial	Axial 2	Axial 2	Axial 2	Axial 2	Axial 2	Axial 2	Axial 2	Axial 3	Axial 3	Axial 3	Axial 3	Axial 3	3	3
		_	A	no.	-	-	-	-	2	2	2	2	2	2	3	3	3	3	3	3	3	3
Number			Е	no.	6	6	8	8	2	2	2	2	2	2	3	3	3	3	3	3	3	3
Number		_	L	no.	4	6	6	8	2	2	2	2	2	2	2	3	3	3	3	3	-	-
		_	N	no.	6	6	8	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3
			U	no.	-	-		2	2	2	3	3	3	3	3	3	3	3	3	3	3	3
Size			0282	0302	0332	0352	0502	055	2 055	4 060	2 0	604	0652	0654	0682	0702	070	07	752	0754	0802	0804
Fans: °					-																-	
I WIII	°,A,U	m³/h	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	_	_
A::	E	m³/h	20469	20469	27112	24667	-	-	-	-		-	-	-	-	-	-		-	-	-	-
Air flow rate -	L	m³/h	15291	20474	22212	27150	-	-	-	-		-	-	-	-	-	-		-	-	-	-
	N	m³/h	22189	22189	24655	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-
Sound data calculate																						
-	°,A,U E	dB(A) dB(A)	73,0	73,5	74,3	74,5	-	-	-	-		-	_		-	-			-	-	-	
Sound power level	L	dB(A)	72,4	73,5	73,9	74,5	-	-	-	-		-	_	-	-	-	-		-	-	-	_
	N	dB(A)	73,0																			
		ub(A)	/3,0	73,9	74,3	-	-	-	-	-		-	-		-	-	-		-	-	-	-
(1) Sound power: calcu		_ ,			_	- ce with U	- INI EN ISC	-) 9614-2,	as require	ed for Eur	ovent ce	- ertificati	- on. Sour	- nd pressui	re measu	- red in fre	e field (ii	n compli	ance wit	- th UNI El	- N ISO 374	
Size		_ ,			_	- ce with U 0352	- INI EN ISC 0502	9614-2, 055				- ertificati	- on. Sour 0652	nd pressur	e measur	- red in fre 0702				- th UNI Et 0754	- N ISO 374 0802	
Size Fans: M	llated on the ba	_ ,	asurement	s made in	accordan									<u> </u>								4).
Size	llated on the ba	sis of me	ozasurement	os made in	o332	0352	0502	055	2 055	4 060	2 0	604	0652	0654	0682	0702	9 070)4 07	752	0754	0802	4). 0804
Size Fans: M	lated on the ba	nsis of me	asurement	s made in	accordan		40400	055	2 055	4 060	00 40	0400	0652 40400	0654 40400	60600	60600	070	00 60	752 600 6	0754	60600	4). 0804 60600
Size Fans: M Without Static pressu	ilated on the ba	sis of me	oz82	os made in 0302	0332	0352	0502	055 4040 4040	2 055	0 4040 0 4040	00 40 00 40	604	0652	0654	0682	0702	0 6060	00 60 00 60	7 52 600 6	0754	0802	4). 0804
Size Fans: M	ilated on the ba	m ³ /h m ³ /h	0282	0302 -	0332		40400 40400	0553 4040 4040 2662	2 055 0 4040 0 4040 5 2548	0 4040 0 4040 10 4040 18 2549	00 40 00 40 00 40 97 25	0400 0400	40400 40400	0654 40400 60600	0682 60600 60600	60600 60600	0 6060 0 6060 8 3864	00 60 00 60 40 38	600 6 600 6 638 3	0754 50600 50600	60600 60600	4). 0804 60600 60600
Size Fans: M Without Static pressu	ire A E L N	m ³ /h m ³ /h m ³ /h	0282	- - -	0332	- - - - 26623	40400 40400 26625 30672 25495	055. 4040 4040 2662 3067 2549	0 4040 0 4040 5 2548 2 2931 5 4026	0 4040 0 4040 10 4040 18 2549 8 293 19 4027	00 40 00 40 00 40 118 29 74 40	0400 0400 5488 9318 0269	40400 40400 25497 29318 40274	0654 40400 60600 40270 28069 38640	60600 60600 40267 46243 38634	60600 60600 38638	0 6060 0 6060 8 3864	00 60 00 60 00 60 40 38 07 44	600 6 600 6 638 3	0754 50600 50600 88640	60600 60600 38638	4). 0804 60600 60600
Size Fans: M Without Static pressu	ire A E L N U	m ³ /h m ³ /h m ³ /h m ³ /h m ³ /h m ³ /h				- - - - 26623 40400	40400 40400 26625 30672 25495 40400	055: 0 4040 0 4040 6 2662 2 3067 6 2549 0 4040	0 4040 0 4040 5 2548 2 2931 5 4026 00 6060	0 4040 0 4040 10 4040 18 2549 8 293 19 4027	000 4000 4000 4000 4000 4000 4000 4000	0400 0400 0400 5488 9318 0269 0600	40400 40400 25497 29318 40274 60600	40400 60600 40270 28069 38640 60600	60600 60600 40267 46243 38634 60600	60600 60600 38638 44311	0 6060 0 6060 3 3864 2 4430	00 60 00 60 40 38 07 44	600 6 600 6 638 3 312 4	50600 50600 88640 14307	60600 60600 38638 -	4). 0804 60600 60600 38640 -
Size Fans: M Without Static pressu	Ire A E L N U	m ³ /h m ³ /h m ³ /h m ³ /h m ³ /h m ³ /h				- - - 26623 40400	40400 40400 26625 30672 25495 40400 86,8	055. 4040 4040 2662 3067 2549 4040 87,7	0 4040 0 4040 5 2548 2 2931 5 4026 0 6060 1 86,2	0 4040 0 4040 8 2549 8 293 9 4027 10 6060 2 87,	00 40 00 40 97 25 118 29 74 40 00 60 33 88	0400 0400 5488 9318 0269 0600 86,6	40400 40400 25497 29318 40274 60600 87,5	40400 60600 40270 28069 38640 60600 86,7	60600 60600 40267 46243 38634 60600 89,0	60600 60600 38638 44312 - - 89,1	2 070 0 6060 0 6060 0 8 3864 0 888,	00 60 00 60 00 60 40 38 07 44	600 6600 6638 3312 4 	50600 50600 88640 14307 - - 89,5	60600 60600 38638 - - - 91,0	4). 0804 60600 60600 38640 - - 90,4
Size Fans: M Without Static pressu Air flow rate	ire A E L N U	m³/h m³/h m³/h m³/h m³/h dB(A)				- - - - 26623 40400	40400 40400 26625 30672 25495 40400 86,8 86,8	055. 4040 4040 5 2662 3067 6 2549 4040 87,7 87,7	0 4040 0 4040 5 2548 2 2931 5 4026 1 86,2	4 060 0 4040 0 4040 8 2549 8 293 9 4027 10 6060 2 87, 2 87,	00 40 00 40 00 40 97 25 18 29 74 40 00 60 3 8	0400 0400 0400 5488 9318 0269 0600 86,6 86,6	40400 40400 25497 29318 40274 60600 87,5 87,5	40400 60600 40270 28069 38640 60600 86,7 88,3	60600 60600 40267 46243 38634 60600 89,0	60600 60600 38638 44312 - - 89,1	2 070 0 6060 0 6060 0 6060 2 4430	00 60 00 60 00 60 40 38 07 44	600 6 600 6 638 3 312 4 - - 9,6 9,6	50600 50600 50600 88640 14307 - - 89,5 89,5	60600 60600 38638 - - - 91,0 91,0	4). 0804 60600 60600 38640 - - - 90,4 90,4
Size Fans: M Without Static pressu	re A E L N U A	m ³ /h m ³ /h m ³ /h m ³ /h m ³ /h m ³ /h				- - - 26623 40400 -	40400 40400 26625 30672 25495 40400 86,8	055. 4040 4040 2662 3067 2549 4040 87,7	0 4040 0 4040 5 2548 12 2931 15 4026 10 6060 11 86,2 1 86,2	0 4040 0 4040 8 2549 8 293 9 4027 10 6066 2 87, 1 82,	000 4000 4000 4000 4000 6000 6000 6000	0400 0400 5488 9318 0269 0600 86,6	40400 40400 25497 29318 40274 60600 87,5	40400 60600 40270 28069 38640 60600 86,7	60600 60600 40267 46243 38634 60600 89,0	60600 60600 38638 44312 - - 89,1	2 070 0 6060 0 6060 8 3864 2 4430 88, 88, 78,	00 60 00 60 40 38 07 44 3 8 3 8 0 8	600 6 600 6 638 3 312 4 - - 9,6 9,6 5,6	50600 50600 88640 14307 - - 89,5	60600 60600 38638 - - - 91,0	4). 0804 60600 60600 38640 - - 90,4
Size Fans: M Without Static pressu Air flow rate	Ire A E L N U A E L N U N N N N N N N N N N N	m³/h m³/h m³/h m³/h m³/h dB(A) dB(A) dB(A) dB(A)				- - - - 26623 40400 - - - - 80,3	40400 40400 26625 30672 25495 40400 86,8 81,3 81,3 81,3	0555 0 4040 0 4040 5 2662 2 3067 6 2549 0 4040 87,7 82,7 82,7 82,7	0 4040 0 4040 5 2548 2 2931 5 4026 0 6060 1 86,5 1 76,6 1 76,6	0 4040 0 4040 8 2549 8 293 9 4027 10 6060 2 87, 2 87, 1 82, 9 83,	000 40 000 40 000 40 97 25 118 29 74 40 000 60 33 8 33 8 7 7 7 7 6 7	0400 0400 0400 5488 9318 0269 0600 86,6 86,6 76,7 77,5	40400 40400 25497 29318 40274 60600 87,5 87,5 83,1 83,1 84,0	40400 60600 40270 28069 38640 60600 86,7 88,3 77,8 77,1 77,8	60600 60600 40267 46243 38634 60600 89,0 89,0 84,2 84,2	60600 60600 38633 44312 - - 89,1 89,1 84,4	2 070 0 6060 0 6060 8 3864 2 4430 88, 88, 78,	00 60 00 60 00 60 40 38 007 44 3 8 0 8 0 8	600 6600 6600 6638 3312 4 	50600 50600 50600 4307 - - 89,5 89,5 83,6 84,1	60600 60600 38638 - - - 91,0 91,0 87,3 -	4). 0804 60600 60600 38640 90,4 90,4 86,7
Size Fans: M Without Static pressu Air flow rate	Ire A E L N U A E L L	m³/h m³/h m³/h m³/h m³/h dB(A) dB(A) dB(A)				- - - 26623 40400 - -	40400 40400 26625 30672 25495 40400 86,8 86,8 81,3 81,3	055. 0 4040 0 4040 1 2662 2 3067 1 2549 0 4040 87,7 82,7 82,7	0 4040 0 4040 5 2548 2 2931 5 4026 0 6060 1 86,5 1 76,6 1 76,6	0 4040 0 4040 8 2549 8 293 9 4027 10 6060 2 87, 2 87, 1 82, 9 83,	000 40 000 40 000 40 97 25 118 29 74 40 000 60 33 8 33 8 7 7 7 7 6 7	0400 0400 05488 9318 0269 0600 86,6 86,6 76,7 76,7	40400 40400 25497 29318 40274 60600 87,5 87,5 83,1 83,1	40400 60600 40270 28069 38640 60600 86,7 88,3 77,8 77,1	60600 60600 40267 46243 38634 60600 89,0 89,0 84,2 84,2	60600 60600 38638 44313 - - 89,1 89,1 84,4 84,4	0 6060 0 6066 0 6066 2 4430 - 88, 88, 78,	00 60 00 60 00 60 40 38 007 44 3 8 0 8 0 8	600 6 600 6 638 3 312 4 - - 9,6 9,6 9,6 5,6	50600 50600 88640 4307 - - 89,5 89,5 83,6 84,1	60600 60600 38638 - - 91,0 91,0 87,3 -	4). 0804 60600 60600 38640 90,4 90,4 86,7 -
Size Fans: M Without Static pressu Air flow rate Sound power level	Ire A E L N U A E L N U N N N N N N N N N N N	m³/h m³/h m³/h m³/h m³/h dB(A) dB(A) dB(A) dB(A)				- - - - 26623 40400 - - - - 80,3	40400 40400 26625 30672 25495 40400 86,8 81,3 81,3 81,3	0555 0 4040 0 4040 6 2662 2 3067 6 2549 0 4040 87,7 82,7 82,7 82,7 82,7	0 4040 0 4040 5 2548 2 2931 5 4026 0 6060 1 86,,1 1 76, 1 76, 1 76, 1 88,	0 4040 0 4040 8 2549 8 293 9 4027 10 6060 2 87, 2 87, 1 82, 1 82, 9 83, 4 88,	22 00 40 40 40 40 40 40 40 40 40	0400 0400 0400 5488 9318 0269 0600 86,6 86,6 76,7 77,5	40400 40400 25497 29318 40274 60600 87,5 87,5 83,1 83,1 84,0	40400 60600 40270 28069 38640 60600 86,7 88,3 77,8 77,1	60600 60600 40267 46243 38634 60600 89,0 89,0 84,2 84,2	60600 60600 38633 44312 - - 89,1 89,1 84,4	2 070 0 6060 0 6060 3 386- 2 4430 88, 88, 78, 78,	00 60 00 60 00 60 40 38 07 44 3 8 0 8 0 8	752 (6600 6600 6600 6638 33312 44	50600 50600 50600 4307 - - 89,5 89,5 83,6 84,1	60600 60600 38638 - - - 91,0 91,0 87,3 -	4). 0804 60600 60600 38640 90,4 90,4 86,7
Size Fans: M Without Static pressu Air flow rate Sound power level Size Fans: J	Ire A E L N U A E L N U N N N N N N N N N N N	m³/h m³/h m³/h m³/h m³/h dB(A) dB(A) dB(A) dB(A)		s made in 0302		- - - 26623 40400 - - - - 80,3 86,5	40400 40400 26625 30672 25495 40400 86,8 81,3 81,3 81,3 86,8	0555 0 4040 0 4040 6 2662 2 3067 6 2549 0 4040 87,7 82,7 82,7 82,7 82,7	0 4040 0 4040 5 2548 2 2931 5 4026 0 6060 1 86,,1 1 76, 1 76, 1 76, 1 88,	0 4040 0 4040 8 2549 8 293 9 4027 10 6060 2 87, 2 87, 1 82, 1 82, 9 83, 4 88,	22 00 40 40 40 40 40 40 40 40 40	0400 0400 0400 5488 9318 0269 0600 636,6 76,7 77,5 388,3	40400 40400 25497 29318 40274 60600 87,5 87,5 83,1 83,1 84,0 88,9	40400 60600 40270 28069 38640 60600 86,7 88,3 77,8 77,1 77,8 88,3	60600 60600 40267 46243 38634 60600 89,0 89,0 84,2 84,2 84,2	60600 60600 38638 44312 - - 89,1 89,1 84,4 84,4	2 070 0 6060 0 6060 3 386- 2 4430 88, 88, 78, 78,	00 60 00 60 00 60 40 38 07 44 3 8 0 8 0 8	752 (6600 6600 6600 6638 33312 44	0754 60600 60600 18840 14307 - - 889,5 889,5 889,5 88,6 84,1	0802 60600 60600 38638 - - 91,0 91,0 87,3 - -	4). 0804 60600 60600 38640 90,4 90,4 86,7
Size Fans: M Without Static pressu Air flow rate Sound power level	Ire A E L N U A E L N U N N N N N N N N N N N	m³/h m³/h m³/h m³/h m³/h dB(A) dB(A) dB(A) dB(A)			0332 		40400 40400 26625 30672 25495 40400 86,8 81,3 81,3,3 86,8	0555 40404 40404 62662 93067 87, 87, 82, 82, 82, 87, 87,	2 055 0 4040 0 4040 0 4040 1 4040 1 4040 1 5 2548 8 6, 1 7 6, 1 7 6, 1 7 6, 1 7 6, 1 8 8,	4 0600 0 4040 0 4040 0 4040 0 6060 0 6060 0 6060 1 82, 1 82, 2 87, 1 82, 2 83, 3 83, 4 88, 4 0600	2 00 000 40 000 40 000 40 000 60 000 60	00400 00400 00400 00400 005488 9318 00269 00600 86,6 86,6 76,7 777,5 88,3	40400 40400 25497 29318 40274 60600 87,5 87,5 83,1 83,1 84,0 88,9	40400 60600 40270 28069 38640 60600 86,7 77,8 77,8 88,3 0654	60600 60600 40267 46243 38634 60600 89,0 84,2 84,2 84,2 89,0 0682	606000 606000 38634 44317 - - 89,1 89,1 84,4,4 - -	2. 0700 2. 0700 3. 6066666 3. 38646 4430 4430 5. 606666 5. 606666 5. 6066666 5. 60666666 5. 6066666666666666666666666666666666666	000 6000 6000 6000 6000 6000 400 38 3 8 8 0 0 8 8 0 0 8 8	752 (6600 6600 6600 6600 6600 6600 6600 66	0754 60600 60600 88640 14307 - - - 889,5 889,5 889,5 884,1 - - -	0802 60600 60600 38638 - - 91,0 91,0 87,3 - - 0802	4). 0804 60600 38640 90,4 86,7 0804
Size Fans: M Without Static pressu Air flow rate Sound power level Size Fans: J	Ire A E L N U A E L N U O O O O O O O O O O O O O O O O O O	m³/h m³/h m³/h m³/h m³/h m³/h m³/h		s made in 0302		- - - 26623 40400 - - - - 80,3 86,5	404000 404000 266252 54953 404000 86,8 81,3 81,3 86,8 86,8 81,3 86,8	0555 40400 40400 2662 2 3067 2 5499 40400 87, 82, 82, 87, 82, 87, 1 3660	2 055 0 4040 0 4040 0 4040 0 6060 0 6060 1 86,7 76,7 1 76,7 1 76,2 2 055	4 0600 0 4040 0 4040 0 4040 0 6060 0 6060 1 82, 1 82, 1 82, 2 87, 1 82, 4 88, 8 84, 9 9 3 83, 1 82, 1 82,	22 0000 44(00000 44(00000 44(0000 44(00000 44(0000 44(0000 44(00000 44(0000 44(00000 44(00000 44(000000 44(00000 44(00000 44(00000 44(00000 44(00000 44(00000 44(0000000 44(00000 44(00000 44(00000 44(00000 44(00000 44(00000 44(000000 44(00000 44(00000 44(00000 44(00000 44(00000 44(00000 44(0000000 44(00000 44(00000 44(00000 44(00000 44(00000 44(000000 44(00	00400 00400 00400 00400 00400 006000 006000 006000 006000 006000 006000 006000 00600	40400 40400 25497 29318 40274 60600 87,5 87,5 83,1 84,0 88,9 0652	40400 60600 40270 28069 38640 60600 86,7 77,8 77,8 88,3 0654	60600 60600 40267 46243 38634 60600 89,0 84,2 84,2 84,2 89,0 0682	0702 60600 60600 38630 44312 - - 89,1 89,1 84,4 - - - - - - - - - - - - - - - - - -	2 070 0 6060 0 6060 0 6060 0 78, 0 78, 0 78, 0 700 0 700	000 60 000 60 000 60 000 60 38 33 8 33 8 00 8. 00 8.	752 6600 660	0754 60600 60600 68640 14307 - - - - - - - - - - - - -	60600 60600 38638 - - 91,0 91,0 87,3 - -	4). 0804 60600 60600 38640 90,4 86,7 0804
Size Fans: M Without Static pressu Air flow rate Sound power level Size Fans: J Inverter fan	Ire A E L N U A E L N U	m³/h m³/h m³/h m³/h m³/h dB(A) dB(A) dB(A) dB(A)					40400 40400 26625 30672 25495 40400 86,8 81,3 81,3,3 86,8	0555 40400 40400 2662 23067 25499 40400 87, 82, 82, 87, 82, 87, 81, 81, 82, 81, 81, 81, 81, 81, 81, 81, 81	2 055 0 4040 0 4040 5 2548 6 4020 1 86,7 1 76,7 1 76,1 1 76,7 1 76,0 2 055	4 0600 0 404(4000 0 404(40000 0 404(40000000000	2 000 4(0000 4(0000 4(0000 4(000) 4(000) 4(000 4	00400 00400 00400 00400 0055488 93118 006000 006000 006000 006000 006000 00600	40400 40400 25497 29318 40274 60600 87,5 87,5 83,1 83,1 84,0 88,9	40400 60600 40270 28069 38640 60600 86,7 77,8 77,8 88,3 0654	60600 60600 40267 46243 38634 60600 89,0 84,2 84,2 84,2 89,0 0682	606000 606000 38634 44317 - - 89,1 89,1 84,4,4 - -	2 070 0 6060 0 6060 0 6060 0 78, 78, 78, 78, 0 700 0 700	000 600 600 600 600 600 600 600 600 600	752 (6600 6600 66600 66638 3 3 3 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0754 60600 60600 88640 14307 - - - 889,5 889,5 889,5 884,1 - - -	0802 60600 60600 38638 - - 91,0 91,0 87,3 - - 0802	4). 0804 60600 38640 90,4 86,7 0804
Size Fans: M Without Static pressu Air flow rate Sound power level Size Fans: J	Ire A E L N U A E L N U A E L N U A E L N U	m³/h m³/h m³/h m³/h m³/h m³/h dB(A) dB(A) dB(A) dB(A)					40400 40400 26625 25495 40400 86,8 86,8 81,3 81,3 86,8 0502	0555 404040 40404 40404 52662 3067 52549 40404 87, 82, 82, 82, 83, 9555	2 055 0 4040 0 4040 5 2548 6 4020 1 86,7 1 76,7 1 76,7 1 76,7 1 76,7 0 3510 0 3510 0 3500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0600 0 404(0 0 404(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	22 0000 40000 40000 400000 400000 400000 400000 355 400000 355 400000 355 400000 255 400000 255 400000 255 400000 255 400000 255 4000000 255 40000000000	0400 0400 05488 9318 90269 0600 36,6 36,6 76,7 77,7,5 888,3 1604	40400 40400 25497 29318 40274 60600 87,5 87,5 83,1 83,1 84,0 88,9 0652	0654 40400 60600 40270 28069 38640 60600 86,7 77,8 77,1 77,8 88,3 0654 33700 53100 40500 28300	60600 60600 40267 46243 38634 60600 89,0 89,0 84,2 84,2 84,2 9,0 0682 55200 40500 46500	0702 60600 60600 38633 44312 - - 89,1 89,1 84,4 84,4 - - 53100 38800 44600	2 070 0 60660 0 60660 0 60660 0 78, 78, 78, 78, 1 070 0 5310 0 3880	000 600 600 600 600 600 600 600 600 600	752 (6600 6600 6600 6600 6600 6600 6600 66	0754 60600 60600 88640 14307 - - 889,5 889,5 889,5 884,1 - - - - 0754	0802 60600 60600 38638 - - - 91,0 91,0 87,3 - - - 0802 53100 51100 38800 -	4). 0804 60600 60600 38640 90,4 90,4 86,7 0804 53100 51100 38800
Size Fans: M Without Static pressu Air flow rate Sound power level Size Fans: J Inverter fan	Ire A E L N U A E L N U A E L N U A E L N U N U N N U N N U N N U N N N U N	m³/h m³/h m³/h m³/h m³/h m³/h dB(A) dB(A) dB(A) dB(A) dB(A)					40400 40400 40400 26625 25495 40400 86,8 86,8 81,3 81,3 86,8 86,8 81,3 81,3 86,8 86,8 86,8 81,3 81,3 81,3 81,3 81,3 81,3 81,3 81	0553 404040 4040 4040 26626 30676 25499 4040 87, 82, 82, 82, 83, 9555 0555	2 055 0 4040 0 4040 5 2548 6 4020 1 86,76,76 1 76,76 1 76,76 1 76,76 1 76,76 1 76,76 1 76,00 0 3380 0 3380 0 0 2560 0 0 2500 0 0 0 0 2950 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0600 0 404(0 0 404(0 10 404(0 10 10 10 10 10 10 10 10 10 10 10 10 10	22 00 000 4(000))))))))))	0400 0400 0400 05488 9318 9318 9318 9318 9318 9318 9360 660 76,7 77,5 888,3 6604	40400 40400 25497 29318 40274 60600 87,5 87,5 83,1 84,0 88,9 0652 33700 25600 29500 40500	0654 40400 60600 40270 28069 38640 60600 86,7 77,8 77,1 77,8 88,3 0654 33700 53100 40500 28300 38800	60600 60600 40267 46243 38634 60600 89,0 89,0 84,2 84,2 84,2 89,0 0682 55200 40500 46500 38800	0702 60600 60600 38631 	2 070 0 60660 0 60660 0 60660 0 88, 88, 88, 78, 78, 	000 600 000 600 000 600 440 388 33 88 33 88 30 0 8. 000 51 000 53 3000 51 000 38 000 44 524 52	752 (6600 6600 6600 6600 6600 6600 6600 66	0754 60600 60600 88640 14307 - - 889,5 889,5 889,5 884,1 - - - - 0754 611100 188800 144600 143224	0802 60600 60600 38638 - - 91,0 91,0 87,3 - - 0802 53100 51100 38800 - 52317	4). 0804 60600 60600 38640 90,4 86,7 0804 53100 51100 38800 - 52324
Size Fans: M Without Static pressu	Is a lated on the base of the	m³/h m³/h m³/h m³/h m³/h m³/h dB(A) dB(A) dB(A) dB(A) dB(A) m³/h m³/h m³/h m³/h m³/h m³/h m³/h					40400 40400 26625 25495 40400 86,8 86,8 81,3 81,3 86,8 0502	0553 404040 4040 4040 26626 30676 25499 4040 87, 82, 82, 82, 83, 9555 0555	2 055 0 4040 0 4040 5 2548 6 4020 1 86,76,76 1 76,76 1 76,76 1 76,76 1 76,76 1 76,76 1 76,00 0 3380 0 3380 0 0 2560 0 0 2500 0 0 0 0 2950 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0600 0 404(0 404	22 00 000 4(000))))))))))	0400 0400 05488 9318 9318 90269 0600 36,6 36,6 76,7 77,5 888,3 1604	40400 40400 25497 29318 40274 60600 87,5 87,5 83,1 83,1 84,0 88,9 0652	0654 40400 60600 40270 28069 38640 60600 86,7 77,8 77,1 77,8 88,3 0654 33700 53100 40500 28300	60600 60600 40267 46243 38634 60600 89,0 89,0 84,2 84,2 84,2 9,0 0682 55200 40500 46500	0702 60600 60600 38633 44312 - - 89,1 89,1 84,4 84,4 - - 53100 38800 44600	2 070 0 60660 0 60660 0 60660 0 88, 88, 88, 78, 78, 	000 600 000 600 000 600 440 388 33 88 33 88 30 0 8. 000 51 000 53 3000 51 000 38 000 44 524 52	752 (6600 6600 6600 6600 6600 6600 6600 66	0754 60600 60600 88640 14307 - - 889,5 889,5 889,5 884,1 - - - - 0754	0802 60600 60600 38638 - - - 91,0 91,0 87,3 - - - 0802 53100 51100 38800 -	4). 0804 60600 60600 38640 90,4 90,4 86,7 0804 53100 51100 38800
Size Fans: M Without Static pressu Air flow rate Sound power level Size Fans: J Inverter fan	Is a lated on the base of the	m³/h m³/h m³/h m³/h m³/h m³/h m³/h dB(A) dB(A) dB(A) dB(A) m³/h m³/h m³/h m³/h m³/h m³/h m³/h m³/h					40400 40400 40400 26625 25495 40400 86,8 86,8 81,3 81,3 86,8 85,8 85,8 86,8 81,3 81,3 86,8 86,8 86,8 86,8 81,3 81,3 81,3 81,3 81,3 81,3 81,0 81,0 81,0 81,0 81,0 81,0 81,0 81,0	0553 404040 4040 4040 87, 87, 82, 82, 87, 0555	2 055 0 4040 0 4040 0 4040 5 5 2548 2 2931 1 76, 1 76, 1 76, 1 76, 1 76, 1 76, 2 055 0 0 3380 0 0 2560 0 0 0 2500 0 0 2500 0 0 0 3310	4 0600 404(0 0 404(0 0 404(0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	2 000 4(00004(000 4(00004(000 4(0000)4(000 4(000)4(000 4(0000 4(000 4(000 4(000 4(000 4(000 4(000 4(000 4(000 4(000 4(000 4(000 4(000 4(000 4(000 4(000 4(000 4(000 4(000) 4(000) 4(000) 4(000) 4(000) 4(000) 4(000) 4(000) 4(000) 4(000) 4(000) 4(000) 4(00	0400 0400 0400 05488 9318 9318 9318 9318 9318 9318 9318 93	40400 40400 25497 29318 40274 60600 87,5 87,5 83,1 83,1 84,0 88,9 0652 33700 25600 29500 40500 53100	0654 40400 60600 40270 28069 38640 60600 86,7 77,8 77,1 77,8 88,3 0654 33700 53100 40500 28300 38800 51100	60600 60600 40267 46243 38634 60600 89,0 84,2 84,2 84,2 89,0 0682 555200 40500 40500 51100	0702 60600 60600 38631 4431. - - 89,1 84,4 84,4 - - - - - - - - - - - - -	2 070 0 60660 0 60660 0 60660 0 88, 88, 88, 78, 78, 	000 600 000 600 000 600 440 388 33 8 8 00 8.8 00 8.8 000 51 000 53 3000 51 000 38 000 44 52 54 52 56 66 66	752 (6600 6600 6600 6600 6600 6600 6600 66	0754 60600 60600 80600 88640 14307 - - 889,5 889,5 889,5 884,1 - - - - - - - - - - - - -	0802 60600 60600 38638 - - 91,0 91,0 87,3 - - 0802 53100 51100 38800 - 52317 66361	4). 0804 60600 60600 38640 90,4 90,4 86,7 0804 53100 51100 38800 - 52324 66361
Size Fans: M Without Static pressu	Ire A E L N U A E L N U A E L N U O A E L N U O A A E L N U O A A E L N U O A A E L N U O A A E C A E C A A E C A E C A A B C B C	m³/h m³/h m³/h m³/h m³/h m³/h m³/h dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) dB(A)					0502 40400 40400 26625 25495 40400 86,8 81,3 81,3 86,8 81,3 81,3 86,8 81,3 8	055. 4040 4040 4040 52662 3067 87, 82, 82, 87, 055. 3660 3510 2680 3370 85,6 85,6	0 40400 0 40400 5 5 2548 2 29313 1 76,7 1 76,7 1 76,1 1 76,1 1 76,1 1 76,0 0 0 3510 0 0 3510 0 0 2560 0 0 2950 0 0 4050 0 0 5310	4 0600 0 404(0 0 404(0 8 254(5)4(0 8 293(3)4(0 8 293(3)4(0 8 2)4(0 8 2)4(0 8 2)4(0 8 2)4(0 8 2)4(0 8 2)4(0 8 2)4(0 8 3)4(0 8	22 00 000 4(0 000 4(0 000 4(0 000 4(0 000 4(0 000 4(0 000 4(0 000 6(0	0400 0400 0400 0400 5488 9318 93269 0600 86,6 76,7 77,5 888,3 6604	40400 40400 25497 29318 40274 60600 87,5 87,5 83,1 84,0 88,9 0652 33700 25600 29500 40500 53100	0654 40400 60600 40270 28069 38640 60600 86,7 77,8 88,3 77,1 77,8 88,3 0654 33700 40500 28300 38800 51100	60600 60600 40267 46243 38634 60600 89,0 89,0 84,2 84,2 89,0 0682 555200 40500 40500 40500 51100	0702 60600 60600 3863i 4431: - - 89,1 84,4 84,4 - - - - - - - - - - - - -	2 0700 0 6060 0 6060 0 6060 0 88, 88, 88, 78, 78, 	000 600 600 600 600 600 600 600 600 600	752 (6600 6600 6600 6600 6600 6600 6600 66	0754 60600 60600 80600 88640 14307 - - 889,5 889,5 88,6 84,1 - - - - - - - - - - - - -	0802 60600 60600 38638 - - 91,0 91,0 87,3 - - 0802 53100 51100 38800 - 52317 66361	4). 0804 60600 60600 38640 90,4 90,4 86,7 0804 53100 51100 38800 - 52324 66361
Size Fans: M Without Static pressu Air flow rate Sound power level Size Fans: J Inverter fan Air flow rate Sound data calculate	Is a lated on the base of the	m³/h m³/h m³/h m³/h m³/h m³/h m³/h m³/h					40400 40400 40400 26625 25495 40400 86,8 86,8 81,3 81,3 86,8 85,8 85,8 86,8 81,3 81,3 86,8 86,8 86,8 86,8 81,3 81,3 81,3 81,3 81,3 81,3 81,0 81,0 81,0 81,0 81,0 81,0 81,0 81,0	0553 404040 4040 4040 87, 87, 82, 82, 87, 0555	0 40400 0 40400 0 40400 10 40400 10 40400 10 6060 10 6060 11 86,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4 0600 0 40400 0 40400 8 2545454 8 2933 8 2933 8 29402 8 2, 87, 1 8 2, 2 8 7, 1 8 2, 2 8 7, 0 0 35110 0 35100 0 35100 0 40500 0 53100 0 53100	2 000 4(0000 4(000 4(000 4(000 4(000 4(000 4(000 4(000 4(000 4(000 4(000 4(0000 4(000 4(000 4(000 4(000 4(000 4(000 4(000 4(000 4(000 4(0000)4(000 4(0000 4(0000)4(000 4(000 4(000 4(000 4(000 4(000 4(000)4	0400 0400 0400 05488 9318 9318 9318 9318 9318 9318 9318 93	40400 40400 25497 29318 40274 60600 87,5 87,5 83,1 83,1 84,0 88,9 0652 33700 25600 29500 40500 53100	0654 40400 60600 40270 28069 38640 60600 86,7 77,8 77,1 77,8 88,3 0654 33700 53100 40500 28300 38800 51100	60600 60600 40267 46243 38634 60600 89,0 84,2 84,2 84,2 89,0 0682 555200 40500 40500 51100	0702 60600 60600 38631 4431. - - 89,1 84,4 84,4 - - - - - - - - - - - - -	2 0700 2 0700 3 60600 3 38600 5 5310 5 5310 5 5310 5 5310 6 6660 6 6660 6 6660	000 600 600 600 600 600 600 600 600 600	752 (600 6 6	0754 60600 60600 80600 88640 14307 - - 889,5 889,5 889,5 884,1 - - - - - - - - - - - - -	0802 60600 60600 38638 - - 91,0 91,0 87,3 - - 0802 53100 51100 38800 - 52317 66361	4). 0804 60600 60600 38640 90,4 90,4 86,7 0804 53100 51100 38800 - 52324 66361
Size Fans: M Without Static pressu	Is a lated on the base of the	m³/h m³/h m³/h m³/h m³/h m³/h m³/h m³/h					0502 40400 40400 26625 25499 40400 86,8 86,8 81,3 81,3 86,8 81,3 81,3 86,8 81,3 8	055. 4040 4040 4040 52662 3067 87, 82, 82, 87, 055. 3660 3510 2680 3370 85,6 85,6	2 055 0 4040 0 4040 0 4040 10 4040 10 4040 10 6060 10 86,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4 0600 0 40400 0 40400 8 254954 8 2933 8 2933 8 2939 4022 8 87, 1 82, 2 87, 1 82, 3 83, 4 0600 35110 0 35100 0 35100 0 5310	2 00 000 4(0 000 4(0 000 4(0 000 4(0 000 4(0 000 4(0 000 4(0 0000 6(0 000 6(0	0400 0400 0400 05488 9318 00269 0600 060,7 67,7 77,5 888,3 0604 0500 0500 0500 0500 0500	40400 40400 25497 29318 40274 60600 87,5 87,5 83,1 83,1 84,0 88,9 0652 33700 25600 29500 40500 53100	0654 40400 60600 40270 28069 38640 60600 86,7 77,8 77,8 88,3 77,1 77,8 88,3 0654 40500 28300 38800 51100 84,9 86,5	0682 60600 60600 40267 46243 38634 60600 89,0 84,2 84,2 89,0 0682 55200 40500 40500 40500 51100 87,5 87,5	0702 60600 60600 38634 4431. - - 89,1 84,4 84,4 - - - - - - - - - - - - -	2 0700 2 0700 3 60660 3 3866 3 886, 78, 78,	000 600 600 600 600 600 600 600 600 600	752 (600 6 6	0754 60600 60600 88640 14307 - - 889,5 889,5 88,6 84,1 - - - - - - - - - - - - -	0802 60600 60600 38638 - - 91,0 91,0 87,3 - - 0802 53100 51100 38800 - 52317 66361	4). 0804 60600 60600 38640 90,4 90,4 86,7 0804 53100 51100 38800 - 52324 66361
Size Fans: M Without Static pressu Air flow rate Sound power level Size Fans: J Inverter fan Air flow rate Sound data calculate	Is a lated on the base of the	m³/h m³/h m³/h m³/h m³/h m³/h m³/h m³/h					0502 404000 404000 266253 254999 404000 86,8 81,3 81,3 81,3 86,8 81,3 81	055. 4040 4040 4040 52662 83067 87, 82, 82, 83, 655. 3660 3510 2680 3370 85,6 85,6 82,	2 055 0 4040 0 4040 0 4040 10 4040 10 6060 10 6060 10 86, 11 76, 11 76, 11 76, 12 055 13 388, 14 388, 15 4026 16 4050 17 60, 18 41, 17 66, 18 41, 18 41,	4 0600 0 40400 0 40400 0 40400 0 60606 8 25455 8 2933 1 82, 1 82, 2 85, 1 82, 2 85, 1 82, 3 85, 1 82, 3 85, 3 82, 3 85, 3 82, 3 85, 3 82, 3 85, 3 82, 3 83,	2 00 000 4(0 000 4(0 000 4(0 000 4(0 000 4(0 000 4(0 000 4(0 000 4(0 000 6(0 0	0400 0400 0400 05488 9318 0269 0600 036,6 36,6 76,7 777,5 388,3 6604	40400 40400 25497 29318 40274 60600 87,5 87,5 83,1 84,0 88,9 0652 33700 25600 29500 40500 53100 86,1 86,1 88,1	0654 40400 60600 40270 28069 38640 60600 86,7 77,8 88,3 77,1,1 77,8 88,3 0654 33700 40500 28300 38800 51100 84,9 86,5 77,8	0682 60600 60600 40267 46243 38634 60600 89,0 84,2 84,2 89,0 0682 55200 40500 40500 40500 51100 87,5 87,5 84,2	0702 60600 60600 38634 4431; - - 89,1 84,4 84,4 - - - - - - - - - - - - -	2 0700 2 0700 3 60600 3 3860 4430 5 78, 78, 78, 77, 77, 78, 78, 78, 78, 78,	000 600 600 600 600 600 600 600 600 600	752 (600 6600 6600 6600 6600 6600 6600 660	50600 50600 50600 50600 50600 50600 50600 50800 5089,5	0802 60600 60600 38638 - - 91,0 91,0 87,3 - - 0802 53100 51100 38800 - 52317 66361 90,1 87,3	4). 0804 60600 60600 38640 90,4 90,4 86,7 0804 53100 51100 38800 - 52324 66361 89,4 89,4 86,7

(1) Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Dimensions and weights																				
	0	mm	-	-	-	-	1907	1907	1907	1907	1907	1907	1907	1900	1900	1900	1900	1900	1900	1900
	Α	mm	-	-	-	-	1907	1907	1907	1907	1907	1907	1900	1900	1900	1900	1900	1900	1900	1900
Λ .	E	mm	1652	1658	1658	1658	1907	1907	1907	1907	1907	1907	1900	1900	1900	1900	1900	1900	1900	1900
Α -	L	mm	1652	1652	1658	1658	1907	1907	1907	1907	1907	1907	1907	1900	1900	1900	1900	1900	-	-
_	N	mm	1658	1658	1658	1907	1907	1907	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
	U	mm	-	-	-	1907	1907	1907	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
	°,A	mm	-	-	-	-	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
В -	E,N	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
D -	L	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	-	-
	U	mm	-	-	-	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	0	mm	-	-	-	-	3567	3567	3567	3567	3567	3567	3567	4368	4368	4368	4368	4368	4368	4368
	Α	mm	-	-	-	-	3567	3567	3567	3567	3567	3567	4368	4368	4368	4368	4368	4368	4368	4368
	E	mm	2818	3317	3317	3317	3567	3567	3567	3567	3567	3567	4368	4368	4368	4368	4368	4368	4368	4368
	L	mm	2818	2818	3317	3317	3567	3567	3567	3567	3567	3567	3567	4368	4368	4368	4368	4368	-	-
	N	mm	3317	3317	3317	3567	3567	3567	4368	4368	4368	4368	4368	4368	4368	4368	4368	4368	4368	4368
	U	mm				3567	3567	3567	4368	4368	4368	4368	4368	4368	4368	4368	4368	4368	4368	4368

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRG 0282H-0804H

Reversible air/water heat pump

Cooling capacity 52,5 ÷ 212,0 kW – Heating capacity 56,6 ÷ 214,4 kW

- · High efficiency also at partial loads
- Low refrigerant charge
- Compact dimensions

DESCRIPTION

Reversible outdoor heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

FEATURES

Operating field

Working at full load up to -15°C outside air temperature in winter, and up to 48 °C in summer. Hot water production up to 60°C (for more details refer to the technical documentation).

Units mono or dual-circuit

The units are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Refrigerant HFC R32

The environmental impact of the units is reduced considerably owing to the last generation R32 refrigerant.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent ${\rm CO_2}$ values.

■ The leak detector is supplied as per standard.

Use refrigerant fluid R32, whose classification according to ISO 817 is A2L (non-toxic, odourless and slightly flammable refrigerant).

New condensing Coils

The whole range uses copper - aluminium condensation coils with reduced diameter rows, allowing a lower quantity of gas to be used compared to traditional coils.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy seasonal efficiency of the unit.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation.

It is available in different configurations with storage tank or with fixed or variable pumps also inverter.

■ VARIABLE FLOW RATE: Correctly adjust the speed of the inverter-controlled pumps according to the load demand of the system, in order to reduce power consumption.

CONTROL PCO⁵

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Swing HP and LP controls: available for all models with inverter fan or with DCPX. By continuously modulating the fans, they streamline operation of the unit at any work point both in cooling and heating mode. This results in enhanced energy efficiency of the unit at partial loads.
- Night mode: only in the non-silenced versions with the fan to be, inverter or phase-cut or with the DCPX accessory, a silenced operation profile can be set, which is useful, for example, at night for greater acoustic comfort, but always ensures performance even at peak load hours.

INTEGRATED SOLUTION

The "integrated solution" concept has been implemented in the system architecture, consisting in an integrated and streamlined control of compressors and electronic valve.

This solution allowed a variety of new features to be introduced, such as:

- Low Superheat Control: Progressive superheating reduction in conditions of stability. This allows to increase energy performance: both in modulation and in full load conditions;
- DLT control: Control of electronic valve at discharge temperature in certain operating conditions. This is demonstrated in an enhanced reliability of the control and a considerable expansion of the machine's operating range, especially in heating mode.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save

a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

GP: Anti-intrusion grid.

VT: Anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Model	Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
AFD 40FD1	°,A															•			
AER485P1	E,L			•	•			•	•		•	•	•	•	•	•	•		•
AERBACP	°,A					•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERDACP	E,L		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERLINK	°,A					•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERLINK	E,L	•	•	•	•	•		•	•		•	•	•	•	•		•	•	•
AERNET	°,A					•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERNEI	E,L	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICULUED EVO	°,A							•	•	•	•	•	•	•	•		•	•	•
MULTICHILLER-EVO	E,L	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
DCD1	°,A									•		•					•		
PGD1 —	E,L	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SGD	E,L		•	•															

Remote panel

Model	Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
PR4	°,A					•	•	•	•	•	•	•	•	•	•	•	•	•	•
rr4	E,L											•	•	•	•	•	•	•	•

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Antivibration

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Integrated hydronic kit: 00																		
٥	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT11	VT22						
A	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT22							
E	VT17	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT22							
L	VT17	VT17	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT11	VT22						
Integrated hydronic kit: 01, 02, 03, 0	4, 05, 06, 07,	08, K1, K	2, K3, K4,	W1, W2,	W3, W4													
0	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT11	VT22						
A	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT22							
E	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT22							
L	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT11	VT22						
Integrated hydronic kit: I1, I2, I3, I4,	P1, P2, P3, P	4																
0	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT11	VT22						
A	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT22							
E	VT17	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT22							
L	VT17	VT17	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT11	VT22						

Condensation control temperature

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604
°, A	-	-	-	-	DCPX146	DCPX146	DCPX146	DCPX146	DCPX146
E, L	DCPX145	DCPX145	DCPX145	DCPX145	As standard				

The accessory cannot be fitted on the configurations indicated with -

Ver	0652	0654	0682	0702	0704	0752	0754	0802	0804
0	DCPX146	DCPX146	DCPX147						
Α	DCPX146	DCPX147							
FI	Ac ctandard								

Anti-intrusion grid

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604
°, A	-	-	-	-	GP2 x 2 (1)				
E	GP3	GP4	GP4	GP4	GP2 x 2 (1)				
L	GP3	GP3	GP4	GP4	GP2 x 2 (1)				

(1) $\,x_{-}$ indicates the quantity to buy The accessory cannot be fitted on the configurations indicated with -

Ver	0652	0654	0682	0702	0704	0752	0754	0802	0804
°,L	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 3 (1)						
A, E	GP2 x 2 (1)	GP2 x 3 (1)							

(1) x _ indicates the quantity to buy

Device for peak current reduction

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604
°, A	-	-	DRENRG332N	-	DRENRG502	DRENRG552	DRENRG554	DRENRG602	DRENRG604
F.I	DRFNRG282	DRFNRG302	DRFNRG332N	DRFNRG352	DRFNRG502	DRFNRG552	DRFNRG554	DRFNRG602	DRFNRG604

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	0652	0654	0682	0702	0704	0752	0754	0802	0804
°, A, E, L	DRENRG652	DRENRG654N	DRENRG682	DRENRG702	DRENRG704	DRENRG752	DRENRG754	DRENRG802	DRENRG804

A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604
°, A	-	-	RIFNRG332N	-	RIFNRG502	RIFNRG552	RIFNRG554	RIFNRG602	RIFNRG604
E. L	RIFNRG282	RIFNRG302	RIFNRG332N	RIFNRG352	RIFNRG502	RIFNRG552	RIFNRG554	RIFNRG602	RIFNRG604

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	0652	0654	0682	0702	0704	0752	0754	0802	0804
°, A, E, L	RIFNRG652	RIFNRG654N	RIFNRG682	RIFNRG702	RIFNRG704	RIFNRG752	RIFNRG754	RIFNRG802	RIFNRG804

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Double safety valves

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
°, A, E, L	T6NRG1	T6NRG1	T6NRG1	T6NRG1	T6NRG1	T6NRG1	T6NRG2	T6NRG1	T6NRG2	T6NRG1	T6NRG2	T6NRG1	T6NRG1	T6NRG2	T6NRG1	T6NRG2	T6NRG1	T6NRG2

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NRG
4,5,6,7	Size 0282, 0302, 0332, 0352, 0502, 0552, 0554, 0602, 0604, 0652, 0654, 0682, 0702, 0704, 0752, 0754, 0802, 0804
8	Operating field
χ	Electronic thermostatic expansion valve (1)
Z	Low temperature electronic thermostatic valve (2)
9	Model
Н	Heat pump
10	Heat recovery
D	With desuperheater (3)
	Without heat recovery
11	Version
0	Standard
A	High efficiency
E	Silenced high efficiency (4)
L	Standard silenced (4)
12	Coils
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
0	Copper-aluminium
13	Fans
J	Inverter
0	Standard
14	Power supply
0	400V ~ 3N 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit
00	Without hydronic kit

ield	Description
	Kit with storage tank and pump/s
01	Storage tank with low head pump
02	Storage tank with low head pump + stand-by pump
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
	Kit with pump/s and storage tank with holes for heaters
05	Storage tank with holes for heaters and single low head pump (5)
06	Storage tank with holes for heaters and pump low head + stand-by pump (5)
07	Storage tank with holes for heaters and single high head pump (5)
80	Storage tank with holes for heaters and pump high head + stand-by pump (5)
	Double loop
09	Double loop
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with inverter pump/s to fixed speed
I1	Single low head pump + fixed speed inverter
12	Single low head pump with fixed speed inverter + stand-by pump
13	Single high head pump + fixed speed inverter
14	Single high head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and inverter pump/s to fixed speed
K1	Single low head pump + storage tank + fixed speed inverter
K2	Storage tank and low head pump with fixed speed inverter + stand-by pump
K3	Single high head pump + storage tank + fixed speed inverter
K4	Storage tank and low head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and variable speed inverter pump/s
W1	Single low head pump + Storage tank + variable speed inverter (6)

470 NRG-0282-0804-HP_Y_UN50_14 www.aermec.com

Field	Description
W2	Double low head pump + Storage tank + variable speed inverter (6)
W3	Single high head pump + Storage tank + variable speed inverter (6)
W4	Double high head pump + Storage tank + variable speed inverter (6)

- Not available with desuperheater.

 (3) The desuperheater must be intercepted in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.

 (4) The size 0282-0302-0332-0352 are only available in the silenced versions "HL/HE"
- (4) The Size U202-U302-U302-U302-U302 are only available in the silenced versions. In LPIE*
 (5) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.
 (6) Not available with Low temperature electronic thermostatic valve "7"

PERFORMANCE SPECIFICATIONS

NRG H°

	0282	0302	0222															
		0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
kW	-	-	-	-	93,7	103,4	114,4	117,5	127,3	127,8	141,4	156,4	175,2	169,8	196,0	190,4	215,2	209,1
kW	-	-	-	-	34,7	39,1	37,8	43,0	43,9	48,9	50,8	51,6	59,6	58,0	69,0	66,0	79,1	74,5
Α	-	-	-	-	62,0	66,0	60,0	73,0	80,0	82,0	91,0	87,0	97,0	109,0	111,0	117,0	126,0	126,0
W/W	-	-	-	-	2,70	2,65	3,03	2,73	2,90	2,61	2,78	3,03	2,94	2,93	2,84	2,89	2,72	2,81
I/h	-	-	-	-	16141	17808	19683	20225	21912	22017	24335	26922	30168	29239	33727	32773	37044	35991
kPa	-	-	-	-	31	38	20	34	24	40	25	48	60	36	60	40	72	49
kW	-	-	-	-	99,6	108,8	118,2	125,6	132,1	137,6	146,9	162,6	183,1	176,7	203,0	195,8	222,4	214,4
kW	-	-	-	-	31,5	34,4	35,9	38,0	40,7	42,2	45,2	50,3	57,4	54,5	62,7	59,0	69,8	64,1
Α	-	-	-	-	59,0	62,0	59,0	68,0	79,0	75,0	88,0	87,0	96,0	109,0	105,0	112,0	117,0	116,0
W/W	-	-	-	-	3,16	3,17	3,30	3,31	3,24	3,26	3,25	3,23	3,19	3,24	3,24	3,32	3,19	3,35
l/h	-	-	-	-	17265	18855	20522	21779	22925	23855	25482	28203	31767	30659	35221	33974	38576	37206
kPa	-	-	-	-	36	43	22	40	27	48	28	54	67	41	67	45	80	53
	kW A W/W I/h kPa kW kW A W/W I/h	kW - A - W/W - I/h - kPa - kW - kW - W/W - I/h -	kW W/W	kW	kW	kW - - - 34,7 A - - - 62,0 W/W - - - 62,0 W/W - - - 2,70 I/h - - - 16141 kPa - - - 31 kW - - - 31,5 A - - 59,0 W/W - - 3,16 I/h - - 17265	kW - - - 34,7 39,1 A - - - 62,0 66,0 W/W - - - 62,0 66,0 W/W - - - 2,70 2,65 I/h - - 16141 17808 kPa - - - 31 38 kW - - - 31,5 34,4 A - - - 59,0 62,0 W/W - - - 3,16 3,17 I/h - - 17265 18855	kW - - - 34,7 39,1 37,8 A - - - 62,0 66,0 60,0 W/W - - - 2,70 2,65 3,03 I/h - - - 16141 17808 19683 kPa - - - 31 38 20 kW - - - 31,5 34,4 35,9 kW - - - 59,0 62,0 59,0 W/W - - - 3,16 3,17 3,30 I/h - - 17265 18855 20522	kW - - - 34,7 39,1 37,8 43,0 A - - - 62,0 66,0 60,0 73,0 W/W - - - 2,70 2,65 3,03 2,73 I/h - - - 16141 17808 19683 20225 kPa - - - 311 38 20 34 kW - - - 99,6 108,8 118,2 125,6 kW - - - 31,5 34,4 35,9 38,0 A - - - 59,0 62,0 59,0 68,0 W/W - - 3,16 3,17 3,30 3,31 I/h - - 17265 18855 20522 21779	kW - - - 34,7 39,1 37,8 43,0 43,9 A - - - 62,0 66,0 60,0 73,0 80,0 W/W - - - 2,70 2,65 3,03 2,73 2,90 I/h - - - 16141 17808 19683 20225 21912 kPa - - - 311 38 20 34 24 kW - - - 99,6 108,8 118,2 125,6 132,1 kW - - - 31,5 34,4 35,9 38,0 40,7 A - - 59,0 62,0 59,0 68,0 79,0 W/W - - 3,16 3,17 3,30 3,31 3,24 I/h - - 17265 18855 20522 21779 22925	kW - - - 34,7 39,1 37,8 43,0 43,9 48,9 A - - - 62,0 66,0 60,0 73,0 80,0 82,0 W/W - - - 2,70 2,65 3,03 2,73 2,90 2,61 I/h - - - 16141 17808 19683 20225 21912 22017 kPa - - - 31 38 20 34 24 40 kW - - - 99,6 108,8 118,2 125,6 132,1 137,6 kW - - - 31,5 34,4 35,9 38,0 40,7 42,2 A - - 59,0 62,0 59,0 68,0 79,0 75,0 W/W - - 3,16 3,17 3,30 3,31 3,24 3,26 I/h	kW - - - 34,7 39,1 37,8 43,0 43,9 48,9 50,8 A - - - 62,0 66,0 60,0 73,0 80,0 82,0 91,0 W/W - - - 2,70 2,65 3,03 2,73 2,90 2,61 2,78 I/h - - - 16141 17808 19683 20225 21912 22017 24335 kPa - - - 31 38 20 34 24 40 25 kW - - - 99,6 108,8 118,2 125,6 132,1 137,6 146,9 kW - - - 31,5 34,4 35,9 38,0 40,7 42,2 45,2 A - - 59,0 62,0 59,0 68,0 79,0 75,0 88,0 W/W - -<	kW - - - 34,7 39,1 37,8 43,0 43,9 48,9 50,8 51,6 A - - - 62,0 66,0 60,0 73,0 80,0 82,0 91,0 87,0 W/W - - - 2,70 2,65 3,03 2,73 2,90 2,61 2,78 3,03 I/h - - - 16141 17808 19683 20225 21912 22017 24335 26922 kPa - - - 31 38 20 34 24 40 25 48 kW - - - 99,6 108,8 118,2 125,6 132,1 137,6 146,9 162,6 kW - - - 31,5 34,4 35,9 38,0 40,7 42,2 45,2 50,3 A - - - 59,0 62,0 <t< td=""><td>kW - - - 34,7 39,1 37,8 43,0 43,9 48,9 50,8 51,6 59,6 A - - - 62,0 66,0 60,0 73,0 80,0 82,0 91,0 87,0 97,0 W/W - - - 2,70 2,65 3,03 2,73 2,90 2,61 2,78 3,03 2,94 I/h - - - 16141 17808 19683 20225 21912 22017 24335 26922 30168 kPa - - - 31 38 20 34 24 40 25 48 60 kW - - - 99,6 108,8 118,2 125,6 132,1 137,6 146,9 162,6 183,1 kW - - - 31,5 34,4 35,9 38,0 40,7 42,2 45,2 50,3 57,4<</td><td>kW - - - 34,7 39,1 37,8 43,0 43,9 48,9 50,8 51,6 59,6 58,0 A - - - 62,0 66,0 60,0 73,0 80,0 82,0 91,0 87,0 97,0 109,0 W/W - - - 2,70 2,65 3,03 2,73 2,90 2,61 2,78 3,03 2,94 2,93 I/h - - - 16141 17808 19683 20225 21912 22017 24335 26922 30168 29239 kPa - - - 31 38 20 34 24 40 25 48 60 36 kW - - - 31,5 34,4 35,9 38,0 40,7 42,2 45,2 50,3 57,4 54,5 A - - - 59,0 62,0 59,0</td><td>kW - - - 34,7 39,1 37,8 43,0 43,9 48,9 50,8 51,6 59,6 58,0 69,0 A - - - 62,0 66,0 60,0 73,0 80,0 82,0 91,0 87,0 97,0 109,0 111,0 W/W - - - 2,70 2,65 3,03 2,73 2,90 2,61 2,78 3,03 2,94 2,93 2,84 I/h - - - 16141 17808 19683 20225 21912 22017 24335 26922 30168 29239 33727 kPa - - - 31 38 20 34 24 40 25 48 60 36 60 kW - - - 31,5 34,4 35,9 38,0 40,7 42,2 45,2 50,3 57,4 54,5 62,7 A<</td><td>kW - - - 34,7 39,1 37,8 43,0 43,9 48,9 50,8 51,6 59,6 58,0 69,0 66,0 A - - - 62,0 66,0 60,0 73,0 80,0 82,0 91,0 87,0 97,0 109,0 111,0 117,0 W/W - - - 2,70 2,65 3,03 2,73 2,90 2,61 2,78 3,03 2,94 2,93 2,84 2,89 I/h - - - 16141 17808 19683 20225 21912 22017 24335 26922 30168 29239 33727 32773 kPa - - - 16141 17808 19683 20225 21912 22017 24335 26922 30168 29239 33727 32773 kPa - - - 31 38 20 34 24 40</td><td>kW - - - 34,7 39,1 37,8 43,0 43,9 48,9 50,8 51,6 59,6 58,0 69,0 66,0 79,1 A - - - 62,0 66,0 60,0 73,0 80,0 82,0 91,0 87,0 97,0 109,0 111,0 117,0 126,0 W/W - - - 2,70 2,65 3,03 2,73 2,90 2,61 2,78 3,03 2,94 2,93 2,84 2,89 2,72 I/h - - - 16141 17808 19683 20225 21912 22017 24335 26922 30168 29239 33727 32773 37044 kPa - - - 16141 17808 19683 20225 21912 22017 24335 26922 30168 29239 33727 32773 37044 kPa - - - 31<</td></t<>	kW - - - 34,7 39,1 37,8 43,0 43,9 48,9 50,8 51,6 59,6 A - - - 62,0 66,0 60,0 73,0 80,0 82,0 91,0 87,0 97,0 W/W - - - 2,70 2,65 3,03 2,73 2,90 2,61 2,78 3,03 2,94 I/h - - - 16141 17808 19683 20225 21912 22017 24335 26922 30168 kPa - - - 31 38 20 34 24 40 25 48 60 kW - - - 99,6 108,8 118,2 125,6 132,1 137,6 146,9 162,6 183,1 kW - - - 31,5 34,4 35,9 38,0 40,7 42,2 45,2 50,3 57,4<	kW - - - 34,7 39,1 37,8 43,0 43,9 48,9 50,8 51,6 59,6 58,0 A - - - 62,0 66,0 60,0 73,0 80,0 82,0 91,0 87,0 97,0 109,0 W/W - - - 2,70 2,65 3,03 2,73 2,90 2,61 2,78 3,03 2,94 2,93 I/h - - - 16141 17808 19683 20225 21912 22017 24335 26922 30168 29239 kPa - - - 31 38 20 34 24 40 25 48 60 36 kW - - - 31,5 34,4 35,9 38,0 40,7 42,2 45,2 50,3 57,4 54,5 A - - - 59,0 62,0 59,0	kW - - - 34,7 39,1 37,8 43,0 43,9 48,9 50,8 51,6 59,6 58,0 69,0 A - - - 62,0 66,0 60,0 73,0 80,0 82,0 91,0 87,0 97,0 109,0 111,0 W/W - - - 2,70 2,65 3,03 2,73 2,90 2,61 2,78 3,03 2,94 2,93 2,84 I/h - - - 16141 17808 19683 20225 21912 22017 24335 26922 30168 29239 33727 kPa - - - 31 38 20 34 24 40 25 48 60 36 60 kW - - - 31,5 34,4 35,9 38,0 40,7 42,2 45,2 50,3 57,4 54,5 62,7 A<	kW - - - 34,7 39,1 37,8 43,0 43,9 48,9 50,8 51,6 59,6 58,0 69,0 66,0 A - - - 62,0 66,0 60,0 73,0 80,0 82,0 91,0 87,0 97,0 109,0 111,0 117,0 W/W - - - 2,70 2,65 3,03 2,73 2,90 2,61 2,78 3,03 2,94 2,93 2,84 2,89 I/h - - - 16141 17808 19683 20225 21912 22017 24335 26922 30168 29239 33727 32773 kPa - - - 16141 17808 19683 20225 21912 22017 24335 26922 30168 29239 33727 32773 kPa - - - 31 38 20 34 24 40	kW - - - 34,7 39,1 37,8 43,0 43,9 48,9 50,8 51,6 59,6 58,0 69,0 66,0 79,1 A - - - 62,0 66,0 60,0 73,0 80,0 82,0 91,0 87,0 97,0 109,0 111,0 117,0 126,0 W/W - - - 2,70 2,65 3,03 2,73 2,90 2,61 2,78 3,03 2,94 2,93 2,84 2,89 2,72 I/h - - - 16141 17808 19683 20225 21912 22017 24335 26922 30168 29239 33727 32773 37044 kPa - - - 16141 17808 19683 20225 21912 22017 24335 26922 30168 29239 33727 32773 37044 kPa - - - 31<

NRG HL

	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
kW	52,5	60,5	69,3	80,7	91,0	100,0	110,8	113,2	122,9	122,4	135,2	152,6	170,4	165,0	189,1	184,2	205,8	202,2
kW	20,2	23,0	25,4	30,1	35,2	39,6	38,4	44,3	45,0	50,9	53,2	52,2	61,2	59,1	71,5	67,9	82,7	77,3
А	33,0	42,0	47,0	57,0	60,0	65,0	59,0	72,0	79,0	82,0	92,0	84,0	95,0	107,0	111,0	116,0	128,0	126,0
W/W	2,60	2,63	2,73	2,68	2,59	2,53	2,88	2,55	2,73	2,40	2,54	2,92	2,79	2,79	2,64	2,71	2,49	2,62
l/h	9048	10428	11932	13896	15671	17215	19059	19485	21152	21086	23262	26277	29331	28417	32540	31692	35428	34793
kPa	30	41	31	43	30	36	19	32	23	37	23	46	56	34	56	37	66	45
kW	56,6	65,4	74,6	87,5	99,6	108,8	118,2	125,6	132,1	137,6	146,9	162,6	183,1	176,7	203,0	195,8	222,4	214,4
kW	17,4	20,2	22,3	26,5	31,5	34,4	35,9	38,0	40,7	42,2	45,2	50,3	57,4	54,5	62,7	59,0	69,8	64,1
А	29,0	40,0	44,0	54,0	59,0	62,0	59,0	68,0	79,0	75,0	88,0	87,0	96,0	109,0	105,0	112,0	117,0	116,0
W/W	3,26	3,24	3,35	3,30	3,16	3,17	3,30	3,31	3,24	3,26	3,25	3,23	3,19	3,24	3,24	3,32	3,19	3,35
I/h	9816	11328	12928	15158	17265	18855	20522	21779	22925	23855	25482	28203	31767	30659	35221	33974	38576	37206
kPa	37	48	38	51	36	43	22	40	27	48	28	54	67	41	67	45	80	53
	kW A W/W I/h kPa kW kW A W/W I/h	kW 52,5 kW 20,2 A 33,0 W/W 2,60 I/h 9048 kPa 30 kW 56,6 kW 17,4 A 29,0 W/W 3,26 I/h 9816	kW 52,5 60,5 kW 20,2 23,0 A 33,0 42,0 W/W 2,60 2,63 I/h 9048 10428 kPa 30 41 kW 56,6 65,4 kW 17,4 20,2 A 29,0 40,0 W/W 3,26 3,24 I/h 9816 11328	kW 52,5 60,5 69,3 kW 20,2 23,0 25,4 A 33,0 42,0 47,0 W/W 2,60 2,63 2,73 I/h 9048 10428 11932 kPa 30 41 31 kW 56,6 65,4 74,6 kW 17,4 20,2 22,3 A 29,0 40,0 44,0 W/W 3,26 3,24 3,35 I/h 9816 11328 12928	kW 52,5 60,5 69,3 80,7 kW 20,2 23,0 25,4 30,1 A 33,0 42,0 47,0 57,0 W/W 2,60 2,63 2,73 2,68 I/h 9048 10428 11932 13896 kPa 30 41 31 43 kW 56,6 65,4 74,6 87,5 kW 17,4 20,2 22,3 26,5 A 29,0 40,0 44,0 54,0 W/W 3,26 3,24 3,35 3,30 I/h 9816 11328 12928 15158	kW 52,5 60,5 69,3 80,7 91,0 kW 20,2 23,0 25,4 30,1 35,2 A 33,0 42,0 47,0 57,0 60,0 W/W 2,60 2,63 2,73 2,68 2,59 I/h 9048 10428 11932 13896 15671 kPa 30 41 31 43 30 kW 56,6 65,4 74,6 87,5 99,6 kW 17,4 20,2 22,3 26,5 31,5 A 29,0 40,0 44,0 54,0 59,0 W/W 3,26 3,24 3,35 3,30 3,16 I/h 9816 11328 12928 15158 17265	kW 52,5 60,5 69,3 80,7 91,0 100,0 kW 20,2 23,0 25,4 30,1 35,2 39,6 A 33,0 42,0 47,0 57,0 60,0 65,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 I/h 9048 10428 11932 13896 15671 17215 kPa 30 41 31 43 30 36 kW 56,6 65,4 74,6 87,5 99,6 108,8 kW 17,4 20,2 22,3 26,5 31,5 34,4 A 29,0 40,0 44,0 54,0 59,0 62,0 W/W 3,26 3,24 3,35 3,30 3,16 3,17 I/h 9816 11328 12928 15158 17265 18855	kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 I/h 9048 10428 11932 13896 15671 17215 19059 kPa 30 41 31 43 30 36 19 kW 56,6 65,4 74,6 87,5 99,6 108,8 118,2 kW 17,4 20,2 22,3 26,5 31,5 34,4 35,9 A 29,0 40,0 44,0 54,0 59,0 62,0 59,0 W/W 3,26 3,24 3,35 3,30 3,16 3,17 3,30 I/h 9816 11328 12928 15158<	kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 113,2 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 44,3 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 72,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 2,55 I/h 9048 10428 11932 13896 15671 17215 19059 19485 kPa 30 41 31 43 30 36 19 32 kW 56,6 65,4 74,6 87,5 99,6 108,8 118,2 125,6 kW 17,4 20,2 22,3 26,5 31,5 34,4 35,9 38,0 A 29,0 40,0 44,0 54,0 59,0 62,0 59,0 68,0 W/W 3,26 3,24 3,35 3,3	kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 113,2 122,9 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 44,3 45,0 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 72,0 79,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 2,55 2,73 I/h 9048 10428 11932 13896 15671 17215 19059 19485 21152 kPa 30 41 31 43 30 36 19 32 23 kW 56,6 65,4 74,6 87,5 99,6 108,8 118,2 125,6 132,1 kW 17,4 20,2 22,3 26,5 31,5 34,4 35,9 38,0 40,7 A 29,0 40,0 44,0 54,0 59,0 <t< td=""><td>kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 113,2 122,9 122,4 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 44,3 45,0 50,9 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 72,0 79,0 82,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 2,55 2,73 2,40 I/h 9048 10428 11932 13896 15671 17215 19059 19485 21152 21086 kPa 30 41 31 43 30 36 19 32 23 37 kW 56,6 65,4 74,6 87,5 99,6 108,8 118,2 125,6 132,1 137,6 kW 17,4 20,2 22,3 26,5 31,5 34,4 35,9 38,0 40,7</td><td>kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 113,2 122,9 122,4 135,2 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 44,3 45,0 50,9 53,2 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 72,0 79,0 82,0 92,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 2,55 2,73 2,40 2,54 I/h 9048 10428 11932 13896 15671 17215 19059 19485 21152 21086 23262 kPa 30 41 31 43 30 36 19 32 23 37 23 kW 56,6 65,4 74,6 87,5 99,6 108,8 118,2 125,6 132,1 137,6 146,9 kW 17,4 20,2</td><td>kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 113,2 122,9 122,4 135,2 152,6 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 44,3 45,0 50,9 53,2 52,2 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 72,0 79,0 82,0 92,0 84,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 2,55 2,73 2,40 2,54 2,92 I/h 9048 10428 11932 13896 15671 17215 19059 19485 21152 21086 2362 26277 kPa 30 41 31 43 30 36 19 32 23 37 23 46 kW 56,6 65,4 74,6 87,5 99,6 108,8 118,2 125,6 132,1</td><td>kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 113,2 122,9 122,4 135,2 152,6 170,4 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 44,3 45,0 50,9 53,2 52,2 61,2 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 72,0 79,0 82,0 92,0 84,0 95,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 2,55 2,73 2,40 2,54 2,92 2,79 I/h 9048 10428 11932 13896 15671 17215 19059 19485 21152 21086 23262 26277 29331 kPa 30 41 31 43 30 36 19 32 23 37 23 46 56 kW 56,6 65,4 74,6</td><td>kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 113,2 122,9 122,4 135,2 152,6 170,4 165,0 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 44,3 45,0 50,9 53,2 52,2 61,2 59,1 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 72,0 79,0 82,0 92,0 84,0 95,0 107,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 2,55 2,73 2,40 2,54 2,92 2,79 2,79 I/h 9048 10428 11932 13896 15671 17215 19059 19485 21152 21086 23262 26277 29331 28417 kPa 30 41 31 43 30 36 19 32 23 37 23 46 56<</td><td>kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 113,2 122,9 122,4 135,2 152,6 170,4 165,0 189,1 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 44,3 45,0 50,9 53,2 52,2 61,2 59,1 71,5 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 72,0 79,0 82,0 92,0 84,0 95,0 107,0 111,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 2,55 2,73 2,40 2,54 2,92 2,79 2,79 2,64 I/h 9048 10428 11932 13896 15671 17215 19059 19485 21152 21086 2362 26277 29331 28417 32540 kPa 30 41 31 43 30 36 19</td><td>kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 113,2 122,9 122,4 135,2 152,6 170,4 165,0 189,1 184,2 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 44,3 45,0 50,9 53,2 52,2 61,2 59,1 71,5 67,9 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 72,0 79,0 82,0 92,0 84,0 95,0 107,0 111,0 116,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 2,55 2,73 2,40 2,54 2,92 2,79 2,79 2,64 2,71 I/h 9048 10428 11932 13896 15671 17215 19059 19485 21152 21086 23262 26277 29331 28417 32540 31692 kPa 30 <</td><td>kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 113,2 122,9 122,4 135,2 152,6 170,4 165,0 189,1 184,2 205,8 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 44,3 45,0 50,9 53,2 52,2 61,2 59,1 71,5 67,9 82,7 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 72,0 79,0 82,0 92,0 84,0 95,0 107,0 111,0 116,0 128,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 2,55 2,73 2,40 2,54 2,92 2,79 2,79 2,64 2,71 2,49 I/h 9048 10428 11932 13896 15671 17215 19059 19485 21152 21086 23262 26277 2931 28417 32540</td></t<>	kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 113,2 122,9 122,4 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 44,3 45,0 50,9 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 72,0 79,0 82,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 2,55 2,73 2,40 I/h 9048 10428 11932 13896 15671 17215 19059 19485 21152 21086 kPa 30 41 31 43 30 36 19 32 23 37 kW 56,6 65,4 74,6 87,5 99,6 108,8 118,2 125,6 132,1 137,6 kW 17,4 20,2 22,3 26,5 31,5 34,4 35,9 38,0 40,7	kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 113,2 122,9 122,4 135,2 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 44,3 45,0 50,9 53,2 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 72,0 79,0 82,0 92,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 2,55 2,73 2,40 2,54 I/h 9048 10428 11932 13896 15671 17215 19059 19485 21152 21086 23262 kPa 30 41 31 43 30 36 19 32 23 37 23 kW 56,6 65,4 74,6 87,5 99,6 108,8 118,2 125,6 132,1 137,6 146,9 kW 17,4 20,2	kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 113,2 122,9 122,4 135,2 152,6 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 44,3 45,0 50,9 53,2 52,2 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 72,0 79,0 82,0 92,0 84,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 2,55 2,73 2,40 2,54 2,92 I/h 9048 10428 11932 13896 15671 17215 19059 19485 21152 21086 2362 26277 kPa 30 41 31 43 30 36 19 32 23 37 23 46 kW 56,6 65,4 74,6 87,5 99,6 108,8 118,2 125,6 132,1	kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 113,2 122,9 122,4 135,2 152,6 170,4 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 44,3 45,0 50,9 53,2 52,2 61,2 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 72,0 79,0 82,0 92,0 84,0 95,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 2,55 2,73 2,40 2,54 2,92 2,79 I/h 9048 10428 11932 13896 15671 17215 19059 19485 21152 21086 23262 26277 29331 kPa 30 41 31 43 30 36 19 32 23 37 23 46 56 kW 56,6 65,4 74,6	kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 113,2 122,9 122,4 135,2 152,6 170,4 165,0 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 44,3 45,0 50,9 53,2 52,2 61,2 59,1 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 72,0 79,0 82,0 92,0 84,0 95,0 107,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 2,55 2,73 2,40 2,54 2,92 2,79 2,79 I/h 9048 10428 11932 13896 15671 17215 19059 19485 21152 21086 23262 26277 29331 28417 kPa 30 41 31 43 30 36 19 32 23 37 23 46 56<	kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 113,2 122,9 122,4 135,2 152,6 170,4 165,0 189,1 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 44,3 45,0 50,9 53,2 52,2 61,2 59,1 71,5 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 72,0 79,0 82,0 92,0 84,0 95,0 107,0 111,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 2,55 2,73 2,40 2,54 2,92 2,79 2,79 2,64 I/h 9048 10428 11932 13896 15671 17215 19059 19485 21152 21086 2362 26277 29331 28417 32540 kPa 30 41 31 43 30 36 19	kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 113,2 122,9 122,4 135,2 152,6 170,4 165,0 189,1 184,2 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 44,3 45,0 50,9 53,2 52,2 61,2 59,1 71,5 67,9 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 72,0 79,0 82,0 92,0 84,0 95,0 107,0 111,0 116,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 2,55 2,73 2,40 2,54 2,92 2,79 2,79 2,64 2,71 I/h 9048 10428 11932 13896 15671 17215 19059 19485 21152 21086 23262 26277 29331 28417 32540 31692 kPa 30 <	kW 52,5 60,5 69,3 80,7 91,0 100,0 110,8 113,2 122,9 122,4 135,2 152,6 170,4 165,0 189,1 184,2 205,8 kW 20,2 23,0 25,4 30,1 35,2 39,6 38,4 44,3 45,0 50,9 53,2 52,2 61,2 59,1 71,5 67,9 82,7 A 33,0 42,0 47,0 57,0 60,0 65,0 59,0 72,0 79,0 82,0 92,0 84,0 95,0 107,0 111,0 116,0 128,0 W/W 2,60 2,63 2,73 2,68 2,59 2,53 2,88 2,55 2,73 2,40 2,54 2,92 2,79 2,79 2,64 2,71 2,49 I/h 9048 10428 11932 13896 15671 17215 19059 19485 21152 21086 23262 26277 2931 28417 32540

NRG HA

Size		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Cooling performance 12 °C/7 °C (1)																			
Cooling capacity	kW	-	-	-	-	96,4	106,6	115,8	122,0	128,8	133,3	146,8	160,1	178,0	170,7	199,5	191,8	219,8	212,0
Input power	kW	-	-	-	-	32,6	36,6	37,2	39,7	43,3	45,5	48,6	49,8	57,4	56,7	66,3	64,4	75,9	72,5
Cooling total input current	Α	-	-	-	-	60,0	64,0	60,0	70,0	80,0	78,0	90,0	85,0	94,0	108,0	108,0	116,0	123,0	124,0
EER	W/W	-	-	-	-	2,95	2,91	3,11	3,07	2,97	2,93	3,02	3,21	3,10	3,01	3,01	2,98	2,90	2,93
Water flow rate system side	l/h	-	-	-	-	16583	18342	19918	21002	22155	22958	25273	27557	30631	29392	34336	33010	37829	36487
Pressure drop system side	kPa	-	-	-	-	23	28	17	29	21	35	28	40	49	33	54	39	66	48
Heating performance 40 °C / 45 °C (2)																			
Heating capacity	kW	-	-	-	-	103,0	113,7	119,7	126,6	133,9	138,9	155,5	162,3	181,1	175,3	200,6	195,0	219,9	213,7
Input power	kW	-	-	-	-	31,0	33,8	35,6	37,4	40,4	41,5	47,0	49,1	55,3	53,3	60,9	57,8	67,5	62,7
Heating total input current	Α	-	-	-	-	59,0	61,0	58,0	68,0	79,0	75,0	91,0	86,0	93,0	107,0	103,0	110,0	114,0	114,0
COP	W/W	-	-	-	-	3,32	3,36	3,36	3,39	3,31	3,35	3,31	3,30	3,27	3,29	3,29	3,37	3,26	3,41
Water flow rate system side	l/h	-	-	-	-	17866	19723	20784	21964	23234	24088	26976	28153	31410	30409	34811	33832	38148	37079
Pressure drop system side	kPa	-	-	-	-	27	32	19	32	23	39	31	42	52	35	57	41	68	49

⁽¹⁾ Water produced from 4 °C \div 20 °C (2) Water produced from 18 °C to -10 °C. The option is not compatible with hydronic kits W1-W2-W3-W4.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

NRG	HE

Size		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Cooling performance 12 °C/7 °C(1)																			
Cooling capacity	kW	55,1	61,1	71,0	82,7	93,8	103,3	111,9	118,0	124,0	128,3	144,2	154,7	173,0	166,6	192,6	186,2	210,5	202,8
Input power	kW	19,3	22,3	24,4	28,6	33,0	37,4	38,2	40,8	44,9	46,7	48,9	50,9	58,9	57,3	68,8	65,7	79,3	75,4
Cooling total input current	A	32,0	42,0	47,0	56,0	58,0	62,0	60,0	69,0	80,0	78,0	87,0	82,0	93,0	106,0	109,0	114,0	125,0	123,0
EER	W/W	2,85	2,75	2,91	2,89	2,84	2,76	2,93	2,89	2,76	2,75	2,95	3,04	2,94	2,91	2,80	2,83	2,65	2,69
Water flow rate system side	I/h	9484	10522	12223	14246	16136	17773	19250	20314	21332	22097	24814	26647	29783	28680	33149	32040	36227	34901
Pressure drop system side	kPa	20	24	24	33	22	26	16	27	19	32	26	38	47	31	51	36	60	44
Heating performance 40 °C / 45 °C (2)																			
Heating capacity	kW	58,8	65,4	76,6	88,8	103,0	113,7	119,7	126,6	133,9	138,9	155,5	162,3	181,1	175,3	200,6	195,0	219,9	213,7
Input power	kW	17,2	19,7	22,5	26,5	31,0	33,8	35,6	37,4	40,4	41,5	47,0	49,1	55,3	53,3	60,9	57,8	67,5	62,7
Heating total input current	А	30,0	39,0	45,0	54,0	59,0	61,0	58,0	68,0	79,0	75,0	91,0	86,0	93,0	107,0	103,0	110,0	114,0	114,0
COP	W/W	3,42	3,32	3,40	3,35	3,32	3,36	3,36	3,39	3,31	3,35	3,31	3,30	3,27	3,29	3,29	3,37	3,26	3,41
Water flow rate system side	l/h	10207	11335	13280	15399	17866	19723	20784	21964	23234	24088	26976	28153	31410	30409	34811	33832	38148	37079
Pressure drop system side	kPa	23	28	29	39	27	32	19	32	23	39	31	42	52	35	57	41	68	49

ENERGY DATA - STANDARD/INVERTER FANS

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Fans: °																				
Cooling capacity with low leaving water	temp (UE n°	2016/2281)																	
	0	W/W	-	-	-	-	3,92	3,84	3,97	4,00	3,83	3,94	3,88	4,17	4,06	3,87	3,95	3,92	3,82	3,80
CLLD	A	W/W	-	-	-	-	4,21	4,14	4,07	4,34	4,01	4,24	4,10	4,40	4,32	4,14	4,31	4,17	4,12	4,04
SEER	E	W/W	4,40	4,32	4,37	4,33	4,26	4,13	4,03	4,29	3,97	4,10	4,06	4,36	4,21	4,10	4,20	4,13	4,07	4,00
	L	W/W	4,14	4,03	4,22	4,07	3,98	3,89	3,94	4,01	3,80	3,89	3,84	4,12	4,00	3,84	3,91	3,88	3,77	3,77
	0	%	-	-	-	-	154%	151%	156%	157%	150%	155%	152%	164%	160%	152%	155%	154%	150%	149%
wee.	Α	%	-	-	-	-	165%	163%	160%	171%	157%	167%	161%	173%	170%	162%	169%	164%	162%	159%
ηςς	E	%	173%	170%	172%	170%	167%	162%	158%	169%	156%	161%	160%	172%	166%	161%	165%	162%	160%	157%
	L	%	163%	158%	166%	160%	156%	153%	155%	157%	149%	153%	151%	162%	157%	150%	153%	152%	148%	148%
Size	1		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Size Fans: J			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
	temp (UE n°	2016/2281		0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Fans: J	temp (UE n°	2016/2281 W/W		0302	0332	0352	0502 4,04	0552 3,96	0554 4,10	0602 4,12	3,96	0652 4,06	4,00	0682 4,30	0702 4,19	3,99	0752 4,07	4,04	3,94	3,91
Fans: J Cooling capacity with low leaving water				0302	0332															
Fans: J		W/W		- - 4,36	- - 4,41		4,04	3,96	4,10	4,12	3,96	4,06	4,00	4,30	4,19	3,99	4,07	4,04	3,94	3,91
Fans: J Cooling capacity with low leaving water		W/W W/W) - -	-	-	-	4,04 4,33	3,96 4,26	4,10 4,20	4,12 4,47	3,96 4,13	4,06 4,37	4,00 4,23	4,30 4,54	4,19 4,45	3,99 4,26	4,07 4,43	4,04 4,29	3,94 4,25	3,91 4,17
Fans: J Cooling capacity with low leaving water		W/W W/W W/W) - - 4,45	- - 4,36	- - 4,41	- - 4,37	4,04 4,33 4,38	3,96 4,26 4,25	4,10 4,20 4,16	4,12 4,47 4,42	3,96 4,13 4,09	4,06 4,37 4,22	4,00 4,23 4,19	4,30 4,54 4,49	4,19 4,45 4,34	3,99 4,26 4,22	4,07 4,43 4,33	4,04 4,29 4,25	3,94 4,25 4,20	3,91 4,17 4,13
Fans: J Cooling capacity with low leaving water SEER	A E L	W/W W/W W/W) - - 4,45	- - 4,36	- - 4,41	- - 4,37	4,04 4,33 4,38 4,10	3,96 4,26 4,25 4,01	4,10 4,20 4,16 4,06	4,12 4,47 4,42 4,12	3,96 4,13 4,09 3,92	4,06 4,37 4,22 4,01	4,00 4,23 4,19 3,96	4,30 4,54 4,49 4,25	4,19 4,45 4,34 4,13	3,99 4,26 4,22 3,95	4,07 4,43 4,33 4,03	4,04 4,29 4,25 4,00	3,94 4,25 4,20 3,89	3,91 4,17 4,13 3,88
Fans: J Cooling capacity with low leaving water	A E L	W/W W/W W/W W/W) - - 4,45	- - 4,36	- - 4,41	- - 4,37 4,10	4,04 4,33 4,38 4,10 159%	3,96 4,26 4,25 4,01 155%	4,10 4,20 4,16 4,06 161%	4,12 4,47 4,42 4,12 162%	3,96 4,13 4,09 3,92 155%	4,06 4,37 4,22 4,01 159%	4,00 4,23 4,19 3,96 157%	4,30 4,54 4,49 4,25 169%	4,19 4,45 4,34 4,13 164%	3,99 4,26 4,22 3,95 157%	4,07 4,43 4,33 4,03 160%	4,04 4,29 4,25 4,00 158%	3,94 4,25 4,20 3,89 155%	3,91 4,17 4,13 3,88 154%

ENERGY DATA - STANDARD/INVERTER FANS (35°C)

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Fans: J																				
Performance in average ambient conditi	ons (average)	-35°C(1)																	
	0	kW	-	-	-	-	88	97	103	109	115	119	128	141	159	154	178	171	193	188
Dalariana	A	kW	-	-	-	-	91	101	105	110	117	121	136	141	158	153	176	170	191	187
Pdesignh	E	kW	52	58	68	78	91	101	105	110	117	121	136	141	158	153	176	170	191	187
	L	kW	50	58	66	77	88	97	103	109	115	119	128	141	159	154	178	171	193	188
	0	W/W	-	-	-	-	3,61	3,66	3,53	3,66	3,49	3,71	3,49	3,57	3,68	3,42	3,65	3,52	3,52	3,56
CCOD	A	W/W	-	-	-	-	3,70	3,80	3,60	3,80	3,59	3,81	3,59	3,70	3,76	3,53	3,77	3,63	3,67	3,64
SCOP	E	W/W	4,10	4,04	4,06	3,99	3,70	3,80	3,60	3,80	3,59	3,81	3,59	3,70	3,76	3,53	3,77	3,63	3,67	3,64
	L	W/W	3,95	3,90	3,91	3,91	3,61	3,66	3,53	3,66	3,49	3,71	3,49	3,57	3,68	3,42	3,65	3,52	3,52	3,56
	0	%	-	-	-	-	141%	143%	138%	143%	137%	146%	136%	140%	144%	134%	143%	138%	138%	139%
	A	%	-	-	-	-	145%	149%	141%	149%	141%	149%	141%	145%	147%	138%	148%	142%	144%	143%
ηsh	E	%	161%	159%	159%	157%	145%	149%	141%	149%	141%	149%	141%	145%	147%	138%	148%	142%	144%	143%
	L	%	155%	153%	153%	153%	141%	143%	138%	143%	137%	146%	136%	140%	144%	134%	143%	138%	138%	139%
F# sian au an array along	°,A		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Efficiency energy class	E,L		A+	A+	A+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

⁽¹⁾ Efficiencies for low temperature applications (35 °C)

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Fans: °																				
Performance in average ambient conditi	ons (average) - 35 °C (1)																	
	0	kW	-	-	-	-	88	97	103	109	115	119	128	141	159	154	178	171	193	188
Distant	A	kW	-	-	-	-	91	101	105	110	117	121	136	141	158	153	176	170	191	187
Pdesignh	E	kW	52	58	68	78	91	101	105	110	117	121	136	141	158	153	176	170	191	187
	L	kW	50	58	66	77	88	97	103	109	115	119	128	141	159	154	178	171	193	188
	0	W/W	-	-	-	-	3,50	3,55	3,36	3,55	3,33	3,61	3,32	3,47	3,57	3,23	3,54	3,32	3,41	3,36
CCOD	A	W/W	-	-	-	-	3,59	3,69	3,43	3,69	3,42	3,70	3,38	3,59	3,65	3,33	3,66	3,42	3,56	3,44
SCOP	E	W/W	4,06	4,00	4,02	3,91	3,59	3,69	3,43	3,69	3,42	3,70	3,38	3,59	3,65	3,33	3,66	3,42	3,56	3,44
	L	W/W	3,91	3,86	3,87	3,83	3,50	3,55	3,36	3,55	3,33	3,61	3,32	3,47	3,57	3,23	3,54	3,32	3,41	3,36
	0	%	-	-	-	-	135%	139%	131%	139%	130%	141%	130%	135%	139%	126%	139%	130%	134%	131%
mak	A	%	-	-	-	-	141%	145%	134%	145%	134%	145%	132%	141%	143%	130%	143%	134%	140%	134%
ηsh	E	%	159%	157%	158%	154%	141%	145%	134%	145%	134%	145%	132%	141%	143%	130%	143%	134%	140%	134%
	L	%	153%	151%	152%	150%	135%	139%	131%	139%	130%	141%	130%	135%	139%	126%	139%	130%	134%	131%
F#F sion su on oursu alone	°,A		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Efficiency energy class	E.L.		A+	A+	A+	-	_	-	-		-	-		-	-	-	-	-	-	-

⁽¹⁾ Efficiencies for low temperature applications (35 °C)

ENERGY DATA - STANDARD/INVERTER FANS (55°C)

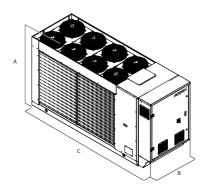
Size			0282	0302	0332	0352	0502	0552	0602	0652	0682	0702	0752	0802
Fans: J														
Performance in average ambient con	ditions (average)	- 55 °C (1)												
	0	kW	-	-	-	-	88	98	109	120	139	155	178	-
Ddacianh	Α	kW	-	-	-	-	91	103	110	122	139	154	175	187
Pdesignh	E	kW	52	58	68	78	91	103	110	122	139	154	175	187
	L	kW	50	57	65	77	88	98	109	120	139	155	178	-
	0	W/W	-	-	-	-	2,92	3,02	3,02	3,09	2,93	2,93	2,93	-
SCOP	A	W/W	-	-	-	-	2,99	3,13	3,12	3,13	3,02	2,98	3,01	2,92
SCOP	E	W/W	3,16	3,12	3,14	3,12	2,99	3,13	3,12	3,13	3,02	2,98	3,01	2,92
	L	W/W	3,08	3,06	3,06	3,07	2,92	3,02	3,02	3,09	2,93	2,93	2,93	-
	0	%	-	-	-	-	114%	118%	118%	120%	114%	114%	114%	-
m.als	A	%	-	-	-	-	117%	122%	122%	122%	118%	116%	117%	114%
ηsh	E	%	123%	122%	123%	122%	117%	122%	122%	122%	118%	116%	117%	114%
	L	%	120%	119%	119%	120%	114%	118%	118%	120%	114%	114%	114%	-
F#F sion su on our suloso	°,A		-	-	-	-	-	-	-	-	-	-	-	-
Efficiency energy class	E,L		A++	A++	A++	-	-	-	-	-	-	-	-	-
(1) Efficiencies for average temperature a	applications (55 °C)												
Size			0282	0302	0332	0352	0502	0552	0602	0652	0682	0702	0752	0802
Fans: °														
Performance in average ambient con	ditions (average)	- 55 °C (1)												
	٥	kW	-	-	-	-	88	98	109	120	139	155	178	-
Nd	A	kW	-	-	-	-	91	103	110	122	139	154	175	187
Pdesignh	E	kW	52	58	68	78	91	103	110	122	139	154	175	187
	L	kW	50	57	65	77	88	98	109	120	139	155	178	-
	۰	W/W	-	-	-	-	2,84	2,94	2,93	3,00	2,84	2,84	2,84	-
CCOD	Α	W/W	-	-	-	-	2,91	3,05	3,03	3,04	2,93	2,89	2,92	2,84
SCOP	E	W/W	3,13	3,10	3,11	3,06	2,91	3,05	3,03	3,04	2,93	2,89	2,92	2,84
	L	W/W	3,05	3,03	3,03	3,01	2,84	2,94	2,93	3,00	2,84	2,84	2,84	-
	0	%	-	-	-	-	111%	115%	114%	117%	111%	111%	111%	-
l	A	%	-	-	-	-	113%	119%	118%	119%	114%	113%	114%	110%
ηsh	E	%	122%	121%	122%	119%	113%	119%	118%	119%	114%	113%	114%	110%
	L	%	119%	118%	118%	117%	111%	115%	114%	117%	111%	111%	111%	-
F(C : 1	°,A		-	-	-	-	-	-	-	-	-	-	-	-
Efficiency energy class	EI		A	A	A									

⁽¹⁾ Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Electric data	'																			
	0	Α	-	-	-	-	73,5	79,1	80,5	88,3	97,2	97,4	113,5	111,5	122,6	132,7	139,4	144,0	156,1	155,3
Maximum current (FLA)	Α	Α	-	-	-	-	73,5	79,1	80,5	88,3	97,2	97,4	116,4	111,5	122,6	132,7	139,4	144,0	156,1	155,3
Maximum current (FLA)	E	Α	41,6	49,9	59,5	67,6	73,5	79,1	80,5	88,3	97,2	97,4	116,4	111,5	122,6	132,7	139,4	144,0	156,1	155,3
	L	Α	40,2	49,9	58,1	67,6	73,5	79,1	80,5	88,3	97,2	97,4	113,5	111,5	122,6	132,7	139,4	144,0	156,1	155,3
	٥	Α	-	-	-	-	276,8	282,5	200,8	329,5	221,3	338,6	268,5	396,5	407,7	287,7	601,7	347,4	618,4	358,7
Deal, surrent (LDA)	A	А	-	-	-	-	276,8	282,5	200,8	329,5	221,3	338,6	271,4	396,5	407,7	287,7	601,7	347,4	618,4	358,7
Peak current (LRA)	E	Α	161,9	174,0	214,4	222,6	276,8	282,5	200,8	329,5	221,3	338,6	271,4	396,5	407,7	287,7	601,7	347,4	618,4	358,7
	L	А	160,5	174,0	213,0	222,6	276,8	282,5	200,8	329,5	221,3	338,6	268,5	396,5	407,7	287,7	601,7	347,4	618,4	358,7

Data calculated without hydronic kit and accessories.


GENERAL TECHNICAL DATA

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Compressor																				
Туре	°,A,E,L	type									Sci	roll								
Compressor regulation	°,A,E,L	Туре									0n-	-Off								
Number	°,A,E,L	no.	2	2	2	2	2	2	4	2	4	2	4	2	2	4	2	4	2	4
Circuits	°,A,E,L	no.	1	1	1	1	1	1	2	1	2	1	2	1	1	2	1	2	1	2
Refrigerant	°,A,E,L	type									R:	32								
	0	kg	-	-	-	-	9,5	9,5	6,8	12,2	7,1	12,2	7,1	17,7	17,7	8,1	17,7	9,0	17,7	9,0
D. f	А	kg	-	-	-	-	12,8	13,3	7,4	13,3	7,7	13,3	8,7	18,2	18,2	8,3	18,4	10,0	18,4	9,5
Refrigerant load circuit 1 (1)	Е	kg	6,8	8,3	11,2	11,1	12,8	13,3	7,4	13,3	7,7	13,3	8,7	18,2	18,2	8,3	18,4	10,0	18,4	9,5
-	L	kg	6,5	6,8	7,4	7,4	9,5	9,5	6,8	12,2	7,1	12,2	7,1	17,7	17,7	8,1	17,7	9,0	17,7	9,0
D. f	°,L	kg	-	-	-	-	-	-	6,8	-	7,1	-	7,1	-	-	8,1	-	9,0	-	9,0
Refrigerant load circuit 2 (1)	A,E	kg	-	-	-	-	-	-	7,4	-	7,7	-	8,7	-	-	8,3	-	10,0	-	9,5
Potential global heating	°,A,E,L	GWP									675kg	CO ₂ eq								
System side heat exchanger																				
Туре	°,A,E,L	type									Brazeo	l plate								
Number	°,A,E,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Fan																				
Туре	°,A,E,L	type									Ax	ial								
	0	no.	-	-	-	-	2	2	2	2	2	2	2	3	3	3	3	3	3	3
-	A	no.	-	-	-	-	2	2	2	2	2	2	3	3	3	3	3	3	3	3
Number -	Е	no.	6	6	8	8	2	2	2	2	2	2	3	3	3	3	3	3	3	3
-	L	no.	4	6	6	8	2	2	2	2	2	2	2	3	3	3	3	3	3	3
	0	m³/h	-	-	-	-	42831	42819	40170	41067	40170	41067	38299	62024	62022	60681	62022	60681	62022	60681
-	A	m³/h	-	-	-	-	41097	41097	38299	39483	38299	39483	60681	59734	59721	57995	59721	57995	59721	57995
Air flow rate	Е	m³/h	21224	21224	28177	25805	31035	31035	28870	29848	28870	29848	45978	45211	45211	43804	45211	43804	45211	43804
-	L	m³/h	15552	21229	22716	28186	32592	32592	30388	31000	30388	31000	28869	47029	47029	45980	47029	45980	47029	45980
Sound data calculated in cooling mode (2	!)																			
	0	dB(A)	-	-	-	-	87,2	87,5	86,5	87,7	87,1	87,9	87,1	89,4	89,5	88,88	90,0	90,1	90,1	90,0
-	A	dB(A)	-	-	-	-	87,2	87,5	86,5	87,7	87,1	87,9	88,8	89,4	89,5	88,8	90,0	90,1	90,1	90,0
Sound power level	E	dB(A)	73,6	74,1	74,9	75,1	82,8	83,5	76,6	83,9	77,3	84,3	78,4	85,5	85,6	78,6	86,7	84,6	87,3	86,2
-	L	dB(A)	73,0	74,1	74,5	75,1	82,8	83,5	76,6	83,9	77,3	84,3	77,7	85,5	85,6	78,6	86,7	84,6	87,3	86,2
Sound data calculated in heating mode (2	2)	(- 1)	, -	,.	,=	, .	,-	,-	,-	,-	,-	,		,-	,5	,-	,-	,,,	,5	,
,	0	dB(A)	_	_	_	-	87,2	87,5	86,5	87,7	87,1	87,9	87,1	89,4	89,5	88,8	90,0	90,1	90,1	90,0
-	A	dB(A)					87,2	87,5	86,5	87,7	87,1	87,9	88,8	89,4	89,5	88,8	90,0	90,1	90,1	90,0
Sound power level	E	dB(A)	73,6	74,1	74,9	75,1	87,2	87,5	86,5	87,7	87,1	87,9	88,8	89,4	89,5	88,8	90,0	90,1	90,1	90,0
-	<u> </u>	dB(A)	73,0	74.1	74,5	75,1	87,2	87,5	86,5	87.7	87.1	87,9	87.1	89,4	89.5	88,8	90,0	90,1	90.1	90.0

L dB(A) 73,0 74,1 74,5 75,1 87,2 87,5 86,5 87,7 87,1 87,9 87,1 87,9 87,1 89,4 89,5 88,8 90,0 90,1 90,1 90,0

(1) The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Dimensions and weights																				
	0	mm	-	-	-	-	1907	1907	1907	1907	1907	1907	1907	1900	1900	1900	1900	1900	1900	1900
Λ.	Α	mm	-	-	-	-	1907	1907	1907	1907	1907	1907	1900	1900	1900	1900	1900	1900	1900	1900
A	E	mm	1652	1658	1658	1658	1907	1907	1907	1907	1907	1907	1900	1900	1900	1900	1900	1900	1900	1900
	L	mm	1652	1652	1658	1658	1907	1907	1907	1907	1907	1907	1907	1900	1900	1900	1900	1900	1900	1900
D	°,A	mm	-	-	-	-	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
В	E,L	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	0	mm	-	-	-	-	3567	3567	3567	3567	3567	3567	3567	4368	4368	4368	4368	4368	4368	4368
	Α	mm	-	-	-	-	3567	3567	3567	3567	3567	3567	4368	4368	4368	4368	4368	4368	4368	4368
	E	mm	2818	3317	3317	3317	3567	3567	3567	3567	3567	3567	4368	4368	4368	4368	4368	4368	4368	4368
	L	mm	2818	2818	3317	3317	3567	3567	3567	3567	3567	3567	3567	4368	4368	4368	4368	4368	4368	4368

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRGI 151-602

Air-water chiller

Cooling capacity 31.0 ÷ 132.2 kW

- · High efficiency also at partial loads
- High modulation capacity
- Continuous modulation of the cooling capacity
- · Compressors and fans with Inverter
- Low refrigerant charge
- Stable temperature control of the outlet water

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

These are outdoor units with streamlined scroll compressors used with R32 gas.

Condensing coil with copper pipes and aluminium louvers, plate heat exchanger and **standard electronic expansion valve.**

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to 50°C external air temperature. Unit can produce chilled water up to -10 $^{\circ}\text{C}$.

For more information refer to the selection program and to to the dedicated documentation.

High efficiency

These are flexible and reliable units which adapt to the most diverse load conditions thanks to the precise design and the use of steady speed compressors together with inverter-controlled variable speed compressors guaranteeing a high energy efficiency level both at full and partial load.

Inverter compressor + On-Off

They can be configured with a single variable speed compressor or two in tandem configuration, one steady and one variable speed. This pair guarantees high efficiency both with partial and full loads.

Sizes 151-281 have a single variable speed compressor. Sizes 302-602 have two compressors in tandem configuration.

This solution gets the best value out of the particularities and advantages of each compressor, enhancing the efficiency of each load condition and allowing for

- High seasonal efficiency
- steady and precise modulation of the chilling demand
- The stability of the outlet water temperature.

Refrigerant HFC R32

The environmental impact of the units is reduced considerably owing to the last generation R32 refrigerant.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO₂ values.

■ The leak detector is supplied as per standard.

New condensing Coils

The whole range uses copper - aluminium condensation coils with reduced diameter rows, allowing a lower quantity of gas to be used compared to traditional coils.

Electronic expansion valve

Single-compressor units have a standard electronic expansion valve, while units with tandem compressors have two.

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy seasonal efficiency of the unit.

Fans

Inverter: standard from size 151 to size 352, available as an optional for the other sizes

Boosted, asynchronous with phase cutting: standard from size 382 to size 602.

Both types of fan permit:

- Steady air flow rate adjustment
- Low consumption and reduced sound level at partial loads
- Operation with low outdoor air temperatures
- Precise condensation control for an extended operating range.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation.

It is available in different configurations with storage tank or with fixed or variable pumps also inverter.

■ VARIABLE FLOW RATE: Correctly adjust the speed of the inverter-controlled pumps according to the load demand of the system, in order to reduce power consumption.

CONTROL PCO⁵

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: this function can be activated in all the units, to optimise unit operation at any point by continuously modulating the fan speed. In addition, the use of inverter fans allows increased energy efficiency with partial loads.
- Night mode: only in the non-silenced versions is it possible to set a silenced operating mode, which is useful for example at night for greater acoustic comfort but always guarantees performance even at peak load times

INTEGRATED SOLUTION

The "integrated solution" concept has been implemented in the system architecture, consisting in an integrated and streamlined control of compressors and electronic valves.

This solution allowed a variety of new features to be introduced, such as:

- Low Superheat Control: Progressive superheating reduction in conditions of stability. This allows to increase energy performance: both in modulation and in full load conditions;
- **DLT control**: Control of electronic valves at discharge temperature in certain operating conditions. This is demonstrated in an enhanced reliability of the control and a considerable expansion of the machine's operating range.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device

GP: Anti-intrusion grid.

VT: Anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

552

ACCESSORIES COMPATIBILITY

Model	Ver	151	201	281	302	332	352	382	502	552	602
AER485P1	A,E	•	•	•	•	•	•	•	•	•	•
AERBACP	A,E	•	•	•	•	•	•	•	•	•	•
AERNET	A,E	•	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	A,E	•	•	•	•	•	•	•	•	•	•
PGD1	A,E	•	•	•	•	•	•	•	•	•	•
SGD	A,E	•	•		•		•	•			

Remote panel

Model	Ver	151	201	281	302	332	352	382	502	552	602
PR4	A,E	•	•	•	•	•		•		•	•

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Antivibration

Ver	151	201	281	302	332	352	382	502	552	602			
Integrated hydronic kit: 00, 11, 12, 13, 1	4, P1, P2, P3, P4												
A, E	VT17	VT13	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT22			
Integrated hydronic kit: 01, 02, 03, 04	Integrated hydronic kit: 01, 02, 03, 04, 05, 06, 07, 08, 09, K1, K2, K3, K4, W1, W2, W3, W4												
A, E	VT13	VT13	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT22			

Anti-intrusion grid

VEI	171	201	201	302	332	332	302	302	332	002
A, E	GP3	GP4	GP4	GP4	GP4	GP4	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 3 (1)
(1) v indicates the quantity to how										

Device for peak current reduction

Ver	151	201	281	302	332	352	382	502	552	602
A, E	-	-	-	DRENRGI302	DRENRGI332	DRENRGI352	DRENRGI382	DRENRGI502	DRENRGI552	DRENRGI602

The accessory cannot be fitted on the configurations indicated with A grey background indicates the accessory must be assembled in the factory

Double safety valves

Ver	151	201	281	302	332	352	382	502	552	602
A, E	T6NRG1									

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

CONF	IGURATUR
Field	Description
1,2,3,4	NRGI
5,6,7	Size 151, 201, 281, 302, 332, 352, 382, 502, 552, 602
8	Operating field (1)
Χ	Electronic thermostatic expansion valve
9	Model
0	Cooling only
10	Heat recovery
D	With desuperheater (2)
0	Without heat recovery
11	Version
Α	High efficiency
Е	Silenced high efficiency
12	Coils
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
0	Copper-aluminium
13	Fans
J	Inverter
М	Boosted with phase cutting (3)
14	Power supply
0	400V ~ 3N 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit
	Without hydronic kit
00	Without hydronic kit
	Kit with storage tank and pump/s
01	Storage tank with low head pump
02	Storage tank with low head pump + stand-by pump
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
	Kit with pump/s and storage tank with holes for heaters

Field	Description
05	Storage tank with holes for heaters and single low head pump (4)
06	Storage tank with holes for heaters and pump low head + stand-by pump (4)
07	Storage tank with holes for heaters and single high head pump (4)
08	Storage tank with holes for heaters and pump high head + stand-by pump (4)
	Double loop
09	Double loop
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
Р3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with inverter pump/s to fixed speed
l1	Single low head pump + fixed speed inverter
12	Single low head pump with fixed speed inverter + stand-by pump
13	Single high head pump + fixed speed inverter
14	Single high head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and inverter pump/s to fixed speed
K1	Single low head pump + storage tank + fixed speed inverter
K2	Storage tank and low head pump with fixed speed inverter + stand-by pump
К3	Single high head pump + storage tank + fixed speed inverter
K4	Storage tank and low head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and variable speed inverter pump/s
W1	Single low head pump + Storage tank + variable speed inverter
W2	Double low head pump + Storage tank + variable speed inverter
W3	Single high head pump + Storage tank + variable speed inverter
W4	Double high head pump + Storage tank + variable speed inverter
	<u> </u>

- (1) Water produced from -10 °C ÷ 20 °C. Double electronic thermostatic valve from size 302 to 602.
 (2) Warning: on the recovery side, a minimum input temperature of 35°C must always be guaranteed on the heat exchanger. For more information about the unit operating range, refer to the Magellano selection
- (3) Only for 382 502 552 602 sizes
 (4) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.

PERFORMANCE SPECIFICATIONS

NKGI - A											
Size		151	201	281	302	332	352	382	502	552	602
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	39,2	52,6	58,2	69,4	77,7	83,2	93,2	103,3	114,0	132,2
Input power	kW	11,8	15,2	17,5	20,8	23,3	25,6	27,6	31,4	35,1	39,1
Cooling total input current	A	18,0	23,0	26,0	37,0	41,0	46,0	43,0	49,0	53,0	60,0
EER	W/W	3,31	3,47	3,32	3,33	3,34	3,25	3,37	3,29	3,24	3,38
Water flow rate system side	l/h	6746	9067	10028	11960	13388	14335	16031	17775	19616	22750
Pressure drop system side	kPa	18	33	40	35	44	50	24	23	28	29

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRGI - E

Size		151	201	281	302	332	352	382	502	552	602
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	31,0	40,1	46,4	61,7	70,1	75,6	84,9	91,3	101,8	119,6
Input power	kW	8,9	11,0	13,1	17,9	20,2	22,5	24,6	26,9	30,8	34,2
Cooling total input current	A	13,0	17,0	19,0	32,0	36,0	41,0	39,0	43,0	47,0	53,0
EER	W/W	3,49	3,63	3,55	3,45	3,46	3,36	3,45	3,39	3,31	3,50
Water flow rate system side	l/h	5326	6900	7994	10624	12066	13021	14607	15705	17509	20576
Pressure drop system side	kPa	11	19	25	27	35	41	20	18	22	24

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY DATA

Size			151	201	281	302	332	352	382	502	552	602
Fans: J												
SEER - 12/7 (EN14825: 2018) (1)												
SEER	A	W/W	5,19	5,32	5,37	5,04	5,07	5,22	5,33	5,36	5,18	5,33
SEEK	E	W/W	5,23	5,36	5,42	5,08	5,11	5,26	5,37	5,40	5,23	5,37
Seasonal efficiency	A	%	204,40	209,80	211,90	198,40	199,70	205,70	210,00	211,40	204,30	210,00
Seasonal eniciency	E	%	206,00	211,50	213,60	200,00	201,30	207,30	211,80	213,10	206,00	211,70
SEER - 23/18 (EN14825: 2018) (2)												
SEER	A	W/W	6,35	6,45	6,33	5,81	5,79	5,89	6,21	6,21	5,94	6,11
SEEK	E	W/W	6,52	6,75	6,58	5,93	5,84	5,91	6,31	6,32	6,00	6,21
Consend off sion or	A	%	250,90	254,90	250,20	229,50	228,40	232,40	245,20	245,30	234,60	241,50
Seasonal efficiency	E	%	257,90	266,80	260,30	234,20	230,40	233,40	249,40	249,80	237,10	245,40
SEPR - (EN 14825: 2018) (2)												
SEPR	A	W/W	7,10	7,60	7,50	7,10	7,30	7,40	7,10	7,10	6,50	6,50
SEPK	E	W/W	7,10	7,50	7,40	7,20	7,40	7,40	7,10	7,20	6,60	6,60
(1) Calculation performed with FIXED wat (2) Calculation performed with FIXED wat		ARIABLE outlet	temperature.									
· · · · · · · · · · · · · · · · · · ·												
Size			151	201	281	302	332	352	382	502	552	602
Size Fans: M			151	201	281	302	332	352	382	502	552	602
			151	201	281	302	332	352	382	502	552	602
Fans: M SEER - 12/7 (EN14825: 2018) (1)	A	W/W	151	201	281	302	332	352	382 5,33	502 5,36	552 5,18	5,33
Fans: M	A E	W/W W/W			281							
Fans: M SEER - 12/7 (EN14825: 2018) (1) SEER					- - -	-	-		5,33	5,36	5,18	5,33
Fans: M SEER - 12/7 (EN14825: 2018) (1) SEER	E	W/W	-	-	-	-	-	-	5,33 5,37	5,36 5,40	5,18 5,23	5,33 5,37
Fans: M SEER - 12/7 (EN14825: 2018) (1)	E A	W/W %		-	-	-	-		5,33 5,37 210,00	5,36 5,40 211,40	5,18 5,23 204,30	5,33 5,37 210,00
Fans: M SEER - 12/7 (EN14825: 2018) (1) SEER Seasonal efficiency SEER - 23/18 (EN14825: 2018) (2)	E A	W/W %		-	-	-	-		5,33 5,37 210,00	5,36 5,40 211,40	5,18 5,23 204,30	5,33 5,37 210,00
Fans: M SEER - 12/7 (EN14825: 2018) (1) SEER Seasonal efficiency SEER - 23/18 (EN14825: 2018) (2)	E A E	W/W % %							5,33 5,37 210,00 211,80	5,36 5,40 211,40 213,10	5,18 5,23 204,30 206,00	5,33 5,37 210,00 211,70
Fans: M SEER - 12/7 (EN14825: 2018) (1) SEER Seasonal efficiency SEER - 23/18 (EN14825: 2018) (2) SEER	E A E	W/W % %	- - - -						5,33 5,37 210,00 211,80	5,36 5,40 211,40 213,10	5,18 5,23 204,30 206,00	5,33 5,37 210,00 211,70
Fans: M SEER - 12/7 (EN14825: 2018) (1) SEER Seasonal efficiency SEER - 23/18 (EN14825: 2018) (2) SEER	E A E	W/W % % W/W W/W							5,33 5,37 210,00 211,80 6,21 6,31	5,36 5,40 211,40 213,10 6,21 6,32	5,18 5,23 204,30 206,00 5,94 6,00	5,33 5,37 210,00 211,70 6,11 6,21
Fans: M SEER - 12/7 (EN14825: 2018) (1) SEER Seasonal efficiency SEER - 23/18 (EN14825: 2018) (2)	E A E A A	W/W % % W/W W/W	- - - -						5,33 5,37 210,00 211,80 6,21 6,31 245,20	5,36 5,40 211,40 213,10 6,21 6,32 245,30	5,18 5,23 204,30 206,00 5,94 6,00 234,60	5,33 5,37 210,00 211,70 6,11 6,21 241,50
Fans: M SEER - 12/7 (EN14825: 2018) (1) SEER Seasonal efficiency SEER - 23/18 (EN14825: 2018) (2) SEER Seasonal efficiency	E A E A A	W/W % % W/W W/W	- - - -						5,33 5,37 210,00 211,80 6,21 6,31 245,20	5,36 5,40 211,40 213,10 6,21 6,32 245,30	5,18 5,23 204,30 206,00 5,94 6,00 234,60	5,33 5,37 210,00 211,70 6,11 6,21 241,50

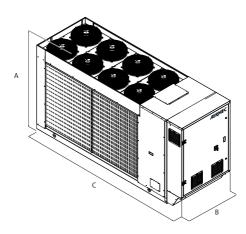
⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			151	201	281	302	332	352	382	502	552	602
Electric data												
Maximum current (FLA)	A,E	А	23,8	31,6	34,9	47,6	52,8	58,1	60,1	68,8	74,4	87,5
Peak current (LRA)	A,E	A	30,3	43,0	43,0	142,8	167,1	201,1	174,4	211,8	278,6	329,2

[■] Data calculated without hydronic kit and accessories.

GENERAL TECHNICAL DATA


Size			151	201	281	302	332	352	382	502	552	602	
Compressor													
Туре	A,E	type					Sc	roll					
Compressor regulation	A,E	Туре	-	1		1+1	1+I	1+1	1+1	1+1	1+l	1+1	
Number	A,E	no.	1	1	1	2	2	2	2	2	2	2	
Circuits	A,E	no.	1	1	1	1	1	1	1	1	1	1	
Refrigerant	A,E	type					R	32					
System side heat excha	anger												
Туре	A,E	type	Brazed plate										
Number	A,E	no.	1	1	1	1	1	1	1	1	1	1	

FANS DATA

Size			151	201	281	302	332	352	382	502	552	602
Fans: J												
Fan												
Туре	A,E	type					A	rial				
Fan motor	A,E	type					Inve	erter				
Number	A,E	no.	4	6	6	8	8	8	2	2	2	3
Air flow rate	Α	m³/h	16669	24469	24476	30793	28649	28662	36174	36174	36149	54601
AIT HOW rate	E	m³/h	14488	21255	21255	26704	24966	24966	26850	26850	26781	40488
Sound data calculated in cooling m	ode (1)											
Carrad marrian larval	A	dB(A)	81,8	84,6	85,9	82,2	85,0	85,1	85,4	86,5	87,7	88,1
Sound power level	E	dB(A)	79,3	82,8	83,3	80,9	81,3	81,7	82,8	83,0	85,4	85,5
ound pressure level (10 m)	A	dB(A)	50,0	52,7	54,1	50,3	53,2	53,3	53,5	54,5	55,8	56,0
	E	dB(A)	47,5	51,0	51,4	49,0	49,5	49,8	50,8	51,1	53,5	53,5
(1) Sound power: calculated on the ba	sis of measurements	made in accord	ance with UNI E	N ISO 9614-2, a	s required for l	urovent certific	cation. Sound p	ressure measu	red in free field	(in compliance	with UNI EN IS	0 3744).
Size			151	201	281	302	332	352	382	502	552	602
Fans: M												
Increased fan												
Туре	A,E	type					Ax	rial				
Fan motor	A,E	type					Asynchronous	with phase cut				
Number	A,E	no.	-	-	-	-	-	-	2	2	2	3
Air flow rate	A	m³/h	-	-	-	-	-	-	36174	36174	36149	54601
AIT HOW rate	E	m³/h	-	-	-	-	-	-	26850	26850	26781	40488
Sound data calculated in cooling m	ode (1)											
Cannad manuar land	A	dB(A)	-	-	-	-	-	-	85,4	86,5	87,7	88,1
Sound power level	E	dB(A)	-	-	-	-	-	-	82,8	83,0	85,4	85,5
Caused museasure laurel (10 ms)	A	dB(A)	-	-	-	-	-	-	53,5	54,5	55,8	56,0
Sound pressure level (10 m)	E	dB(A)	_	_	_	_	_	_	50.8	51.1	53.5	53,5

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			151	201	281	302	332	352	382	502	552	602
Dimensions and weights												
A	A,E	mm	1652	1652	1652	1652	1652	1652	1907	1907	1907	1900
В	A,E	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
С	A,E	mm	2873	3372	3372	3372	3372	3372	3623	3623	3623	4373
Size			151	201	281	302	332	352	382	502	552	602
Integrated hydronic kit: 00												
Weights												
Weight empty + packaging	A,E	kg	826	899	899	986	1027	1028	1093	1101	1123	1313
Weight functioning	A,E	kg	795	867	867	955	996	997	1062	1072	1094	1284

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRGI 151H-602H

Reversible air/water heat pump

Cooling capacity 28.9 ÷ 123.7 kW - Heating capacity 31.6 ÷ 133.9 kW

- · High efficiency also at partial loads
- High modulation capacity
- Continuous modulation of the cooling capacity
- · Compressors and fans with Inverter
- Low refrigerant charge
- Stable temperature control of the outlet water

DESCRIPTION

Reversible outdoor heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

These are outdoor units with streamlined scroll compressors used with R32 gas.

Condensing coil with copper pipes and aluminium louvers, plate heat exchanger and **standard electronic expansion valve.**

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Working at full load up to -15 °C outside air temperature in winter, and up to 49 °C in summer. Hot water production up to 60 °C

For more information refer to the selection program and to to the dedicated documentation. $\label{eq:constraint}$

High efficiency

These are flexible and reliable units which adapt to the most diverse load conditions thanks to the precise design and the use of steady speed compressors together with inverter-controlled variable speed compressors guaranteeing a high energy efficiency level both at full and partial load.

Inverter compressor + On-Off

They can be configured with a single variable speed compressor or two in tandem configuration, one steady and one variable speed. This pair guarantees high efficiency both with partial and full loads.

Sizes 151-281 have a single variable speed compressor. Sizes 302-602 have two compressors in tandem configuration.

This solution gets the best value out of the particularities and advantages of each compressor, enhancing the efficiency of each load condition and allowing for

- High seasonal efficiency
- steady and precise modulation of the chilling demand

— The stability of the outlet water temperature.

Refrigerant HFC R32

The environmental impact of the units is reduced considerably owing to the last generation R32 refrigerant.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO₂ values.

■ The leak detector is supplied as per standard.

New condensing Coils

The whole range uses copper - aluminium condensation coils with reduced diameter rows, allowing a lower quantity of gas to be used compared to traditional coils.

Electronic expansion valve

Single-compressor units have a standard electronic expansion valve, while units with tandem compressors have two.

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy seasonal efficiency of the unit.

Invertor fans

All of the units are equipped as per standard with high-efficiency inverter-controlled axial fans which provide:

- Steady air flow rate adjustment
- Low consumption and reduced sound level at partial loads
- Operation with low outdoor air temperatures
- Precise condensation control for an extended operating range.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation

It is available in different configurations with storage tank or with fixed or variable pumps also inverter.

■ VARIABLE FLOW RATE: Correctly adjust the speed of the inverter-controlled pumps according to the load demand of the system, in order to reduce power consumption.

CONTROL PCO⁵

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Swing HP and LP controls: available for all models. By continuously
 modulating the fans, they streamline operation of the unit at any work
 point both in cooling and heating mode. This results in enhanced energy efficiency of the unit at partial loads.
- Night mode: only in the non-silenced versions is it possible to set a silenced operating mode, which is useful for example at night for greater acoustic comfort but always guarantees performance even at peak load times

INTEGRATED SOLUTION

The "integrated solution" concept has been implemented in the system architecture, consisting in an integrated and streamlined control of compressors and electronic valves.

This solution allowed a variety of new features to be introduced, such as:

- Low Superheat Control: Progressive superheating reduction in conditions of stability. This allows to increase energy performance: both in modulation and in full load conditions;
- DLT control: Control of electronic valves at discharge temperature in certain operating conditions. This is demonstrated in an enhanced reliability of the control and a considerable expansion of the machine's operating range, especially in heating mode.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

 The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

GP: Anti-intrusion grid.

VT: Anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Model	Ver	151	201	281	302	332	352	382	502	552	602
AER485P1	A,E		•	•	•	•	•	•	•	•	•
AERBACP	A,E	•	•	•	•	•	•	•	•	•	•
AERNET	A,E	•	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	A,E	•	•	•	•	•				•	•
PGD1	A,E	•	•	•	•	•	•	•	•	•	•
SGD	A,E	•	•	•	•	•	•	•			

Remote panel											
Model	Ver	151	201	281	302	332	352	382	502	552	602
PR4	A,E	•	•			•	•	•	•	•	•

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Antivibration

Ver	151	201	281	302	332	352	382	502	552	602				
Integrated hydronic kit: 00, I1, I2, I3,	14, P1, P2, P3, P4													
A, E	VT17	VT13	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT22				
Integrated hydronic kit: 01, 02, 03, 0	Integrated hydronic kit: 01, 02, 03, 04, 05, 06, 07, 08, 09, K1, K2, K3, K4, W1, W2, W3, W4													
A, E	VT13	VT13	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT22				

Ver	151	201	281	302	332	352	382	502	552	602
A, E	GP3	GP4	GP4	GP4	GP4	GP4	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 3 (1)

(1) x_i indicates the quantity to buy

Anti-intrusion grid

Device for peak current reduction

Ver	151	201	281	302	332	352	382	502	552	602
A, E	-	-	-	DRENRGI302	DRENRGI332	DRENRGI352	DRENRGI382	DRENRGI502	DRENRGI552	DRENRGI602

The accessory cannot be fitted on the configurations indicated with -

A grey background indicates the accessory must be assembled in the factory

Double safety valves

Ver	151	201	281	302	332	352	382	502	552	602
A, E	T6NRG1									

A grey background indicates the accessory must be assembled in the factory $% \left(1\right) =\left(1\right) \left(1\right)$

CONFIGURATOR

CO	NFI	GURATOR
Fiel	d	Description
1,2,	3,4	NRGI
5,6,	.7	Size 151, 201, 281, 302, 332, 352, 382, 502, 552, 602
8		Operating field (1)
	Χ	Electronic thermostatic expansion valve
9		Model
	Н	Heat pump
10		Heat recovery
	D	With desuperheater (2)
	0	Without heat recovery
11		Version
	Α	High efficiency
	Ε	Silenced high efficiency
12		Coils
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	٧	Copper pieps-Coated aluminium fins
	0	Copper-aluminium
13		Fans
	J	Inverter
	0	Standard with phase cut
14		Power supply
	0	400V ~ 3N 50Hz with magnet circuit breakers
15,1	16	Integrated hydronic kit
		Without hydronic kit
	00	Without hydronic kit
		Kit with storage tank and pump/s
	01	Storage tank with low head pump
	02	Storage tank with low head pump + stand-by pump
	03	Storage tank with high head pump
	04	Storage tank with high head pump + stand-by pump

Field	Description
	Kit with pump/s and storage tank with holes for heaters
05	Storage tank with holes for heaters and single low head pump (3)
06	Storage tank with holes for heaters and pump low head + stand-by pump (3)
07	Storage tank with holes for heaters and single high head pump (3)
08	Storage tank with holes for heaters and pump high head + stand-by pump (3)
	Double loop
09	Double loop
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with inverter pump/s to fixed speed
I1	Single low head pump + fixed speed inverter
12	Single low head pump with fixed speed inverter + stand-by pump
13	Single high head pump + fixed speed inverter
14	Single high head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and inverter pump/s to fixed speed
K1	Single low head pump + storage tank + fixed speed inverter
K2	Storage tank and low head pump with fixed speed inverter + stand-by pump
K3	Single high head pump + storage tank + fixed speed inverter
K4	Storage tank and low head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and variable speed inverter pump/s
W1	Single low head pump + Storage tank + variable speed inverter
W2	Double low head pump + Storage tank + variable speed inverter
W3	Single high head pump + Storage tank + variable speed inverter
W4	Double high head pump + Storage tank + variable speed inverter

- (1) Water produced from -10 °C ÷ 20 °C. Double electronic thermostatic valve from size 302 to 602.
 (2) The desuperheater must be intercepted in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
 (3) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.

PERFORMANCE SPECIFICATIONS

NRGI - HA											
Size		151	201	281	302	332	352	382	502	552	602
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	36,5	48,9	54,2	64,1	72,1	77,3	87,0	95,7	106,0	123,7
Input power	kW	12,1	15,6	18,1	21,5	23,9	26,3	28,4	32,3	36,1	39,1
Cooling total input current	A	18,0	24,0	27,0	38,0	42,0	47,0	44,0	51,0	55,0	60,0
EER	W/W	3,00	3,13	3,00	2,98	3,02	2,94	3,06	2,96	2,93	3,16
Water flow rate system side	l/h	6280	8416	9328	11028	12414	13315	14969	16471	18246	21290
Pressure drop system side	kPa	15	28	34	28	35	41	19	18	23	25
Heating performance 40 °C / 45 °C (2)											
Heating capacity	kW	39,6	53,4	59,0	69,9	78,1	84,1	94,7	104,8	115,7	133,9
Input power	kW	11,6	15,4	17,3	20,3	23,0	24,9	29,4	32,2	34,6	40,6
Heating total input current	А	18,0	24,0	27,0	38,0	42,0	46,0	46,0	52,0	54,0	64,0
COP	W/W	3,42	3,46	3,42	3,45	3,40	3,37	3,22	3,25	3,34	3,30
Water flow rate system side	I/h	6869	9260	10228	12113	13544	14563	16431	18188	20074	23220
Pressure drop system side	kPa	18	33	40	34	42	49	23	22	27	29

- (1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

Size		151	201	281	302	332	352	382	502	552	602
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	28,9	37,0	42,6	56,7	64,9	70,1	78,8	84,0	94,0	111,3
Input power	kW	9,1	11,4	13,5	18,4	20,8	23,2	25,3	27,6	31,6	34,1
Cooling total input current	A	13,0	17,0	20,0	33,0	36,0	41,0	39,0	44,0	49,0	53,0
EER	W/W	3,17	3,25	3,15	3,07	3,12	3,03	3,12	3,04	2,97	3,26
Water flow rate system side	l/h	4974	6363	7326	9764	11165	12069	13554	14451	16179	19152
Pressure drop system side	kPa	10	16	21	22	29	33	16	14	18	20
Heating performance 40 °C / 45 °C (2)											
Heating capacity	kW	31,6	41,2	47,5	62,3	70,4	76,5	87,0	93,3	104,4	122,0
Input power	kW	9,1	11,8	13,6	18,0	20,3	22,2	27,0	28,5	31,2	36,8
Heating total input current	A	15,0	20,0	22,0	35,0	38,0	43,0	43,0	47,0	50,0	59,0
COP	W/W	3,49	3,49	3,49	3,47	3,47	3,44	3,23	3,27	3,35	3,32
Water flow rate system side	I/h	5484	7151	8247	10814	12215	13253	15103	16186	18126	21177
Pressure drop system side	kPa	12	20	26	27	34	40	20	18	22	24

ENERGY DATA

Size			151	201	281	302	332	352	382	502	552	602
Fans: J												
Performance in average ambient co	nditions (average)	-35°C(1)										
Efficiency anarmy class	Α		A++	A++	A++	A++	A++	-	-	-	-	-
Efficiency energy class	E		A++	A++	A++	A++	A++	A++	-	-	-	-
Pdesignh	Α	kW	34	46	51	61	67	73	82	91	100	116
ruesigiiii	E	kW	27	35	41	54	61	66	75	81	90	105
SCOP	A	W/W	4,25	4,33	4,25	4,40	4,29	4,35	4,27	4,25	4,13	4,02
ocur	E	W/W	4,28	4,35	4,28	4,43	4,33	4,38	4,30	4,29	4,17	4,05
nch	Α	%	167,00	170,00	167,10	173,00	168,40	170,95	167,75	167,17	162,28	157,71
ηsh	E	%	168,00	171,00	168,00	174,00	170,00	172,00	169,12	168,53	163,60	159,00
Performance in average ambient co	nditions (average)	- 55 °C (2)										
Efficiency energy class	A		A++	A++	A++	A++	A++	-	-	-	-	-
Efficiency energy class	E		A++	A++	A++	A++	A++	A++	-	-	-	-
Pdesignh	A	kW	35	48	53	62	69	73	83	92	102	117
ruesigiiii	E	kW	28	37	43	55	62	67	76	82	92	106
SCOP	Α	W/W	3,31	3,40	3,38	3,38	3,43	3,49	3,28	3,35	3,35	3,27
JUUF	E	W/W	3,33	3,40	3,38	3,38	3,40	3,48	3,39	3,37	3,36	3,28
nch	A	%	129,40	133,00	132,10	132,00	134,00	136,50	128,10	130,80	130,90	127,70
ηsh	E	%	130,00	133,00	132,00	132,00	133,00	136,00	132,50	131,80	131,20	128,00

 ⁽¹⁾ Efficiencies for low temperature applications (35 °C)
 (2) Efficiencies for average temperature applications (55 °C)

Size			151	201	281	302	332	352	382	502	552	602
Fans: °	'											
Performance in average ambient con	ditions (average)	-35 °C (1)										
Fff sion and an army along	Α		A++	A++	A++	A++	A++	-	-	-	-	-
Efficiency energy class	E		A++	A++	A++	A++	A++	A++	-	-	-	-
Dalasianah	A	kW	34	46	51	61	67	73	82	91	100	116
Pdesignh	E	kW	27	35	41	54	61	66	75	81	90	105
SCOP	Α	W/W	4,10	4,20	4,13	4,28	4,15	4,22	4,14	4,13	4,01	3,90
ocor	E	W/W	4,15	4,20	4,15	4,30	4,18	4,25	4,17	4,16	4,04	3,93
ach.	А	%	161,00	165,00	162,00	168,00	163,00	165,73	162,63	162,06	157,32	152,89
ηsh	E	%	163,00	165,00	163,00	169,00	164,00	167,00	163,96	163,38	158,60	154,14
Performance in average ambient con	ditions (average)	- 55 °C (2)										
Efficiency energy class	Α		A++	A++	A++	A++	A++	-	-	-	-	-
Efficiency energy class	E		A++	A++	A++	A++	A++	A++	-	-	-	-
Pdesignh	A	kW	35	48	53	62	69	73	83	92	102	117
ruesiyiiii	E	kW	28	37	43	55	62	67	76	82	92	106
SCOP	A	W/W	3,20	3,30	3,28	3,28	3,30	3,38	3,18	3,30	3,25	3,17
ocur	E	W/W	3,23	3,30	3,28	3,28	3,30	3,38	3,29	3,27	3,26	3,18
nch	A	%	125,00	129,00	128,00	128,00	129,00	132,30	124,20	128,80	126,90	123,80
ηsh	F	%	126,00	129,00	128,00	128,00	129,00	132,00	128,40	127,70	127,20	124,10

.,		,										
Size			151	201	281	302	332	352	382	502	552	602
SEER - (EN14825:2018) 12/7 with inverter	fans (1)											
CLLD	А	W/W	4,67	4,96	4,89	4,62	4,74	4,68	4,79	4,84	4,90	5,09
SEER	E	W/W	4,71	5,00	4,93	4,66	4,78	4,72	4,83	4,88	4,94	5,13
Consonal officients	А	%	183,90	195,27	192,49	181,84	186,68	184,20	188,75	190,52	192,91	200,54
Seasonal efficiency	E	%	185,40	196,86	194,06	183,31	188,19	185,69	190,29	192,07	194,48	202,17

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

Size			151	201	281	302	332	352	382	502	552	602
SEER - 12/7 (EN14825:2018) with standar	d fans (1)											
SEER	A	W/W	4,49	4,76	4,69	4,44	4,55	4,49	4,60	4,64	4,70	4,88
SEEK	E	W/W	4,52	4,80	4,73	4,47	4,59	4,53	4,64	4,68	4,74	4,92
Constant of the constant	A	%	176,43	187,34	184,67	174,44	179,09	176,71	181,08	182,78	185,08	192,40
Seasonal efficiency	F	%	177 86	188.86	186 17	175 86	180 55	178 15	182 56	184.26	186 58	193 96

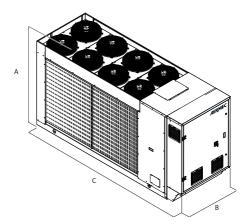
⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.

ELECTRIC DATA

Size			151	201	281	302	332	352	382	502	552	602
Electric data												
Maximum current (FLA)	A,E	A	23,8	31,6	34,9	47,6	52,8	58,1	60,1	68,8	74,4	87,5
D. J	A	A	30,3	43,0	43,0	142,8	167,1	201,1	174,4	211,8	278,6	329,2
Peak current (LRA)	F	Α	30.3	43.0	43.0	136.2	160 5	194 5	166.6	204.0	270.8	317 5

Data calculated without hydronic kit and accessories.

GENERAL TECHNICAL DATA


Size			151	201	281	302	332	352	382	502	552	602
Compressor												
Туре	A,E	type					Sc	roll				
Compressor regulation	A,E	Туре	Inverter	Inverter	Inverter	Inverter+0n/0ff	Inverter+0n/0f	f Inverter+0n/0f	Inverter+0n/0ff	Inverter+0n/0ff	Inverter+0n/0ff	Inverter+0n/0ff
Number	A,E	no.	1	1	1	2	2	2	2	2	2	2
Circuits	A,E	no.	1	1	1	1	1	1	1	1	1	1
Refrigerant	A,E	type					R	132				
System side heat exch	anger											
Туре	A,E	type					Braze	d plate				
Number	A,E	no.	1	1	1	1	1	1	1	1	1	1
Sound data calculated	l in cooling m	ode (1)										
Cound nower level	Α	dB(A)	81,8	84,6	86,0	82,2	85,0	85,1	85,4	86,5	87,8	88,1
Sound power level —	E	dB(A)	79,3	82,8	83,3	80,9	81,3	81,7	82,8	83,0	85,4	85,6

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

FANS DATA

Size			151	201	281	302	332	352	382	502	552	602
Fans: J												
Fan												
Туре	A,E	type					Ax	cial				
Fan motor	A,E	type					Inv	erter				
Number	A,E	no.	4	6	6	8	8	8	2	2	2	3
Air flour rate	A	m³/h	16896	24887	24891	31613	29660	29659	36859	36859	36859	55733
Air flow rate	E	m³/h	14667	21591	21591	27379	25774	25774	27308	27308	27307	41430

DIMENSIONS

Size			151	201	281	302	332	352	382	502	552	602
Dimensions and weights												
A	A,E	mm	1652	1652	1652	1652	1652	1652	1907	1907	1907	1900
В	A,E	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
(A,E	mm	2873	3372	3372	3372	3372	3372	3623	3623	3623	4373
Size			151	201	281	302	332	352	382	502	552	602
Integrated hydronic kit: 00												
Weights												
Weight empty + packaging	A,E	kg	856	929	929	1019	1063	1064	1131	1137	1159	1365
Weight functioning	A,E	ka	825	897	897	988	1032	1033	1099	1108	1130	1336

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRL 0280-0350

Air-water chiller

Cooling capacity 56 ÷ 82 kW

- Low noise levels in silenced versions
- · High efficiency also at partial loads
- Compact dimensions

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to $47 \, ^{\circ}$ C external air temperature. Unit can produce chilled water (up to -10°C of water produced in some versions).

Dual-circuit unit

The units according to the size are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Electronic expansion valve

The possibility to use electronic expansion valve, available to configurator, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, with high or low head and storage tank, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

GP: Anti-intrusion grid.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

PRM1: It is a manual pressure switch electrically wired in series with the existing automatic high pressure switch on the compressor discharge pipe.

C-TOUCH: 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

-											
Α	c	•	ρ	ς	ς	n	r	1	ρ	ς	

Model	Ver	0280	0300	0330	0350
AER485P1	E	•	•	•	•
AERBACP	E	•	•	•	•
AERLINK	E	•	•	•	•
AERNET	E		•	•	
MULTICHILLER-EVO	E	•	•	•	•
PGD1	E	•	•	•	•
SGD	E	•	•	•	•
Model	Ver	0280	0300	0330	0350
C-TOUCH	E	•	•		•

Remote panel

Model	Ver	0280	0300	0330	0350
PR4	E	•	•	•	•

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Condensation control temperature

Ver	0280	0300	0330	0350
Fans: M				
E	DCPX63	DCPX63	DCPX63	DCPX63

Antivibration

Ver	0280	0300	0330	0350
Integrated hydronic kit: 00, P1, P2, P3, P4				
E	VT17	VT17	VT17	VT17
Integrated hydronic kit: 01, 02, 03, 04, 05,	06, 07, 08, 09			
E	VT13	VT13	VT13	VT13

Anti-intrusion grid

And medasion grid				
Ver	0280	0300	0330	0350
E	GP3	GP4	GP4	GP4

Device for peak current reduction

Ver	0280	0300	0330	0350
Power supply: °				
E	DRE281 (1)	DRE301 (1)	DRE331 (1)	DRE351 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered.

Power factor correction

E RIF50 RIF50 RIF50 RIF51	Ver	0280	0300	0330	0350
	E	RIF50	RIF50	RIF50	RIF51

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Description
NRL
Size 0280, 0300, 0330, 0350
Operating field
Electronic thermostatic expansion valve (1)
Low temperature mechanic thermostatic valve (2)
Standard mechanic thermostatic valve (1)
Model
Motocondensing unit
Cooling only
Heat recovery
With desuperheater (3)
With total recovery
Without heat recovery
Version (4)
Silenced high efficiency
Coils
Copper pipes-copper fins
Copper pipes-Tinned copper fins
Copper pieps-Coated aluminium fins
Copper-aluminium
Fans
Inverter (5)
Oversized (6)
Power supply
400V ~ 3N 50Hz with magnet circuit breakers
Integrated hydronic kit
Without hydronic kit

Field	Description
00	Without hydronic kit
	Kit with storage tank and pump/s
01	Storage tank with low head pump
02	Storage tank with low head pump + stand-by pump
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
	Kit with pump/s and storage tank with holes for heaters
05	Storage tank with holes for heaters and single low head pump (7)
06	Storage tank with holes for heaters and pump low head + stand-by pump (7)
07	Storage tank with holes for heaters and single high head pump (7)
08	Storage tank with holes for heaters and pump high head + stand-by pump (7)
	Double loop
09	Double loop
10	Double loop with supplementary electric heater
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump

- (1) Water produced from 4 °C ÷ 18 °C
 (2)) Water produced from 4 °C ÷ 18 °C for version"E", -10 °C for the others versions
 (3) For "YT" "ZT" "YD" and "ZD" recovery versions, contact the headquarters; Warning: on the recovery side, a minimum input temperature of 35°C must always be guaranteed on the heat exchanger. For more information about the unit operating range, refer to the Magellano selection program
 (4) The size up 0280 ÷ 0350 are only available in the silenced versions "E" with inverer fans
 (5) Standard for size 0280 ÷ 0350, without useful static pressure, option for other size with useful static

- pressure.
 (6) Standard for size 0500, without useful static pressure, option for other size with useful static pressure.
- (7) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.

PERFORMANCE SPECIFICATIONS

NRL - E

Size		0280	0300	0330	0350
Cooling performance 12 °C/7 °C(1)					
Cooling capacity	kW	56,8	64,8	73,8	82,8
Input power	kW	17,1	19,7	22,1	25,5
Cooling total input current	A	30,0	34,0	37,0	45,0
EER	W/W	3,33	3,29	3,34	3,24
Water flow rate system side	l/h	9793	11168	12714	14260
Pressure drop system side	kPa	43	39	35	44

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRL - C

Size			0280	0300	0330	0350
Model: C						
Cooling performance 12 °C/7 °C(1)						
Cooling capacity	E	kW	59,0	67,0	76,0	85,0
Input power	E	kW	17,0	19,6	22,0	25,3
Input current	E	A	35,0	39,0	43,0	49,0
EER	E	W/W	3,47	3,42	3,45	3,36

⁽¹⁾ Evaporating temperature 5 °C, External air 35 °C

ENERGY INDICES (REG. 2016/2281 EU)

Energy index data

Size			0280	0300	0330	0350
Fans: J						
SEER - 12/7 (EN14825: 2018) (1)						
SEER	E	W/W	- (2)	- (2)	- (2)	- (2)
Seasonal efficiency	E	%	- (2)	- (2)	- (2)	- (2)
SEER - 23/18 (EN14825: 2018) (3)						
SEER	E	W/W	4,55	4,70	4,62	4,47
Seasonal efficiency	E	%	178,90	184,90	181,60	175,90
SEPR - (EN 14825: 2018) (3)						
SEPR	E	W/W	5,81	5,94	5,85	5,66

- (1) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
 (2) Not covered by standard (EN14825: 2018 for comfort applications, 12°C/7°C)
 (3) Calculation performed with FIXED water flow rate.

Size			0280	0300	0330	0350
Fans: M						
SEER - 12/7 (EN14825: 2018) (1)						
SEER	E	W/W	- (2)	- (2)	- (2)	- (2)
Seasonal efficiency	E	%	- (2)	- (2)	- (2)	- (2)
SEER - 23/18 (EN14825: 2018) (3)						
SEER	E	W/W	4,55	4,70	4,62	4,47
Seasonal efficiency	E	%	178,90	184,90	181,60	175,90
SEPR - (EN 14825: 2018) (3)						
SEPR	E	W/W	5,81	5,94	5,85	5,66

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Not covered by standard (EN14825: 2018 for comfort applications, 12°C/7°C)
(3) Calculation performed with FIXED water flow rate.

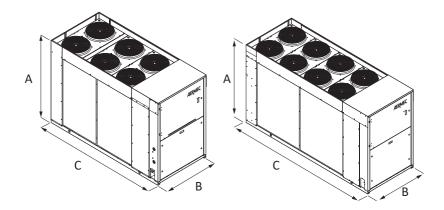
ELECTRIC DATA

Size			0280	0300	0330	0350
Electric data						
Maximum current (FLA)	E	A	46,0	53,0	58,0	63,0
Peak current (LRA)	E	A	155.0	184.0	190.0	200.0

GENERAL TECHNICAL DATA

General data

Size			0280	0300	0330	0350
Compressor						
Туре	E	type		Sc	roll	
Compressor regulation	E	Туре		On	-Off	
Number	E	no.	2	2	2	2
Circuits	E	no.	2	2	2	2
Refrigerant	E	type		R4	10A	
System side heat exchanger						
Туре	E	type		Braze	d plate	
Number	E	no.	1	1	1	1
System side hydraulic connections						
Connections (in/out)	E	Туре		Groove	ed joints	
Sizes (in/out)	E	Ø		2"	1/2	
Sound data calculated in cooling mo	ode (1)					
Sound power level	E	dB(A)	74,0	74,0	75,0	76,0
Sound pressure level (10 m)	E	dB(A)	42,3	42,2	43,2	44,2


⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Fans

Size			0280	0300	0330	0350
Fan						
Туре	E	type		Ax	ial	
Number	E	no.	6	6	8	8
Size			0280	0300	0330	0350
Fans: M						
Increased fan						
Fan motor	E	type		Asynchronous	with phase cut	
Without Static pressure						
Air flow rate	E	m³/h	-	-	-	-
High static pressure	E	Pa	-	-	-	-
Sound power level	E	dB(A)	-	-	-	-
With static pressure						
Air flow rate	E	m³/h	22000	22000	27000	27000
High static pressure	E	Pa	50	50	50	50
Sound power level	E	dB(A)	74,0	74,0	75,0	76,0
Size			0280	0300	0330	0350
Fans: J						
Inverter fan						
Fan motor	E	type		Inve	erter	·
Air flow rate	E	m³/h	22000	22000	27000	27000
High static pressure	E	Pa	80	80	80	80
Sound data calculated in cooling i	mode (1)					
Sound power level	E	dB(A)	74,0	74,0	75,0	76,0

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

DIMENSIONS

Dimensions and weights

Size			0280	0300	0330	0350
Dimensions and weights	1		0200	0300	0330	0330
Difficustons and weights						
A	E	mm	1606	1606	1606	1606
В	E	mm	1100	1100	1100	1100
C	E	mm	2450	2950	2950	2950
Dimensions and weights withou	ut hydronic kit					
Empty weight	E	kg	686	751	761	767

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRL 0280H-0350H

Reversible air/water heat pump

Cooling capacity 51 ÷ 76 kW - Heating capacity 58 ÷ 86 kW

- · High efficiency also at partial loads
- Compact dimensions
- Quick & easy installation

DESCRIPTION

Reversible outdoor heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

E Silenced high efficiency

L Standard silenced

FEATURES

Operating field

Working at full load up to -15°C outside air temperature in winter, and up to 46°C in summer. Hot water production up to 55°C (for more information see the technical documentation).

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Electronic expansion valve

The possibility to use electronic expansion valve, available to configurator, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Option integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, with high or low head and storage tank, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

— Floating HP control: the function can be activated with inverter fans or with DCPX which allows unit operation to be optimised at any operating point through continuous modulation of the fan speed. In addition, the use of inverter fans ensures an increase in energy efficiency at partial loads.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

BMConverter: The BMConverter accessory consists of the FPC-N54 network device which allows units that communicate via the Modbus RTU protocol on RS485, to be controlled by a third-party BMS system via the BACNet TCP-IP protocol.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

GP: Anti-intrusion grid.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

C-TOUCH: 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0280	0300	0330	0350
AER485P1	E,L	•	•	•	•
AERBACP	E,L	•	•	•	•
AERLINK	E,L	•	•	•	•
AERNET	E,L	•	•	•	•
BMConverter	E,L	•	•	•	•
MULTICHILLER-EVO	E,L	•	•	•	•
PGD1	E,L	•	•	•	•
SGD	E,L	•	•	•	
Model	Ver	0280	0300	0330	0350
C-TOUCH	E,L	•	•	•	•

Remote panel

Model	Ver	0280	0300	0330	0350
PR4	E,L	•	•	•	•

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Condensation control temperature

Ver			0330	0350
Fans: M				
E, L	DCPX63	DCPX63	DCPX63	DCPX63

Antivibration

Ver	0280	0300	0330	0350
Integrated hydronic kit: 00, P1, P2, P3, P4				
E, L	VT17	VT17	VT17	VT17
Integrated hydronic kit: 01, 02, 03, 04, 05,	06, 07, 08, 09			
E, L	VT13	VT13	VT13	VT13

Anti-intrusion grid

Ver	0280		0300	0330	0350
E	GP3	,	GP4	GP4	GP4
L	GP3		GP3	GP3	GP3
Model	Ver	0280	0300	0330	0350
C-TOUCH	E.L	•		•	

Device for peak current reduction

Ver	0280	0300	0330	0350
E, L	DRE281 (1)	DRE301 (1)	DRE331 (1)	DRE351 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered.

Power factor correction

Ver			0330	0350
E, L	RIF50	RIF50	RIF50	RIF51

A grey background indicates the accessory must be assembled in the factory

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NRL
4,5,6,7	Size 0280, 0300, 0330, 0350
8	Operating field
Χ	Electronic thermostatic expansion valve
0	Standard mechanic thermostatic valve
9	Model
Н	Heat pump
10	Heat recovery
D	With desuperheater (1)
0	Without heat recovery
11	Version
E	Silenced high efficiency
L	Standard silenced
12	Coils
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
0	Copper-aluminium
13	Fans
J	Inverter (2)
М	Oversized
14	Power supply
0	400V ~ 3 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit

Field	Description
00	Without hydronic kit
	Kit with storage tank and pump/s
01	Storage tank with low head pump
02	Storage tank with low head pump + stand-by pump
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
	Kit with pump/s and storage tank with holes for heaters
05	Storage tank with holes for heaters and single low head pump (3)
06	Storage tank with holes for heaters and pump low head + stand-by pump (3)
07	Storage tank with holes for heaters and single high head pump (3)
08	Storage tank with holes for heaters and pump high head + stand-by pump (3)
	Double loop
09	Double loop
10	Double loop with holes for heaters
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump

- The desuperheater must be intercepted in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
 Standard for size 0280 ÷ 0350, without useful static pressure, option for other size with useful static
- pressure.

 (3) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.

PERFORMANCE SPECIFICATIONS

NRL HL

INTELLE					
Size		0280	0300	0330	0350
Cooling performance 12 °C/7 °C(1)					
Cooling capacity	kW	50,8	60,8	65,9	72,8
Input power	kW	20,4	22,8	26,4	31,4
Cooling total input current	A	36,0	40,0	44,0	51,0
EER	W/W	2,49	2,67	2,49	2,32
Water flow rate system side	l/h	8762	10480	11340	12542
Pressure drop system side	kPa	47	43	29	45
Heating performance 40 °C / 45 °C (2)					
Heating capacity	kW	58,2	68,2	75,2	82,3
Input power	kW	19,0	21,7	24,6	28,3
Heating total input current	A	33,0	38,0	41,0	50,0
COP	W/W	3,06	3,14	3,05	2,91
Water flow rate system side	l/h	10080	11818	13035	14252
Pressure drop system side	kPa	61	54	36	56

NRL HE

MILTIE					
Size		0280	0300	0330	0350
Cooling performance 12 °C/7 °C(1)					
Cooling capacity	kW	52,9	61,9	68,8	76,8
Input power	kW	18,1	20,2	23,4	26,9
Cooling total input current	A	30,0	34,0	37,0	45,0
EER	W/W	2,93	3,06	2,94	2,86
Water flow rate system side	l/h	9106	10652	11855	13229
Pressure drop system side	kPa	27	27	51	29
Heating performance 40 °C / 45 °C (2)					
Heating capacity	kW	59,1	69,2	76,3	86,2
Input power	kW	17,5	20,6	23,1	26,1
Heating total input current	A	35,0	39,0	43,0	49,0
COP	W/W	3,38	3,36	3,31	3,30
Water flow rate system side	l/h	10254	11992	13209	14947
Pressure drop system side	kPa	25	34	66	34

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

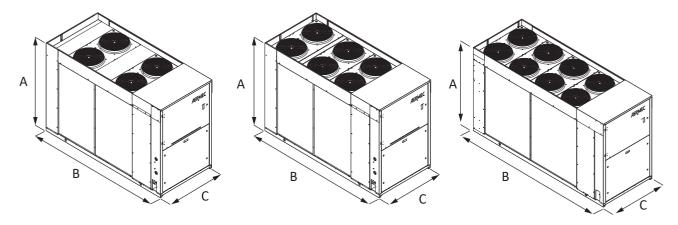
⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

ELECTRIC DATA

Size			0280	0300	0330	0350
Electric data						
Maximum assument (FLA)	E	A	46,0	53,0	58,0	63,0
Maximum current (FLA)	L	A	46,0	53,0	53,0	63,0
Deals surrent (LDA)	E	A	155,0	184,0	190,0	200,0
Peak current (LRA)	L	A	155,0	184,0	184,0	200,0

ENERGY DATA

Size			0280	0300	0330	0350
Cooling capacity with low leaving	y water temp (UE n° 2016,	(2281)				
CLLD	E	W/W	3,74	3,71	3,80	3,71
SEER	L	W/W	2,96	3,19	3,01	3,28
	E	%	146,50	145,20	148,90	145,30
ηςς	L	%	115,30	124,40	117,30	128,30
UE 811/2013 performance in aver	rage ambient conditions (average) - 35 °C - Pdesignh	1 ≤ 70 kW (1)			
Efficiency energy class	E,L		A+	A+	A+	-
Pdesignh	E,L	kW	-	-	-	-
	E	%	138,00	137,00	137,00	135,00
ηsh	L	%	125,00	128,00	125,00	125,00
CCOD	E	W/W	3,53	3,50	3,50	3,45
SCOP	L	W/W	3,20	3,28	3,20	3,20


⁽¹⁾ Efficiencies for low temperature applications (35 °C)

GENERAL TECHNICAL DATA

Size			0280	0300	0330	0350
Compressor						
Туре	E,L	type		Sc	roll	
Compressor regulation	E,L	Туре		On	-Off	
Number	E,L	no.	2	2	2	2
Circuits	E,L	no.	2	2	2	2
Refrigerant	E,L	type		R4	10A	
System side heat exchanger						
Туре	E,L	type		Braze	d plate	
Number	E,L	no.	1	1	1	1
System side hydraulic connections						
Connections (in/out)	E,L	Туре		Groove	ed joints	
Sizes (in/out)	E,L	Ø		2"	1/2	
Fan						
Туре	E,L	type		ax	ials	
	E	no.	6	8	8	8
Number	L	no.	4	6	6	6
N:- 0	E	m³/h	20000	26000	26000	26000
Air flow rate	L	m³/h	14000	20000	20000	20000
Sound data calculated in cooling m	ode (1)					
Cound namer lavel	E	dB(A)	74,0	75,0	75,0	76,0
Sound power level	L	dB(A)	73,0	74,0	74,0	75,0
·	E	dB(A)	42,3	43,2	43,2	44,2
Sound pressure level (10 m)	L	dB(A)	41,3	42,3	42,3	43,3

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0280	0300	0330	0350
Dimensions and weights						
A	E,L	mm	1606	1606	1606	1606
В	E,L	mm	1100	1100	1100	1100
r	E	mm	-	2950	2950	2950
l	L	mm	2450	2450	2450	2450
Weights						
Wish and budges in his	E	kg	730	795	805	811
Without hydronic kit	L	kg	713	724	731	740

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRG 0800-3600

Air-water chiller

Cooling capacity 225,7 ÷ 1034,5 kW

- · High efficiency also at partial loads
- · Low refrigerant charge
- Night mode

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

These are outdoor units with streamlined scroll compressors used with R32 gas axial fan, microchannel batteries and plate exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to 49° C external air temperature. Unit can produce chilled water up to -10 °C in some versions.

For more information refer to the selection program and to to the dedicated documentation.

Unit with 2/3 cooling circuits

Unit with 2/3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Refrigerant HFC R32

The environmental impact of the units is reduced considerably owing to the last generation R32 refrigerant.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO_2 values.

■ The leak detector is supplied as per standard.

Use refrigerant fluid R32, whose classification according to ISO 817 is A2L (non-toxic, odourless and slightly flammable refrigerant).

Aluminium microchannel coils

The microchannel condensing aluminum coils ensure high levels of efficiency, reduced quantities of refrigerant and lower unit weight. The treatment "O" available as configurator it ensures high resistance to corrosion even in the most aggressive environments.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy seasonal efficiency of the unit.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation.

It's available in various configurations, with storage tank or pumps.

CONTROL PCO₅

The units from size 0800 to 2400 have 1 control card, while the units from size 2600 to 3600 have 2 control cards.

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: the function can be activated with inverter fans or
 with DCPX which allows unit operation to be optimised at any operating
 point through continuous modulation of the fan speed. In addition, the
 use of inverter fans ensures an increase in energy efficiency at partial
 loads.
- Night mode: only in the non-silenced versions with the fan to be, inverter or phase-cut or with the DCPX accessory, a silenced operation profile can be set, which is useful, for example, at night for greater acoustic comfort, but always ensures performance even at peak load

 — Possibility to control two units in a Master-Slave configuration (from size 0800 to 2400)

INTEGRATED SOLUTION (2600 ÷ 3600)

The "integrated solution" concept has been implemented in the system architecture, consisting in an integrated and streamlined control of compressors and electronic valve.

This solution allowed a variety of new features to be introduced, such as:

- Low Superheat Control: Progressive superheating reduction in conditions of stability. This allows to increase energy performance: both in modulation and in full load conditions;
- DLT control: Control of electronic valve at discharge temperature in certain operating conditions. This is demonstrated in an enhanced reliability of the control and a considerable expansion of the machine's operating range.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

AVX: Spring anti-vibration supports.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
AER485P1	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•						
AER485P1 x no. 2	°,A,E,L,N,U												•	•	•	•	•	•
AERBACP	°,A,E,L,N,U	•	•	•	•			•	•	•	•	•						
AERBACP x no. 2	°,A,E,L,N,U												•	•	•	•	•	•
AERLINK	°,A,E,L,N,U	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•
AERNET	°,A,E,L,N,U	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•
FL	°,A,E,L,N,U	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	°,A,E,L,N,U	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•
PGD1	°,A,E,L,N,U	•	•	•	•	•			•	•	•	•	•		•	•		•

Remote panel

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
PR4	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Antivibration

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000
Integrated hydronic kit: 00									
0	AVX1125	AVX1125	AVX1125	AVX1125	AVX1127	AVX1127	AVX1127	AVX1129	AVX1130
A, L	AVX1125	AVX1125	AVX1127	AVX1127	AVX1127	AVX1143	AVX1143	AVX1138	AVX1138
E, U	AVX1127	AVX1127	AVX1127	AVX1143	AVX1143	AVX1148	AVX1148	AVX1136	AVX1139
N	AVX1143	AVX1143	AVX1143	AVX1148	AVX1148	AVX1148	AVX1136	AVX1139	AVX1141
Integrated hydronic kit: AA, I	AB, AC, AD, AE, AF, AG,	AH, AI, AJ, BA, BB, E	C, BD, BE, BF, BG, BI	H, BI, BJ, CA, CB, CC,	CD, CE, CF, CG, CH, C	I, CJ, KA, KB, KC, KD,	KE, KF, KG, KH, KI, K	J	
0	AVX1126	AVX1126	AVX1126	AVX1126	AVX1128	AVX1128	AVX1128	AVX1131	AVX1131
A, L	AVX1126	AVX1126	AVX1128	AVX1128	AVX1128	AVX1147	AVX1147	AVX1135	AVX1135
E, U	AVX1128	AVX1128	AVX1128	AVX1147	AVX1147	AVX1135	AVX1135	AVX1137	AVX1140
N	AVX1147	AVX1147	AVX1147	AVX1135	AVX1135	AVX1135	AVX1137	AVX1140	AVX1142
Integrated hydronic kit: DA, I	OB, DC, DD, DE, DF, DG	, DH, DI, DJ, IA, IB, IC	, ID, IE, IF, IG, IH, II,	IJ, JA, JB, JC, JD, JE, .	IF, JG, JH, JI, JJ, PA, I	PB, PC, PD, PE, PF, PC	i, PH, PI, PJ		
0	AVX1125	AVX1125	AVX1125	AVX1125	AVX1126	AVX1126	AVX1126	AVX1132	AVX1132
A, L	AVX1125	AVX1125	AVX1126	AVX1126	AVX1126	AVX1144	AVX1144	AVX1134	AVX1138
E, U	AVX1126	AVX1126	AVX1126	AVX1144	AVX1144	AVX1149	AVX1149	AVX1136	AVX1139
N	AVX1144	AVX1144	AVX1144	AVX1149	AVX1149	AVX1149	AVX1136	AVX1139	AVX1141

	Ver	2200	2400	2600	2800	300	0	3200	3400	3600
tegrate	d hydronic kit: 00		· · · · · · · · · · · · · · · · · · ·							
	0	AVX1130	AVX1138	AVX1167	AVX1167	AVX11	67	AVX1167	AVX1168	AVX1168
	A, L	AVX1150	AVX1150	AVX1171	AVX1171	AVX11	71	AVX1172	AVX1172	AVX1250
	E, U	AVX1139	AVX1141	AVX1251	AVX1170	AVX11		AVX1253	AVX1253	AVX1253
	N	AVX1141	AVX1145	AVX1174	AVX1254	AVX12		AVX1254	AVX1254	AVX1176
tegrate	d hydronic kit: AA, AB	, AC, AD, AE, AF, AG, AH		, BD, BE, BF, BG, BH,	BI, BJ, CA, CB, CC, CD,	CE, CF, CG, CH, CI, C	J, KA, KB, KC,	KD, KE, KF, KG, KH, I		-
	0	AVX1131	AVX1135	AVX1167	AVX1167	AVX1		AVX1167	AVX1168	AVX1168
	A, L	AVX1137	AVX1137	AVX1171	AVX1171	AVX1		AVX1172	AVX1250	AVX1251
	E, U	AVX1140	AVX1142	AVX1251	AVX1170	AVX12		AVX1253	AVX1253	AVX1174
	N N	AVX1142	AVX1146	AVX1174	AVX1254	AVX12		AVX1254	AVX1176	AVX1176
tegrate	d hvdronic kit: DA, DB	B, DC, DD, DE, DF, DG, DI								
	0	AVX1132	AVX1133	AVX1167	AVX1167	AVX1		AVX1167	AVX1168	AVX1168
	A, L	AVX1150	AVX1150	AVX1171	AVX1171	AVX1		AVX1172	AVX1250	AVX1250
	E, U	AVX1139	AVX1141	AVX1251	AVX1170	AVX12		AVX1253	AVX1253	AVX1253
	N N	AVX1141	AVX1145	AVX1174	AVX1254	AVX12		AVX1254	AVX1176	AVX1176
					7,7,725			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
onder	sation control	temperature								
Ver	0800	0900	1000	1100	1200	140	0	1600	1800	2000
ns: M	0.00	0.00****	D.C					D CD1/4	D CDV	0.0000
0	DCPX161	DCPX161	DCPX161	DCPX161	DCPX163	DCPX		DCPX163	DCPX165	DCPX165
A	DCPX161	PX161 DCPX161 DCPX163	DCPX163	DCPX163	DCPX	165	DCPX165	DCPX167	DCPX167	
E, L, N	As standard	andard As standard As standard	As standar				As standard	As standard	As standard	
U	DCPX163	DCPX163	DCPX163	DCPX165	DCPX165	DCPX	167	DCPX167	DCPX169	DCPX171
Ver	2200	2400	26	00	2800	3000	32	200	3400	3600
ns: M					'			'	'	
0	DCPX165	DCPX167	As sta	ndard	As standard	As standard	As sta	andard	As standard	As standard
Α	DCPX169	DCPX169	As sta	ndard	As standard	As standard	As sta	andard	As standard	As standard
Λ										
	As standard	As standard	As sta	ndard	As standard	As standard	As sta	andard	As standard	As standard
E, L, N U	As standard DCPX171 for peak currer	DCPX172	As sta	ndard	As standard	As standard	As sta	andard	As standard	As standard
E, L, N U evice	As standard DCPX171	DCPX172			As standard 1100				As standard	As standard
E, L, N U evice	As standard DCPX171 for peak currer Ver , A, E, L, N, U	DCPX172 nt reduction 0800	As sta 0900 DRENRG0900	ndard 1000	As standard 1100	As standard	As sta	andard 1600	As standard	As standard
E, L, N U evice	As standard DCPX171 for peak currer Ver , A, E, L, N, U	DCPX172 nt reduction 0800 DRENRG0800	As sta 0900 DRENRG0900	ndard 1000	As standard 1100	As standard	As sta 1400 DRENRG1400	andard 1600	As standard	As standard
E, L, N U evice	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the a	DCPX172 nt reduction 0800 DRENRG0800 cccessory must be assemb	As sta 0900 DRENRG0900 Dled in the factory	1000 DRENRG1000	As standard 1100 DRENRG1100 2800	As standard 1200 DRENRG1200 300	As sta 1400 DRENRG1400	andard 1600 DRENRG1600	As standard 1800 DRENRG1800	As standard 2000 DRENRG200 3600
evice grey back	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the av Ver , A, E, L, N, U	DCPX172 nt reduction 0800 DRENRG0800 ccessory must be assemb 2200 DRENRG2200	As sta 0900 DRENRG0900 Dled in the factory 2400 DRENRG2400	1000 DRENRG1000 2600	As standard 1100 DRENRG1100 2800	As standard 1200 DRENRG1200 300	As sta 1400 DRENRG1400	1600 DRENRG1600 3200	As standard 1800 DRENRG1800 3400	As standard 2000 DRENRG200 3600
E, L, N U evice	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the av ver , A, E, L, N, U ground indicates the av	DCPX172 nt reduction 0800 DRENRG0800 ccessory must be assemb 2200 DRENRG2200 ccessory must be assemb	As sta 0900 DRENRG0900 Dled in the factory 2400 DRENRG2400	1000 DRENRG1000 2600	As standard 1100 DRENRG1100 2800	As standard 1200 DRENRG1200 300	As sta 1400 DRENRG1400	1600 DRENRG1600 3200	As standard 1800 DRENRG1800 3400	As standard 2000 DRENRG200 3600
E, L, N U evice	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the a Ver , A, E, L, N, U ground indicates the a	DCPX172 nt reduction 0800 DRENRG0800 ccessory must be assemb 2200 DRENRG2200 ccessory must be assemb	As sta 0900 DRENRG0900 Deled in the factory 2400 DRENRG2400 Dled in the factory	ndard 1000 DRENRG1000 2600 DRENRG260	As standard 1100 DRENRG1100 2800 DRENRG280	As standard 1200 DRENRG1200 300 DRENRG	As sta 1400 DRENRG1400 0 3000	1600 DRENRG1600 3200 DRENRG3200	As standard 1800 DRENRG1800 3400 DRENRG3400	2000 DRENRG200 3600 DRENRG3600
E, L, N U evice	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the a Ver , A, E, L, N, U ground indicates the ar factor correctio Ver	DCPX172 nt reduction 0800 DRENRG0800 ccessory must be assemb 2200 DRENRG2200 ccessory must be assemb n 0800	As sta 0900 DRENRG0900 Deled in the factory 2400 DRENRG2400 Dled in the factory	1000 DRENRG1000 2600 DRENRG2600	As standard 1100 DRENRG1100 2800 DRENRG2800 1100	As standard	As sta 1400 DRENRG1400 0 3000	1600 DRENRG1600 3200 DRENRG3200	As standard 1800 DRENRG1800 3400 DRENRG3400 1800	2000 DRENRG200 3600 DRENRG3600 DRENRG3600
E, L, N U evice grey back grey back	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the a Ver , A, E, L, N, U ground indicates the a	DCPX172 nt reduction 0800 DRENRG0800 ccessory must be assemb 2200 DRENRG2200 ccessory must be assemb	As sta 0900 DRENRG0900 Deled in the factory 2400 DRENRG2400 Dled in the factory	ndard 1000 DRENRG1000 2600 DRENRG260	As standard 1100 DRENRG1100 2800 DRENRG2800 1100	As standard 1200 DRENRG1200 300 DRENRG	As sta 1400 DRENRG1400 0 3000	1600 DRENRG1600 3200 DRENRG3200	As standard 1800 DRENRG1800 3400 DRENRG3400 1800	2000 DRENRG200 3600 DRENRG3600 DRENRG3600
E, L, N U evice grey back grey back ower 1	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the av Ver , A, E, L, N, U ground indicates the av factor correctio Ver , A, E, L, N, U	DCPX172 nt reduction 0800 DRENRG0800 ccessory must be assemb 2200 DRENRG2200 ccessory must be assemb n 0800	As sta 0900 DRENRG0900 Dled in the factory 2400 DRENRG2400 Dled in the factory 0900 RIFNRG0900	1000 DRENRG1000 2600 DRENRG2600	As standard 1100 DRENRG1100 2800 DRENRG2800 1100	As standard	As sta 1400 DRENRG1400 0 3000	1600 DRENRG1600 3200 DRENRG3200	As standard 1800 DRENRG1800 3400 DRENRG3400 1800	2000 DRENRG200 3600 DRENRG3600 DRENRG3600
E, L, N U evice grey back grey back	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the av Ver , A, E, L, N, U ground indicates the av factor correctio Ver , A, E, L, N, U	DCPX172 nt reduction 0800 DRENRG0800 ccessory must be assemb 2200 DRENRG2200 ccessory must be assemb en 0800 RIFNRG0800	As sta 0900 DRENRG0900 Dled in the factory 2400 DRENRG2400 Dled in the factory 0900 RIFNRG0900	1000 DRENRG1000 2600 DRENRG2600	As standard 1100 DRENRG1100 2800 DRENRG2800 1100	As standard	As st. 1400 DRENRG1400 0 3000 1400 RIFNRG1400	1600 DRENRG1600 3200 DRENRG3200	As standard 1800 DRENRG1800 3400 DRENRG3400 1800 RIFNRG1800 3400	2000 DRENRG200 3600 DRENRG3600 2000 RIFNRG200 3600
grey back	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the a- Ver , A, E, L, N, U ground indicates the a- factor correctio Ver , A, E, L, N, U ground indicates the a- factor correctio ver , A, E, L, N, U ground indicates the a-	DCPX172 nt reduction 0800 DRENRG0800 ccessory must be assemb 2200 DRENRG2200 ccessory must be assemb n 0800 RIFNRG0800 ccessory must be assemb	As sta 0900 DRENRG0900 Dled in the factory 2400 DRENRG2400 Dled in the factory 0900 RIFNRG0900 Dled in the factory	1000 DRENRG1000 2600 DRENRG2600 1000 RIFNRG1000	### As standard ### 1100 DRENRG1100 ### 2800 DRENRG2800 ### 1100 RIFNRG1100 ### 2800	1200 DRENRG1200 300 DRENRG 1200 1200 RIFNRG1200	As st. 1400 DRENRG1400 0 3000 1400 RIFNRG1400 0	1600 DRENRG1600 3200 DRENRG3200 1600 RIFNRG1600	As standard 1800 DRENRG1800 3400 DRENRG3400 1800 RIFNRG1800	2000 DRENRG200 3600 DRENRG3600 DRENRG3600 RIFNRG2000
E, L, N U U o o o o o o o o o o o o o o o o o	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the av Ver , A, E, L, N, U ground indicates the av factor correction Ver , A, E, L, N, U ground indicates the av Ver , A, E, L, N, U	DCPX172 nt reduction 0800 DRENRG0800 ccessory must be assemb 2200 DRENRG2200 ccessory must be assemb 21 CCESSORY must be assemb 22 CCESSORY must be assemb 22 CCESSORY must be assemb 2200	As sta 0900 DRENRG0900 Deled in the factory 2400 DRENRG2400 Deled in the factory 0900 RIFNRG0900 Deled in the factory 2400 RIFNRG2400	1000 DRENRG1000 2600 DRENRG2600 1000 RIFNRG1000	### As standard ### 1100 DRENRG1100 ### 2800 DRENRG2800 ### 1100 RIFNRG1100 ### 2800	1200 DRENRG1200 300 DRENRG 1200 1200 RIFNRG1200	As st. 1400 DRENRG1400 0 3000 1400 RIFNRG1400 0	1600 DRENRG1600 3200 DRENRG3200 1600 RIFNRG1600	As standard 1800 DRENRG1800 3400 DRENRG3400 1800 RIFNRG1800 3400	2000 DRENRG200 3600 DRENRG3600 2000 RIFNRG2000 3600
E, L, N U evice grey back cover 1 cover sprey back cover 1	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the av Ver , A, E, L, N, U ground indicates the av factor correction Ver , A, E, L, N, U ground indicates the av factor correction Ver , A, E, L, N, U ground indicates the av Ver , A, E, L, N, U ground indicates the av ground indicates the av ver	DCPX172 nt reduction 0800 DRENRG0800 ccessory must be assemb 2200 DRENRG2200 ccessory must be assemb n 0800 RIFNRG0800 ccessory must be assemb 2200 RIFNRG0800	As sta 0900 DRENRG0900 Deled in the factory 2400 DRENRG2400 Deled in the factory 0900 RIFNRG0900 Deled in the factory 2400 RIFNRG2400	1000 DRENRG1000 2600 DRENRG2600 1000 RIFNRG1000	### As standard ### 1100 DRENRG1100 ### 2800 DRENRG2800 ### 1100 RIFNRG1100 ### 2800	1200 DRENRG1200 300 DRENRG 1200 1200 RIFNRG1200	As st. 1400 DRENRG1400 0 3000 1400 RIFNRG1400 0	1600 DRENRG1600 3200 DRENRG3200 1600 RIFNRG1600	As standard 1800 DRENRG1800 3400 DRENRG3400 1800 RIFNRG1800 3400	2000 DRENRG200 3600 DRENRG3600 2000 RIFNRG200 3600
E, L, N U evice grey back cover 1 cover sprey back cover 1	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the a ver , A, E, L, N, U ground indicates the a factor correctio Ver , A, E, L, N, U ground indicates the a Ver , A, E, L, N, U ground indicates the a ver , A, E, L, N, U ground indicates the a	DCPX172 nt reduction 0800 DRENRG0800 ccessory must be assemb 2200 DRENRG2200 ccessory must be assemb 010 0800 RIFNRG0800 ccessory must be assemb 2200 RIFNRG2200 ccessory must be assemb 2200 ccessory must be assemb	As sta 0900 DRENRG0900 DRENRG2400 DRENRG2400 DRENRG2400 Olded in the factory 0900 RIFNRG0900 Olded in the factory 2400 RIFNRG2400 Olded in the factory	1000 DRENRG1000 2600 DRENRG2600 1000 RIFNRG1000	### As standard 1100	1200	As st. 1400 DRENRG1400 0 33000 1400 RIFNRG1400 0 3000	1600 DRENRG1600 3200 DRENRG3200 1600 RIFNRG1600 3200 RIFNRG3200	As standard 1800 DRENRG1800 3400 DRENRG3400 1800 RIFNRG1800 3400 RIFNRG3400	2000 DRENRG200 3600 DRENRG3600 RIFNRG200 RIFNRG200 RIFNRG3600
E, L, N U evice o o o o o o o o o o o o o o o o o o	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the av Ver , A, E, L, N, U ground indicates the av factor correction Ver , A, E, L, N, U ground indicates the av factor correction ver , A, E, L, N, U ground indicates the av ver , A, E, L, N, U ground indicates the av trusion grid Ver	DCPX172 nt reduction 0800 DRENRG0800 ccessory must be assemb 2200 DRENRG2200 ccessory must be assemb 0800 RIFNRG0800 ccessory must be assemb 2200 RIFNRG2200 ccessory must be assemb 2200 ccessory must be assemb 2200 RIFNRG2200 ccessory must be assemb	As sta 0900 DRENRG0900 DRENRG2400 DRENRG2400 Oled in the factory 0900 RIFNRG0900 Oled in the factory 2400 RIFNRG2400 Oled in the factory 2400 RIFNRG2400 Oled in the factory	1000 DRENRG1000 2600 DRENRG2600 1000 RIFNRG1000 2600 RIFNRG2600	### As standard 1100	1200	As st. 1400 DRENRG1400 0 33000 1400 RIFNRG1400 0 1400	1600 DRENRG1600 3200 DRENRG3200 1600 RIFNRG1600 3100 RIFNRG3200	As standard 1800 DRENRG1800 3400 DRENRG3400 1800 RIFNRG1800 RIFNRG3400	2000 DRENRG200 3600 DRENRG3600 RIFNRG200 3600 RIFNRG200 2000 RIFNRG3600
E, L, N U evice o o o o o o o o o o o o o o o o o o	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the a Ver , A, E, L, N, U ground indicates the a factor correctio Ver , A, E, L, N, U ground indicates the a Ver , A, E, L, N, U ground indicates the a trusion grid Ver o	DCPX172 nt reduction 0800 DRENRG0800 ccessory must be assemb 2200 DRENRG2200 ccessory must be assemb 0800 RIFNRG0800 ccessory must be assemb 2200 RIFNRG2200 ccessory must be assemb 2200 RIFNRG2200 ccessory must be assemb 0800 GP2VN	As sta 0900 DRENRG0900 DRENRG2400 DRENRG2400 DRENRG2400 Olded in the factory 2400 RIFNRG0900 Olded in the factory 2400 RIFNRG2400 Olded in the factory 0900 GP2VN	1000 DRENRG1000 2600 DRENRG2600 1000 RIFNRG1000 2600 RIFNRG2600 1000 GP2VN	### As standard 1100	1200	As st. 1400 DRENRG1400 0 33000 1400 RIFNRG1400 0 3000 1400 GP3G	1600 DRENRG1600 3200 DRENRG3200 1600 RIFNRG1600 3200 RIFNRG3200	As standard 1800 DRENRG1800 3400 DRENRG3400 1800 RIFNRG1800 3400 RIFNRG3400 1800 GP4G	2000 DRENRG2000 3600 DRENRG3600 RIFNRG200 3600 RIFNRG3600 2000 RIFNRG3600 GP4G
evice o o o o o o o o o o o o o	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the av Ver , A, E, L, N, U ground indicates the av factor correction Ver , A, E, L, N, U ground indicates the av factor correction ver , A, E, L, N, U ground indicates the av terusion grid ver A, L	DCPX172 nt reduction 0800 DRENRG0800 CCCESSORY must be assemb 2200 DRENRG2200 CCCESSORY must be assemb 010 0800 RIFNRG0800 CCCESSORY must be assemb 2200 RIFNRG2200 CCCESSORY must be assemb 2200 CCCESSORY must be assemb 2200 RIFNRG2200 CCCESSORY must be assemb 0800 GP2VN GP2VN	As sta 0900 DRENRG0900 Deled in the factory 2400 DRENRG2400 Deled in the factory 0900 RIFNRG0900 Deled in the factory 2400 RIFNRG2400 Deled in the factory 0900 GP2VN GP2VN	1000 DRENRG1000 2600 DRENRG2600 1000 RIFNRG1000 2600 RIFNRG2600 1000 GP2VN GP3G	1100 DRENRG1100 2800 D DRENRG2800 1100 RIFNRG1100 2800 D RIFNRG2800 1100 GP2VN GP3G	1200	1400 DRENRG1400 0 33000 1400 RIFNRG1400 0 30000 1400 GP3G GP4GM	1600 DRENRG1600 3200 DRENRG3200 1600 RIFNRG1600 3200 RIFNRG3200 1600 GP3G GP4GM	As standard 1800 DRENRG1800 3400 DRENRG3400 1800 RIFNRG1800 3400 RIFNRG3400 1800 GP4G GP5G	2000 DRENRG2000 3600 DRENRG3600 RIFNRG200 RIFNRG3600 2000 RIFNRG3600 2000 GP4G GP5G
evice o o o o o o o o o o o o o	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the av Ver , A, E, L, N, U ground indicates the av factor correction Ver , A, E, L, N, U ground indicates the av ver , A, E, L, N, U ground indicates the av ver , A, E, L, N, U ground indicates the av trusion grid Ver A, L E, U	DCPX172 nt reduction 0800 DRENRG0800 CCCESSORY must be assemb 2200 DRENRG2200 CCCESSORY must be assemb 0800 RIFNRG0800 CCCESSORY must be assemb 2200 RIFNRG2200 CCCESSORY must be assemb 2200 CCCESSORY must be assemb 2200 RIFNRG2200 CCCESSORY must be assemb 0800 GP2VN GP2VN GP3G	As sta 0900 DRENRG0900 DRENRG2400 DRENRG2400 Olded in the factory 0900 RIFNRG0900 Olded in the factory 2400 RIFNRG2400 Olded in the factory 0900 GP2VN GP2VN GP3G	1000 DRENRG1000 2600 DRENRG2600 1000 RIFNRG1000 2600 RIFNRG2600 1000 GP2VN GP3G GP3G	### As standard 1100	1200	1400 DRENRG1400 0 33000 1400 RIFNRG1400 0 3000 1400 GP3G GP4GM GP5GM	1600 DRENRG1600 3200 DRENRG3200 1600 RIFNRG1600 3200 RIFNRG3200 1600 GP3G GP4GM GP5GM	### As standard 1800	2000 DRENRG200 3600 DRENRG3600 RIFNRG200 3600 RIFNRG3600 2000 GP4G GP5G GP7G
E, L, N U evice o o o o o o o o o o o o o o o o o o	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the av Ver , A, E, L, N, U ground indicates the av factor correction Ver , A, E, L, N, U ground indicates the av factor correction ver , A, E, L, N, U ground indicates the av terusion grid ver A, L	DCPX172 nt reduction 0800 DRENRG0800 CCCESSORY must be assemb 2200 DRENRG2200 CCCESSORY must be assemb 010 0800 RIFNRG0800 CCCESSORY must be assemb 2200 RIFNRG2200 CCCESSORY must be assemb 2200 CCCESSORY must be assemb 2200 RIFNRG2200 CCCESSORY must be assemb 0800 GP2VN GP2VN	As sta 0900 DRENRG0900 Deled in the factory 2400 DRENRG2400 Deled in the factory 0900 RIFNRG0900 Deled in the factory 2400 RIFNRG2400 Deled in the factory 0900 GP2VN GP2VN	1000 DRENRG1000 2600 DRENRG2600 1000 RIFNRG1000 2600 RIFNRG2600 1000 GP2VN GP3G	1100 DRENRG1100 2800 D DRENRG2800 1100 RIFNRG1100 2800 D RIFNRG2800 1100 GP2VN GP3G	1200	1400 DRENRG1400 0 33000 1400 RIFNRG1400 0 30000 1400 GP3G GP4GM	1600 DRENRG1600 3200 DRENRG3200 1600 RIFNRG1600 3200 RIFNRG3200 1600 GP3G GP4GM	As standard 1800 DRENRG1800 3400 DRENRG3400 1800 RIFNRG1800 3400 RIFNRG3400 1800 GP4G GP5G	2000 DRENRG2000 3600 DRENRG3600 RIFNRG200 RIFNRG3600 2000 RIFNRG3600 2000 GP4G GP5G
E, L, N U evice o page back nti-int	As standard DCPX171 for peak currer Ver , A, E, L, N, U gground indicates the a Ver , A, E, L, N, U gground indicates the a factor correctio Ver , A, E, L, N, U gground indicates the a trusion grid Ver A, L E, U N	DCPX172 nt reduction 0800 DRENRG0800 CCCESSORY must be assemb 2200 DRENRG2200 CCCESSORY must be assemb 0800 RIFNRG0800 CCCESSORY must be assemb 2200 RIFNRG2200 CCCESSORY must be assemb 2200 CCCESSORY must be assemb 2200 RIFNRG2200 CCCESSORY must be assemb 0800 GP2VN GP2VN GP3G	As sta 0900 DRENRG0900 Deled in the factory 2400 DRENRG2400 DRENRG2400 Deled in the factory 2400 RIFNRG0900 Deled in the factory 2400 RIFNRG2400 Deled in the factory 2400 RIFNRG2400 Deled in the factory 0900 GP2VN GP2VN GP3G GP4GM	1000 DRENRG1000 2600 DRENRG2600 1000 RIFNRG1000 2600 RIFNRG2600 1000 GP2VN GP3G GP3G	### As standard 1100	1200	1400 DRENRG1400 0 33000 1400 RIFNRG1400 0 3000 1400 GP3G GP4GM GP5GM	1600 DRENRG1600 3200 DRENRG3200 1600 RIFNRG1600 3200 RIFNRG3200 1600 GP3G GP4GM GP5GM	### As standard 1800	2000 DRENRG200 3600 DRENRG3600 RIFNRG200 3600 RIFNRG3600 2000 GP4G GP5G GP7G
E, L, N U evice o page back nti-int	As standard DCPX171 for peak currer Ver , A, E, L, N, U gground indicates the a Ver , A, E, L, N, U gground indicates the a factor correctio Ver , A, E, L, N, U gground indicates the a trusion grid Ver A, L E, U N	DCPX172 nt reduction 0800 DRENRG0800 ccessory must be assemb 2200 DRENRG2200 ccessory must be assemb 0800 RIFNRG0800 ccessory must be assemb 2200 RIFNRG2200 ccessory must be assemb 0800 GP2VN GP2VN GP3G GP4GM	As sta 0900 DRENRG0900 Deled in the factory 2400 DRENRG2400 DRENRG2400 Deled in the factory 2400 RIFNRG0900 Deled in the factory 2400 RIFNRG2400 Deled in the factory 2400 RIFNRG2400 Deled in the factory 0900 GP2VN GP2VN GP3G GP4GM	1000 DRENRG1000 2600 DRENRG2600 1000 RIFNRG1000 2600 RIFNRG2600 1000 GP2VN GP3G GP3G	### As standard 1100	1200	1400 DRENRG1400 0 3000 1400 RIFNRG1400 0 3000 1400 GP3G GP4GM GP5GM GP5GM	1600 DRENRG1600 3200 DRENRG3200 1600 RIFNRG1600 3200 RIFNRG3200 1600 GP3G GP4GM GP5GM	### As standard 1800	2000 DRENRG200 3600 DRENRG3600 RIFNRG200 3600 RIFNRG3600 2000 GP4G GP5G GP7G
evice o o o grey back o o o n o n o n o n o n o n o n o n o n o n o n o n o n o n o n o o	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the a Ver , A, E, L, N, U ground indicates the a factor correctio Ver , A, E, L, N, U ground indicates the a trusion grid Ver A, L E, U N ground indicates the a	DCPX172 nt reduction 0800 DRENRG0800 ccessory must be assemb 2200 DRENRG2200 ccessory must be assemb 0800 RIFNRG0800 ccessory must be assemb 2200 RIFNRG2200 ccessory must be assemb 0800 GP2VN GP2VN GP2VN GP3G GP4GM ccessory must be assemb	As sta 0900 DRENRG0900 Deled in the factory 2400 DRENRG2400 Deled in the factory 0900 RIFNRG0900 Deled in the factory 2400 RIFNRG2400 Deled in the factory 2400 RIFNRG2400 Deled in the factory 0900 GP2VN GP2VN GP3G GP4GM Deled in the factory	1000 DRENRG1000 2600 DRENRG2600 1000 RIFNRG1000 2600 RIFNRG2600 900 RIFNRG2600 1000 GP2VN GP3G GP3G GP4GM	### As standard 1100	1200	1400 DRENRG1400 0 33000 1400 RIFNRG1400 0 3000 1400 GP3G GP4GM GP5GM GP5GM	1600 DRENRG1600 3200 DRENRG3200 1600 RIFNRG1600 3200 RIFNRG3200 6P3G GP4GM GP5GM GP6G	As standard 1800 DRENRG1800 3400 DRENRG3400 1800 RIFNRG1800 3400 RIFNRG3400 6P4G 6P5G 6P6G 6P7G	2000 DRENRG200 3600 DRENRG3600 RIFNRG200 RIFNRG3600 RIFNRG3600 GP4G GP5G GP7G GP8G
evice o o o grey back o o o n o n o n o n o n o n o n o n o n o n o n o n o n o n o n o o	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the a Ver , A, E, L, N, U ground indicates the a factor correctio Ver , A, E, L, N, U ground indicates the a trusion grid Ver A, L E, U N ground indicates the a Ver A, L E, U N ground indicates the a	DCPX172 nt reduction 0800 DRENRG0800 ccessory must be assemb 2200 DRENRG2200 ccessory must be assemb 0800 RIFNRG0800 ccessory must be assemb 2200 RIFNRG2200 ccessory must be assemb 2200 RIFNRG2200 ccessory must be assemb 0800 GP2VN GP2VN GP3G GP4GM ccessory must be assemb	As sta 0900 DRENRG0900 Deled in the factory 2400 DRENRG2400 DRENRG2400 Deled in the factory 2400 RIFNRG0900 Deled in the factory 2400 RIFNRG2400 Deled in the factory 2400 GP2VN GP2VN GP3G GP4GM Deled in the factory 2400 Deled in the factory 2400	1000 DRENRG1000 2600 DRENRG2600 1000 RIFNRG1000 2600 RIFNRG2600 1000 GP2VN GP3G GP3G GP4GM	### As standard ### As standar	1200	As st. 1400 DRENRG1400 0 33000 1400 RIFNRG1400 0 3000 1400 GP3G GP4GM GP5GM GP5GM GP5GM G	1600 DRENRG1600 3200 DRENRG3200 1600 RIFNRG1600 3200 RIFNRG3200 6096 GP4GM GP5GM GP6G	As standard 1800 DRENRG1800 3400 DRENRG3400 1800 RIFNRG1800 3400 RIFNRG3400 1800 GP4G GP5G GP6G GP7G	2000 DRENRG200 3600 DRENRG3600 RIFNRG200 RIFNRG3600 RIFNRG3600 GP4G GP5G GP7G GP8G
E, L, N U evice o o o o o o o o o o o o o o o o o o	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the a Ver , A, E, L, N, U ground indicates the a factor correctio Ver , A, E, L, N, U ground indicates the a Ver , A, E, L, N, U ground indicates the a trusion grid Ver A, L E, U N ground indicates the a Ver A, L E, U N ground indicates the a Ver A, L E, U N ground indicates the a	DCPX172 nt reduction 0800 DRENRG0800 ccessory must be assemb 2200 DRENRG2200 ccessory must be assemb 0800 RIFNRG0800 ccessory must be assemb 2200 RIFNRG2200 ccessory must be assemb 2200 CCESSORY must be assemb 0800 GP2VN GP2VN GP3G GP4GM ccessory must be assemb 2200 GP4G GP4G GP4G	As sta 0900 DRENRG0900 Deled in the factory 2400 DRENRG2400 Deled in the factory 0900 RIFNRG0900 Deled in the factory 2400 RIFNRG2400 Deled in the factory 0900 GP2VN GP2VN GP3G GP4GM Deled in the factory 2400 GP5G GP6G	1000 DRENRG1000 2600 DRENRG2600 1000 RIFNRG1000 2600 RIFNRG2600 1000 GP2VN GP3G GP3G GP4GM 2600 GP11G GP11G	## Standard ##	1200	As st. 1400 DRENRG1400 0 33000 1400 RIFNRG1400 0 GP3G GP4GM GP5GM GP5GM GP5GM 0 G	1600 DRENRG1600 3200 DRENRG3200 1600 RIFNRG1600 3200 RIFNRG3200 6P3G GP4GM GP5GM GP6G 3200 GP11G GP12G	As standard 1800 DRENRG1800 3400 DRENRG3400 1800 RIFNRG1800 3400 RIFNRG3400 6P4G 6P5G 6P6G 6P7G 3400 GP11G GP13G	2000 DRENRG2000 3600 DRENRG3600 2000 RIFNRG2000 RIFNRG3600 2000 GP4G GP5G GP7G GP8G 3600 GP12G GP13G
E, L, N U Vevice o o o grey back o o grey back o grey back r grey back r grey back r grey back r grey back	As standard DCPX171 for peak currer Ver , A, E, L, N, U ground indicates the a Ver , A, E, L, N, U ground indicates the a factor correctio Ver , A, E, L, N, U ground indicates the a trusion grid Ver A, L E, U N ground indicates the a trusion grid Ver c a yer A, L E, U N ground indicates the a ver c ground indicates the a ver c ground indicates the a	DCPX172 nt reduction 0800 DRENRG0800 ccessory must be assemb 2200 DRENRG2200 ccessory must be assemb 0800 RIFNRG0800 ccessory must be assemb 2200 RIFNRG2200 ccessory must be assemb 0800 GP2VN GP2VN GP3G GP4GM ccessory must be assemb	As sta 0900 DRENRG0900 Deled in the factory 2400 DRENRG2400 DRENRG2400 Deled in the factory 2400 RIFNRG0900 Deled in the factory 2400 RIFNRG2400 Deled in the factory 2400 GP2VN GP3G GP4GM Deled in the factory 2400 GP5G	1000 DRENRG1000 2600 DRENRG2600 1000 RIFNRG1000 2600 RIFNRG2600 9200 GP2VN GP3G GP3G GP4GM 2600 GP11G	### As standard 1100	1200	1400 DRENRG1400 0 33000 1400 RIFNRG1400 0 3000 1400 GP3G GP4GM GP5GM GP5GM GP5GM GP5GM GP5GM GP5GM	1600 DRENRG1600 3200 DRENRG3200 1600 RIFNRG1600 3200 RIFNRG3200 6P3G GP4GM GP5GM GP6G 3200 GP11G	As standard 1800 DRENRG1800 3400 DRENRG3400 1800 RIFNRG1800 3400 RIFNRG3400 6P4G GP5G GP6G GP7G 3400 GP11G	2000 DRENRG200 3600 DRENRG3600 RIFNRG200 RIFNRG3600 RIFNRG3600 GP4G GP5G GP7G GP8G 3600 GP12G

■ GP2VN becomes GP2VNA if configured with a type A or B hydronic

Double safety valves

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000
°, A, E, L, N, U	T6NRGLS1	T6NRGLS1	T6NRGLS1	T6NRGLS1	T6NRGLS1	T6NRGLS1	T6NRGLS1	T6NRGLS2	T6NRGLS3
A grey background indicates the	accessory must be asse	embled in the factory							
Ver	2200	2400	2600	2800		3000	3200	3400	3600
°, A, E, L, N, U	T6NRGLS3	T6NRGLS3	T6NRGLS3	T6NRGLS	4	T6NRGLS5	T6NRGLS5	T6NRGLS5	T6NRGLS5

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Fiel	d	Description
1,2,		NRG
-,4,	,-	Size
4,5,	,6,7	0800, 0900, 1000, 1100, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, 3200, 3400, 3600
8		Operating field
_	Χ	Electronic thermostatic expansion valve (1)
_	Z	Low temperature electronic thermostatic valve (2)
9		Model
	0	Cooling only
10		Heat recovery
	D	With desuperheater (3)
	T	With total recovery (4)
	0	Without heat recovery
11		Version
	0	Standard
	Α	High efficiency
	<u>E</u>	Silenced high efficiency
_	<u>L</u>	Standard silenced
	N	Silenced very high efficiency
12	U	Very high efficiency
12	1	Copper aluminium
_	0	Copper-aluminium Coated aluminium microchannel
_	R	Copper-copper
	S	Tinned copper
_	V	Copper-painted alumimium
	0	Aluminium microchannel
13		Fans
	J	Inverter
	М	Oversized (5)
14		Power supply
	0	400V ~ 3 50Hz with magnet circuit breakers
15,	16	Integrated hydronic kit
	00	Without hydronic kit
		Kit with n° 1 pump
	PA	Pump A
_	PB	Pump B
	PC	Pump C
	PD	Pump D
_	PE	Pump E
	PF PG	Pump F Pump G
_	PH	Pump H
	PI	Pump I
_	PJ	Pump J (6)
_		Pump n° 1 pump + stand-by pump
	DA	Pump A + stand-by pump
_	DB	Pump B + stand-by pump
	DC	Pump C + stand-by pump
	DD	Pump D + stand-by pump
	DE	Pump E + stand-by pump
_	DF	Pump F + stand-by pump
	DG	Pump G + stand-by pump
	DH	Pump H + stand-by pump
	DI	Pump I + stand-by pump
	DJ	Pump J + stand-by pump (6)
		Kit with storage tank and n° 1 pump
	AA	Storage tank and pump A
	AB	Storage tank and pump B
	AC	Storage tank and pump C
	AD AE	Storage tank and pump D
	AE AF	Storage tank and pump E
	AF	Storage tank and pump F Storage tank and pump G
	AH	Storage tank and pump H
	Al	Storage tank and pump l
	AJ	Storage tank and pump J (6)
		Kit with storage tank and n° 1 pump + stand-by pump
_	BA	Storage tank with pump A + stand-by pump
	٥.١	

Field	Description
Field	Description
BB	Storage tank with pump B + stand-by pump
BC	Storage tank with pump C + stand-by pump
BD	Storage tank with pump D + stand-by pump
BE	Storage tank with pump E + stand-by pump
BF	Storage tank with pump F + stand-by pump
BG	Storage tank with pump G + stand-by pump
BH	Storage tank with pump H + stand-by pump
BI	Storage tank with pump I + stand-by pump
BJ	Storage tank with pump J + stand-by pump (6)
	Kit with n° 1 inverter pump to fixed speed
IA	Pump A equipped with inverter device to work at fixed speed
IB	Pump B equipped with inverter device to work at fixed speed
IC	Pump C equipped with inverter device to work at fixed speedr
ID	Pump D equipped with inverter device to work at fixed speed
IE	Pump E equipped with inverter device to work at fixed speed
IF	Pump F equipped with inverter device to work at fixed speed (7)
IG	Pump G equipped with inverter device to work at fixed speed (7)
IH	Pump H equipped with inverter device to work at fixed speed (7)
	Pump I equipped with inverter device to work at fixed speed (7)
IJ	Pump J equipped with inverter device to work at fixed speed (8)
	Kit with n° 1 inverter pump + stand-by pump to fixed speed
JA	Pump A+stand-by pump, both equipped with inverter to work at fixed speed
JB	Pump B+stand-by pump, both equipped with inverter to work at fixed speed
JC	Pump C+stand-by pump, both equipped with inverter to work at fixed speed
JD	Pump D+stand-by pump, both equipped with inverter to work at fixed speed
JE	Pump E+stand-by pump, both equipped with inverter to work at fixed speed
JE	
	Pump F+stand-by pump, both equipped with inverter to work at fixed speed (7)
JG	Pump G+stand-by pump, both equipped with inverter to work at fixed speed (7)
JH	Pump H+stand-by pump, both equipped with inverter to work at fixed speed (7)
JI	Pump I+stand-by pump, both equipped with inverter to work at fixed speed (7)
JJ	Pump J+stand-by pump, both equipped with inverter to work at fixed speed (8)
	Kit with storage tank and n° 1 inverter pump to fixed speed
CA	Buffer tank + pump A, equipped with inverter to work at fixed speed
CB	Buffer tank + pump B, equipped with inverter to work at fixed speed
	Buffer tank + pump C, equipped with inverter to work at fixed speed
CD	Buffer tank + pump D, equipped with inverter to work at fixed speed
EC	Buffer tank + pump E, equipped with inverter to work at fixed speed
CF	Buffer tank + pump F, equipped with inverter to work at fixed speed (7)
CG	Buffer tank + pump G, equipped with inverter to work at fixed speed (7)
CH	Buffer tank + pump H, equipped with inverter to work at fixed speed (7)
CI	Buffer tank + pump I, equipped with inverter to work at fixed speed (7)
()	Buffer tank + pump J, equipped with inverter to work at fixed speed (7)
	Kit with storage tank and n° 1 pump + stand-by pump to fixed speed
KA	Buffer tank+pump A+stand-by pump, both with inverter to work at fixed speed
KB	Buffer tank+pump B+stand-by pump, both with inverter to work at fixed speed
KC	Buffer tank+pump C+stand-by pump, both with inverter to work at fixed speed
KD	Buffer tank+pump D+stand-by pump, both with inverter to work at fixed speed
KE	Buffer tank+pump E+stand-by pump, both with inverter to work at fixed speed
KF	Buffer tank+pump F+stand-by pump, both with inverter to work at fixed speed (7)
KG	Buffer $tank+pump\ G+stand-by\ pump,\ both\ with\ inverter\ to\ work\ at\ fixed\ speed\ (7)$
KH	Buffer tank+pump H+stand-by pump, both with inverter to work at fixed speed (7)
KI	Buffer tank+pump I+stand-by pump, both with inverter to work at fixed speed (7)
KJ	Buffer tank+pump J+stand-by pump, both with inverter to work at fixed speed (8)

- (1) Water produced from 4 °C ÷ 20 °C
 (2) Water produced from 8 °C ÷ -10 °C
 (3) Warning: on the recovery side, a minimum input temperature of 35°C must always be guaranteed on the heat exchanger. For more information about the unit operating range, refer to the Magellano selection program
 (4) None of the hydronic kits (from PA to KJ) are compatible with the following sizes and with versions with heat recovery T. 0800 0900 11000 11000 version °; 0800 0900 version L. None of the hydronic kits with pump(s) and storage tank (AA AJ, BA-BJ, CA-CJ, KA-KJ) are compatible with all the sizes and with versions with heat recovery T. Total recovery is not compatible with sizes from 2600 to 3600.
 (5) For all configurations including pump J please contact the factory.

- (6) For all configurations including pump J please contact the factory.

 (7) Hydronic kit not available with sizes 0800 version °/L/A, 0900 version °/L/A, 1000 version °, 1100 version
- (8) For all possible configurations which include the "J" pump please be in touch with Aermec. Hydronic kit is not available with sizes 0800 version °/L/A, 0900 version °/L/A, 1000 version °, 1100 version °.

PERFORMANCE SPECIFICATIONS

NRG - °

41																		
Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: J, M																		
Cooling performance 12 °C/7 °C (1)																		
Cooling capacity	kW	229,0	251,4	278,2	314,5	372,4	399,7	459,4	532,8	593,5	635,8	698,1	742,2	792,8	849,5	890,4	929,9	988,3
Input power	kW	70,6	80,3	90,1	107,8	118,6	129,5	152,5	170,8	197,3	212,9	226,5	237,4	260,6	286,7	302,3	318,7	329,5
Cooling total input current	А	121,9	138,4	155,6	182,3	197,6	222,2	248,5	282,0	325,0	353,5	366,3	399,8	449,0	492,2	512,4	547,7	550,4
EER	W/W	3,24	3,13	3,09	2,92	3,14	3,09	3,01	3,12	3,01	2,99	3,08	3,13	3,04	2,96	2,94	2,92	3,00
Water flow rate system side	I/h	39392	43247	47863	54104	64061	68767	79015	91640	102081	109354	120062	127638	136347	146093	153120	159916	169959
Pressure drop system side	kPa	36	44	54	51	60	62	42	57	62	62	64	64	73	80	83	85	93

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - L

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: J, M																		
Cooling performance 12 °C/7 °C (1)																		
Cooling capacity	kW	225,7	247,6	279,0	317,6	360,5	410,2	451,3	526,9	590,3	640,5	679,3	730,9	800,5	861,6	899,4	951,1	987,3
Input power	kW	70,6	80,3	88,3	106,0	121,5	133,0	151,3	171,3	200,0	209,3	224,5	239,4	260,0	286,0	302,8	314,0	330,1
Cooling total input current	Α	121,4	138,2	148,4	174,4	201,5	215,7	242,7	276,7	323,2	337,2	364,0	394,9	431,3	474,5	494,3	508,7	532,6
EER	W/W	3,20	3,09	3,16	3,00	2,97	3,08	2,98	3,08	2,95	3,06	3,03	3,05	3,08	3,01	2,97	3,03	2,99
Water flow rate system side	l/h	38832	42603	47996	54644	62004	70568	77616	90617	101513	110161	116806	125699	137666	148170	154674	163553	169784
Pressure drop system side	kPa	36	43	42	48	47	53	41	49	53	62	39	59	67	73	78	86	80

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - A

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: J, M																		
Cooling performance 12 °C/7 °C (1)																		
Cooling capacity	kW	230,4	253,6	287,0	328,9	374,1	424,3	468,8	542,9	608,8	663,3	702,9	746,1	816,2	880,4	920,3	971,2	1009,6
Input power	kW	69,3	78,3	86,3	100,7	116,2	127,9	144,7	163,4	187,9	202,4	217,9	234,1	256,3	277,8	293,3	308,5	323,4
Cooling total input current	А	123,4	139,3	150,6	173,7	197,3	214,7	238,4	274,6	316,8	334,0	357,6	399,8	438,4	479,1	497,8	515,6	537,7
EER	W/W	3,33	3,24	3,33	3,27	3,22	3,32	3,24	3,32	3,24	3,28	3,23	3,19	3,18	3,17	3,14	3,15	3,12
Water flow rate system side	l/h	39642	43624	49381	56584	64350	72980	80631	93379	104697	114081	120866	128314	140372	151403	158257	167010	173615
Pressure drop system side	kPa	37	45	44	52	52	56	44	53	58	67	42	61	70	77	81	90	84

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - E

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: J, M																		
Cooling performance 12 °C/7 °C(1)																		
Cooling capacity	kW	229,7	256,5	280,7	330,9	378,2	424,6	466,3	542,7	617,8	652,1	705,8	746,7	822,8	892,1	930,9	968,4	1019,2
Input power	kW	68,3	77,4	86,8	100,0	116,7	128,4	144,7	165,0	186,7	203,2	214,1	234,1	256,2	278,2	294,6	306,7	322,4
Cooling total input current	Α	116,2	132,1	148,6	167,0	190,7	208,2	231,2	268,2	302,4	326,9	343,4	385,3	425,5	457,4	475,2	501,3	515,7
EER	W/W	3,37	3,32	3,24	3,31	3,24	3,31	3,22	3,29	3,31	3,21	3,30	3,19	3,21	3,21	3,16	3,16	3,16
Water flow rate system side	l/h	39530	44119	48278	56919	65043	73027	80200	93338	106248	112132	121358	128409	141496	153408	160081	166526	175267
Pressure drop system side	kPa	38	35	38	48	39	38	44	47	59	45	37	62	67	78	83	78	82

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - U

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: J, M																		
Cooling performance 12 °C/7 °C (1)																		
Cooling capacity	kW	234,8	263,0	288,8	339,2	389,3	435,6	479,7	558,1	634,0	671,3	725,0	756,9	834,1	903,8	943,7	982,9	1033,7
Input power	kW	68,2	76,5	85,2	99,1	114,3	126,8	142,5	163,7	185,1	200,1	212,0	231,3	253,6	274,6	290,0	304,2	319,2
Cooling total input current	Α	120,5	135,5	150,8	171,3	192,6	212,3	233,1	271,5	307,9	329,7	348,7	392,9	434,6	469,5	486,6	510,4	528,3
EER	W/W	3,44	3,44	3,39	3,42	3,41	3,44	3,37	3,41	3,43	3,35	3,42	3,27	3,29	3,29	3,25	3,23	3,24
Water flow rate system side	l/h	40397	45241	49677	58351	66957	74921	82502	95984	109036	115443	124657	130163	143439	155430	162284	169028	177747
Pressure drop system side	kPa	40	36	41	50	40	39	47	49	62	48	39	57	69	81	82	80	85

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - N

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: J, M																		
Cooling performance 12 °C/7 °C(1)																		
Cooling capacity	kW	235,0	262,1	290,7	339,2	389,2	430,7	481,8	556,2	627,9	670,3	719,8	759,5	831,3	900,0	938,8	977,7	1019,2
Input power	kW	67,2	76,1	85,1	98,7	113,4	126,5	141,8	163,9	184,6	198,3	212,1	231,2	253,1	273,9	290,2	304,4	317,8
Cooling total input current	Α	114,7	129,5	144,6	163,8	185,1	208,2	225,3	262,3	297,3	320,1	337,6	379,3	419,5	452,9	470,1	494,4	515,7
EER	W/W	3,50	3,44	3,42	3,44	3,43	3,40	3,40	3,39	3,40	3,38	3,39	3,29	3,28	3,29	3,24	3,21	3,21
Water flow rate system side	l/h	40430	45090	50006	58350	66941	74070	82857	95663	107988	115265	123768	130611	142953	154767	161439	168129	175265
Pressure drop system side	kPa	41	38	41	50	41	38	42	49	61	47	39	61	69	80	85	79	82

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: J																			
SEER - 12/7 (EN 14825: 2018) (1)																			
	٥	W/W	4,60	4,60	4,51	4,53	4,68	4,61	4,75	4,72	4,67	4,72	4,66	4,92	5,04	5,03	4,98	4,93	4,96
	A	W/W	4,82	4,85	4,82	4,84	4,85	4,85	4,87	4,92	4,91	4,90	4,85	5,01	5,15	5,19	5,14	5,08	5,04
CLLD	E	W/W	4,93	4,97	4,90	4,95	4,95	5,06	5,03	5,14	5,09	4,99	4,97	5,03	5,13	5,12	5,08	5,10	5,04
SEER	L	W/W	4,74	4,74	4,81	4,80	4,79	4,99	4,84	4,98	4,97	4,96	4,93	4,94	5,07	5,10	5,07	5,04	5,01
	N	W/W	5,01	5,03	5,05	5,08	5,06	5,17	5,14	5,19	5,14	5,06	5,01	5,10	5,19	5,16	5,12	5,13	5,11
	U	W/W	4,88	4,89	4,91	4,94	4,93	4,87	4,95	4,96	4,87	4,84	4,84	5,11	5,25	5,25	5,14	5,12	5,10
	0	%	181,20	180,81	177,55	178,19	184,10	181,33	187,11	185,77	183,62	185,93	183,49	193,99	198,74	198,31	196,15	194,31	195,2
	A	%	189,63	191,00	189,65	190,48	191,13	191,01	191,98	193,63	193,20	192,83	191,19	197,45	203,06	204,69	202,63	200,04	198,7
C	E	%	194,09	195,85	192,97	195,14	195,09	199,22	198,28	202,75	200,40	196,73	195,73	198,31	202,20	201,77	200,04	200,90	198,7
Seasonal efficiency	L	%	186,54	186,65	189,26	188,90	188,53	196,47	190,41	196,04	195,71	195,37	194,18	194,42	199,96	200,82	199,61	198,74	197,4
	N	%	197,31	198,10	199,16	200,08	199,21	203,95	202,63	204,40	202,46	199,48	197,51	200,90	204,54	203,58	201,92	202,36	201,3
	U	%	192,19	192,79	193,28	194,65	194,13	191,62	194,98	195,59	191,72	190,54	190,68	201,34	206,95	207,06	202,63	201,77	200,9
SEER - 23/18 (EN 14825: 2018) (1)																			
	0	W/W	5,47	5,43	5,32	5,34	5,61	5,49	5,60	5,61	5,55	5,57	5,56	5,81	5,97	5,97	5,90	5,85	5,86
	A	W/W	5,77	5,79	5,79	5,78	5,74	5,78	5,72	5,84	5,84	5,84	5,80	6,00	6,17	6,22	6,15	6,07	6,03
CEED	E	W/W	5,91	5,94	5,80	5,90	5,83	6,01	5,91	6,08	6,01	5,92	5,92	5,96	6,08	6,06	6,01	6,04	5,97
SEER	L	W/W	5,69	5,66	5,69	5,66	5,59	5,88	5,64	5,82	5,80	5,81	5,77	5,78	5,95	5,97	5,94	5,91	5,87
	N	W/W	6,04	6,05	6,05	6,11	6,03	6,11	6,07	6,16	6,10	6,02	5,99	6,07	6,18	6,14	6,09	6,11	6,08
	U	W/W	5,93	5,92	5,90	5,96	5,89	5,80	5,87	5,93	5,86	5,85	5,86	6,18	6,35	6,35	6,21	6,19	6,16
	0	%	215,77	214,03	209,84	210,78	221,22	216,68	221,00	221,39	218,97	219,81	219,27	229,30	235,87	235,76	233,09	230,91	231,5
	A	%	227,94	228,49	228,46	228,12	226,73	228,27	225,89	230,58	230,52	230,72	229,10	236,89	243,65	245,61	243,10	239,80	238,3
	E	%	233,50	234,52	229,14	233,17	230,29	237,47	233,26	240,04	237,31	233,77	233,69	235,56	240,22	239,55	237,47	238,59	235,9
Seasonal efficiency	L	%	224,54	223,48	224,79	223,35	220,60	232,13	222,79	229,99	229,03	229,46	227,62	228,35	234,91	235,86	234,41	233,25	231,6
	N	%	238,70	239,11	239,16	241,55	238,13	241,52	239,72	243,56	240,96	237,95	236,49	239,74	244,07	242,76	240,75	241,39	240,1
	U	%	234,19	233,99	232,90	235,60	232,79	228,85	231,88	234,26	231,29	230,89	231,57	244,25	250,90	250,85	245,47	244,48	243,4
SEPR - (EN 14825: 2018) (2)																			
	0	W/W	5,84	5,73	5,82	5,67	5,95	6,14	6,27	6,31	6,09	6,12	6,30	6,38	6,60	6,61	6,53	6,47	6,47
	A	W/W	6,12	6,09	6,21	6,13	6,12	6,35	6,41	6,46	6,38	6,45	6,48	6,68	6,89	6,96	6,89	6,78	6,74
CEDD	E	W/W	6,24	6,26	6,28	6,23	6,14	6,72	6,72	6,78	6,73	6,64	6,62	6,70	6,84	6,82	6,77	6,80	6,72
SEPR	L	W/W	6,10	6,05	6,16	6,08	5,87	6,54	6,44	6,56	6,54	6,50	6,43	6,47	6,67	6,73	6,70	6,64	6,69
	N	W/W	6,36	6,35	6,37	6,38	6,43	6,82	6,80	6,93	6,85	6,78	6,71	6,85	6,99	6,95	6,89	6,92	6,88
		W/W	6,38	6,36	6,36	6,25	6,30	6,55	6,63	6,55	6,50	6,59	6,64	7,01	7,21	7,21	7,05	7,02	6,98

⁽¹⁾ Calculation performed with VARIABLE water flow rat(2) Calculation performed with FIXED water flow rate

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: M																			
SEER - 12/7 (EN 14825: 2018) (1)																			
	•	W/W	4,49	4,48	4,42	4,45	4,34	4,42	4,56	4,59	4,55	4,62	4,57	4,60	4,62	4,64	4,65	4,67	4,63
	A	W/W	4,57	4,61	4,59	4,64	4,66	4,81	4,78	4,81	4,82	4,77	4,73	4,63	4,66	4,69	4,71	4,69	4,69
SEER	E	W/W	4,66	4,72	4,70	4,75	4,74	4,81	4,83	4,88	4,86	4,81	4,82	4,69	4,68	4,69	4,67	4,67	4,69
SEEN	L	W/W	4,52	4,54	4,61	4,61	4,60	4,81	4,74	4,81	4,80	4,80	4,78	4,63	4,65	4,65	4,65	4,64	4,65
	N	W/W	4,74	4,77	4,84	4,86	4,84	4,93	4,93	4,92	4,91	4,88	4,87	4,72	4,70	4,72	4,72	4,70	4,72
	U	W/W	4,63	4,66	4,68	4,74	4,73	4,82	4,86	4,86	4,78	4,72	4,73	4,67	4,71	4,73	4,72	4,73	4,71
	•	%	176,62	176,29	173,89	175,16	170,44	173,62	179,47	180,79	179,09	181,96	179,69	180,94	181,88	182,75	183,18	183,61	182,32
	A	%	179,65	181,43	180,66	182,42	183,41	189,30	188,26	189,31	189,61	187,82	186,31	182,32	183,56	184,74	185,26	184,44	184,41
Cosconal officiones	E	%	183,47	185,88	184,93	186,81	186,78	189,58	190,12	192,35	191,44	189,50	189,92	184,46	184,04	184,46	183,61	183,98	184,46
seasonal eniciency	L	%	177,91	178,50	181,50	181,45	181,06	189,43	186,65	189,36	188,92	189,17	188,22	182,32	183,14	183,10	183,14	182,71	183,14
asonal efficiency	N	%	186,42	187,94	190,76	191,43	190,66	194,09	194,23	193,86	193,28	192,09	191,66	185,75	184,92	185,77	185,78	184,89	185,68
	U	%	182,14	183,35	184,17	186,53	186,34	189,96	191,23	191,32	188,27	185,91	186,04	183,61	185,32	186,18	185,78	186,18	185,32
SEER - 23/18 (EN 14825: 2018) (1)																			
	0	W/W	5,33	5,29	5,21	5,25	5,17	5,26	5,21	5,46	5,41	5,44	5,38	5,39	5,43	5,47	5,49	5,51	5,45
	A	W/W	5,47	5,50	5,51	5,53	5,49	5,73	5,61	5,71	5,72	5,69	5,65	5,53	5,56	5,60	5,61	5,59	5,59
SEER	E	W/W	5,59	5,64	5,56	5,65	5,56	5,72	5,67	5,77	5,74	5,70	5,73	5,54	5,52	5,53	5,51	5,52	5,53
SECK	L	W/W	5,43	5,42	5,46	5,43	5,37	5,67	5,53	5,63	5,59	5,62	5,59	5,41	5,43	5,44	5,44	5,42	5,44
	N	W/W	5,71	5,75	5,80	5,84	5,76	5,82	5,82	5,85	5,82	5,80	5,80	5,60	5,58	5,60	5,60	5,58	5,60
	U	W/W	5,62	5,64	5,62	5,71	5,65	5,75	5,76	5,80	5,75	5,70	5,71	5,63	5,68	5,70	5,69	5,71	5,68
	0	%	210,28	208,66	205,52	207,05	203,71	207,46	205,26	215,21	213,44	214,60	212,06	212,65	214,00	215,76	216,46	217,23	214,80
	A	%	215,89	217,00	217,57	218,29	216,47	226,19	221,50	225,43	225,87	224,50	222,82	218,02	219,42	220,85	221,58	220,41	220,54
Conserval officients:	E	%	220,65	222,52	219,54	223,14	219,44	225,89	223,61	227,72	226,58	224,85	226,30	218,58	217,96	218,35	217,34	217,87	218,39
Seasonal efficiency	L	%	214,09	213,68	215,50	214,23	211,81	223,78	218,35	222,16	220,51	221,80	220,63	213,52	214,37	214,43	214,59	213,78	214,59
	N	%	225,54	226,84	229,06	230,70	227,28	229,69	229,77	230,98	229,93	228,93	229,01	221,18	220,09	220,95	220,99	220,05	220,96
	U	%	221,93	222,50	221,86	225,46	222,97	226,86	227,42	229,11	227,10	225,09	225,49	222,28	224,20	225,07	224,68	225,27	224,11

⁽¹⁾ Calculation performed with VARIABLE water flow rate (2) Calculation performed with FIXED water flow rate

Size	'		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
SEPR - (EN 14825: 2018) (2)																			
	٥	W/W	5,68	5,58	5,70	5,58	5,60	5,96	5,95	6,10	5,92	5,97	6,07	5,91	5,95	6,01	6,03	6,05	5,97
	A	W/W	5,79	5,78	5,93	5,95	5,87	6,34	6,27	6,33	6,32	6,30	6,31	6,11	6,16	6,20	6,23	6,19	6,20
CEDD	E	W/W	5,94	5,94	6,04	6,00	5,89	6,41	6,41	6,47	6,44	6,36	6,42	6,18	6,16	6,17	6,15	6,16	6,18
SEPR	L	W/W	5,85	5,77	5,93	5,84	5,63	6,29	6,29	6,35	6,28	6,26	6,21	6,01	6,03	6,04	6,06	6,02	6,13
	N	W/W	6,03	6,02	6,12	6,13	6,17	6,49	6,50	6,60	6,52	6,50	6,49	6,28	6,25	6,27	6,28	6,26	6,28
	U	W/W	6,04	6,05	6,04	6,02	6,07	6,49	6,50	6,41	6.37	6,42	6,46	6,34	6,39	6,42	6,41	6,43	6,40

⁽¹⁾ Calculation performed with VARIABLE water flow rate (2) Calculation performed with FIXED water flow rate

ELECTRIC DATA

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Electric data																			
	0	A	158,2	176,5	198,8	226,7	262,4	290,3	318,1	371,7	417,5	445,4	481,1	542,5	588,3	634,1	662,0	689,9	725,5
Maximum surrent (FLA)	A,L	Α	162,2	180,5	200,6	228,5	256,4	290,1	317,9	369,5	415,3	449,0	476,9	542,5	596,1	641,9	669,8	705,5	733,3
Maximum current (FLA)	E,U	Α	164,0	182,3	200,6	234,3	262,2	295,9	323,7	375,3	426,9	454,8	488,5	550,3	603,9	657,5	685,4	713,3	748,9
	N	Α	169,8	188,1	206,4	240,1	268,0	295,9	329,5	381,1	432,7	460,6	494,3	558,1	611,7	665,3	693,2	721,1	748,9
	0	A	361,6	417,7	440,0	689,0	724,7	752,6	780,4	834,1	879,9	907,7	943,4	1004,8	1050,6	1096,4	1124,3	1152,2	1187,8
Doale current (LDA)	A,L	А	365,6	421,7	441,8	690,8	718,7	752,4	780,2	831,9	877,7	911,3	939,2	1004,8	1058,4	1104,2	1132,1	1167,8	1195,6
Peak current (LRA)	E,U	А	367,4	423,5	441,8	696,6	724,5	758,2	786,0	837,7	889,3	917,1	950,8	1012,6	1066,2	1119,8	1147,7	1175,6	1211,2
	N	A	373,2	429,3	447,6	702,4	730,3	758,2	791,8	843,5	895,1	922,9	956,6	1020,4	1074,0	1127,6	1155,5	1183,4	1211,2

[■] Data calculated without hydronic kit and accessories.

GENERAL TECHNICAL DATA

Compressors

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Compressor																			
Туре	°,A,E,L,N,U	type									Scroll								
Compressor regulation	°,A,E,L,N,U	Туре									0n/0ff								
Number	°,A,E,L,N,U	no.	4	4	4	4	4	4	4	5	6	6	6	7	8	9	9	9	9
Circuits	°,A,E,L,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3
Refrigerant	°,A,E,L,N,U	type									R32								
	0	kg	10,5	10,9	11,3	14,0	15,0	15,0	15,8	20,6	20,6	24,1	29,0	21,0	20,5	21,6	21,6	24,6	29,0
D. C	A,L	kg	11,3	10,9	11,0	15,0	15,8	18,0	18,0	20,6	24,0	24,4	26,3	21,0	24,0	24,0	24,0	24,4	26,3
Refrigerant load circuit 1 (1)	E,U	kg	15,4	15,0	16,1	19,9	19,9	24,0	23,3	25,9	28,1	33,8	30,8	23,3	25,9	28,1	28,1	33,8	30,8
	N	kg	16,0	16,0	17,3	24,2	26,3	26,3	30,8	30,0	37,5	34,1	34,1	30,8	30,0	37,5	37,5	34,1	34,1
	0	kg	10,5	10,9	11,3	14,0	15,0	15,0	15,8	20,6	20,6	25,6	29,0	22,5	20,5	23,6	23,6	26,0	29,0
Deficience the desire (1)	A,L	kg	11,3	10,9	11,0	15,0	15,8	20,5	20,5	20,6	24,0	24,4	26,3	22,5	28,0	24,0	24,0	24,4	26,3
Refrigerant load circuit 2 (1)	E,U	kg	15,4	15,0	16,1	19,9	19,9	25,5	23,3	25,9	28,1	33,8	30,8	23,3	25,9	28,1	28,1	33,8	30,8
	N	kg	16,0	16,0	18,8	25,4	26,3	26,3	30,8	30,0	37,5	34,1	34,1	30,8	30,0	37,5	37,5	34,1	30,8
Refrigerant load circuit 3 (1)	°,A,E,L,N,U	kg	-	-	-	-	-	-	-	-	-	-	-	30,0	30,0	30,0	30,0	30,0	30,0
Potential global heating	°,A,E,L,N,U	GWP								6	75kgCO ₂ e	:q							

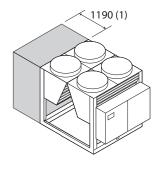
⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

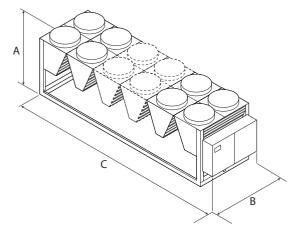
System side heat exchanger

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
System side heat exchanger																			
Tuno	° A E I NIII	tuno	Brazed	Brazed	Brazed	Brazed	Brazed	Brazed	Brazed	Brazed	Brazed								
Туре	°,A,E,L,N,U	type	plate	plate	plate	plate	plate	plate	plate	plate	plate								
Number	°,A,E,L,N,U	no.	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00																			
Hydraulic connections																			
Connections (in/out)	°,A,E,L,N,U	Туре								Gr	ooved joi	nts							
	0	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	5"
Sizes (in/out)	A,L	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	5"	5"
	E,N,U	Ø	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	5"	5"

In the versions without a hydronic kit, the water filter is supplied with a connection point for making the connection. In the versions with a hydronic kit, it is supplied ready-mounted.

Fans


Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: J																			
Inverter fan																			
Туре	°,A,E,L,N,U	type									Axial								
Fan motor	°,A,E,L,N,U	type									Inverter								


⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
	0	no.	4	4	4	4	6	6	6	8	8	8	10	14	14	14	14	14	16
Number -	A,L	no.	4	4	6	6	6	8	8	10	10	12	12	14	16	16	16	18	18
Nullibei –	E,U	no.	6	6	6	8	8	10	10	12	14	14	16	16	18	20	20	20	22
	N	no.	8	8	8	10	10	10	12	14	16	16	18	18	20	22	22	22	22
-	•	m ³ /h	65555	65555	76744	76744	115121	115121	115121	153480	153480	153480	191819	262339	262339	262339	262339	262339	299816
-	A	m³/h	76743	76743	98321	98321	98321	131111	131087	163789	163789	196572	196572	262339	299816	299816	299816	337293	337293
Air flow rate	E L	m ³ /h m ³ /h	74973	74973	74973	99978	99978	124970	124970		174934	174934	199932	254531	285031	315528	315528	315528	346030
-	N N	m ³ /h	62605 99973	62605 99973	74978 99973	74978 124966	74978 124966	99996 124966	99996 149960	124953 174953	124953 199946	149882 199946	149882 224939	213489 285030	243988 315528	243988 346027	243988 346027	274487 346027	274487 346027
-	U	m³/h	98320	98320	98320	131139	131139	163815	163815	196680	229462	229462	262164	299816	337293	374770	374770	374770	412247
Sound data calculated in coolin	g mode (1)	,																	
	0	dB(A)	87,1	87,1	90,5	90,6	92,4	92,5	92,6	93,8	93,8	93,9	94,8	96,5	96,6	96,6	96,6	96,7	97,3
_	A	dB(A)	90,5	90,5	88,1	88,7	89,2	89,9	90,2	90,9	91,5	92,3	92,5	96,5	97,1	97,1	97,1	97,6	97,7
Sound power level –	E	dB(A)	84,4	84,5	84,5	85,8	86,5	87,6	88,1	88,6	89,0	89,7	90,2	93,4	93,9	94,3	94,4	94,4	94,9
-	L	dB(A)	85,1	85,1	84,5	85,1	85,4	86,6	87,2	87,7	88,4	89,1	89,5	89,8	90,1	90,2	90,5	91,0	91,2
=	N	dB(A)	85,3	85,4	85,4	86,9	87,6	88,1	89,0	89,4	89,8	90,5	91,0	93,8	94,2	94,6	94,7	94,8	94,9
(1) Sound power: calculated on the	l hasis of moa	dB(A)	88,6	88,6	88,6	90,1	90,5	91,6	91,9	92,5	93,0	93,2	93,8	97,0	97,5	97,9	98,0	98,0	98,5
		asurcilicitis	made iii d	accordance			_				ion. Jour	•							
Size					0800		0900	10	00	1100		1200	14	100	1600)	1800	2	.000
Fans: M Increased fan																			
Type	0	A,E,L,N,U	tv	pe	Axial		Axial	Δν	rial	Axial		Axial	Δ	xial	Axia		Axial	1	Axial
		°,A,U		pe pe	- (1)		- (1)		(1)	- (1)		- (1)		(1)	- (1)		- (1)		· (1)
Fan motor	_	E,L,N		pe pe	- (2)		- (2)		(2)	- (2)	-	- (2)		(2)	- (2)		- (2)		- (2)
		0	n		4		4		4	4		6		6	6		8		8
Number	_	A,L	n		4		4	(6	6		6		8	8		10		10
Number		E,U	n	0.	6		6	(5	8		8		10	10		12		14
		N	n	0.	8		8	1	8	10		10		10	12		14		16
Without Static pressure																			
	_	0	m ³		76740		76740		744	76744		115121		5121	11512		153480		3480
	_	A	m ³		76743		76743		110	115110		115110		3480	15348		191850		1850
Air flow rate	_	E L	m ³		74973 62605		74973 62605	74	973 978	99978 74978		99978 74978		1970 996	12497 9999		149950 124953		4934 4953
	_	N	III m³		99973		99973	999		124966		124966		1966	14996		174953		19946
	_	U	m ³		115110		115110		110	153480		153480		1850	19185		230220		8590
		0	dB		89,2		89,2),5	90,6		92,4		2,5	92,6		93,8		93,8
	_	A	dB	(A)	90,5		90,5	90),5	90,8		91,1	9	2,1	92,3		93,1	9	93,4
Sound power level		E	dB	(A)	84,4		84,5	84	1,5	85,8		86,5	8	7,6	88,1		88,6	8	39,0
Journa power rever		1	10	(A)	85,1		85,1	84		85,1		85,4		6,6	87,2		87,7	8	38,4
	_	L	dB				0.5		5,4	86,9		87,6	Q	0 1					0 0
	_	N	dB	(A)	85,3		85,4							8,1	89,0		89,4		39,8
(1) Assarbusa	_	N U		(A)	85,3 90,8		90,8),8	92,2		92,5		3,5			89,4 94,3		94,9
(1) Asynchronous (2) Asynchronous with phase cut	_		dB	(A)											89,0				
(2) Asynchronous with phase cut			dB	(A)	90,8	0	90,8	90),8	92,2	2800		9:	3,5	89,0 93,6		94,3	ç	94,9
(2) Asynchronous with phase cut Size			dB	(A)		0		90		92,2	2800			3,5	89,0			ç	
(2) Asynchronous with phase cut			dB	(A)	90,8	0	90,8	90),8	92,2	2800		9:	3,5	89,0 93,6		94,3	ç	94,9
(2) Asynchronous with phase cut Size Fans: M	-		dB dB	(A)	90,8		90,8	90),8	92,2	2800 Axial		9:	3,5	89,0 93,6	3	94,3	36	94,9
(2) Asynchronous with phase cut Size Fans: M Increased fan Type		U °,A,E,L,N,U °,A,U	dB dB	(A) (A)	90,8 220 Axid	al)	90,8 240 Axia - (1)	90	2600 Axial	92,2	Axial - (2)		3000 Axial - (2)	3,5	89,0 93,6 3200 Axial - (2)	3	94,3 3400 Axial - (2)	36 Az	500 xial (2)
(2) Asynchronous with phase cut Size Fans: M Increased fan	•	U °,A,E,L,N,U °,A,U E,L,N	dB dB	(A) (A) ype ype ype	90,8 220 Axia - (1	al)	90,8 240 Axia - (1) - (2)	90	2600 Axial - (2) - (2)	92,2	Axial - (2) - (2)		3000 Axial - (2) - (2)	3,5	89,0 93,6 3200 Axial - (2) - (2)	3	94,3 3400 Axial - (2) - (2)	36 Ax	500 xial (2)
(2) Asynchronous with phase cut Size Fans: M Increased fan Type		°,A,E,L,N,U °,A,U E,L,N °	dB dB	ype ype ype ype	90,8 220 Axia - (1 - (2 8	al)	90,8 240 Axia - (1) - (2) 10	90	Axial - (2) - (2) 14	92,2	Axial - (2) - (2) 14		3000 Axial - (2) - (2)	3,5	89,0 93,6 3200 Axial - (2) - (2) 14	3	94,3 3400 Axial - (2) - (2) 14	36 Ax	500 xial (2) (2)
(2) Asynchronous with phase cut Size Fans: M Increased fan Type		°,A,E,L,N,U °,A,U E,L,N ° A,L	dB dB	ype ype ype ype no.	90,8 220 Axia - (1 - (2 8 12	al)	90,8 240 Axia - (1) - (2) 10 12	90	Axial - (2) - (2) 14 14	92,2	Axial - (2) - (2) 14 16		3000 Axial - (2) - (2) 14 16	3,5	89,0 93,6 3200 Axial - (2) - (2) 14 16	3	94,3 8400 Axial - (2) - (2) 14 18	36 Ax	500 500 xial (2) (2) (2)
(2) Asynchronous with phase cut Size Fans: M Increased fan Type Fan motor	-	°,A,E,L,N,U °,A,U E,L,N ° A,L E,U	dB dB	ype ype ype no. no.	90,8 220 Axia - (1 - (2 8 12 14	al))	90,8 Axia - (1) - (2) 10 12 16	90	Axial - (2) - (2) 14 14 16	92,2	Axial - (2) - (2) 14 16 18		3000 Axial - (2) - (2) 14 16 20	3,5	89,0 93,6 3200 Axial - (2) - (2) 14 16 20	3	94,3 8400 Axial - (2) - (2) 14 18 20	36 Ax	500 xial (2) (2) 16 18 22
(2) Asynchronous with phase cut Size Fans: M Increased fan Type Fan motor Number	(°,A,E,L,N,U °,A,U E,L,N ° A,L	dB dB	ype ype ype ype no.	90,8 220 Axia - (1 - (2 8 12	al))	90,8 240 Axia - (1) - (2) 10 12	90	Axial - (2) - (2) 14 14	92,2	Axial - (2) - (2) 14 16		3000 Axial - (2) - (2) 14 16	3,5	89,0 93,6 3200 Axial - (2) - (2) 14 16	3	94,3 8400 Axial - (2) - (2) 14 18	36 Ax	500 500 xial (2) (2) (2)
(2) Asynchronous with phase cut Size Fans: M Increased fan Type Fan motor	(°,A,E,L,N,U °,A,U E,L,N ° A,L E,U	ty	ype ype ype no. no.	90,8 220 Axia - (1) - (2 8 12 14	al))	Axia - (1) - (2) 10 12 16	90	Axial - (2) - (2) 14 14 16	92,2	Axial - (2) - (2) 14 16 18		9. Axial - (2) - (2) 14 16 20 22	3,5	89,0 93,6 3200 Axial - (2) - (2) 14 16 20 22	3	94,3 8400 Axial - (2) - (2) 14 18 20 22	36 A)	500 xial (2) (2) 16 18 22 22
(2) Asynchronous with phase cut Size Fans: M Increased fan Type Fan motor Number	(0 °,A,E,I,N,U °,A,U E,L,N ° A,L E,U N	dB dB	ype ype ype no. no.	90,8 220 Axia - (1 - (2 8 12 14	al))))	90,8 Axia - (1) - (2) 10 12 16	90	Axial - (2) - (2) 14 14 16 18	92,2	Axial - (2) - (2) 14 16 18 20		3000 Axial - (2) - (2) 14 16 20	3,5	89,0 93,6 3200 Axial - (2) - (2) 14 16 20	20	94,3 8400 Axial - (2) - (2) 14 18 20	36 A)	500 xial (2) (2) 16 18 22
(2) Asynchronous with phase cut Size Fans: M Increased fan Type Fan motor Number Without Static pressure	(0 °,A,E,L,N,U °,A,U E,L,N ° A,L E,U N	dB dB	ype ype no.	90,8 Axia - (1) - (2) 8 8 12 14 16	80 20	90,8 240 Axia - (1) - (2) 10 12 16 18	90	Axial - (2) - (2) 14 14 16 18	92,2	Axial - (2) - (2) 14 16 18 20	92,5	9. Axial - (2) - (2) 14 16 20 22	3,5	89,0 93,6 3200 Axial - (2) - (2) 14 16 20 22	20	94,3 Axial - (2) - (2) 14 18 20 22	36 Ab 	94,9 500 xial (2) (2) (2) 16 18 22 22
(2) Asynchronous with phase cut Size Fans: M Increased fan Type Fan motor Number	· · · · · · · · · · · · · · · · · · ·	U P,A,E,L,N,U °,A,U E,L,N A,L E,U N A E	dB dB dB	ype ype ype no. no. no. no. no. no.	90,8 Axia - (1 - (2 8 12 14 16 1534 2302 1749	80 20 34 82	90,8 Axia - (1) - (2) 10 12 16 18 1918 2302 1999 1498	90 0 1 1 1 20 32 82	Axial - (2) - (2) 14 14 16 18 26859 26859 25943 219126	92,2	Axial - (2) - (2) 14 16 18 20 268600 306979 290737 250455	92,5	99. Axial - (2) - (2) 14 16 20 22 268600 306979 322041 250455	3,5	89,0 93,6 33200 Axial -(2) -(2) -(2) 14 16 20 22 22 22 268600 306979 3232041	20 34 32 28	94,3 8400 Axial - (2) - (2) 14 18 20 22 68600 45327 22041 81706	36 Ax 	94,9 xial (2) (2) 16 18 22 22 7026 5327 3346 1706
(2) Asynchronous with phase cut Size Fans: M Increased fan Type Fan motor Number Without Static pressure		U P,A,E,L,N,U °,A,U E,L,N A,L E,U N A E L N	dB dB dB	ype ype ype no. no. no. no. no. no. no. no. no.	90,8 Axia - (1 - (2 8 12 14 16 1534 2302 1749 1498	80 20 34 82 46	90,8 Axia - (1) - (2) 10 12 16 18 1918 2302 14988 2249	90 0 1 1 1 1 1 2 2 0 3 2 3 3 2	Axial - (2) - (2) 14 14 16 18 268593 259432 219120 290844	92,2	Axial - (2) - (2) 14 16 18 20 268600 306979 290737 250455 322029	92,5	99. Axial - (2) - (2) 14 16 20 22 268600 306979 322041 250455 353368	7	89,0 93,6 3200 Axial -(2) -(2) 14 16 20 22 22 22 22 22 22 22 25 20 20 20 25 20 20 20 20 20 20 20 20 20 20 20 20 20	2(34 32 21 33	94,3 8400 Axial - (2) - (2) 14 18 20 22 68600 45327 22041 81706 53368	A) A	500 xixial (2) (2) (16 18 22 22 22 23 3346 17706 33368
(2) Asynchronous with phase cut Size Fans: M Increased fan Type Fan motor Number Without Static pressure		V °,A,E,L,N,U °,A,U E,L,N ° A,L E,U N ° A E L N U	dB dB dB	ype ype ype no. no. no. a ³ /h a ³ /h a ³ /h	90,8 Axia - (1 - (2 8 12 14 16 1534 2302 1749 1999 2685	80 220 34 82 46	90,8 Axia - (1) - (2) 10 12 16 18 1918 23022 14988 2249 3069	90 0 1 1 1 20 32 82 33 9 50	Axial - (2) - (2) - (4) - (14) - (16) - (18) - (18) - (19)	92,2	Axial - (2) - (2) 14 16 18 20 268600 306979 290737 250455 322029 345339	92,5	99. Axial - (2) - (2) 14 16 20 22 268600 306979 322041 250455 353368 383716	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	89,0 93,6 3200 Axial -(2) -(2) -(2) 14 16 20 22 22 22 86600 906979 2222041 2550455 553368 883711	2(3) 3: 21 3:	94,3 8400 Axial - (2) - (2) 14 18 20 22 68600 45327 22041 81706 53368 83711	A) A	xial (2) (2) (16 18 22 22 22 27 7026 3337 33346 17706 33368 20082
(2) Asynchronous with phase cut Size Fans: M Increased fan Type Fan motor Number Without Static pressure		U P,A,E,L,N,U °,A,U E,L,N A,L E,U N A E L N U	dB dB dB	ype ype ype no. no. no. no. no. no. no. no. no. no.	90,8 Axia - (1 - (2 8 12 14 16 1534 2302 1749 1999 2685 93,	80 20 34 82 46 90	90,8 Axia - (1) - (2) 10 12 16 18 1918 23022 14988 2249 30696 94,8	90 0 1 1 1 20 32 82 39 50 3	Axial - (2) - (2) - (4) - (14) - (16) - (18) - (18) - (19)	92,2	Axial - (2) - (2) 14 16 18 20 268600 306979 290737 250455 322029 345339 96,6	92,5	99. Axial - (2) - (2) 14 16 20 22 268600 306979 322041 250455 353368 383716 96,6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	89,0 93,6 33200 Axial -(2) -(2) -(2) 14 16 20 22 22 22 268600 306979 3322041 250455 353368 383711 96,6	2(34) 31) 32) 33)	94,3 8400 Axial - (2) - (2) 14 18 20 22 68600 45327 22041 81706 53368 83711 96,7	300 A)	500 (2) (2) (2) (2) (16 (18 (2) (2) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
(2) Asynchronous with phase cut Size Fans: M Increased fan Type Fan motor Number Without Static pressure		U P,A,E,L,N,U °,A,U E,L,N A,L E,U N A E L N U A		ype ype ype no. no. no. a ³ /h a ³ /h a ³ /h a ³ /h a ³ /h b(A) B(A)	90,8 Axia - (1 - (2 8 12 14 16 1534 2302 1749 1999 2685 93, 94,	880 220 3334 46 990 9	90,8 Axia - (1) - (2) 10 12 16 18 1918 23022 14988 2249 30690 94,8	90 0 1 1 1 20 32 82 39 50 3 3	Axial -(2) -(2) 14 14 16 18 268593 259433 219120 290844 306970 96,5	92,2	Axial - (2) - (2) - 14 - 16 - 18 - 20 - 268600 - 306979 - 250455 - 322029 - 345339 - 96,6 - 97,1	92,5	99. Axial - (2) - (2) 14 16 20 22 268600 306979 322041 250455 353368 383716 96,6 97,1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	89,0 93,6 3200 Axial -(2) -(2) -(2) 14 16 20 22 22 22 22 22 25 20 20 25 20 20 20 20 20 20 20 20 20 20 20 20 20	2(34 32 21 33 31	94,3 8400 Axial - (2) - (2) 14 18 20 22 68600 45327 22041 81706 53368 83711 96,7 97,6	A) 366 A)	xial (2) (2) (16 18 22 22 22 27 70 26 33 33 46 17 70 6 33 36 8 20 82 7 7 , 3 7 7 , 7
(2) Asynchronous with phase cut Size Fans: M Increased fan Type Fan motor Number Without Static pressure		U P,A,E,L,N,U °,A,U E,L,N A,L E,U N A E L N U A E	dB d	ype ype ype no. no. no. no. a ³ /h a ³ /h a ³ /h b(A) B(A) B(A)	90,8 Axi - (1 - (2 8 12 14 16 1534 2302 1749 1999 2685 93, 94, 89,	880 220 2334 446 990 99 22 77	90,8 240 Axia - (1), - (2), 10 12 16 18 2302; 19999; 1498i 2249; 94,i 90,i	90 0 1 1 1 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3	Axial -(2) -(2) 14 14 16 18 26859; 25943; 21912(290844; 30697(96,5 96,5	92,2	Axial - (2) - (2) 14 16 18 20 268600 306979 290737 250455 322029 345339 96,6 97,1 93,9	92,5	99. Axial - (2) - (2) 14 16 20 22 268600 306979 322041 250455 353368 383716 96,6 97,1 94,3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	89,0 93,6 93,6 Axial - (2) 14 16 20 22 22 22 22 22 22 25 353368 3533711 96,6 97,1 94,4	2(3) 3) 21 3)	94,3 8400 Axial - (2) - (2) 14 18 20 22 68600 45327 22041 81706 53368 83711 96,7 97,6 94,4	307334535353535353535353535353535353535353	500 (2) (2) (2) (2) (16 (18 (2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
(2) Asynchronous with phase cut Size Fans: M Increased fan Type Fan motor Number Without Static pressure Air flow rate		U P,A,E,L,N,U °,A,U E,L,N A,L E,U N A E L N U A E L	dB d	ype ype ype no. no. no. no. h	90,8 Axia - (1 - (2 8 12 14 16 1534 2302 1749 1999 2685 93, 94, 89,	880 220 2334 46 990 99 22 77	90,8 Axia - (1), - (2), 10 12 16 18 23022 14988 22493 30699 94,8 94,2 89,2 89,2	90 0 1 1 1 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3	Axial -(2) -(2) 14 14 16 18 268593 259432 219120 290844 306970 96,5 96,5 93,4	92,2	Axial - (2) - (2) 14 16 18 20 268600 306979 290737 250455 322029 345339 96,6 97,1 93,9 90,1	92,5	99. Axial - (2) - (2) 14 16 20 22 268600 306979 322041 250455 353368 383716 96,6 97,1 94,3 90,2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	89,0 93,6 93,6 Axial -(2) -(2) 14 16 20 22 22 22 22 868600 805979 8327041 859455 833711 96,6 97,1 94,4 90,5	20	94,3 8400 Axial - (2) - (2) 14 18 20 22 68600 45327 22041 81706 53368 83711 96,7 97,6 94,4 91,0	300 At	5600 5600
(2) Asynchronous with phase cut Size Fans: M Increased fan Type Fan motor Number Without Static pressure Air flow rate		U P,A,E,L,N,U °,A,U E,L,N A,L E,U N A E L N U A E	dB d	ype ype ype no. no. no. no. a ³ /h a ³ /h a ³ /h b(A) B(A) B(A)	90,8 Axi - (1 - (2 8 12 14 16 1534 2302 1749 1999 2685 93, 94, 89,	880 220 2334 46 990 99 22 77	90,8 240 Axia - (1), - (2), 10 12 16 18 2302; 19999; 14988 2249; 94,6; 90,7;	90 0 1 1 1 9 20 33 2 82 39 60 8 8 8 2 5	Axial -(2) -(2) 14 14 16 18 26859; 25943; 219120; 290844; 306970; 96,5 96,5	92,2	Axial - (2) - (2) 14 16 18 20 268600 306979 290737 250455 322029 345339 96,6 97,1 93,9	92,5	99. Axial - (2) - (2) 14 16 20 22 268600 306979 322041 250455 353368 383716 96,6 97,1 94,3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	89,0 93,6 93,6 Axial - (2) 14 16 20 22 22 22 22 22 22 25 353368 3533711 96,6 97,1 94,4	2(34 32 21 33 31	94,3 8400 Axial - (2) - (2) 14 18 20 22 58600 45327 22041 81706 53368 83711 96,7 97,6 94,4	300 Aid	500 (2) (2) (2) (2) (16 (18 (2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4

⁽¹⁾ Asynchronous(2) Asynchronous with phase cut

DIMENSIONS

(1) Additional module needed to contain the hydronic kit with "accumulation" option in sizes: NRG 0800°, 0900°, 1000°, 1100° NRG 0800L, 0900L NRG 0800A, 0900A

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00																			
Dimensions and weights																			
A	°,A,E,L,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	°,A,E,L,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	0	mm	2780	2780	2780	2780	3970	3970	3970	5160	5160	5160	6350	8730	8730	8730	8730	8730	9920
	A,L	mm	2780	2780	3970	3970	3970	5160	5160	6350	6350	7540	7540	8730	9920	9920	9920	11110	11110
	E,U	mm	3970	3970	3970	5160	5160	6350	6350	7540	8730	8730	9920	9920	11110	12300	12300	12300	13490
	N	mm	5160	5160	5160	6350	6350	6350	7540	8730	9920	9920	11110	11110	12300	13490	13490	13490	13490

■ The units 0800°, 0900°, 1000°, 1100°; 0800L, 0900L; and 0800A, 0900A with the "storage tank" option, are 3970mm long.

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00																			
Weights																			
	0	kg	2140	2140	2150	2310	2850	2960	3180	3830	4030	4210	4740	6280	6515	6810	6930	7135	7655
	A,L	kg	2160	2160	2580	2730	2870	3440	3650	4250	4460	4960	5070	6300	6960	7265	7380	7925	8015
Empty weight -	E,U	kg	2580	2590	2600	3220	3430	3930	4070	4660	5270	5400	5990	6755	7390	8120	8230	8390	8925
	N	kg	3050	3070	3080	3630	3850	3990	4470	5110	5750	5880	6370	7155	7870	8565	8675	8830	8955

NRG 0800H-3600H

Reversible air/water heat pump

Cooling capacity 194,9 ÷ 962,3 kW – Heating capacity 209,6 ÷ 991,9 kW

- · High efficiency also at partial loads
- Low refrigerant charge
- Night mode

DESCRIPTION

Reversible outdoor heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

FEATURES

Operating field

Working at full load up to -15 $^{\circ}$ C outside air temperature in winter, and up to 49 $^{\circ}$ C in summer. Hot water production up to 60 $^{\circ}$ C (for more details refer to the technical documentation).

Unit with 2/3 cooling circuits

Unit with 2/3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Refrigerant HFC R32

The environmental impact of the units is reduced considerably owing to the last generation R32 refrigerant.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO_2 values.

Refrigerant gas detector is supplied as per standard.

Use refrigerant fluid R32, whose classification according to ISO 817 is A2L (non-toxic, odourless and slightly flammable refrigerant).

New condensing Coils

The whole range uses copper - aluminium condensation coils with reduced diameter rows, allowing a lower quantity of gas to be used compared to traditional coils.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy seasonal efficiency of the unit.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation.

It is available in different configurations with storage tank or with fixed pumps also inverter.

CONTROL PCO⁵

The units from size 0800 to 2400 have 1 control card, while the units from size 2600 to 3600 have 2 control cards.

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: available for all models with an inverter fan or DCPX. Thanks to continuous fan modulation, unit operation is optimised in every working position in cooling mode. The result is enhanced machine energy efficiency with partial loads.
- "EASYLOG" data logger as per standard: allows all operating data read by the pCO5 to be stored on an SD card.
- Night mode: only in the non-silenced versions with the fan to be, inverter or phase-cut or with the DCPX accessory, a silenced operation profile can be set, which is useful, for example, at night for greater acoustic comfort, but always ensures performance even at peak load hours.
- Possibility to control two units in a Master-Slave configuration (from size 0800 to 2400)

In the 'BMS card' port, the compatible accessories are:

- AER485P1
- AERBACP
- MULTICHILLER-EVO + AER485P1

In the 'J25-BMS2' port, the compatible accessories are:

- AERNET
- Note:
- "BMS card" and "J25-BMS2" are two ports on the unit's control board.
 Only one accessory can be connected to each port.
- An 'EASYLOG' diagnostic device may be present in port 'J25-BMS2', possibly disconnect it to connect the accessory AERNET.
- For other requirements, please contact the company.

INTEGRATED SOLUTION

The "integrated solution" concept has been implemented in the system architecture, consisting in an integrated and streamlined control of compressors and electronic valve.

This solution allowed a variety of new features to be introduced, such as:

- Low Superheat Control: Progressive superheating reduction in conditions of stability. This allows to increase energy performance: both in modulation and in full load conditions;
- DLT control: Control of electronic valve at discharge temperature in certain operating conditions. This is demonstrated in an enhanced reliability of the control and a considerable expansion of the machine's operating range, especially in heating mode.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

AVX: Spring anti-vibration supports.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

BRC1: Condensate drip tray. Consider 1 for each V-block.

ACCESSORIES COMPATIBILITY

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
AER485P1	°,A,E,L	•	•	•	•	•	•	•	•	•	•	•						
AER485P1 x no. 2	°,A,E,L												•	•	•	•	•	•
AERBACP	°,A,E,L	•	•	•	•	•				•	•	•						
AERBACP x no. 2	°,A,E,L												•	•	•	•	•	•
AERLINK	°,A,E,L	•	•	•	•	•				•	•	•	•	•	•	•	•	•
AERNET	°,A,E,L	•	•	•				•	•	•	•	•	•	•	•	•	•	•
FL	°,A,E,L	•	•	•						•	•	•	•		•	•	•	•
MULTICHILLER-EVO	°,A,E,L	•		•						•	•	•	•					•
PGD1	°,A,E,L	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Remote panel

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
PR4	°,A,E,L	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Condensation control temperature

condensation control ten	perature								
Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000
0	DCPX161	DCPX161	DCPX161	DCPX163	DCPX163	DCPX163	DCPX163	DCPX165	DCPX167
A	DCPX161	DCPX163	DCPX163	DCPX163	DCPX165	DCPX165	DCPX165	DCPX167	DCPX167
E, L	As standard								
Ver	2200	2400	2600	2800		3000	3200	3400	3600
0	DCPX167	DCPX167	DCPX174	DCPX174	1	OCPX175	DCPX175	DCPX175	DCPX175
A	DCPX169	DCPX169	DCPX174	DCPX175	5	OCPX175	DCPX175	DCPX176	DCPX176
E.L	As standard	As standard	As standard	As standa	rd A	standard	As standard	As standard	As standard

Antivibration

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00																	
0	AVX1151	AVX1151	AVX1151	AVX1153	AVX1153	AVX1153	AVX1153	AVX1154	AVX1163	AVX1163	AVX1163	AVX1167	AVX1167	AVX1171	AVX1171	AVX1171	AVX1171
A, L	AVX1151	AVX1153	AVX1153	AVX1153	AVX1154	AVX1154	AVX1154	AVX1156	AVX1156	AVX1159	AVX1159	AVX1167	AVX1171	AVX1171	AVX1171	AVX1169	AVX1169
E	AVX1153	AVX1154	AVX1154	AVX1154	AVX1156	AVX1156	AVX1159	AVX1161	AVX1161	AVX1165	AVX1165	AVX1169	AVX1173	AVX1173	AVX1173	AVX1175	AVX1175
Integrated hydronic kit: AA,	AB, AC, AD, A	E, AF, AG, A	AH, AI, AJ, E	BA, BB, BC,	BD, BE, BF	, BG, BH, B	I, BJ, CA, C	B, CC, CD, C	E, CF, CG, C	H, CI, CJ, K	A, KB, KC,	KD, KE, KF,	KG, KH, KI	, KJ			
	AVX1152	AVX1152	AVX1152	AVX1152	AVX1152	AVX1152	AVX1152	AVX1155	AVX1157	AVX1157	AVX1157	AVX1168	AVX1168	AVX1172	AVX1172	AVX1172	AVX1172
A, L	AVX1152	AVX1152	AVX1152	AVX1152	AVX1155	AVX1155	AVX1155	AVX1157	AVX1157	AVX1160	AVX1160	AVX1168	AVX1172	AVX1172	AVX1172	AVX1170	AVX1170
E	AVX1152	AVX1155	AVX1155	AVX1155	AVX1157	AVX1157	AVX1160	AVX1162	AVX1162	AVX1166	AVX1166	AVX1170	AVX1174	AVX1174	AVX1174	AVX1176	AVX1176
Integrated hydronic kit: DA,	DB, DC, DD, [E, DF, DG,	DH, DI, DJ,	IA, IB, IC, I	D, IE, IF, IG	, IH, II, IJ, J	A, JB, JC, J	D, JE, JF, JG	, JH, JI, JJ,	PA, PB, PC	, PD, PE, PI	, PG, PH, P	I, PJ				
0	AVX1151	AVX1151	AVX1151	AVX1153	AVX1153	AVX1153	AVX1153	AVX1154	AVX1163	AVX1163	AVX1163	AVX1167	AVX1167	AVX1171	AVX1171	AVX1171	AVX1171
A, L	AVX1151	AVX1153	AVX1153	AVX1153	AVX1154	AVX1154	AVX1158	AVX1156	AVX1156	AVX1164	AVX1164	AVX1167	AVX1171	AVX1171	AVX1171	AVX1169	AVX1169
E	AVX1153	AVX1154	AVX1154	AVX1154	AVX1156	AVX1156	AVX1159	AVX1161	AVX1161	AVX1165	AVX1165	AVX1169	AVX1173	AVX1173	AVX1173	AVX1175	AVX1175

Device for peak current reduction

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000
°, A, E, L	DRENRG0800	DRENRG0900	DRENRG1000	DRENRG1100	DRENRG1200	DRENRG1400	DRENRG1600	DRENRG1800	DRENRG2000
A grey background indicates the accessory mi	ust be assembled in t	he factory							
Ver	2200	2400	2600	2800		3000	3200	3400	3600
°, A, E, L	DRENRG2200	DRENRG2400	DRENRG260	0 DRENRG2	BOO DREI	NRG3000 I	DRENRG3200	DRENRG3400	DRENRG3600

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Power factor correction

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000
°, A, E, L	RIFNRG0800	RIFNRG0900	RIFNRG1000	RIFNRG1100	RIFNRG1200	RIFNRG1400	RIFNRG1600	RIFNRG1800	RIFNRG2000
A grey background indicates the accessory	must be assembled in	the factory							

Ver	2200	2400	2600	2800	3000	3200	3400	3600
°, A, E, L	RIFNRG2200	RIFNRG2400	RIFNRG2600	RIFNRG2800	RIFNRG3000	RIFNRG3200	RIFNRG3400	RIFNRG3600

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
0	GP2VN	GP2VN	GP2VN	GP3G	GP3G	GP3G	GP3G	GP4G	GP5G	GP5G	GP5G	GP11G	GP10G	GP12G	GP12G	GP12G	GP12G
A, L	GP2VN	GP3G	GP3G	GP3G	GP4GM	GP4GM	GP4GM	GP5G	GP5G	GP6G	GP6G	GP11G	GP12G	GP12G	GP12G	GP13G	GP13G
E	GP3G	GP4GM	GP4GM	GP4GM	GP5GM	GP5GM	GP6G	GP7G	GP7G	GP8G	GP8G	GP13G	GP14G	GP14G	GP14G	GP15G	GP15G

A grey background indicates the accessory must be assembled in the factory

■ GP2VN becomes GP2VNA if configured with a type A or B hydronic kit

Double safety valves

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
°, A, E, L	T6NRGLS1	T6NRGLS2	T6NRGLS3	T6NRGLS3	T6NRGLS3	T6NRGLS3	T6NRGLS4	4 T6NRGLS5	T6NRGLS5	T6NRGLS5	T6NRGLS5						

A grey background indicates the accessory must be assembled in the factory

Condensate drip.

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000
0	BRC1 x 2 (1)	BRC1 x 2 (1)	BRC1 x 2 (1)	BRC1 x 3 (1)	BRC1 x 4 (1)	BRC1 x 5 (1)			
A, L	BRC1 x 2 (1)	BRC1 x 3 (1)	BRC1 x 3 (1)	BRC1 x 3 (1)	BRC1 x 4 (1)	BRC1 x 4 (1)	BRC1 x 4 (1)	BRC1 x 5 (1)	BRC1 x 5 (1)
E	BRC1 x 3 (1)	BRC1 x 4 (1)	BRC1 x 4 (1)	BRC1 x 4 (1)	BRC1 x 5 (1)	BRC1 x 5 (1)	BRC1 x 6 (1)	BRC1 x 7 (1)	BRC1 x 7 (1)

(1) Condensate drip tray. Consider 1 for each V-block.
A grey background indicates the accessory must be assembled in the factory

Ver	2200	2400	2600	2800	3000	3200	3400	3600
0	BRC1 x 5 (1)	BRC1 x 5 (1)	BRC1 x 7 (1)	BRC1 x 7 (1)	BRC1 x 8 (1)			
A, L	BRC1 x 6 (1)	BRC1 x 6 (1)	BRC1 x 7 (1)	BRC1 x 8 (1)	BRC1 x 8 (1)	BRC1 x 8 (1)	BRC1 x 9 (1)	BRC1 x 9 (1)
E	BRC1 x 8 (1)	BRC1 x 8 (1)	BRC1 x 9 (1)	BRC1 x 10 (1)	BRC1 x 10 (1)	BRC1 x 10 (1)	BRC1 x 11 (1)	BRC1 x 11 (1)

(1) Condensate drip tray. Consider 1 for each V-block.
A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

CO	NFI	GURATOR
Fiel	ld	Description
1,2,	,3	NRG
4,5,	,6,7	Size 0800, 0900, 1000, 1100, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, 3200, 3400, 3600
8		Operating field
	Χ	Electronic thermostatic expansion valve (1)
	Z	Low temperature electronic thermostatic valve (2)
9		Model
	Н	Heat pump
10		Heat recovery
	D	With desuperheater (3)
	0	Without heat recovery
11		Version
	0	Standard
	Α	High efficiency
	Ε	Silenced high efficiency
	L	Standard silenced
12		Coils
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	٧	Copper pieps-Coated aluminium fins
	0	Copper-aluminium
13		Fans
	J	Inverter
	0	Standard
14		Power supply
	0	400V ~ 3 50Hz with magnet circuit breakers
15,	16	Integrated hydronic kit
13,	00	Without hydronic kit
	00	Kit with n° 1 pump
_	PA	Pump A
	PB	Pump B
_	PC	Pump C
_	PD	Pump D
	PE	· ·
_	PF	Pump F Pump F
		•
_	PG PH	Pump G
		Pump H
	PI	Pump I
	PJ	Pump J (4)
		Pump n° 1 pump + stand-by pump
_	DA	Pump A + stand-by pump
	DB	Pump B + stand-by pump
	DC	Pump C + stand-by pump
_	DD	Pump D + stand-by pump
	DE	Pump E + stand-by pump
	DF	Pump F + stand-by pump
	DG	Pump G + stand-by pump
	DH	Pump H + stand-by pump
	DI	Pump I + stand-by pump
	DJ	Pump J + stand-by pump (4)
_		Kit with storage tank and n° 1 pump
	AA	Storage tank and pump A
_	AB	Storage tank and pump B
	AC	Storage tank and pump C
	AD	Storage tank and pump D
	AE	Storage tank and pump E
	AF	Storage tank and pump F
	AG	Storage tank and pump G
_	AH	Storage tank and pump H
	Al	Storage tank and pump I
_	AJ	Storage tank and pump J (4)
_	,,,	Kit with storage tank and n° 1 pump + stand-by pump
	BA	Storage tank with pump A + stand-by pump
_	חט	Storage tank with pump A + Stand by pump

Field	Description
BB	Storage tank with pump B + stand-by pump
ВС	Storage tank with pump C + stand-by pump
BD	Storage tank with pump D + stand-by pump
BE	Storage tank with pump E + stand-by pump
BF	Storage tank with pump F + stand-by pump
BG	Storage tank with pump G + stand-by pump
BH	Storage tank with pump H + stand-by pump
BI	Storage tank with pump I + stand-by pump
BJ	Storage tank with pump J + stand-by pump (4)
	Kit with n° 1 inverter pump to fixed speed
IA	Pump A equipped with inverter device to work at fixed speed
IB	Pump B equipped with inverter device to work at fixed speed
IC	Pump C equipped with inverter device to work at fixed speedr
ID	Pump D equipped with inverter device to work at fixed speed
IE	Pump E equipped with inverter device to work at fixed speed
IF.	Pump F equipped with inverter device to work at fixed speed (5)
 G	Pump G equipped with inverter device to work at fixed speed (5)
IH	Pump I equipped with inverter device to work at fixed speed (5)
	Pump I equipped with inverter device to work at fixed speed (5)
IJ	Pump J equipped with inverter device to work at fixed speed (6)
	Kit with n° 1 inverter pump + stand-by pump to fixed speed
JA	Pump A+stand-by pump, both equipped with inverter to work at fixed speed
JB	Pump B+stand-by pump, both equipped with inverter to work at fixed speed
JC	Pump C+stand-by pump, both equipped with inverter to work at fixed speed
JD	Pump D+stand-by pump, both equipped with inverter to work at fixed speed
JE	Pump E+stand-by pump, both equipped with inverter to work at fixed speed
JF	Pump F+stand-by pump, both equipped with inverter to work at fixed speed (5)
JG	Pump G+stand-by pump, both equipped with inverter to work at fixed speed (5)
JH	Pump H+stand-by pump, both equipped with inverter to work at fixed speed (5)
JI	Pump I+stand-by pump, both equipped with inverter to work at fixed speed (5)
JJ	Pump J+stand-by pump, both equipped with inverter to work at fixed speed (6)
	Kit with storage tank and n° 1 inverter pump to fixed speed
CA	Buffer tank + pump A, equipped with inverter to work at fixed speed
CB	Buffer tank + pump B, equipped with inverter to work at fixed speed
CC	Buffer tank + pump C, equipped with inverter to work at fixed speed
CD	Buffer tank + pump D, equipped with inverter to work at fixed speed
EC	Buffer tank + pump E, equipped with inverter to work at fixed speed
CF	Buffer tank + pump F, equipped with inverter to work at fixed speed (5)
CG	Buffer tank + pump G, equipped with inverter to work at fixed speed (5)
CH	Buffer tank + pump H, equipped with inverter to work at fixed speed (5)
Cl	Buffer tank + pump I, equipped with inverter to work at fixed speed (5)
	Buffer tank + pump J, equipped with inverter to work at fixed speed (6)
	Kit with storage tank and n° 1 pump + stand-by pump to fixed speed
KA	Buffer tank+pump A+stand-by pump, both with inverter to work at fixed speed
KB	Buffer tank+pump B+stand-by pump, both with inverter to work at fixed speed
KC	Buffer tank+pump C+stand-by pump, both with inverter to work at fixed speed
KD	Buffer tank+pump D+stand-by pump, both with inverter to work at fixed speed
KE	Buffer tank+pump E+stand-by pump, both with inverter to work at fixed speed
NE	
KF	Buffer tank+pump F+stand-by pump, both with inverter to work at fixed speed (5)
KG	Buffer tank+pump G+stand-by pump, both with inverter to work at fixed speed (5)
КН	Buffer tank+pump H+stand-by pump, both with inverter to work at fixed speed (5)
KI	Buffer tank+pump I+stand-by pump, both with inverter to work at fixed speed (5)
KJ	Buffer tank+pump J+stand-by pump, both with inverter to work at fixed speed (6)

⁽¹⁾ Water produced from 4 °C ÷ 20 °C
(2) Water produced from 8 °C ÷ -10 °C
(3) This option is not available with the Z operating field. The desuperheater must be intercepted in heating mode. In cooling mode, a water temperature no lower than 35 °C must always be guaranteed on the heat exchanger inlet.
(4) For all configurations including pump J please contact the factory.
(5) Hydronic kit not available with sizes 0800 version °/L/A, 0900 version °, 1000 version °, 1800 version °.
(6) For all possible configurations which include the "J" pump please be in touch with Aermec. Hydronic kit is not available with sizes 0800 version °,L/A, 0900 version °, 1000 version °.

PERFORMANCE SPECIFICATIONS

NRG H°

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C/7 °C(1)																		
Cooling capacity	kW	200,5	220,2	238,5	292,2	325,7	353,6	381,6	456,8	531,9	561,5	591,1	705,6	749,2	824,6	859,3	895,1	925,3
Input power	kW	72,8	83,7	95,6	107,5	123,5	144,5	160,8	179,5	199,4	219,3	239,1	249,8	277,9	299,4	317,7	334,1	354,4
Cooling total input current	Α	127,0	144,0	163,0	182,0	207,0	238,0	268,0	300,0	333,0	362,0	391,0	424,0	485,0	506,0	527,0	567,0	597,0
EER	W/W	2,75	2,63	2,49	2,72	2,64	2,45	2,37	2,55	2,67	2,56	2,47	2,83	2,70	2,75	2,70	2,68	2,61
Water flow rate system side	l/h	34503	37880	41031	50268	56029	60821	65615	78560	91483	96570	101650	121347	128839	141815	147773	153929	159128
Pressure drop system side	kPa	25	30	35	45	45	47	29	42	50	49	47	53	60	69	73	75	79
Heating performance 40 °C / 45 °C (2)																		
Heating capacity	kW	212,2	235,2	256,2	310,2	348,1	384,0	416,2	492,2	568,3	603,5	638,4	729,6	782,6	858,4	896,3	931,7	966,8
Input power	kW	66,1	73,5	80,8	98,1	109,5	123,5	129,7	153,3	175,5	186,3	198,1	232,9	252,2	275,3	288,2	299,7	312,5
Heating total input current	Α	120,0	133,0	145,0	173,0	190,0	210,0	221,0	263,0	303,0	319,0	337,0	395,0	430,0	471,0	490,0	506,0	524,0
COP	W/W	3,21	3,20	3,17	3,16	3,18	3,11	3,21	3,21	3,24	3,24	3,22	3,13	3,10	3,12	3,11	3,11	3,09
Water flow rate system side	I/h	36823	40823	44470	53838	60421	66654	72264	85444	98663	104778	110847	126695	135884	149044	155628	161773	167874
Pressure drop system side	kPa	29	36	42	53	54	58	37	52	60	60	58	58	66	76	81	83	88

NRG HL

MAGTIL																		
Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C / 7 °C (1)																		
Cooling capacity	kW	194,9	231,4	252,7	283,9	335,9	367,7	399,5	467,1	515,0	568,3	599,3	684,6	752,3	804,8	836,8	889,9	919,8
Input power	kW	73,7	78,6	88,8	107,7	118,0	136,6	154,7	175,4	203,9	213,7	232,1	255,0	275,5	305,5	325,1	334,6	353,5
Cooling total input current	Α	125,0	136,0	153,0	179,0	196,0	222,0	249,0	285,0	331,0	346,0	374,0	420,0	457,0	506,0	528,0	540,0	568,0
EER	W/W	2,65	2,94	2,85	2,64	2,85	2,69	2,58	2,66	2,53	2,66	2,58	2,69	2,73	2,63	2,57	2,66	2,60
Water flow rate system side	l/h	33540	39819	43473	48838	57788	63245	68702	80332	88566	97728	103054	117728	129370	138391	143907	153027	158170
Pressure drop system side	kPa	23	33	34	39	45	47	33	39	41	49	35	51	59	64	67	75	70
Heating performance 40 °C / 45 °C (2)																		
Heating capacity	kW	209,6	244,9	268,8	305,3	357,3	394,2	431,7	502,3	558,0	611,4	647,2	717,8	788,1	844,0	880,6	933,5	969,8
Input power	kW	64,6	76,2	83,3	95,6	111,1	123,9	131,4	152,8	170,0	186,9	199,5	227,5	249,8	267,9	280,7	297,4	310,8
Heating total input current	Α	115,0	134,0	147,0	165,0	188,0	207,0	219,0	257,0	288,0	313,0	333,0	378,0	416,0	447,0	466,0	491,0	512,0
COP	W/W	3,24	3,22	3,23	3,19	3,22	3,18	3,29	3,29	3,28	3,27	3,24	3,15	3,16	3,15	3,14	3,14	3,12
Water flow rate system side	l/h	36369	42513	46657	52988	62021	68420	74962	87217	96884	106143	112386	124645	136849	146552	152908	162100	168406
Pressure drop system side	kPa	28	39	40	47	53	56	40	47	51	60	42	57	66	71	75	84	80

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

NRG HA

MAGIIA																		
Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C / 7 °C (1)																		
Cooling capacity	kW	200,5	236,4	258,7	292,2	344,0	378,0	412,2	480,7	532,0	584,8	618,3	700,8	768,8	824,7	859,0	911,3	943,6
Input power	kW	71,4	78,5	88,2	105,8	117,2	134,5	151,4	172,4	196,2	210,0	227,1	245,1	271,0	296,0	314,1	327,9	345,4
Cooling total input current	А	127,0	141,0	157,0	182,0	201,0	226,0	251,0	289,0	333,0	351,0	377,0	424,0	462,0	509,0	529,0	545,0	571,0
EER	W/W	2,81	3,01	2,93	2,76	2,94	2,81	2,72	2,79	2,71	2,78	2,72	2,86	2,84	2,79	2,73	2,78	2,73
Water flow rate system side	l/h	34505	40669	44506	50268	59178	65028	70879	82668	91485	100578	106317	120517	132216	141823	147725	156722	162264
Pressure drop system side	kPa	24	33	34	39	45	47	33	39	42	50	35	53	61	67	70	79	74
Heating performance 40 °C / 45 °C (2)																		
Heating capacity	kW	214,2	249,2	273,9	311,8	364,1	404,2	439,5	510,6	568,3	624,2	661,5	726,3	796,9	854,6	892,3	944,8	982,2
Input power	kW	65,5	76,7	84,1	96,3	111,6	125,5	132,9	153,9	171,9	189,2	201,7	229,0	250,4	268,2	280,9	299,3	312,3
Heating total input current	Α	119,0	139,0	152,0	170,0	195,0	215,0	227,0	265,0	298,0	325,0	344,0	389,0	428,0	458,0	477,0	506,0	526,0
COP	W/W	3,27	3,25	3,25	3,24	3,26	3,22	3,31	3,32	3,31	3,30	3,28	3,17	3,18	3,19	3,18	3,16	3,15
Water flow rate system side	I/h	37179	43255	47538	54127	63192	70158	76308	88642	98663	108366	114875	126116	138372	148390	154943	164062	170550
Pressure drop system side	kPa	29	40	41	49	55	58	41	49	53	62	44	58	67	73	77	86	82

NRG-0800-3600-HP_Y_CE50_07 510 www.aermec.com

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

NRG HE

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C/7 °C(1)																		
Cooling capacity	kW	210,2	241,4	265,0	301,3	349,5	385,3	433,9	499,0	555,3	602,8	639,1	718,4	790,6	846,2	879,4	924,9	962,3
Input power	kW	68,8	76,7	85,7	101,9	115,0	130,8	142,8	165,0	189,0	202,2	217,7	241,7	264,6	289,3	308,3	320,7	337,3
Cooling total input current	A	120,0	135,0	150,0	173,0	192,0	215,0	234,0	272,0	312,0	332,0	355,0	390,0	433,0	474,0	493,0	512,0	536,0
EER	W/W	3,05	3,15	3,09	2,96	3,04	2,94	3,04	3,02	2,94	2,98	2,94	2,97	2,99	2,93	2,85	2,88	2,85
Water flow rate system side	l/h	36167	41535	45585	51820	60126	66279	74616	85811	95491	103665	109890	123535	135965	145529	151221	159049	165476
Pressure drop system side	kPa	24	33	34	40	45	47	33	40	42	50	35	56	62	70	74	71	74
Heating performance 40 °C / 45 °C (2)																		
Heating capacity	kW	220,6	251,8	277,3	320,3	367,5	407,1	456,1	525,1	586,9	634,6	674,7	737,8	806,3	867,9	904,3	951,9	991,9
Input power	kW	67,2	77,5	84,8	98,3	110,5	122,3	137,5	158,0	176,7	191,9	204,0	230,9	251,4	270,6	283,3	299,9	313,6
Heating total input current	A	119,0	137,0	150,0	170,0	189,0	207,0	229,0	266,0	299,0	321,0	340,0	384,0	419,0	452,0	470,0	497,0	516,0
COP	W/W	3,28	3,25	3,27	3,26	3,33	3,33	3,32	3,32	3,32	3,31	3,31	3,20	3,21	3,21	3,19	3,17	3,16
Water flow rate system side	l/h	38284	43702	48137	55596	63813	70679	79187	91172	101894	110186	117170	128108	140013	150692	157019	165295	172243
Pressure drop system side	kPa	31	35	39	45	36	35	44	45	55	47	39	60	65	75	79	77	81

ENERGY INDEX

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: J																			
SEER - 12/7 (EN14825: 2018) (1)																			
	0	W/W	3,91	4,03	3,76	4,01	3,91	3,74	3,72	3,92	4,10	-	-	-	-	-	-	-	-
CEED	A	W/W	4,13	4,47	4,22	4,21	4,48	4,13	4,21	4,29	4,27	4,57	4,58	4,56	4,55	4,56	4,55	4,55	4,55
SEER	E	W/W	4,48	4,70	4,65	4,49	4,69	4,49	4,73	4,76	4,56	4,68	4,65	4,76	4,76	4,74	4,68	4,69	4,64
	L	W/W	4,08	4,38	4,31	4,23	4,49	4,33	4,17	4,32	4,24	4,57	4,57	4,58	4,61	4,56	4,56	4,57	4,56
		%	153,54	158,21	147,58	157,44	153,60	146,56	145,75	153,87	160,99	-	-	-	-		-		-
Seasonal efficiency	A	%	162,28	175,77	165,92	165,53	176,30	162,21	165,54	168,43	167,63	179,84	180,02	179,30	179,05	179,25	179,11	179,12	179,03
Seasonal efficiency	E	%	176,01	184,84	182,87	176,49	184,43	176,41	186,08	187,33	179,21	184,21	182,92	187,25	187,42	186,77	184,02	184,64	182,40
	L	%	160,02	172,22	169,30	166,37	176,46	170,12	163,61	169,99	166,45	179,96	179,77	180,32	181,27	179,57	179,44	179,67	179,24
SEER - 23/18 (EN14825: 2018) (2)																			
		W/W	4,53	4,62	4,30	4,53	4,48	4,26	4,26	4,36	4,53	4,68	4,67	5,20	5,04	5,05	4,95	5,04	4,89
SEER	A	W/W	4,82	5,14	4,88	4,83	5,05	4,68	4,77	4,78	4,70	4,74	4,81	5,32	5,32	5,33	5,34	5,33	5,33
JEN	E	W/W	5,22	5,39	5,29	5,11	5,24	5,05	5,33	5,29	5,01	5,07	5,11	5,49	5,49	5,47	5,39	5,40	5,34
	L	W/W	4,86	5,04	4,92	4,80	5,00	4,85	4,70	4,80	4,72	4,81	4,84	5,12	5,16	5,10	5,09	5,10	5,09
	0	%	178,23	181,99	169,18	178,03	176,17	167,49	167,32	171,54	178,15	184,08	183,60	205,12	198,46	198,95	195,09	198,65	192,44
Seasonal efficiency	A	%	189,87	202,58	192,30	190,02	199,05	184,16	187,89	188,04	185,13	186,42	189,27	209,91	209,61	210,19	210,50	210,33	210,27
seasonal emelency	E	%	205,68	212,67	208,75	201,59	206,78	199,04	210,37	208,55	197,30	199,90	201,24	216,49	216,66	215,99	212,50	213,20	210,64
	L	%	191,27	198,67	193,92	188,82	196,81	191,05	185,11	189,15	185,81	189,25	190,57	201,98	203,21	201,03	200,73	201,14	200,54
UE 813/2013 performance in average am	bient condit																		
		W/W	3,75	3,72	3,74	3,65	3,72	3,69	3,84	3,87	3,90	3,92	3,98	3,85	3,79	3,79	3,78	3,78	3,76
SCOP	A	W/W	3,98	3,87	3,91	3,92	3,89	3,93	4,04	4,03	4,08	4,08	4,13	4,01	4,00	3,98	3,95	3,93	3,90
340	E	W/W	3,94	3,86	3,89	3,90	3,88	4,00	4,05	4,08	4,09	4,09	4,13	3,97	3,96	3,93	3,90	3,88	3,86
	L	W/W	3,85	3,81	3,86	3,82	3,85	3,87	3,94	3,98	4,02	3,99	4,06	3,91	3,90	3,89	3,87	3,85	3,84
		%	147,19	145,69	146,78	143,12	145,88	144,64	150,61	151,86	152,83	153,82	156,25	151,09	148,73	148,69	148,14	148,30	147,30
ηsh	A	%	156,18	151,63	153,29	153,96	152,61	154,02	158,78	158,12	160,03	160,11	162,27	157,54	157,00	156,15	155,07	154,33	152,86
	E	%	154,67	151,25	152,53	152,86	152,04	156,84	159,16	160,06	160,74	160,54	162,33	155,93	155,35	154,31	152,99	152,26	151,57
	L	%	151,15	149,30	151,53	149,80	151,00	151,92	154,77	156,17	157,80	156,44	159,42	153,41	152,88	152,46	151,65	151,15	150,49
UE 813/2013 performance in average am	bient condit																		
		W/W	3,13	3,11	3,12	3,08	3,11	3,05	3,08	3,15	3,26	3,26	3,29	3,18	3,15	3,17	3,17	3,17	3,12
SCOP	A	W/W	3,30	3,26	3,28	3,28	3,25	3,24	3,24	3,26	3,36	3,37	3,35	3,30	3,31	3,30	3,29	3,29	3,20
	E_	W/W	3,31	3,25	3,27	3,26	3,22	3,28	3,29	3,33	3,42	3,38	3,37	3,30	3,30	3,30	3,28	3,26	3,21
	L	W/W	3,19	3,20	3,23	3,18	3,20	3,19	3,15	3,22	3,31	3,28	3,28	3,20	3,21	3,21	3,20	3,21	3,18
		%	122,27	121,29	121,95	120,26	121,59	119,01	120,35	122,90	127,46	127,29	128,67	124,30	123,00	123,82	123,69	123,98	121,67
ηsh	A	%	129,05	127,35	128,02	128,24	126,95	126,45	126,66	127,60	131,34	131,91	130,84	128,88	129,31	129,14	128,59	128,77	125,11
	E	%	129,38	127,17	127,67	127,41	125,90	128,13	128,78	130,27	133,70	132,16	131,79	129,12	129,08	129,12	128,32	127,41	125,24
(T) (T) (T)	L	%	124,44	124,94	126,12	124,20	125,05	124,58	123,06	125,71	129,24	128,27	128,14	124,91	125,29	125,42	125,07	125,42	124,38
SEPR - (EN 14825: 2018) (2)	0	111011			4.00	F 20	F 24	F 22	F 42		F 40	F 45	5.27	F F4	F F2		F 54		
		W/W	5,05	5,15	4,98	5,20	5,21	5,23	5,12	5,31	5,49	5,45	5,37	5,51	5,52	5,52	5,51	5,51	5,51
SEPR	A	W/W	5,34	5,76	5,59	5,54	5,85	5,69	5,67	5,79	5,66	5,85	5,87	5,52	5,53	5,53	5,53	5,53	5,52
	E	W/W	5,91	6,15	6,16	5,82	6,03	6,22	6,44	6,48	6,24	6,31	6,25	5,56	5,57	5,57	5,56	5,56	5,56
(1) Calculation performed with FIVED water	L flourate and	W/W	5,38	5,72	5,70	5,51	5,69	5,87	5,66	5,85	5,69	5,96	5,88	5,51	5,52	5,52	5,51	5,51	5,51

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.
(3) Efficiencies for low temperature applications (35 °C)
(4) Efficiencies for average temperature applications (55 °C)

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: °																			
SEER - 12/7 (EN14825: 2018) (1)																			
	0	W/W	3,82	3,93	3,69	3,95	3,76	3,66	3,63	3,77	3,94	-	-	-	-	-	-	-	-
CEED	A	W/W	3,92	4,26	4,03	4,04	4,31	4,05	4,14	4,16	4,14	-	-	-	-	-	-	-	-
SEER	E	W/W	4,24	4,47	4,46	4,30	4,49	4,23	4,54	4,48	4,30	-	-	-	-	-	-	-	-
	L	W/W	3,89	4,20	4,14	4,07	4,32	4,14	4,09	4,16	4,05	-	-	-	-	-	-	-	-
	0	%	149,69	154,31	144,66	154,85	147,58	143,34	142,18	147,82	154,74	-	-	-	-	-	-	-	-
Consonal officional	A	%	153,94	167,22	158,24	158,70	169,32	159,16	162,42	163,51	162,60	-	-	-	-	-	-	-	-
Seasonal efficiency	E	%	166,62	175,64	175,43	169,12	176,71	166,29	178,62	176,32	169,05	-	-	-	-	-	-	-	-
	L	%	152,78	164,88	162,52	159,98	169,62	162,45	160,44	163,31	158,98	-	-	-	-	-	-	-	-
SEER - 23/18 (EN14825: 2018) (2)																			
	0	W/W	4,42	4,52	4,23	4,46	4,31	4,17	4,16	4,25	4,43	4,56	4,55	4,84	4,69	4,70	4,61	4,69	4,57
CEED	A	W/W	4,58	4,90	4,67	4,63	4,86	4,60	4,69	4,68	4,62	4,60	4,67	4,94	4,94	4,95	4,95	4,95	4,95
SEER	E	W/W	4,95	5,13	5,09	4,90	5,03	4,78	5,13	5,04	4,80	4,95	5,00	5,15	5,16	5,15	5,07	5,09	5,03
	L	W/W	4,65	4,84	4,73	4,62	4,81	4,64	4,62	4,66	4,56	4,64	4,67	4,81	4,84	4,80	4,79	4,81	4,79
	0	%	173,96	177,67	166,01	175,30	169,38	163,98	163,39	167,16	174,39	179,50	179,00	190,59	184,41	185,05	181,49	184,72	179,79
Constant of the constant	A	%	180,39	193,01	183,69	182,32	191,25	180,93	184,52	184,13	181,81	180,84	183,73	194,77	194,67	194,96	194,98	195,10	194,96
Seasonal efficiency	E	%	194,99	202,37	200,52	193,16	198,13	188,06	202,21	198,68	189,12	194,99	196,98	203,18	203,49	202,94	199,98	200,57	198,18
	L	%	182,93	190,46	186,38	181,81	189,53	182,80	181,68	183,24	179,38	182,56	183,91	189,59	190,78	188,98	188,76	189,33	188,66
UE 813/2013 performance in average ar	nbient condit	ions (aver	age) - 35	°C - Pdes	ignh ≤ 4	00 kW (3	3)												
-	0	W/W	3,70	3,66	3,70	3,62	3,63	3,64	3,78	3,78	3,84	3,84	3,87	3,78	3,72	3,72	3,70	3,71	3,68
CCOD	A	W/W	3,86	3,75	3,80	3,83	3,80	3,84	3,96	3,92	4,00	3,97	4,03	3,93	3,92	3,90	3,87	3,86	3,82
SCOP	E	W/W	3,82	3,74	3,79	3,80	3,78	3,86	3,96	3,93	3,99	3,96	4,02	3,90	3,88	3,86	3,82	3,81	3,79
	L	W/W	3,75	3,71	3,77	3,73	3,72	3,81	3,90	3,89	3,95	3,88	3,95	3,83	3,82	3,81	3,79	3,78	3,76
	0	%	144,95	143,51	145,03	141,70	142,39	142,72	148,37	148,22	150,74	150,57	151,99	148,07	145,75	145,71	145,18	145,33	144,35
l.	A	%	151,26	147,10	148,95	150,09	148,92	150,73	155,38	153,74	157,11	156,00	158,37	154,40	153,86	153,03	151,98	151,25	149,80
ηsh	E	%	149,60	146,63	148,74	148,95	148,14	151,30	155,26	154,27	156,73	155,51	157,88	152,82	152,24	151,22	149,93	149,22	148,54
	L	%	146,96	145,41	147,82	146,29	145,93	149,25	152,96	152,42	155,05	152,28	154,95	150,34	149,82	149,41	148,61	148,12	147,48
UE 813/2013 performance in average ar	nbient condit	ions (aver	age) - 55	°C - Pdes	ignh ≤ 4	00 kW (4	l)												
	0	W/W	3,08	3,05	3,08	3,05	3,03	3,00	3,03	3,06	3,21	3,18	3,18	3,12	3,09	3,11	3,11	3,11	3,06
ccon	A	W/W	3,18	3,15	3,17	3,19	3,16	3,16	3,17	3,17	3,29	3,27	3,25	3,23	3,24	3,24	3,23	3,23	3,14
SCOP	E	W/W	3,19	3,14	3,17	3,17	3,13	3,15	3,20	3,19	3,32	3,26	3,26	3,24	3,24	3,24	3,22	3,20	3,14
	L	W/W	3,09	3,10	3,14	3,10	3,08	3,12	3,11	3,13	3,23	3,18	3,17	3,14	3,14	3,15	3,14	3,15	3,12
	0	%	120,10	119,16	120,24	118,86	118,20	117,16	118,26	119,46	125,22	124,15	124,36	121,80	120,53	121,33	121,20	121,49	119,23
	A	%	124,31	122,92	123,79	124,47	123,37	123,50	123,70	123,68	128,55	127,96	127,17	126,29	126,72	126,55	126,01	126,19	122,60
ηsh	E	%	124,44	122,64	123,96	123,61	122,14	122,87	125,09	124,79	129,60	127,34	127,57	126,53	126,49	126,53	125,75	124,86	122,72
	L	%	120,43	121,14	122,52	120,80	120,36	121,82	121,38	122,19	126,39	124,30	123,94	122,40	122,78	122,90	122,56	122,90	
SEPR - (EN 14825: 2018) (2)																			
	0	W/W	4,93	5,03	4,88	5,11	5,01	5,11	5,00	5,11	5,29	5,27	5,11	5,51	5,52	5,52	5,51	5,51	5,51
CEDD	A	W/W	5,07	5,49	5,34	5,31	5,63	5,58	5,57	5,62	5,49	5,55	5,58	5,52	5,53	5,53	5,53	5,53	5,52
SEPR	E	W/W	5,60	5,85	5,91	5,58	5,78	5,87	6,19	6,11	5,89	6,09	6,03	5,56	5,57	5,57	5,56	5,56	5,56
		W/W	5,14	5,48	5,47	5,31	5,48	5,61	5,55	5,63	5,44	5,65	5,56	5,51	5,52	5,52	5,51	5,51	5,51

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.
(3) Efficiencies for low temperature applications (35 °C)
(4) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA

LLLCTRIC DATA																			
Size	,		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Electric data																			
	0	Α	162,2	180,5	198,8	234,5	262,4	290,3	318,1	371,7	425,3	453,2	481,1	542,5	588,3	641,9	669,8	697,7	725,5
Maximum current (FLA)	A,L	A	162,2	188,3	206,6	234,5	270,2	298,1	325,9	379,5	425,3	461,0	488,9	542,5	596,1	641,9	669,8	705,5	733,3
	E	Α	170,0	196,1	214,4	242,3	278,0	305,9	341,5	395,1	440,9	476,6	504,5	558,1	611,7	657,5	685,4	721,1	748,9
	0	Α	365,6	421,7	440,0	696,8	724,7	752,6	780,4	834,1	887,7	915,5	943,4	1004,8	1050,6	1104,2	1132,1	1160,0	1187,8
Peak current (LRA)	A,L	Α	365,6	429,5	447,8	696,8	732,5	760,4	788,2	841,9	887,7	923,3	951,2	1004,8	1058,4	1104,2	1132,1	1167,8	1195,6
	E	Α	373,4	437,3	455,6	704,6	740,3	768,2	803,8	857,5	903,3	938,9	966,8	1020,4	1074,0	1119,8	1147,7	1183,4	1211,2

Data calculated without hydronic kit and accessories.

GENERAL TECHNICAL DATA

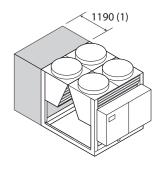
Compressors

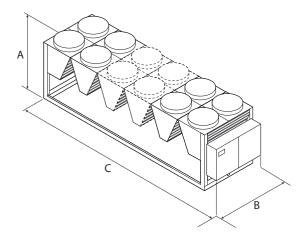
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Compressor																			
Туре	°,A,E,L	type						•			Scroll								
Compressor regulation	°,A,E,L	Туре									0n-0ff								
Number	°,A,E,L	no.	4	4	4	4	4	4	4	5	6	6	6	7	8	9	9	9	9
Circuits	°,A,E,L	no.	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3
Refrigerant	°,A,E,L	type									R32								
	0	kg	16,5	16,5	22,5	23,3	23,3	22,5	22,5	30,4	30,8	36,0	36,0	34,4	35,1	35,4	35,4	38,9	38,9
Refrigerant load circuit 1 (1)	A,L	kg	13,0	22,0	20,0	20,0	28,0	28,0	29,3	33,0	43,9	40,0	41,0	34,4	39,6	44,1	44,1	44,1	44,6
	E	kg	21,8	28,5	29,3	27,5	29,3	34,9	42,0	51,0	53,6	56,3	51,8	48,9	48,9	50,6	50,6	52,4	53,4
	0	kg	16,5	16,5	22,5	23,3	23,3	22,5	22,5	30,4	30,8	36,0	36,0	34,4	35,1	35,4	35,4	38,9	38,9
Refrigerant load circuit 2 (1)	A,L	kg	13,0	22,0	22,0	20,0	28,0	28,0	29,3	33,0	43,9	40,0	41,0	34,4	39,6	44,1	44,1	44,1	44,6
	E	kg	21,8	28,5	29,3	27,5	29,3	34,9	42,0	51,0	53,6	56,3	51,8	48,9	48,9	50,6	50,6	52,4	53,4
	0	kg	-	-	-	-	-	-	-	-	-	-	-	34,4	35,1	35,4	35,4	38,9	38,9
Refrigerant load circuit 3 (1)	A,L	kg	-	-	-	-	-	-	-	-	-	-	-	34,4	39,6	44,1	44,1	44,1	44,6
	E	kg	-	-	-	-	-	-	-	-	-	-	-	48,9	48,9	50,6	50,6	52,4	53,4
Potential global heating	°,A,E,L	GWP								6	75kgCO₂e	q							

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

System side heat exchanger

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
System side heat exchanger																			
Туре	°,A,E,L	type								E	Brazed pla	te							
Number	°,A,E,L	no.	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00																			
Hydraulic connections																			
Connections (in/out)	°,A,E,L	Туре								G	rooved joi	nts							
	0	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	5"
Sizes (in/out)	A,L	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	5"	5"
	E	Ø	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	5"	5"


Fans																			
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: °																			
Fan																			
Туре	°,A,E,L	type									Axial								
	0	no.	4	4	4	6	6	6	6	8	10	10	10	14	14	16	16	16	16
Number	A,L	no.	4	6	6	6	8	8	8	10	10	12	12	14	16	16	16	18	18
	E	no.	6	8	8	8	10	10	12	14	14	16	16	18	20	20	20	22	22
Fan motor	°,A	type								As	synchrono	ius							
Fan motor	E,L	type								Asynchroi	nous with	phase cu	t						
	٥	m³/h	82398	82398	82424	123596	123596	123561	123561	164866	205969	205969	205969	288399	288399	329594	329594	329598	329598
A: 0	A	m³/h	82403	123609	123609	123605	164779	164779	164779	205996	205998	247152	247152	288414	329556	329556	329556	370819	370819
Air flow rate	E	m³/h	102378	136491	136491	136491	170613	170613	204757	238871	238871	272982	272982	315634	349835	349835	349835	383943	383943
	L	m³/h	68237	102348	102348	102356	136528	136528	136528	170617	170614	204825	204825	238801	273004	273004	273004	307010	307010


Sound data

Journa data																			
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Sound data calculated in cooling mode (1	I)																		
	٥	dB(A)	90,5	90,5	90,5	92,3	92,4	92,5	92,6	93,8	94,7	94,7	94,8	96,5	96,6	97,1	97,1	97,2	97,3
Cound nowar lovel	Α	dB(A)	90,5	92,2	92,2	92,3	93,6	93,6	93,7	94,6	94,7	95,4	95,5	96,5	97,1	97,1	97,1	97,6	97,7
Sound power level	E	dB(A)	85,2	86,2	86,2	87,0	88,3	88,8	89,7	90,1	90,2	90,9	91,2	92,2	92,5	92,6	92,8	93,3	93,5
	L	dB(A)	83,5	84,7	84,8	85,8	87,2	87,8	88,3	88,9	89,0	89,8	90,1	91,0	91,3	91,4	91,7	92,2	92,4
	0	dB(A)	58,4	58,4	58,4	60,0	60,1	60,2	60,4	61,3	62,1	62,2	62,2	63,7	63,7	64,1	64,2	64,3	64,3
Cound musesum level (10 ms)	Α	dB(A)	58,4	59,9	59,9	60,0	61,2	61,2	61,3	62,1	62,1	62,8	62,8	63,7	64,1	64,1	64,2	64,6	64,6
Sound pressure level (10 m)	Е	dB(A)	52,9	53,8	53,8	54,6	55,7	56,3	57,0	57,3	57,4	57,9	58,2	59,1	59,3	59,4	59,7	60,0	60,2
	L	dB(A)	51,4	52,5	52,5	53,5	54,8	55,4	55,9	56,4	56,5	57,1	57,4	58,2	58,4	58,5	58,8	59,1	59,4

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

(1) Additional module needed to contain the hydronic kit with "accumulation" option in sizes: NRG 0800H°, 0900H°, 1000H° NRG 0800HL NRG 0800HA

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Integrated hydronic k	it: 00, DA, DB, D	C, DD,																	
PD, PE, PF, PG, PH, PI,		, ,	,	,,	,	, ,	, -,					,	, ,	,	,	, - , -	,,	, -,	•
Dimensions and weights																			
A	°,A,E,L	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	°,A,E,L	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	•	mm	2780	2780	2780	3970	3970	3970	3970	5160	6350	6350	6350	8730	8730	9920	9920	9920	9920
(A,L	mm	2780	3970	3970	3970	5160	5160	5160	6350	6350	7540	7540	8730	9920	9920	9920	11110	11110
	E	mm	3970	5160	5160	5160	6350	6350	7540	8730	8730	9920	9920	11110	12300	12300	12300	13490	13490
Size	,		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Integrated hydronic k	it: AA, AB, AC, A	D, AE,	AF, AG	i, AH,	AI, AJ,	BA, I	BB, BC	, BD, E	E, BF,	BG, B	H, BI,	BJ, CA	, CB,	CC, CD	, CE, C	F, CG,	CH, C	I, CJ, k	(A,
KB, KC, KD, KE, KF, KG	, KH, KI, KJ																		
Dimensions and weights																			
A	°,A,E,L	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	°,A,E,L	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	•	mm	3970	3970	3970	3970	3970	3970	3970	5160	6350	6350	6350	8730	8730	9920	9920	9920	9920
(A,L	mm	3970	3970	3970	3970	5160	5160	5160	6350	6350	7540	7540	8730	9920	9920	9920	11110	11110
	E	mm	3970	5160	5160	5160	6350	6350	7540	8730	8730	9920	9920	11110	12300	12300	12300	13490	13490
Size	1		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Integrated hydronic k	kit: 00																		
Weights																			
	0	kg	2375	2405	2405	3065	3215	3365	3635	4480	5260	5505	5620	7035	7310	8070	8185	8410	8520
Empty weight	A,L	kg	2375	2875	2885	3050	3805	3965	4225	4970	5305	5930	5965	7035	7800	8105	8220	8840	8930
	E	kg	2860	3485	3495	3685	4460	4460	5050	5875	6180	6880	7010	7980	8810	9090	9200	9845	9970
	0	kg	2397	2427	2427	3090	3244	3396	3688	4533	5321	5577	5697	7114	7392	8160	8278	8514	8627
Weight functioning	A,L	kg	2397	2897	2910	3077	3838	3999	4278	5031	5377	6005	6048	7117	7890	8206	8324	8947	9043
	E	kg	2882	3510	3522	3714	4511	4513	5103	5947	6255	6961	7101	8062	8911	9194	9307	9958	10091

NRB 0800-2406

Air-water chiller

Cooling capacity 216,9 ÷ 716,9 kW

- Microchannel coil
- Night mode
- Operation up to 50 °C outdoor air
- HP floating: ESEER +7% with inverter fans

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

They are outdoor units with axial fan scroll compressors, microchannel batteries and plate exchangers.

In the unit with desuperheater, it is also possible to produce free-hot water. The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to 51° C external air temperature. Unit can produce chilled water (up to -10°C of water produced in some versions).

Dual-circuit unit

Unit with 2 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Aluminium microchannel coils

The microchannel condensing aluminum coils ensure high levels of efficiency, reduced quantities of refrigerant and lower unit weight. The treatment "O" available as configurator it ensures high resistance to corrosion even in the most aggressive environments.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

It is standard in all sizes from 1805 to 2406.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, with high or low head and storage tank, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL PCO⁵

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: available for all models with inverter fans or with DCPX. Together with continuous fan modulation, it optimises unit operation in any working point, enhancing energy efficiency with partial loads. ESEER up to +7% with inverter fans.
- Night mode: only in the non-silenced versions with the fan to be, inverter or phase-cut or with the DCPX accessory, a silenced operation profile can be set, which is useful, for example, at night for greater acoustic comfort, but always ensures performance even at peak load hours.

CONFIGURATOR

Configuration options

Cor	nfigu	ration options
Fiel	d	Description
1,2,	,3	NRB
4,5,	67	Size
	,0,1	0800, 0900, 1000, 1100, 1200, 1400, 1600, 1805, 2006, 2206, 2406
8		Operating field
	Х	Electronic thermostatic expansion valve (1)
	Υ	Low temperature mechanic thermostatic valve (2)
	Z °	Low temperature electronic thermostatic valve (2)
_	-	Standard mechanic thermostatic valve (1)
9		Model
	C	Motocondensing unit (3)
		Cooling only
10		Heat recovery (2)
	D	With desuperheater (4)
_	T	With total recovery (5)
_	-	Without heat recovery
11	0	Version
		Standard
	A	High efficiency
	E	Silenced high efficiency
	L	Standard silenced
	N	Silenced very high efficiency
	U	Very high efficiency
12		Coils
		Copper-aluminium
	0	Coated aluminium microchannel
	R	Copper-copper
	S	Tinned copper
	V	Copper-painted alumimium
	0	Aluminium microchannel
13		Fans
	J	Inverter
	М	Oversized
14	0	Power supply
		400V ~ 3 50Hz with magnet circuit breakers
15,	16	Integrated hydronic kit
		Without hydronic kit
	00	Without hydronic kit
_		Kit with n° 1 pump
	PA	Pump A
	PB	Pump B
	PC	Pump C
	PD	Pump D
	PE	Pump E
	PF	Pump F
	PG	Pump G

Field	Description
PH	Pump H
PI	Pump I
PJ	Pump J (6)
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump (7)
DB	Pump B + stand-by pump (7)
DC	Pump C + stand-by pump (7)
DD	Pump D + stand-by pump (7)
DE	Pump E + stand-by pump (7)
DF	Pump F + stand-by pump (7)
DG	Pump G + stand-by pump (7)
DH	Pump H + stand-by pump (7)
DI	Pump I + stand-by pump (7)
DJ	Pump J + stand-by pump (8)
	Kit with storage tank and n° 1 pump
AA	Storage tank and pump A
AB	Storage tank and pump B
AC	Storage tank and pump C
AD	Storage tank and pump D
AE	Storage tank and pump E
AF	Storage tank and pump F
AG	Storage tank and pump G
AH	Storage tank and pump H
AI	Storage tank and pump l
AJ	Storage tank and pump J (6)
	Kit with storage tank and n° 1 pump + stand-by pump
BA	Storage tank with pump A + stand-by pump (7)
BB	Storage tank with pump B + stand-by pump (7)
BC	Storage tank with pump C + stand-by pump (7)
BD	Storage tank with pump D + stand-by pump (7)
BE	Storage tank with pump E + stand-by pump (7)
BF	Storage tank with pump F + stand-by pump (7)
BG	Storage tank with pump G + stand-by pump (7)
BH	Storage tank with pump H + stand-by pump (7)
BI	Storage tank with pump I + stand-by pump (7)
BJ	Storage tank with pump J + stand-by pump (8)

- (1) Water produced from 4 °C ÷ 18 °C
 (2) Processed water from 4°C to -8°C for the °-L versions, and from 4°C to -10°C for A E U N versions
 (3) Condensing units "(" are not compatible with the Y/N/Z/T/D option
 (4) The temperature of the water in the heat exchanger inlet must never drop below 35°C.
 (5) None of the hydronic kits (from PA to BJ) are compatible with the following sizes and with versions with heat recovery T: 0800 0900 1000 1100 version °; 0800 0900 version A; 0800 0900 version L. None of the hydronic kits with pump(s) and storage tank (from AA to BJ) are compatible with all the sizes and with versions with heat recovery T
 (6) For all configurations including pump J please contact the factory.
 (7) None of the hydronic kits with twin pump (from DA to DJ and from BA to BJ) are compatible for the following sizes and versions with desuperheater D: 1805 versions °-L-A, 2006-2206 version °.
 (8) For all combinations with pump J, please contact our head office. None of the hydronic kits with twin pump (from DA to DJ and from BA to BJ) are compatible for the following sizes and versions with desuperheater D: 1805 versions °-L-A, 2006-2206 version °.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signaling of the alarms of a single unit.

 The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

AVX: Spring anti-vibration supports.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

XLA: The Kit, which consists of resistances for the electric power board and "J" inverter fans, allows the outdoor air temperature operating range to be extended from -10° C to -20° C outdoor air.

ACCESSORIES COMPATIBILITY

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
AER485P1	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•
AERBACP	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•
AERLINK	°,A,E,L,N,U					•		•				
AERNET	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•
FL	°,A,E,L,N,U			•		•					•	•
MULTICHILLER-EVO	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•
PGD1	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•

Remote panel												
Model	Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
PR4	°,A,E,L,N,U		•	•	•	•	•	•	•	•	•	•

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Condensation control temperature

Ver	0800	0900	1000	1100	1200	1400
Fans: M						'
0	DCPX130	DCPX130	DCPX130	DCPX130	DCPX131	DCPX131
A	DCPX130	DCPX130	DCPX131	DCPX131	DCPX131	DCPX131
E, L, N	As standard					
U	DCPX131	DCPX131	DCPX131	DCPX132	DCPX132	DCPX132
Ver	1600	1805	2006		2206	2406
VCI	1000	1003	2000	<u> </u>		=
Fans: M	1000	1003	2000		2200	
	DCPX131	DCPX155	DCPX1		DCPX155	DCPX156
Fans: M				55		
Fans: M	DCPX131	DCPX155	DCPX1	55 56	DCPX155	DCPX156

Antivibration

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Integrated hydronic kit: 00											
0	AVX805	AVX805	AVX805	AVX805	AVX808	AVX808	AVX808	AVX810	AVX810	AVX810	AVX809
A, L	AVX805	AVX805	AVX806	AVX808	AVX808	AVX808	AVX810	AVX810	AVX809	AVX809	AVX863
E, U	AVX806	AVX806	AVX808	AVX807	AVX807	AVX810	AVX809	AVX863	AVX863	AVX813	AVX813
N	AVX807	AVX807	AVX807	AVX809	AVX809	AVX809	AVX863	AVX812	AVX812	AVX814	AVX814
Integrated hydronic kit: AA, AB, AC, A	D, AE, AF, AG, AH, A	I, AJ, BA, BB, BO	C, BD, BE, BF, BG	i, BH							
0	AVX844	AVX844	AVX844	AVX844	AVX844	AVX848	AVX848	AVX845	AVX845	AVX845	AVX847
A, L	AVX844	AVX844	AVX844	AVX844	AVX844	AVX848	AVX845	AVX845	AVX847	AVX847	AVX849
E, U	AVX844	AVX844	AVX844	AVX845	AVX845	AVX845	AVX847	AVX849	AVX849	AVX851	AVX851
N	AVX845	AVX845	AVX845	AVX847	AVX847	AVX847	AVX849	AVX850	AVX851	AVX852	AVX852
ntegrated hydronic kit: BI, BJ											
0	AVX844	AVX844	AVX844	AVX844	AVX846	AVX848	AVX848	AVX845	AVX845	AVX845	AVX847
A, L	AVX844	AVX844	AVX846	AVX846	AVX846	AVX848	AVX845	AVX845	AVX847	AVX847	AVX849
E, U	AVX844	AVX844	AVX846	AVX845	AVX845	AVX845	AVX847	AVX849	AVX849	AVX851	AVX851
N	AVX845	AVX845	AVX845	AVX847	AVX847	AVX847	AVX849	AVX850	AVX851	AVX852	AVX852
ntegrated hydronic kit: DA, DB, DC, F	A, PB, PC, PD, PE, P	PF, PG, PH									
0	AVX822	AVX822	AVX822	AVX822	AVX825	AVX825	AVX825	AVX826	AVX826	AVX826	AVX828

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
A, L	AVX822	AVX822	AVX825	AVX825	AVX825	AVX825	AVX826	AVX826	AVX828	AVX828	AVX830
E, U	AVX825	AVX825	AVX825	AVX826	AVX826	AVX826	AVX828	AVX830	AVX830	AVX832	AVX832
N	AVX826	AVX826	AVX826	AVX828	AVX828	AVX828	AVX830	AVX831	AVX831	AVX833	AVX833
Integrated hydronic kit: DD, DE, DF, D	G, DH, PI, PJ										
0	AVX823	AVX823	AVX823	AVX823	AVX825	AVX825	AVX825	AVX826	AVX826	AVX826	AVX829
A, L	AVX823	AVX823	AVX825	AVX825	AVX825	AVX825	AVX826	AVX826	AVX829	AVX829	AVX830
E, U	AVX825	AVX825	AVX825	AVX826	AVX826	AVX826	AVX829	AVX830	AVX830	AVX832	AVX832
N	AVX826	AVX826	AVX826	AVX829	AVX829	AVX829	AVX830	AVX831	AVX831	AVX833	AVX833
Integrated hydronic kit: DI, DJ											
0	AVX864	AVX864	AVX829	AVX864	AVX825	AVX825	AVX827	AVX827	AVX827	AVX827	AVX829
A, L	AVX864	AVX864	AVX825	AVX825	AVX825	AVX825	AVX827	AVX827	AVX829	AVX829	AVX830
E, U	AVX825	AVX825	AVX825	AVX827	AVX827	AVX827	AVX829	AVX830	AVX830	AVX832	AVX832
N	AVX827	AVX827	AVX827	AVX829	AVX829	AVX829	AVX830	AVX831	AVX831	AVX833	AVX833

Device for peak current reduction

-	Ver	0800	0900	1000	1100	1200	1400
	°, A, E, L, N, U	DRENRB0800 (1)	DRENRB0900 (1)	DRENRB1000 (1)	DRENRB1100 (1)	DRENRB1200 (1)	DRENRB1400 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz, x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Ver	1600	1805	2006	2206	2406
°, A, E, L, N, U	DRENRB1600 (1)	DRENRB1805 (1)	DRENRB2006 (1)	DRENRB2206 (1)	DRENRB2406 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0800	0900	1000	1100	1200	1400
°, A, L	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1100	RIFNRB1200	RIFNRB1400
E, U	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1101	RIFNRB1201	RIFNRB1401
N	RIFNRB0801	RIFNRB0901	RIFNRB1001	RIFNRB1101	RIFNRB1201	RIFNRB1401

A grey background indicates the accessory must be assembled in the factory

Ver	1600	1805	2006	2206	2406
o	RIFNRB1600	RIFNRB1805	RIFNRB2006	RIFNRB2206	RIFNRB2406
A, L	RIFNRB1601	RIFNRB1805	RIFNRB2006	RIFNRB2206	RIFNRB2416
E. N. U	RIFNRB1601	RIFNRB1815	RIFNRB2016	RIFNRB2216	RIFNRB2416

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
0	GP2VN	GP2VN	GP2VN	GP2VN	GP3VN	GP3VN	GP3VN	GP4G	GP4G	GP4G	GP5G
A, L	GP2VN	GP2VN	GP3VN	GP3VN	GP3VN	GP3VN	GP4VN	GP4G	GP5G	GP5G	GP6V
E, U	GP3VN	GP3VN	GP3VN	GP4VN	GP4VN	GP4VN	GP5VN	GP6V	GP6V	GP7V	GP7V
N	GP4VN	GP4VN	GP4VN	GP5VN	GP5VN	GP5VN	GP6V	GP7V	GP7V	GP8V	GP8V

A grey background indicates the accessory must be assembled in the factory

■ GP2VN becomes GP2VNA if configured with a type A or B hydronic kit

Double safety valves

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
0	T6NRB13	T6NRB13	T6NRB13	T6NRB13	T6NRB15						
A, L	T6NRB13	T6NRB13	T6NRB14	T6NRB14	T6NRB15	T6NRB15	T6NRB15	T6NRB15	T6NRB15	T6NRB15	T6NRB16
E, U	T6NRB14	T6NRB14	T6NRB14	T6NRB14	T6NRB15	T6NRB15	T6NRB15	T6NRB17	T6NRB16	T6NRB19	T6NRB19
N	T6NRB14	T6NRB14	T6NRB14	T6NRB14	T6NRB15	T6NRB15	T6NRB18	T6NRB19	T6NRB19	T6NRB20	T6NRB20

A grey background indicates the accessory must be assembled in the factory

Kit for low temperature

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
0	-	-	-	-	-	-	-	XLA (1)	XLA (1)	XLA (1)	XLA (1)
A, L	-	-	-	-	-	-	XLA (1)				
E, U	-	-	-	XLA (1)							
N	XLA (1)										

(1) With the accessory XLA do not use the DCPX. The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

PERFORMANCE SPECIFICATIONS

NRB - °

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	221,5	244,5	270,3	299,7	353,1	404,9	439,0	511,2	560,9	598,2	675,8
Input power	kW	73,3	83,1	94,1	110,3	117,5	135,4	155,1	175,7	194,0	216,6	236,5
Cooling total input current	A	128,3	143,1	160,0	185,5	201,6	229,9	260,8	299,7	329,8	366,5	404,6
EER	W/W	3,02	2,94	2,87	2,72	3,00	2,99	2,83	2,91	2,89	2,76	2,86
Water flow rate system side	I/h	38117	42077	46498	51565	60733	69640	75512	87913	96469	102883	116222
Pressure drop system side	kPa	46	55	38	45	44	39	46	40	47	53	52

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - L

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C/7 °C (1)	,											
Cooling capacity	kW	216,9	237,7	272,7	307,7	343,9	391,0	438,4	498,2	555,4	608,2	666,2
Input power	kW	73,0	85,9	92,0	107,4	122,7	139,0	151,9	173,3	191,6	213,6	233,8
Cooling total input current	A	122,8	142,3	154,5	179,0	203,4	231,8	250,8	289,7	318,6	359,2	390,2
EER	W/W	2,97	2,77	2,97	2,87	2,80	2,81	2,89	2,87	2,90	2,85	2,85
Water flow rate system side	I/h	37323	40891	46905	52926	59137	67243	75381	85669	95498	104586	114564
Pressure drop system side	kPa	25	20	27	24	29	23	30	28	37	36	44

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - A

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C/7 °C (1)												
Cooling capacity	kW	224,1	252,2	283,7	326,1	361,2	411,7	462,2	519,2	576,0	633,3	697,6
Input power	kW	70,6	80,9	90,2	104,7	115,3	131,8	147,6	166,3	183,5	203,1	223,3
Cooling total input current	A	123,9	139,9	158,8	181,8	198,2	224,1	252,4	283,8	316,2	348,7	386,3
EER	W/W	3,17	3,12	3,15	3,12	3,13	3,12	3,13	3,12	3,14	3,12	3,12
Water flow rate system side	I/h	38561	43394	48802	56076	62118	70789	79487	89271	99048	108894	119965
Pressure drop system side	kPa	27	22	30	27	32	25	34	30	39	39	48

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - E

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C / 7 °C (1)												
Cooling capacity	kW	219,2	248,3	275,0	321,4	358,7	403,2	455,0	514,5	569,0	637,2	688,3
Input power	kW	69,6	79,4	88,5	102,2	114,9	129,8	144,5	164,7	183,0	203,4	221,4
Cooling total input current	А	119,5	134,7	148,8	172,1	192,6	215,7	240,1	275,1	306,1	342,6	372,8
EER	W/W	3,15	3,13	3,11	3,15	3,12	3,11	3,15	3,12	3,11	3,13	3,11
Water flow rate system side	I/h	37710	42726	47303	55271	61679	69338	78240	88465	97841	109550	118323
Pressure drop system side	kPa	19	23	20	27	21	27	26	33	33	22	25

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - U

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C / 7 °C (1)	·											
Cooling capacity	kW	227,6	257,6	286,5	329,6	369,8	414,6	466,9	529,2	594,0	655,1	716,9
Input power	kW	68,8	77,7	86,8	99,5	111,7	126,1	140,9	159,5	179,0	197,8	215,3
Cooling total input current	A	124,3	138,5	152,9	176,0	195,6	218,0	244,0	278,3	311,7	347,7	377,4
EER	W/W	3,30	3,31	3,30	3,31	3,31	3,28	3,31	3,32	3,32	3,31	3,33
Water flow rate system side	I/h	39151	44308	49294	56689	63596	71302	80286	91003	102137	112618	123250
Pressure drop system side	kPa	20	25	21	29	23	28	27	35	36	23	27

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - N

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C/7 °C (1)												
Cooling capacity	kW	227,7	260,4	284,7	327,7	367,7	412,3	466,1	521,6	579,1	645,7	702,6
Input power	kW	68,5	78,9	86,4	98,5	111,9	125,4	140,4	157,8	176,0	194,6	212,9
Cooling total input current	A	118,2	135,1	146,9	166,9	188,6	209,4	234,0	264,2	295,4	328,9	360,0
EER	W/W	3,32	3,30	3,30	3,33	3,29	3,29	3,32	3,31	3,29	3,32	3,30
Water flow rate system side	I/h	39166	44792	48972	56365	63234	70905	80151	89691	99569	111009	120789
Pressure drop system side	kPa	20	25	21	28	23	28	27	34	34	23	26

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Fans: J													
SEER - 12/7 (EN14825: 2018) (1)													
	0	W/W	4,44	4,33	4,27	4,25	4,39	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	W/W	4,65	4,55	4,66	4,70	4,69	4,73	4,76	4,64	4,64	4,62	4,61
CEED	E	W/W	4,75	4,67	4,63	4,81	4,82	4,76	4,88	4,73	4,67	4,70	4,74
SEER	L	W/W	4,56	4,42	4,50	4,51	4,58	4,59	4,67	4,56	4,56	4,58	4,57
	N	W/W	4,85	4,79	4,83	4,96	4,93	4,97	5,03	4,93	4,82	4,89	4,83
	U	W/W	4,76	4,75	4,71	4,89	4,85	4,86	4,91	4,84	4,77	4,82	4,78
	0	%	174,60	170,10	167,60	167,10	172,70	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	%	182,80	179,10	183,40	185,00	184,70	186,20	187,30	182,70	182,40	181,70	181,50
C	E	%	187,00	183,70	182,00	189,30	189,60	187,50	192,30	186,20	183,90	184,80	186,40
Seasonal efficiency	L	%	179,20	173,80	177,00	177,50	180,10	180,40	183,90	179,50	179,40	180,10	179,60
	N	%	191,10	188,40	190,30	195,40	194,20	195,90	198,10	194,10	189,90	192,40	190,00
	U	%	187,40	187,10	185,20	192,50	191,00	191,30	193,30	190,70	187,70	189,60	188,10
SEER - 23/18 (EN14825: 2018) (3)													
	0	W/W	5,28	5,16	5,07	4,96	5,40	5,44	5,18	5,07	5,13	4,77	5,07
	Α	W/W	5,50	5,35	5,50	5,51	5,55	5,55	5,63	5,34	5,44	5,30	5,42
CLED	E	W/W	5,62	5,53	5,46	5,70	5,69	5,63	5,77	5,50	5,52	5,48	5,59
SEER	L	W/W	5,34	5,14	5,35	5,33	5,37	5,34	5,47	5,26	5,32	5,20	5,26
	N	W/W	5,92	5,71	5,76	5,91	5,88	5,91	5,99	5,75	5,74	5,71	5,75
	U	W/W	5,65	5,67	5,59	5,82	5,76	5,80	5,83	5,67	5,69	5,61	5,68
	0	%	208,10	203,40	199,80	195,40	212,90	214,50	204,10	199,90	202,10	187,80	199,60
	A	%	217,00	210,90	217,00	217,50	219,10	219,10	222,10	210,50	214,60	209,10	213,60
C	E	%	221,90	218,30	215,30	224,90	224,50	222,20	227,70	216,80	217,70	216,00	220,60
Seasonal efficiency	L	%	210,40	202,70	211,00	210,20	211,60	210,40	215,80	207,40	209,70	205,10	207,50
	N	%	229,90	225,30	227,50	233,50	232,10	233,40	236,40	226,80	226,40	225,50	227,10
	U	%	222,80	223,70	220,70	229,90	227,50	228,80	230,20	223,80	224,50	221,50	224,00
SEPR - (EN 14825: 2018) (3)													
	0	W/W	5,39	5,22	5,17	5,03	5,36	5,51	5,52	5,58	5,52	5,51	5,51
	A	W/W	5,64	5,29	5,58	5,30	5,55	5,52	5,56	5,56	5,57	5,55	5,55
CERR	E	W/W	5,56	5,22	5,47	5,25	5,52	5,56	5,58	5,54	5,53	5,55	5,55
SEPR	L	W/W	5,32	5,05	5,31	5,04	5,18	5,05	5,53	5,53	5,53	5,52	5,54
	N	W/W	5,69	5,55	5,67	5,60	5,64	5,62	5,66	5,57	5,67	5,60	5,64
	U	W/W	5,67	5,54	5,66	5,54	5,68	5,59	5,69	5,55	5,55	5,58	5,72

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C/7°C
(3) Calculation performed with FIXED water flow rate.

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Fans: M													
SEER - 12/7 (EN14825: 2018) (1)													
	0	W/W	4,23	4,13	4,10	4,11	4,19	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	W/W	4,41	4,34	4,39	4,45	4,48	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
SEER	E	W/W	4,47	4,40	4,40	4,54	4,54	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
SEER	L	W/W	4,31	4,17	4,25	4,27	4,31	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	N	W/W	4,61	4,56	4,58	4,72	4,68	4,72	4,78	4,66	4,58	4,61	4,62
	U	W/W	4,51	4,51	4,51	4,63	4,64	4,65	4,70	4,61	4,56	4,57	4,59
	0	%	166,00	162,30	161,00	161,20	164,70	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	%	173,50	170,60	172,40	174,90	176,00	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
Seasonal efficiency	E	%	175,60	173,10	173,10	178,70	178,50	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
Seasonal eniciency	L	%	169,40	163,60	166,80	167,60	169,20	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	N	%	181,30	179,30	180,00	185,70	184,10	185,90	188,20	183,40	180,30	181,50	181,60
	U	%	177,20	177,40	177,20	182,10	182,50	183,10	184,80	181,40	179,20	179,90	180,50
SEER - 23/18 (EN14825: 2018) (3)													
	0	W/W	5,08	4,98	4,92	4,82	5,20	5,26	5,03	4,91	4,97	4,63	4,91
	A	W/W	5,29	5,15	5,25	5,28	5,35	5,37	5,42	5,15	5,22	5,09	5,22
SEER	E	W/W	5,36	5,24	5,28	5,40	5,43	5,37	5,54	5,21	5,22	5,21	5,30
SEER	L	W/W	5,06	4,87	5,07	5,08	5,05	5,10	5,19	5,02	5,02	4,92	4,99
	N	W/W	5,57	5,47	5,50	5,66	5,61	5,65	5,73	5,48	5,48	5,44	5,54
	U	W/W	5,41	5,44	5,41	5,58	5,56	5,60	5,63	5,46	5,49	5,39	5,50
	0	%	200,10	196,00	193,60	189,90	205,10	207,30	198,30	193,30	195,70	182,00	193,50
	A	%	208,40	203,00	206,80	208,00	211,10	211,60	213,60	203,10	205,70	200,60	205,60
Seasonal efficiency	E	%	211,40	206,40	208,30	213,00	214,00	211,80	218,50	205,50	205,70	205,30	208,90
Deadonal enfluency	L	%	199,40	191,90	199,70	200,10	199,10	200,80	204,40	197,70	197,60	193,90	196,40
	N	%	219,70	215,80	216,80	223,40	221,50	223,00	226,20	216,00	216,30	214,60	218,40
	U	%	213,40	214,40	213,30	220,00	219,50	221,00	222,20	215,30	216,40	212,50	216,90

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C/7°C
(3) Calculation performed with FIXED water flow rate.

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
SEPR - (EN 14825: 2018) (3)													
	٥	W/W	5,39	5,22	5,17	5,03	5,36	5,51	5,52	5,58	5,52	5,51	5,51
	A	W/W	5,64	5,29	5,58	5,30	5,55	5,52	5,56	5,56	5,57	5,55	5,55
CEDD	E	W/W	5,56	5,22	5,47	5,25	5,52	5,56	5,58	5,54	5,53	5,55	5,55
SEPR	L	W/W	5,32	5,05	5,31	5,04	5,18	5,05	5,53	5,53	5,53	5,52	5,54
	N	W/W	5,69	5,55	5,67	5,60	5,64	5,62	5,66	5,57	5,63	5,60	5,64
	U	W/W	5,67	5,54	5,66	5,54	5.68	5,59	5,69	5,55	5.55	5,58	5.72

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C/7°C (3) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Electric data													
	0	A	164,3	180,7	197,0	226,4	262,1	291,1	320,1	371,3	416,0	445,0	480,4
Marrian compant (FLA)	A,L	A	177,1	193,4	222,5	251,8	281,2	310,2	351,9	396,7	454,2	483,2	530,8
Maximum current (FLA)	E,U	A	189,8	206,1	222,5	264,5	293,9	322,9	364,6	428,0	472,8	514,5	543,5
	N	A	202,5	218,8	235,2	277,3	306,6	335,6	383,2	440,7	485,5	527,2	556,2
	0	A	352,9	408,1	424,4	477,1	512,8	625,3	654,3	705,5	750,3	779,3	814,6
DI	A,L	A	365,6	420,8	449,9	502,5	531,9	644,4	686,1	730,9	788,4	817,4	865,0
Peak current (LRA)	E,U	A	378,3	433,5	449,9	515,3	544,6	657,1	698,8	762,2	807,0	848,7	877,7
	N	A	391,1	446,2	462,6	528,0	557,3	669,8	717,4	774,9	819,7	861,4	890,4

GENERAL TECHNICAL DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Compressor													
Туре	°,A,E,L,N,U	type						Scroll					
Compressor regulation	°,A,E,L,N,U	Туре						Asynchronous					
Number	°,A,E,L,N,U	no.	4	4	4	4	4	4	4	5	6	6	6
Circuits	°,A,E,L,N,U	no.	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	°,A,E,L,N,U	type						R410A					
	0	kg	14,0	14,5	15,0	16,0	20,5	21,0	21,0	26,0	26,0	26,0	31,0
Refrigerant load	A,L	kg	15,0	16,0	20,0	22,0	21,0	22,5	23,5	25,0	30,0	31,0	32,5
circuit 1 (1)	E,U	kg	20,5	20,0	21,5	26,0	25,0	26,0	30,0	32,0	36,0	44,5	56,0
-	N	kg	25,0	26,5	26,5	29,0	28,0	35,0	42,0	38,0	43,0	62,0	42,0
	0	kg	14,0	14,5	15,0	16,0	20,5	21,0	21,0	29,0	29,0	29,0	34,0
Refrigerant load	A,L	kg	15,0	16,0	20,0	22,0	21,0	22,5	25,5	30,0	34,0	34,0	37,5
circuit 2 (1)	E,U	kg	20,5	20,0	21,5	27,0	28,0	27,0	32,0	37,0	39,0	45,5	56,0
-	N	kg	25,0	26,5	26,5	30,0	31,0	35,0	42,0	42,0	47,0	62,0	49,0
Potential global heating	°,A,E,L,N,U	GWP						2088kgCO₂eq					
System side heat exc	hanger												
Туре	°,A,E,L,N,U	type						Brazed plate					
Number	°,A,E,L,N,U	no.	1	1	1	1	1	1	1	1	1	1	1
Hydraulic connection	ıs												
Connections (in/out)	°,A,E,L,N,U	Type						Grooved joints					
Hydraulic connection	s without hydr	onic kit											
Sizes (in/out)	°,A,E,L,N,U	Ø	3″	3"	3″	3″	3″	3″	4"	4"	4"	4"	4"
Hydraulic connection	s with hydroni	c kit											
Sizes (in/out)	°,A,E,L,N,U	Ø	3"	3"	3"	3"	3″	3″	4"	4"	4"	4"	4"

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

In the versions without a hydronic kit, the water filter is supplied with a connection point for making the connection. In the versions with a hydronic kit, it is supplied ready-mounted.

Fans													
Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Fans: M													
Fan													
Туре	°,A,E,L,N,U	type						Axial					
Fan motor	^,A,U	type						Asynchronous	i				
Tull filotoi	E,L,N	type					Asynch	ronous with pl	nase cut				
	•	no.	4	4	4	4	6	6	6	8	8	8	10
Number	A,L	no.	4	4	6	6	6	6	8	8	10	10	12
Number	E,U	no.	6	6	6	8	8	8	10	12	12	14	14
	N	no.	8	8	8	10	10	10	12	14	14	16	16
With static pressure													
	•	m³/h	64000	64000	64000	64000	96000	96000	96000	128000	128000	128000	160000
	A	m³/h	64000	64000	96000	96000	96000	96000	128000	128000	160000	160000	192000
Air flow rate	E	m³/h	69000	69000	69000	92000	92000	92000	115000	138000	138000	161000	161000
All How ruce	L	m³/h	46000	46000	69000	69000	69000	69000	92000	92000	115000	115000	138000
	N	m³/h	92000	92000	92000	115000	115000	115000	138000	161000	161000	184000	184000
	U	m³/h	96000	96000	96000	128000	128000	128000	160000	192000	192000	224000	224000
High static pressure	°,A,U	Pa	50	50	50	50	50	50	50	50	50	50	50
Trigit static pressure	E,L,N	Pa	120	120	120	120	120	120	120	120	120	120	120
Without Static pressure													
	۰	m³/h	72000	72000	72000	72000	108000	108000	108000	144000	144000	144000	180000
	A	m³/h	72000	72000	108000	108000	108000	108000	144000	144000	180000	180000	216000
Air flow rate	E	m³/h	69000	69000	69000	92000	92000	92000	115000	138000	138000	161000	161000
חוו ווטש ומנכ	L	m³/h	46000	46000	69000	69000	69000	69000	92000	92000	115000	115000	138000
	N	m³/h	92000	92000	92000	115000	115000	115000	138000	161000	161000	184000	184000
	U	m³/h	108000	108000	108000	144000	144000	144000	180000	216000	216000	252000	252000
High static pressure	°,A,E,L,N,U	Pa	0	0	0	0	0	0	0	0	0	0	0
With static pressure													
	٥	dB(A)	87,8	87,8	87,8	87,8	90,0	90,0	90,0	92,0	92,5	93,0	94,7
	Α	dB(A)	87,8	87,8	90,0	90,0	90,0	90,0	91,5	92,0	93,7	94,2	95,6
.	E	dB(A)	84,8	84,8	84,8	86,3	86,3	86,3	87,5	89,0	89,5	90,8	91,3
Sound power level	L	dB(A)	82,7	82,7	84,8	84,8	84,8	85,6	86,3	87,7	88,5	89,8	90,5
	N	dB(A)	86,3	86,3	86,3	87,5	87,5	87,5	88,5	89,8	90,3	91,5	92,0
	U	dB(A)	90,0	90,0	90,0	91,5	91,5	91,5	92,7	94,2	94,7	96,0	96,5
Without Static pressure													
	0	dB(A)	89,7	89,7	89,7	89,7	91,7	91,7	91,7	93,4	93,2	93,5	94,9
	A	dB(A)	89,7	89,7	91,7	91,7	91,7	91,7	93,1	93,4	94,3	94,6	95,8
	E	dB(A)	84,8	84,8	84,8	86,3	86,3	86,3	87,5	89,0	89,5	90,8	91,3
Sound power level	L	dB(A)	82,7	82,7	84,8	84,8	84,8	85,6	86,3	87,7	88,5	89,8	90,5
	N	dB(A)	86,3	86,3	86,3	87,5	87,5	87,5	88,5	89,8	90,3	91,5	92,0
	U	dB(A)	92,3	92,3	92,3	93,6	93,6	93,6	94,6	95,7	95,5	96,5	96,8
Cina			0800	0900	1000	1100	1200	1400	1600	1005	2006	2206	2406
Size			0000	0900	1000	1100	1200	1400	1000	1805	2006	2206	2400
Fans: J													
	°,A,E,L,N,U	tuno				-		Axial	-		-		-
Type Fan motor	°,A,E,L,N,U	type						Inverter					
raii iiiotoi	,A,E,L,N,U	type		4	4					0	0	0	10
	A,L	no.	4	4	6	6	6	6	<u>6</u> 8	8	8 10	8 10	10 12
Number	A,L E,U	no.	6	6	6	8	8	8	10	12	12	14	14
	E,U	no.	8	8	8	10	10	10	12	14	14	16	16
Inverter fan	IN .	no.	0	0	0	IV	IV	IV	12	14	14	10	10
mircitei idii	0	m³/h	64000	64000	64000	64000	96000	96000	96000	128000	128000	128000	160000
	A	m³/h	64000	64000	96000	96000	96000	96000	128000	128000	160000	160000	192000
	A E	m³/h					92000						
Air flow rate			69000	69000	69000	92000		92000	115000	138000	138000	161000	161000
	L	m ³ /h	46000	46000	69000	69000	69000	69000	92000	92000	115000	115000	138000
	N	m ³ /h	92000	92000	92000	115000	115000	115000	138000	161000	161000	184000	184000
	U	m³/h	96000	96000	96000	128000	128000	128000	160000	192000	192000	224000	224000
Iliah atatia musanus		Pa	120	120	120	120	120	120	120	75	75	75	75
High static pressure	A,U	Pa	120	120	120	120	120	120	120	120	120	120	120
Committee related to the P	E,L,N	Pa	200	200	200	200	200	200	200	200	200	200	200
Sound data calculated in cooling m	ode (1) °	In (1)											
		dB(A)	87,8	87,8	87,8	87,8	90,0	90,0	90,0	92,0	92,5	93,0	94,7
	Α	dB(A)	87,8	87,8	90,0	90,0	90,0	90,0	91,5	92,0	93,7	94,2	95,6
		144.111						06.2	87,5	89,0	89,5	90,8	91,3
Sound power level	E	dB(A)	84,8	84,8	84,8	86,3	86,3	86,3					
Sound power level	E L	dB(A)	82,7	82,7	84,8	84,8	84,8	85,6	86,3	87,7	88,5	89,8	90,5
Sound power level	E												

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

DIMENSIONS

NRB 2406 L/A NRB 1100 - 2406 E/U NRB 0800 - 2406 N

(1) Additional module needed to contain the hydronic kit with "accumulation" option in sizes: 0800°, 0900°, 1000°, 1100° 0800L, 0900L 0800A, 0900A

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Dimensions and weights													
A	°,A,E,L,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	°,A,E,L,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
		mm	2780	2780	2780	2780	3970	3970	3970	5160	5160	5160	6350
(A,L	mm	2780	2780	3970	3970	3970	3970	4760	5160	6350	6350	7140
C	E,U	mm	3970	3970	3970	4760	4760	4760	5950	7140	7140	8330	8330
	N	mm	4760	4760	4760	5950	5950	5950	7140	8330	8330	9520	9520

■ The units 0800°, 0900°, 1000°, 1100°; 0800L, 0900L; and 0800A, 0900A with the "storage tank" option, are 3970mm long.

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Integrated hydronic kit: 00													
Weights													
	٥	kg	2240	2280	2350	2390	2880	2930	2960	3660	3830	3870	4360
	A,L	kg	2260	2320	2800	2870	2910	2970	3490	3710	4280	4360	4780
Empty weight — —	E,U	kg	2720	2760	2840	3370	3440	3460	3940	4490	4700	5350	5390
	N	kg	3220	3270	3340	3770	3840	3870	4290	4940	5160	5750	5790

■ The weights are for standard units with plate heat exchangers and no hydronic kit.

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRB 0800-2406 Q

Air-water chiller with shell and tube heat exchanger

Cooling capacity 216,9 ÷ 716,9 kW

- Microchannel coil
- · Shell and tube heat exchanger
- Night mode
- Operation up to 50 °C outdoor air
- HP floating: ESEER +7% with inverter fans

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

They are outdoor units with axial fan scroll compressors, microchannel coils and Shell and tube exchangers.

In the unit with desuperheater, it is also possible to produce free-hot water. The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to 50°C external air temperature. Unit can produce chilled water (up to -10°C of water produced in some versions).

Dual-circuit unit

Unit with 2 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Aluminium microchannel coils

The microchannel condensing aluminum coils ensure high levels of efficiency, reduced quantities of refrigerant and lower unit weight. The treatment "O" available as configurator it ensures high resistance to corrosion even in the most aggressive environments.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

It is standard in all sizes from 1805 to 2406.

Option integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, high or low head, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL PCO⁵

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: available for all models with inverter fans or with DCPX. Together with continuous fan modulation, it optimises unit operation in any working point, enhancing energy efficiency with partial loads. ESEER up to +7% with inverter fans.
- Night mode: only in the non-silenced versions with the fan to be, inverter or phase-cut or with the DCPX accessory, a silenced operation profile can be set, which is useful, for example, at night for greater acoustic comfort, but always ensures performance even at peak load hours.

CONFIGURATOR

Field	d	Description
1,2,	3	NRB
4,5,	6,7	Size 0800, 0900, 1000, 1100, 1200, 1400, 1600, 1805, 2006, 2206, 2406
8		Operating field
	Χ	Electronic thermostatic expansion valve (1)
	Υ	Low temperature mechanic thermostatic valve (2)
	Z	Low temperature electronic thermostatic valve (2)
	0	Standard mechanic thermostatic valve (1)
9		Model
	Q	Cooling only with shell and tube heat exchanger
10		Heat recovery
	D	With desuperheater (3)
	T	With total recovery (4)
	0	Without heat recovery
11		Version
	0	Standard
	Α	High efficiency
	Ε	Silenced high efficiency
	L	Standard silenced
	N	Silenced very high efficiency
	U	Very high efficiency
12		Coils
	1	Copper-aluminium
	0	Coated aluminium microchannel
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	٧	Copper pieps-Coated aluminium fins
	0	Aluminium microchannel
13		Fans
	J	Inverter
	М	Oversized

Field	Description
14	Power supply
0	400V ~ 3 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit
	Without hydronic kit (5)
00	Without hydronic kit
	Kit with n° 1 pump
PA	Pump A
PB	Pump B
PC	Pump C
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump

- (1) Water produced from 4 °C ÷ 18 °C
- Processed water from 4° C for the $^{\circ}$ L versions, and from 4° C to -10° C for A E U N versions
- (3) The temperature of the water in the heat exchanger inlet must never drop below 35°C. (4) For compatibility with total recovery see table below.

(5) For compatibility with the hydronic kit, see the table below.

Compatible with total recovery

Version		800	900	1000	1100	1200	1400	1600	1805	2006	2206	2406
standard	0	-	-	-	-	-	-	-	-	-	-	•
Standard silenced	L	-	-	-	-	-	-	-	-		•	•
High efficiency	A	-	-	-	-	-	-	-	-	•	•	•
Silenced high efficiency	E	-	-	-	-	-	-	•		•	•	•
Very high efficiency	U	-	-	-	-	-	-	•	•	•	•	•
Silenced very high efficiency	N	-	-	-	•	•	•	•	•	•	•	•

Compatibility of models with hydronic units available with a configurator

Version		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
standard	0	-	-	-	-	•	-	-	•	•	•	•
Standard silenced	L	-	-	•	-	-	-		•			•
High efficiency	A	-	-	•	-	-	-	•	•	•	•	•
Silenced high efficiency	E			-		•	•	•		•		
Very high efficiency	U	•	•	-	•	•	•	•		•	•	•
Silenced very high efficiency	N	•	•	•	•	•	•	•	•	•	•	•

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

AVX: Spring anti-vibration supports.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

KRS: Electric heater for the heat exchanger

ACCESSORIES COMPATIBILITY

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
AER485P1	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•
AERBACP	°,A,E,L,N,U								•			
AERNET	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•
FL	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•
PGD1	°,A,E,L,N,U			•	•	•	•	•	•		•	

Remote panel

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
PR4	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Condensation control temperature

Ver	0800	0900	1000	1100	1200	1400
Fans: M	·					
0	DCPX130	DCPX130	DCPX130	DCPX130	DCPX131	DCPX131
A	DCPX130	DCPX130	DCPX131	DCPX131	DCPX131	DCPX131
E, L, N	As standard					
U	DCPX131	DCPX131	DCPX131	DCPX132	DCPX132	DCPX132
Ver	1600	1805		2006	2206	2406
Fans: M	·	'		'		

Ver	1600	1805	2006	2206	2406
Fans: M	1000	.505	2300	2200	2400
i alis. M	0.00/424	D CDV4 FF	0.00/455	0.00/455	0.00/4.54
	DCPX131	DCPX155	DCPX155	DCPX155	DCPX156
A	DCPX132	DCPX155	DCPX156	DCPX156	DCPX134
E, L, N	As standard				
U	DCPX133	DCPX134	DCPX134	DCPX135	DCPX135

Antivibration

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Integrated hydronic kit: 00											
0	AVX1107	AVX1107	AVX1107	AVX1107	AVX1108	AVX1108	AVX1108	AVX1109	AVX1109	AVX1109	AVX1110
A, L	AVX1107	AVX1107	AVX1108	AVX1108	AVX1108	AVX1108	AVX1109	AVX1109	AVX1110	AVX1110	AVX1111
E, U	AVX1108	AVX1108	AVX1108	AVX1109	AVX1109	AVX1109	AVX1110	AVX1111	AVX1111	AVX1105	AVX1105
N	AVX1109	AVX1109	AVX1109	AVX1110	AVX1110	AVX1110	AVX1111	AVX1105	AVX1105	AVX1102	AVX1102
Integrated hydronic kit: DA, DB, DC,	DD, DE, DF, DG, DH,	DI, DJ, PA, PB, P	C, PD, PE, PF, P	G, PH, PI, PJ							
0	-	-	-	-	AVX1108	-	-	AVX1109	AVX1109	AVX1109	AVX1110
A, L	-	-	AVX1108	-	-	-	AVX1109	AVX1109	AVX1110	AVX1110	AVX1111
E, U	AVX1108	AVX1108	-	AVX1109	AVX1109	AVX1109	AVX1110	AVX1111	AVX1111	AVX1105	AVX1105
N	AVX1109	AVX1109	AVX1109	AVX1110	AVX1110	AVX1110	AVX1111	AVX1105	AVX1105	AVX1102	AVX1102

Device for peak current reduction

Ver	0800	0900	1000	1100	1200	1400
°, A, E, L, N, U	DRENRB0800 (1)	DRENRB0900 (1)	DRENRB1000 (1)	DRENRB1100 (1)	DRENRB1200 (1)	DRENRB1400 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Ver	1600	1805	2006	2206	2406
°, A, E, L, N, U	DRENRB1600 (1)	DRENRB1805 (1)	DRENRB2006 (1)	DRENRB2206 (1)	DRENRB2406 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0800	0900	1000	1100	1200	1400
°, A, L	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1100	RIFNRB1200	RIFNRB1400
E, U	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1101	RIFNRB1201	RIFNRB1401
N	RIFNRB0801	RIFNRB0901	RIFNRB1001	RIFNRB1101	RIFNRB1201	RIFNRB1401

A grey background indicates the accessory must be assembled in the factory

Ver	1600	1805	2006	2206	2406
o	RIFNRB1600	RIFNRB1805	RIFNRB2006	RIFNRB2206	RIFNRB2406
A, L	RIFNRB1601	RIFNRB1805	RIFNRB2006	RIFNRB2206	RIFNRB2416
E, N, U	RIFNRB1601	RIFNRB1815	RIFNRB2016	RIFNRB2216	RIFNRB2416

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406		
Integrated hydronic kit: 00													
0	GP2VN	GP2VN	GP2VN	GP2VN	GP3VN	GP3VN	GP3VN	GP4VN	GP4VN	GP4VN	GP5VN		
A, L	GP2VN	GP2VN	GP3VN	GP3VN	GP3VN	GP3VN	GP4VN	GP4VN	GP5VN	GP5VN	GP5VN		
E, U	GP3VN	GP3VN	GP3VN	GP4VN	GP4VN	GP4VN	GP5VN	GP6V	GP6V	GP7V	GP7V		
N	GP4VN	GP4VN	GP4VN	GP5VN	GP5VN	GP5VN	GP6V	GP7V	GP7V	GP8V	GP4VN		
Integrated hydronic kit: DA, DB, DC, DD,	Integrated hydronic kit: DA, DB, DC, DD, DE, DF, DG, DH, DI, DJ, PA, PB, PC, PD, PE, PF, PG, PH, PI, PJ												
0	-	-	-	-	GP3VN	-	-	GP4VN	GP4VN	GP4VN	GP5VN		
A, L	-	-	GP3VN	-	-	-	GP4VN	GP4VN	GP5VN	GP5VN	GP5VN		
E, U	GP3VN	GP3VN	-	GP4VN	GP4VN	GP4VN	GP5VN	GP6V	GP6V	GP7V	GP7V		
N	GP4VN	GP4VN	GP4VN	GP5VN	GP5VN	GP5VN	GP6V	GP7V	GP7V	GP8V	GP4VN		

A grey background indicates the accessory must be assembled in the factory

Kit for low temperature

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
0	-	-	-	-	-	-	-	XLA (1)	XLA (1)	XLA (1)	XLA (1)
A, L	-	-	-	-	-	-	XLA (1)				
E, U	-	-	-	XLA (1)							
N	XLA (1)										

PERFORMANCE SPECIFICATIONS

NRB - °

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C / 7 °C (1)												
Cooling capacity	kW	221,5	244,5	270,3	299,7	353,1	404,9	439,0	511,2	560,9	598,2	675,8
Input power	kW	73,3	83,1	94,1	110,3	117,5	135,4	155,1	175,7	194,0	216,6	236,5
Cooling total input current	A	128,3	143,1	160,0	185,5	201,6	229,9	260,8	299,7	329,8	366,5	404,6
EER	W/W	3,02	2,94	2,87	2,72	3,00	2,99	2,83	2,91	2,89	2,76	2,86
Water flow rate system side	l/h	38117	42077	46498	51565	60733	69640	75512	87913	96469	102883	116222
Pressure drop system side	kPa	46	55	38	45	44	39	46	40	47	53	52

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - L

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C / 7 °C (1)												
Cooling capacity	kW	216,9	237,7	272,7	307,7	343,9	391,0	438,4	498,2	555,4	608,2	666,2
Input power	kW	73,0	85,9	92,0	107,4	122,7	139,0	151,9	173,3	191,6	213,6	233,8
Cooling total input current	A	122,8	142,3	154,5	179,0	203,4	231,8	250,8	289,7	318,6	359,2	390,2
EER	W/W	2,97	2,77	2,97	2,87	2,80	2,81	2,89	2,87	2,90	2,85	2,85
Water flow rate system side	I/h	37323	40891	46905	52926	59137	67243	75381	85669	95498	104586	114564
Pressure drop system side	kPa	25	20	27	24	29	23	30	28	37	36	44

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - A

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C / 7 °C (1)												
Cooling capacity	kW	224,1	252,2	283,7	326,1	361,2	411,7	462,2	519,2	576,0	633,3	697,6
Input power	kW	70,6	80,9	90,2	104,7	115,3	131,8	147,6	166,3	183,5	203,1	223,3
Cooling total input current	A	123,9	139,9	158,8	181,8	198,2	224,1	252,4	283,8	316,2	348,7	386,3
EER	W/W	3,17	3,12	3,15	3,12	3,13	3,12	3,13	3,12	3,14	3,12	3,12
Water flow rate system side	I/h	38561	43394	48802	56076	62118	70789	79487	89271	99048	108894	119965
Pressure drop system side	kPa	27	22	30	27	32	25	34	30	39	39	48

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - E

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C / 7 °C (1)												
Cooling capacity	kW	219,2	248,3	275,0	321,4	358,7	403,2	455,0	514,5	569,0	637,2	688,3
Input power	kW	69,6	79,4	88,5	102,2	114,9	129,8	144,5	164,7	183,0	203,4	221,4
Cooling total input current	A	119,5	134,7	148,8	172,1	192,6	215,7	240,1	275,1	306,1	342,6	372,8
EER	W/W	3,15	3,13	3,11	3,15	3,12	3,11	3,15	3,12	3,11	3,13	3,11
Water flow rate system side	I/h	37710	42726	47303	55271	61679	69338	78240	88465	97841	109550	118323
Pressure drop system side	kPa	19	23	20	27	21	27	26	33	33	22	25

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

⁽¹⁾ With the accessory XLA do not use the DCPX.

The accessory cannot be fitted on the configurations indicated with A grey background indicates the accessory must be assembled in the factory

NRB - U

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	227,6	257,6	286,5	329,6	369,8	414,6	466,9	529,2	594,0	655,1	716,9
Input power	kW	68,8	77,7	86,8	99,5	111,7	126,1	140,9	159,5	179,0	197,8	215,3
Cooling total input current	A	124,3	138,5	152,9	176,0	195,6	218,0	244,0	278,3	311,7	347,7	377,4
EER	W/W	3,30	3,31	3,30	3,31	3,31	3,28	3,31	3,32	3,32	3,31	3,33
Water flow rate system side	I/h	39151	44308	49294	56689	63596	71302	80286	91003	102137	112618	123250
Pressure drop system side	kPa	20	25	21	29	23	28	27	35	36	23	27

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - N

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	227,7	260,4	284,7	327,7	367,7	412,3	466,1	521,6	579,1	645,7	702,6
Input power	kW	68,5	78,9	86,4	98,5	111,9	125,4	140,4	157,8	176,0	194,6	212,9
Cooling total input current	A	118,2	135,1	146,9	166,9	188,6	209,4	234,0	264,2	295,4	328,9	360,0
EER	W/W	3,32	3,30	3,30	3,33	3,29	3,29	3,32	3,31	3,29	3,32	3,30
Water flow rate system side	l/h	39166	44792	48972	56365	63234	70905	80151	89691	99569	111009	120789
Pressure drop system side	kPa	20	25	21	28	23	28	27	34	34	23	26

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Fans: J													
SEER - 12/7 (EN14825: 2018) (1)													
	0	W/W	4,44	4,33	4,27	4,25	4,39	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	W/W	4,65	4,55	4,66	4,70	4,69	4,73	4,76	4,64	4,64	4,62	4,61
CEED	E	W/W	4,75	4,67	4,63	4,81	4,82	4,76	4,88	4,73	4,67	4,70	4,74
SEER	L	W/W	4,56	4,42	4,50	4,51	4,58	4,59	4,67	4,56	4,56	4,58	4,57
	N	W/W	4,85	4,79	4,83	4,96	4,93	4,97	5,03	4,93	4,82	4,89	4,83
	U	W/W	4,76	4,75	4,71	4,89	4,85	4,86	4,91	4,84	4,77	4,82	4,78
	0	%	174,60	170,10	167,60	167,10	172,70	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	%	182,80	179,10	183,40	185,00	184,70	186,20	187,30	182,70	182,40	181,70	181,50
	E	%	187,00	183,70	182,00	189,30	189,60	187,50	192,30	186,20	183,90	184,80	186,40
Seasonal efficiency	L	%	179,20	173,80	177,00	177,50	180,10	180,40	183,90	179,50	179,40	180,10	179,60
	N	%	191,10	188,40	190,30	195,40	194,20	195,90	198,10	194,10	189,90	192,40	190,00
	U	%	187,40	187,10	185,20	192,50	191,00	191,30	193,30	190,70	187,70	189,60	188,10
SEER - 23/18 (EN14825: 2018) (3)													
	0	W/W	5,28	5,16	5,07	4,96	5,40	5,44	5,18	5,07	5,13	4,77	5,07
	A	W/W	5,50	5,35	5,50	5,51	5,55	5,55	5,63	5,34	5,44	5,30	5,42
CEED	E	W/W	5,62	5,53	5,46	5,70	5,69	5,63	5,77	5,50	5,52	5,48	5,59
SEER	L	W/W	5,34	5,14	5,35	5,33	5,37	5,34	5,47	5,26	5,32	5,20	5,26
	N	W/W	5,92	5,71	5,76	5,91	5,88	5,91	5,99	5,75	5,74	5,71	5,75
	U	W/W	5,65	5,67	5,59	5,82	5,76	5,80	5,83	5,67	5,69	5,61	5,68
	0	%	208,10	203,40	199,80	195,40	212,90	214,50	204,10	199,90	202,10	187,80	199,60
	Α	%	217,00	210,90	217,00	217,50	219,10	219,10	222,10	210,50	214,60	209,10	213,60
	E	%	221,90	218,30	215,30	224,90	224,50	222,20	227,70	216,80	217,70	216,00	220,60
Seasonal efficiency	L	%	210,40	202,70	211,00	210,20	211,60	210,40	215,80	207,40	209,70	205,10	207,50
	N	%	229,90	225,30	227,50	233,50	232,10	233,40	236,40	226,80	226,40	225,50	227,10
	U	%	222,80	223,70	220,70	229,90	227,50	228,80	230,20	223,80	224,50	221,50	224,00
SEPR - (EN 14825: 2018) (3)			,		,								
	0	W/W	5,39	5,22	5,17	5,03	5,36	5,51	5,52	5,58	5,52	5,51	5,51
	A	W/W	5,64	5,29	5,58	5,30	5,55	5,52	5,56	5,56	5,57	5,55	5,55
CEDD	E	W/W	5,56	5,22	5,47	5,25	5,52	5,56	5,58	5,54	5,53	5,55	5,55
SEPR	L	W/W	5,32	5,05	5,31	5,04	5,18	5,05	5,53	5,53	5,53	5,52	5,54
	N	W/W	5,69	5,55	5,67	5,60	5,64	5,62	5,66	5,57	5,67	5,60	5,64
	U	W/W	5,67	5,54	5,66	5,54	5,68	5,59	5,69	5,55	5,55	5,58	5,72

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C/7°C
(3) Calculation performed with FIXED water flow rate.

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Fans: M													
SEER - 12/7 (EN14825: 2018) (1)													
	0	W/W	4,23	4,13	4,10	4,11	4,19	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	W/W	4,41	4,34	4,39	4,45	4,48	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
SEER	E	W/W	4,47	4,40	4,40	4,54	4,54	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
DEEK	L	W/W	4,31	4,17	4,25	4,27	4,31	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	N	W/W	4,61	4,56	4,58	4,72	4,68	4,72	4,78	4,66	4,58	4,61	4,62
	U	W/W	4,51	4,51	4,51	4,63	4,64	4,65	4,70	4,61	4,56	4,57	4,59
	0	%	166,00	162,30	161,00	161,20	164,70	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	Α	%	173,50	170,60	172,40	174,90	176,00	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
Seasonal efficiency	E	%	175,60	173,10	173,10	178,70	178,50	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
Seasonal eniciency	L	%	169,40	163,60	166,80	167,60	169,20	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	N	%	181,30	179,30	180,00	185,70	184,10	185,90	188,20	183,40	180,30	181,50	181,60
	U	%	177,20	177,40	177,20	182,10	182,50	183,10	184,80	181,40	179,20	179,90	180,50
SEER - 23/18 (EN14825: 2018) (3)													
		W/W	5,08	4,98	4,92	4,82	5,20	5,26	5,03	4,91	4,97	4,63	4,91
	A	W/W	5,29	5,15	5,25	5,28	5,35	5,37	5,42	5,15	5,22	5,09	5,22
SEER	E	W/W	5,36	5,24	5,28	5,40	5,43	5,37	5,54	5,21	5,22	5,21	5,30
SLEN	L	W/W	5,06	4,87	5,07	5,08	5,05	5,10	5,19	5,02	5,02	4,92	4,99
	N	W/W	5,57	5,47	5,50	5,66	5,61	5,65	5,73	5,48	5,48	5,44	5,54
	U	W/W	5,41	5,44	5,41	5,58	5,56	5,60	5,63	5,46	5,49	5,39	5,50
	•	%	200,10	196,00	193,60	189,90	205,10	207,30	198,30	193,30	195,70	182,00	193,50
	A	%	208,40	203,00	206,80	208,00	211,10	211,60	213,60	203,10	205,70	200,60	205,60
Seasonal efficiency	E	%	211,40	206,40	208,30	213,00	214,00	211,80	218,50	205,50	205,70	205,30	208,90
Seasonal efficiency	L	%	199,40	191,90	199,70	200,10	199,10	200,80	204,40	197,70	197,60	193,90	196,40
	N	%	219,70	215,80	216,80	223,40	221,50	223,00	226,20	216,00	216,30	214,60	218,40
	U	%	213,40	214,40	213,30	220,00	219,50	221,00	222,20	215,30	216,40	212,50	216,90
SEPR - (EN 14825: 2018) (3)													
		W/W	5,39	5,22	5,17	5,03	5,36	5,51	5,52	5,58	5,52	5,51	5,51
	A	W/W	5,64	5,29	5,58	5,30	5,55	5,52	5,56	5,56	5,57	5,55	5,55
SEPR	E	W/W	5,56	5,22	5,47	5,25	5,52	5,56	5,58	5,54	5,53	5,55	5,55
JEI II	L	W/W	5,32	5,05	5,31	5,04	5,18	5,05	5,53	5,53	5,53	5,52	5,54
	N	W/W	5,69	5,55	5,67	5,60	5,64	5,62	5,66	5,57	5,63	5,60	5,64
	U	W/W	5,67	5,54	5,66	5,54	5,68	5,59	5,69	5,55	5,55	5,58	5,72

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C/7°C
(3) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Electric data	'												
	٥	A	164,3	180,7	197,0	226,4	262,1	291,1	320,1	371,3	416,0	445,0	480,4
Marrian comment (FLA)	A,L	A	177,1	193,4	222,5	251,8	281,2	310,2	351,9	396,7	454,2	483,2	530,8
Maximum current (FLA)	E,U	A	189,8	206,1	222,5	264,5	293,9	322,9	364,6	428,0	472,8	514,5	543,5
	N	A	202,5	218,8	235,2	277,3	306,6	335,6	383,2	440,7	485,5	527,2	556,2
	0	Α	352,9	408,1	424,4	477,1	512,8	625,3	654,3	705,5	750,3	779,3	814,6
Deals surrent (LDA)	A,L	A	365,6	420,8	449,9	502,5	531,9	644,4	686,1	730,9	788,4	817,4	865,0
Peak current (LRA)	E,U	A	378,3	433,5	449,9	515,3	544,6	657,1	698,8	762,2	807,0	848,7	877,7
	N	A	391,1	446,2	462,6	528,0	557,3	669,8	717,4	774,9	819,7	861,4	890,4

GENERAL TECHNICAL DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Compressor													
Туре	°,A,E,L,N,U	type						Scroll			-		
Compressor regulation	°,A,E,L,N,U	Туре						0n/0ff					
Number	°,A,E,L,N,U	no.	4	4	4	4	4	4	4	5	6	6	6
Circuits	°,A,E,L,N,U	no.	2	2	2	2	2	2	2	2	2	2	2
Partialisation of the unit with mechanical thermostatic valve	°,A,E,L,N,U	%	25%	25%	25%	25%	25%	25%	25%	17%	17%	17%	17%
Partialisation of the unit with electronic thermostatic expansion valve	°,A,E,L,N,U	%	25%	25%	25%	25%	25%	25%	25%	17%	17%	17%	17%
Refrigerant	°,A,E,L,N,U	type						R410A					
	0	kg	28,0	29,0	30,0	32,0	41,0	42,0	42,0	55,0	55,0	55,0	65,0
Definement sharms (1)	A,L	kg	30,0	32,0	40,0	44,0	42,0	45,0	49,0	55,0	64,0	65,0	70,0
Refrigerant charge (1)	E,U	kg	41,0	40,0	43,0	53,0	53,0	53,0	62,0	69,0	75,0	90,0	112,0
	N	kg	50,0	53,0	53,0	59,0	59,0	70,0	84,0	80,0	90,0	124,0	91,0
Oil	°,A,E,L,N,U	Туре											
Oil charge circuit 1	°,A,E,L,N,U	kg	9,3	11,5	13,6	13,1	12,6	12,6	12,6	16,6	24,9	24,9	12,6
Oil charge circuit 2	°,A,E,L,N,U	kg	9,3	11,5	13,6	13,1	12,6	12,6	12,6	24,9	24,9	24,9	24,9
System side heat exchanger													
Туре	°,A,E,L,N,U	type						Shell and tube	1				
Number	°,A,E,L,N,U	no.	1	1	1	1	1	1	1	1	1	1	1
Hydraulic connections													
Connections (in/out)	°,A,E,L,N,U	Туре						Grooved joints					
Hydraulic connections without hydronic	c kit												
	•	Ø	5"	5"	5"	5"	5"	5"	5"	6"	6"	6"	6"
Sizes (in/out)	A,L	Ø	5"	5"	5"	5"	5"	6"	6"	6"	6"	6"	6"
	E,N,U	Ø	5"	5"	5"	5"	6"	6"	6"	6"	6"	6"	6"
Hydraulic connections with hydronic kit													
		Ø	-	-	-	-	3″	-	-	4"	4"	4"	4"
Sizes (in/out)	A,L	Ø	-	-	3"	-	-	-	4"	4"	4"	4"	4"
SIZES (III) OUL)	E,U	Ø	3″	3"	-	3"	3″	3″	4"	4"	4"	4"	4"
	N	Ø	3"	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"

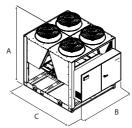
⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

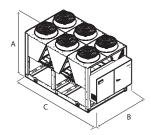
Water filter not supplied. Installation is mandatory or the guarantee will void.

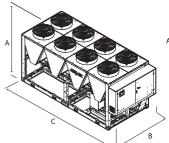
Fans

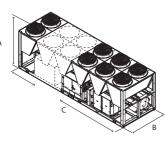
C!			0000	2000	1000	1100	1200	1400	1/00	1005	2006	2206	2406
Size Fans: M			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
						-							
Fan Type	°,A,E,L,N,U	tyno						Axial					
туре	°,A,U	type						Asynchronous					
Fan motor	,A,U	type						ronous with pl					
	E,L,N ○	type	4	4	4	4	Asylicii 6	onous with pi	6	8	8	8	10
	A,L	no.	4	4	6	6	6	6	8	8	10	10	12
Number	E,U	no.	6	6	6	8	8	8	10	12	12	14	
	N	no.	8	8	8	10	10	10	12	14	14	16	14 16
With static processes	N N	no.	8	8	δ	10	10	10	12	14	14	10	10
With static pressure	0	m³/h	64000	64000	64000	64000	96000	96000	96000	120000	120000	120000	160000
						64000				128000	128000	128000	160000
	A E	m ³ /h	64000	64000	96000	96000	96000	96000	128000	128000	160000	160000	192000
Air flow rate		m³/h	69000	69000	69000	92000	92000	92000	115000	138000	138000	161000	161000
	L	m³/h	46000	46000	69000	69000	69000	69000	92000	92000	115000	115000	138000
	N	m³/h	92000	92000	92000	115000	115000	115000	138000	161000	161000	184000	184000
	U	m³/h	96000	96000	96000	128000	128000	128000	160000	192000	192000	224000	224000
High static pressure	°,A,U	Pa	50	50	50	50	50	50	50	50	50	50	50
	E,L,N	Pa	120	120	120	120	120	120	120	120	120	120	120
Without Static pressure													
		m³/h	72000	72000	72000	72000	108000	108000	108000	144000	144000	144000	180000
	A	m³/h	72000	72000	108000	108000	108000	108000	144000	144000	180000	180000	216000
Air flow rate	E	m³/h	69000	69000	69000	92000	92000	92000	115000	138000	138000	161000	161000
Air flow rate	L	m³/h	46000	46000	69000	69000	69000	69000	92000	92000	115000	115000	138000
	N	m³/h	92000	92000	92000	115000	115000	115000	138000	161000	161000	184000	184000
	U	m³/h	108000	108000	108000	144000	144000	144000	180000	216000	216000	252000	252000
High static pressure	°,A,E,L,N,U	Pa	0	0	0	0	0	0	0	0	0	0	0
With static pressure	7.1,2,2,1.1,0												
	0	dB(A)	87,8	87,8	87,8	87,8	90,0	90,0	90,0	92,0	92,5	93,0	94,7
	A	dB(A)	87,8	87,8	90,0	90,0	90,0	90,0	91,5	92,0	93,7	94,2	95,6
	E	dB(A)	84,8	84,8	84,8	86,3	86,3	86,3	87,5	89,0	89,5	90,8	91,3
Sound power level													
	L	dB(A)	82,7	82,7	84,8	84,8	84,8	85,6	86,3	87,7	88,5	89,8	90,5
	N	dB(A)	86,3	86,3	86,3	87,5	87,5	87,5	88,5	89,8	90,3	91,5	92,0
	U	dB(A)	90,0	90,0	90,0	91,5	91,5	91,5	92,7	94,2	94,7	96,0	96,5
Without Static pressure	0	ID(A)											
	0	dB(A)	89,7	89,7	89,7	89,7	91,7	91,7	91,7	93,4	93,2	93,5	94,9
	A	dB(A)	89,7	89,7	91,7	91,7	91,7	91,7	93,1	93,4	94,3	94,6	95,8
Sound nower level	A E	dB(A)	84,8	84,8	84,8	86,3	86,3	86,3	87,5	89,0	89,5	90,8	91,3
Sound power level	E	dB(A)	84,8 82,7	84,8 82,7	84,8 84,8	86,3 84,8		86,3 85,6	87,5 86,3	89,0 87,7	89,5 88,5	90,8 89,8	91,3 90,5
Sound power level		dB(A)	84,8	84,8	84,8	86,3	86,3	86,3	87,5	89,0	89,5	90,8	91,3
Sound power level	E	dB(A)	84,8 82,7	84,8 82,7	84,8 84,8	86,3 84,8	86,3 84,8	86,3 85,6	87,5 86,3	89,0 87,7	89,5 88,5	90,8 89,8	91,3 90,5
	E L N	dB(A) dB(A) dB(A)	84,8 82,7 86,3 92,3	84,8 82,7 86,3 92,3	84,8 84,8 86,3 92,3	86,3 84,8 87,5 93,6	86,3 84,8 87,5 93,6	86,3 85,6 87,5 93,6	87,5 86,3 88,5 94,6	89,0 87,7 89,8 95,7	89,5 88,5 90,3 95,5	90,8 89,8 91,5 96,5	91,3 90,5 92,0 96,8
Size	E L N	dB(A) dB(A) dB(A)	84,8 82,7 86,3	84,8 82,7 86,3	84,8 84,8 86,3	86,3 84,8 87,5	86,3 84,8 87,5	86,3 85,6 87,5	87,5 86,3 88,5	89,0 87,7 89,8	89,5 88,5 90,3	90,8 89,8 91,5	91,3 90,5 92,0
Size Fans: J	E L N	dB(A) dB(A) dB(A)	84,8 82,7 86,3 92,3	84,8 82,7 86,3 92,3	84,8 84,8 86,3 92,3	86,3 84,8 87,5 93,6	86,3 84,8 87,5 93,6	86,3 85,6 87,5 93,6	87,5 86,3 88,5 94,6	89,0 87,7 89,8 95,7	89,5 88,5 90,3 95,5	90,8 89,8 91,5 96,5	91,3 90,5 92,0 96,8
Size Fans: J Fan	E L N U	dB(A) dB(A) dB(A) dB(A)	84,8 82,7 86,3 92,3	84,8 82,7 86,3 92,3	84,8 84,8 86,3 92,3	86,3 84,8 87,5 93,6	86,3 84,8 87,5 93,6	86,3 85,6 87,5 93,6	87,5 86,3 88,5 94,6	89,0 87,7 89,8 95,7	89,5 88,5 90,3 95,5	90,8 89,8 91,5 96,5	91,3 90,5 92,0 96,8
Size Fans: J Fan	E L N U	dB(A) dB(A) dB(A) dB(A)	84,8 82,7 86,3 92,3	84,8 82,7 86,3 92,3	84,8 84,8 86,3 92,3	86,3 84,8 87,5 93,6	86,3 84,8 87,5 93,6	86,3 85,6 87,5 93,6 1400	87,5 86,3 88,5 94,6	89,0 87,7 89,8 95,7	89,5 88,5 90,3 95,5	90,8 89,8 91,5 96,5	91,3 90,5 92,0 96,8
Size Fans: J Fan	E L N U	dB(A) dB(A) dB(A) dB(A) type type	84,8 82,7 86,3 92,3 0800	84,8 82,7 86,3 92,3 0900	84,8 84,8 86,3 92,3	86,3 84,8 87,5 93,6 1100	86,3 84,8 87,5 93,6 1200	86,3 85,6 87,5 93,6 1400 Axial	87,5 86,3 88,5 94,6 1600	89,0 87,7 89,8 95,7 1805	89,5 88,5 90,3 95,5 2006	90,8 89,8 91,5 96,5 2206	91,3 90,5 92,0 96,8 2406
Size Fans: J Fan	*,A,E,L,N,U	dB(A) dB(A) dB(A) dB(A) dB(A)	84,8 82,7 86,3 92,3 0800	84,8 82,7 86,3 92,3 0900	84,8 84,8 86,3 92,3 1000	86,3 84,8 87,5 93,6 1100	86,3 84,8 87,5 93,6 1200	86,3 85,6 87,5 93,6 1400 Axial Inverter 6	87,5 86,3 88,5 94,6 1600	89,0 87,7 89,8 95,7 1805	89,5 88,5 90,3 95,5 2006	90,8 89,8 91,5 96,5 2206	91,3 90,5 92,0 96,8 2406
Size Fans: J Fan	*,A,E,L,N,U	dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no.	84,8 82,7 86,3 92,3 0800	84,8 82,7 86,3 92,3 0900	84,8 84,8 86,3 92,3 1000	86,3 84,8 87,5 93,6 1100	86,3 84,8 87,5 93,6 1200	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6	87,5 86,3 88,5 94,6 1600	89,0 87,7 89,8 95,7 1805	89,5 88,5 90,3 95,5 2006	90,8 89,8 91,5 96,5 2206	91,3 90,5 92,0 96,8 2406
Size Fans: J Fan Type Fan motor	*A,E,L,N,U *A,E,L,N,U *B,L	dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no.	84,8 82,7 86,3 92,3 0800	84,8 82,7 86,3 92,3 0900	84,8 84,8 86,3 92,3 1000	86,3 84,8 87,5 93,6 1100	86,3 84,8 87,5 93,6 1200	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6 8	87,5 86,3 88,5 94,6 1600	89,0 87,7 89,8 95,7 1805	89,5 88,5 90,3 95,5 2006	90,8 89,8 91,5 96,5 2206	91,3 90,5 92,0 96,8 2406
Size Fans: J Fan Type Fan motor	*,A,E,L,N,U	dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no.	84,8 82,7 86,3 92,3 0800	84,8 82,7 86,3 92,3 0900	84,8 84,8 86,3 92,3 1000	86,3 84,8 87,5 93,6 1100	86,3 84,8 87,5 93,6 1200	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6	87,5 86,3 88,5 94,6 1600	89,0 87,7 89,8 95,7 1805	89,5 88,5 90,3 95,5 2006	90,8 89,8 91,5 96,5 2206	91,3 90,5 92,0 96,8 2406
Size Fans: J Fan Type Fan motor	**A,E,L,N,U **A,E,L,N,U **A,L E,U N	dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no. no.	84,8 82,7 86,3 92,3 0800	84,8 82,7 86,3 92,3 0900 4 4 4 6 8	84,8 84,8 86,3 92,3 1000 4 6 6	86,3 84,8 87,5 93,6 1100 4 6 8	86,3 84,8 87,5 93,6 1200	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6 8	87,5 86,3 88,5 94,6 1600	89,0 87,7 89,8 95,7 1805 8 8 8 12	89,5 88,5 90,3 95,5 2006 8 10 12	90,8 89,8 91,5 96,5 2206 8 10 14	91,3 90,5 92,0 96,8 2406 10 12 14 16
Size Fans: J Fan Type Fan motor	**************************************	dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no. no. m³/h	84,8 82,7 86,3 92,3 0800 4 4 6 8	84,8 82,7 86,3 92,3 0900 4 4 6 8	84,8 84,8 86,3 92,3 1000 4 6 6 8	86,3 84,8 87,5 93,6 1100 4 6 8 10	86,3 84,8 87,5 93,6 1200 6 6 6 8 10	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6 8 10	87,5 86,3 88,5 94,6 1600 6 8 10 12	89,0 87,7 89,8 95,7 1805 8 8 12 14	89,5 88,5 90,3 95,5 2006 8 10 12 14	90,8 89,8 91,5 96,5 2206 8 10 14 16	91,3 90,5 92,0 96,8 2406 10 12 14 16
Size Fans: J Fan Type Fan motor	**A,E,L,N,U **A,E,L,N,U **A,L E,U N	dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no. no. m³/h m³/h	84,8 82,7 86,3 92,3 0800 4 4 4 6 8	84,8 82,7 86,3 92,3 0900 4 4 4 6 8	84,8 84,8 86,3 92,3 1000 4 6 6 8	86,3 84,8 87,5 93,6 1100 4 6 8 10	86,3 84,8 87,5 93,6 1200 6 6 6 8 10 96000 96000	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6 8 10	87,5 86,3 88,5 94,6 1600 6 8 10 12 96000 128000	89,0 87,7 89,8 95,7 1805 8 8 12 14 128000 128000	89,5 88,5 90,3 95,5 2006 8 10 12 14 128000 160000	90,8 89,8 91,5 96,5 2206 8 10 14 16	91,3 90,5 92,0 96,8 2406 10 12 14 16 160000 192000
Size Fans: J Fan Type Fan motor Number	*** A,E,L,N,U	dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no. no. m³/h m³/h	84,8 82,7 86,3 92,3 0800 4 4 4 6 8 64000 64000 69000	84,8 82,7 86,3 92,3 0900 4 4 4 6 8 64000 64000 69000	84,8 84,8 86,3 92,3 1000 4 6 6 8 64000 96000 69000	86,3 84,8 87,5 93,6 1100 4 6 8 10 64000 96000 92000	86,3 84,8 87,5 93,6 1200 6 6 6 8 10 96000 96000 92000	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6 8 10 96000 96000 92000	87,5 86,3 88,5 94,6 1600 6 8 10 12 96000 128000 115000	89,0 87,7 89,8 95,7 1805 8 8 12 14 128000 128000 138000	89,5 88,5 90,3 95,5 2006 8 10 12 14 128000 160000 138000	90,8 89,8 91,5 96,5 2206 8 10 14 16 128000 160000 161000	91,3 90,5 92,0 96,8 2406 10 12 14 16 160000 192000 161000
Size Fans: J Fan Type Fan motor	*A,E,L,N,U *A,E,L,N,U *A,L E,U N	dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no. no. m³/h m³/h m³/h	84,8 82,7 86,3 92,3 0800 4 4 4 4 6 8 64000 64000 46000	84,8 82,7 86,3 92,3 0900 4 4 4 4 6 8 64000 64000 69000 46000	84,8 84,8 86,3 92,3 1000 4 6 6 8 64000 96000 69000 69000	86,3 84,8 87,5 93,6 1100 4 6 8 10 64000 96000 92000 69000	86,3 84,8 87,5 93,6 1200 6 6 6 8 10 96000 96000 92000 69000	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6 8 10 96000 96000 92000 69000	87,5 86,3 88,5 94,6 1600 6 8 10 12 96000 128000 115000 92000	89,0 87,7 89,8 95,7 1805 8 8 12 14 128000 128000 138000 92000	89,5 88,5 90,3 95,5 2006 8 10 12 14 128000 160000 138000 115000	90,8 89,8 91,5 96,5 2206 8 10 14 16 128000 160000 161000 115000	91,3 90,5 92,0 96,8 2406 10 12 14 16 160000 192000 161000 138000
Size Fans: J Fan Type Fan motor Number	*,A,E,L,N,U *,A,E,L,N,U *,A,E,L,N,U *,A,E,L,N,U *,A,E,L,N,U *,A,E,L,N,U *,A,L *,B,U	dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no. no. m³/h m³/h m³/h m³/h	84,8 82,7 86,3 92,3 0800 4 4 4 4 6 8 64000 64000 69000 46000 92000	84,8 82,7 86,3 92,3 0900 4 4 4 4 6 8 64000 64000 69000 46000 92000	84,8 84,8 86,3 92,3 1000 4 6 6 8 64000 96000 69000 69000 92000	86,3 84,8 87,5 93,6 1100 4 6 8 10 64000 96000 92000 69000 115000	86,3 84,8 87,5 93,6 1200 6 6 6 8 10 96000 96000 92000 69000 115000	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6 8 10 96000 96000 92000 69000 115000	87,5 86,3 88,5 94,6 1600 6 8 10 12 96000 128000 115000 92000 138000	89,0 87,7 89,8 95,7 1805 8 8 12 14 128000 128000 138000 92000 161000	89,5 88,5 90,3 95,5 2006 8 10 12 14 128000 160000 138000 115000 161000	90,8 89,8 91,5 96,5 2206 8 10 14 16 128000 160000 161000 115000 184000	91,3 90,5 92,0 96,8 2406 10 12 14 16 160000 192000 161000 138000 184000
Size Fans: J Fan Type Fan motor Number	*,A,E,L,N,U *,A,E,	dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no. no. m³/h m³/h m³/h	84,8 82,7 86,3 92,3 0800 4 4 4 4 6 8 64000 64000 46000	84,8 82,7 86,3 92,3 0900 4 4 4 4 6 8 64000 64000 69000 46000	84,8 84,8 86,3 92,3 1000 4 6 6 8 64000 96000 69000 69000	86,3 84,8 87,5 93,6 1100 4 6 8 10 64000 96000 92000 69000	86,3 84,8 87,5 93,6 1200 6 6 6 8 10 96000 96000 92000 69000	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6 8 10 96000 96000 92000 69000	87,5 86,3 88,5 94,6 1600 6 8 10 12 96000 128000 115000 92000	89,0 87,7 89,8 95,7 1805 8 8 12 14 128000 128000 138000 92000	89,5 88,5 90,3 95,5 2006 8 10 12 14 128000 160000 138000 115000	90,8 89,8 91,5 96,5 2206 8 10 14 16 128000 160000 161000 115000	91,3 90,5 92,0 96,8 2406 10 12 14 16 160000 192000 161000 138000
Size Fans: J Fan Type Fan motor Number	*,A,E,L,N,U *,A,E,L,N,U *,A,E,L,N,U *,A,E,L,N,U *,A,E,L,N,U *,A,E,L,N,U *,A,L *,B,U	dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no. no. m³/h m³/h m³/h m³/h	84,8 82,7 86,3 92,3 0800 4 4 4 4 6 8 64000 64000 69000 46000 92000	84,8 82,7 86,3 92,3 0900 4 4 4 4 6 8 64000 64000 69000 46000 92000	84,8 84,8 86,3 92,3 1000 4 6 6 8 64000 96000 69000 69000 92000	86,3 84,8 87,5 93,6 1100 4 6 8 10 64000 96000 92000 69000 115000	86,3 84,8 87,5 93,6 1200 6 6 6 8 10 96000 96000 92000 69000 115000	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6 8 10 96000 96000 92000 69000 115000	87,5 86,3 88,5 94,6 1600 6 8 10 12 96000 128000 115000 92000 138000	89,0 87,7 89,8 95,7 1805 8 8 12 14 128000 128000 138000 92000 161000	89,5 88,5 90,3 95,5 2006 8 10 12 14 128000 160000 138000 115000 161000	90,8 89,8 91,5 96,5 2206 8 10 14 16 128000 160000 161000 115000 184000	91,3 90,5 92,0 96,8 2406 10 12 14 16 160000 192000 161000 138000 184000
Size Fans: J Fan Type Fan motor Number	*,A,E,L,N,U *,A,E,	dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no. no. m³/h m³/h m³/h m³/h m³/h	84,8 82,7 86,3 92,3 0800 4 4 4 4 6 8 64000 64000 69000 46000 92000 96000	84,8 82,7 86,3 92,3 0900 4 4 4 4 6 8 64000 64000 69000 46000 92000 96000	84,8 84,8 86,3 92,3 1000 4 6 6 8 64000 96000 69000 69000 92000 96000	86,3 84,8 87,5 93,6 1100 4 6 8 10 64000 96000 92000 69000 115000 128000	86,3 84,8 87,5 93,6 1200 6 6 8 10 96000 92000 69000 115000 128000	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6 8 10 96000 96000 92000 69000 115000 128000	87,5 86,3 88,5 94,6 1600 6 8 10 12 96000 128000 115000 92000 138000 160000	89,0 87,7 89,8 95,7 1805 8 8 8 12 14 128000 128000 138000 92000 161000 192000	89,5 88,5 90,3 95,5 2006 8 10 12 14 128000 160000 138000 115000 161000 192000	90,8 89,8 91,5 96,5 2206 8 10 14 16 128000 161000 115000 184000 224000	91,3 90,5 92,0 96,8 2406 10 12 14 16 160000 192000 161000 138000 184000 224000
Size Fans: J Fan Type Fan motor Number Inverter fan Air flow rate	*,A,E,L,N,U *,A,E,L,N,U *,A,E,L,N,U *,A,E,L,N,U *,A,E,L,N,U *,A,E,L,N,U *,A,L *,B,U *,A,U *,B,U *,A,U *,B,U	dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no. no. m³/h m³/h m³/h m³/h pa³/h	84,8 82,7 86,3 92,3 0800 4 4 4 4 6 8 64000 64000 69000 46000 92000 96000 120	84,8 82,7 86,3 92,3 0900 4 4 4 4 6 8 64000 69000 46000 92000 96000 120	84,8 84,8 86,3 92,3 1000 4 6 6 8 64000 96000 69000 69000 92000 96000 120	86,3 84,8 87,5 93,6 1100 4 6 8 10 64000 96000 92000 69000 115000 128000 120	86,3 84,8 87,5 93,6 1200 6 6 8 10 96000 92000 69000 115000 128000 120	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6 8 10 96000 96000 92000 69000 115000 128000 120	87,5 86,3 88,5 94,6 1600 6 8 10 12 96000 128000 115000 92000 138000 160000 120	89,0 87,7 89,8 95,7 1805 8 8 8 12 14 128000 128000 138000 92000 161000 192000 75	89,5 88,5 90,3 95,5 2006 8 10 12 14 128000 160000 138000 115000 161000 192000 75	90,8 89,8 91,5 96,5 2206 8 10 14 16 128000 161000 115000 184000 224000 75	91,3 90,5 92,0 96,8 2406 10 12 14 16 160000 192000 161000 138000 184000 224000 75
Size Fans: J Fan Type Fan motor Number Inverter fan Air flow rate High static pressure	*,A,E,L,N,U *,A,E,	dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no. no. m³/h m³/h m³/h m³/h Pa Pa	84,8 82,7 86,3 92,3 0800 4 4 4 4 6 8 64000 64000 69000 46000 92000 96000 120	84,8 82,7 86,3 92,3 0900 4 4 4 4 6 8 64000 69000 46000 92000 96000 120	84,8 84,8 86,3 92,3 1000 4 6 6 8 64000 96000 69000 92000 96000 120 120	86,3 84,8 87,5 93,6 1100 4 6 8 10 64000 96000 92000 69000 115000 128000 120	86,3 84,8 87,5 93,6 1200 6 6 6 8 10 96000 92000 69000 115000 128000 120	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6 8 10 96000 92000 69000 115000 128000 120	87,5 86,3 88,5 94,6 1600 6 8 10 12 96000 128000 115000 92000 138000 160000 120	89,0 87,7 89,8 95,7 1805 8 8 8 12 14 128000 138000 92000 161000 192000 75 120	89,5 88,5 90,3 95,5 2006 8 10 12 14 128000 160000 138000 115000 161000 192000 75	90,8 89,8 91,5 96,5 2206 8 10 14 16 128000 161000 115000 184000 224000 75 120	91,3 90,5 92,0 96,8 2406 10 12 14 16 160000 192000 161000 138000 184000 224000 75 120
Size Fans: J Fan Type Fan motor Number Inverter fan Air flow rate	*,A,E,L,N,U *,A,E,	dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no. no. m³/h m³/h m³/h m³/h pa Pa	84,8 82,7 86,3 92,3 0800 4 4 4 4 6 8 64000 64000 92000 96000 120 120 200	84,8 82,7 86,3 92,3 0900 4 4 4 4 6 8 64000 69000 46000 92000 96000 120 120	84,8 84,8 86,3 92,3 1000 4 6 6 8 64000 96000 69000 92000 96000 120 120 200	86,3 84,8 87,5 93,6 1100 4 6 8 10 64000 92000 69000 115000 128000 120 120 200	86,3 84,8 87,5 93,6 1200 6 6 6 8 10 96000 92000 69000 115000 128000 120 120	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6 8 10 96000 92000 69000 115000 128000 120 200	87,5 86,3 88,5 94,6 1600 6 8 10 12 96000 128000 115000 92000 138000 160000 120 120	89,0 87,7 89,8 95,7 1805 8 8 8 12 14 128000 138000 92000 161000 192000 75 120 200	89,5 88,5 90,3 95,5 2006 8 10 12 14 128000 160000 138000 115000 161000 192000 75 120 200	90,8 89,8 91,5 96,5 2206 8 10 14 16 128000 161000 115000 184000 224000 75 120	91,3 90,5 92,0 96,8 2406 10 12 14 16 160000 192000 161000 184000 224000 75 120 200
Size Fans: J Fan Type Fan motor Number Inverter fan Air flow rate High static pressure	*,A,E,L,N,U *,A,E,	dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no. no. m³/h m³/h m³/h m³/h pa Pa Pa dB(A)	84,8 82,7 86,3 92,3 0800 4 4 4 4 6 8 8 64000 64000 92000 96000 120 120 200	84,8 82,7 86,3 92,3 0900 4 4 4 4 6 8 8 64000 69000 46000 92000 92000 92000 120 120 200	84,8 84,8 86,3 92,3 1000 4 6 6 8 64000 96000 69000 92000 92000 92000 120 120 200	86,3 84,8 87,5 93,6 1100 4 6 8 10 64000 92000 69000 115000 128000 120 200	86,3 84,8 87,5 93,6 1200 6 6 6 8 10 96000 92000 69000 115000 128000 120 200	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6 8 10 96000 92000 69000 115000 128000 120 200	87,5 86,3 88,5 94,6 1600 6 8 10 12 96000 128000 115000 92000 138000 160000 120 200	89,0 87,7 89,8 95,7 1805 8 8 8 12 14 128000 128000 138000 92000 161000 192000 75 120 200	89,5 88,5 90,3 95,5 2006 8 10 12 14 128000 160000 138000 115000 161000 192000 75 120 200	90,8 89,8 91,5 96,5 2206 8 10 14 16 16000 161000 115000 184000 224000 75 120 200	91,3 90,5 92,0 96,8 2406 10 12 14 16 160000 192000 161000 184000 224000 75 120 200
Size Fans: J Fan Type Fan motor Number Inverter fan Air flow rate High static pressure Sound data calculated in cooling mode	**A,E,L,N,U **A,E,L,N,U **A,E,L,N,U **A,E,L,N,U **A,E,L,N,U **A,E,L,N,U **A,L **E,U **N **U **A,U **E,L,N **E,	dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no. no. m³/h m³/h m³/h m³/h pa Pa Pa dB(A) dB(A)	84,8 82,7 86,3 92,3 0800 4 4 4 4 6 8 8 64000 64000 92000 96000 120 120 200	84,8 82,7 86,3 92,3 0900 4 4 4 4 6 8 8 64000 69000 46000 92000 96000 120 120 200	84,8 84,8 86,3 92,3 1000 4 6 6 8 64000 96000 69000 92000 92000 92000 120 120 200	86,3 84,8 87,5 93,6 1100 4 6 8 10 64000 92000 69000 115000 128000 120 200 87,8 90,0	86,3 84,8 87,5 93,6 1200 6 6 6 8 10 96000 92000 69000 115000 128000 120 200	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6 8 10 96000 92000 69000 115000 128000 120 200	87,5 86,3 88,5 94,6 1600 6 8 10 12 96000 128000 115000 92000 138000 160000 120 200 91,5	89,0 87,7 89,8 95,7 1805 8 8 8 12 14 128000 138000 92000 161000 192000 75 120 200	89,5 88,5 90,3 95,5 2006 8 10 12 14 128000 160000 138000 115000 161000 192000 75 120 200 92,5 93,7	90,8 89,8 91,5 96,5 2206 8 10 14 16 16000 161000 115000 184000 224000 75 120 200	91,3 90,5 92,0 96,8 2406 10 12 14 16 160000 184000 224000 75 120 200 94,7 95,6
Size Fans: J Fan Type Fan motor Number Inverter fan Air flow rate High static pressure	*,A,E,L,N,U *,A,E,	dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no. no. m³/h m³/h m³/h m³/h Pa Pa Pa dB(A) dB(A) dB(A)	84,8 82,7 86,3 92,3 0800 4 4 4 4 6 8 8 64000 64000 92000 92000 92000 120 120 200	84,8 82,7 86,3 92,3 0900 4 4 4 4 6 8 8 64000 69000 46000 92000 92000 120 120 200 87,8 87,8 84,8	84,8 84,8 86,3 92,3 1000 4 6 6 8 8 64000 96000 69000 92000 92000 92000 120 120 200 87,8 90,0 84,8	86,3 84,8 87,5 93,6 1100 4 6 8 10 64000 96000 92000 69000 115000 128000 120 200 87,8 90,0 86,3	86,3 84,8 87,5 93,6 1200 6 6 6 8 10 96000 92000 69000 115000 128000 120 200 90,0 90,0 90,0 86,3	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6 8 10 96000 92000 69000 115000 128000 120 200 90,0 90,0 90,0 86,3	87,5 86,3 88,5 94,6 1600 6 8 10 12 96000 128000 115000 92000 138000 160000 120 200 90,0 91,5 87,5	89,0 87,7 89,8 95,7 1805 8 8 8 12 14 128000 138000 92000 161000 192000 75 120 200 92,0 92,0 89,0	89,5 88,5 90,3 95,5 2006 8 10 12 14 128000 160000 138000 115000 161000 75 120 200 92,5 93,7 89,5	90,8 89,8 91,5 96,5 2206 8 10 14 16 128000 161000 115000 184000 224000 75 120 200	91,3 90,5 92,0 96,8 2406 10 12 14 16 160000 184000 224000 75 120 200 94,7 95,6 91,3
Size Fans: J Fan Type Fan motor Number Inverter fan Air flow rate High static pressure Sound data calculated in cooling mode	**A,E,L,N,U **A,E,L,N,U **A,E,L,N,U **A,E,L,N,U **A,E,L,N,U **A,E,L,N,U **A,L **E,U **N **U **A,U **E,L,N **E,	dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) type type no. no. no. m³/h m³/h m³/h m³/h pa Pa Pa dB(A) dB(A)	84,8 82,7 86,3 92,3 0800 4 4 4 4 6 8 8 64000 64000 92000 96000 120 120 200	84,8 82,7 86,3 92,3 0900 4 4 4 4 6 8 8 64000 69000 46000 92000 96000 120 120 200	84,8 84,8 86,3 92,3 1000 4 6 6 8 64000 96000 69000 92000 92000 92000 120 120 200	86,3 84,8 87,5 93,6 1100 4 6 8 10 64000 92000 69000 115000 128000 120 200 87,8 90,0	86,3 84,8 87,5 93,6 1200 6 6 6 8 10 96000 92000 69000 115000 128000 120 200	86,3 85,6 87,5 93,6 1400 Axial Inverter 6 6 8 10 96000 92000 69000 115000 128000 120 200	87,5 86,3 88,5 94,6 1600 6 8 10 12 96000 128000 115000 92000 138000 160000 120 200 91,5	89,0 87,7 89,8 95,7 1805 8 8 8 12 14 128000 138000 92000 161000 192000 75 120 200	89,5 88,5 90,3 95,5 2006 8 10 12 14 128000 160000 138000 115000 161000 192000 75 120 200 92,5 93,7	90,8 89,8 91,5 96,5 2206 8 10 14 16 16000 161000 115000 184000 224000 75 120 200	91,3 90,5 92,0 96,8 2406 10 12 14 16 160000 184000 224000 75 120 200 94,7 95,6

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).


DIMENSIONS


NRB 0800 - 1100 ° NRB 0800 - 0900 L/A


NRB 1200 - 1600 ° NRB 1000 - 1400 L/A NRB 0800 -1000 E/U


NRB 1805 - 2206 ° NRB 1600 - 1805 L/A NRB 1200 - 1400 E/U NRB 0800 - 1000 N

NRB 2406 ° NRB 2006 - 2406 L/A NRB 1600 - 2406 E/U NRB 1100 - 2406 N

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Dimensions and weights without hy	dronic kit												
A	°,A,E,L,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	°,A,E,L,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	0	mm	2780	2780	2780	2780	3970	3970	3970	5160	5160	5160	6350
r	A,L	mm	2780	2780	3970	3970	3970	3970	4760	5160	6350	6350	7140
C	E,U	mm	3970	3970	3970	4760	4760	4760	5950	7140	7140	8330	8330
	N	mm	4760	4760	4760	5950	5950	5950	7140	8330	8330	9520	9520
Dimensions and weights with pump	n/s												
	٥	mm	-	-	-	-	2450	-	-	2450	2450	2450	2450
Α.	A,L	mm	-	-	2450	-	-	-	2450	2450	2450	2450	2450
A	E,U	mm	2450	2450	-	2450	2450	2450	2450	2450	2450	2450	2450
	N	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
	0	mm	-	-	-	-	2200	-	-	2200	2200	2200	2200
n	A,L	mm	-	-	2200	-	-	-	2200	2200	2200	2200	2200
В	E,U	mm	2200	2200	-	2200	2200	2200	2200	2200	2200	2200	2200
	N	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	٥	mm	-	-	-	-	3970	-	-	5160	5160	5160	6350
r	A,L	mm	-	-	3970	-	-	-	4760	5160	6350	6350	7140
(E,U	mm	3970	3970	-	4760	4760	4760	5950	7140	7140	8330	8330
	N	mm	4760	4760	4760	5950	5950	5950	7140	8330	8330	9520	9520
Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Integrated hydronic kit:	00												
Weights													
	0	kg	2390	2430	2500	2540	3030	3080	3110	3810	3980	4020	4560
F	A,L	kg	2410	2470	2950	3020	3060	3120	3640	3910	4480	4560	4980
Empty weignt	E,U	kg	2870	2910	2990	3520	3590	3610	4140	4690	4900	5650	5690
ppty weight ————————————————————————————————————	L, U												

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

533

NRB 0800H-2406H

Reversible air/water heat pump

Cooling capacity 196,4 ÷ 647,7 kW – Heating capacity 209,8 ÷ 683,9 kW

- · High efficiency also at partial loads
- Night mode
- HP floating: ESEER +7% with inverter fans
- Also available with Shell and tube heat exchanger

DESCRIPTION

Reversible outdoor heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

FEATURES

Operating field

Working at full load up to -15 $^{\circ}$ C outside air temperature in winter, and up to 50 $^{\circ}$ C in summer. Hot water production up to 55 $^{\circ}$ C.

(for more information, refer to the technical documentation).

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

It is standard in all sizes from 1805 to 2406.

Option integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, with high or low head and storage tank, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables

in real time and the ad adjustment includes complete management of the alarms and their log.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: available for all models with inverter fans or with DCPX. Together with continuous fan modulation, it optimises unit operation in any working point, enhancing energy efficiency with partial loads. ESEER up to +7% with inverter fans.
- Night mode: only in the non-silenced versions with the fan to be, inverter or phase-cut or with the DCPX accessory, a silenced operation profile can be set, which is useful, for example, at night for greater acoustic comfort, but always ensures performance even at peak load hours.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

BRC1: Condensate drip tray. Consider 1 for each V-block.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
AER485P1	°,A,E,L	•	•	•	•	•	•	•	•	•	•	•
AERBACP	°,A,E,L	•	•	•	•	•	•	•	•	•	•	•
AERLINK	°,A,E,L	•			•	•			•		•	
AERNET	°,A,E,L	•	•	•	•	•	•	•	•	•	•	•
FL	°,A,E,L	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	°,A,E,L	•				•					•	•
PGD1	°,A,E,L		•		•	•			•	•	•	•

Remote panel

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
PR4	°,A,E,L	•	•	•	•	•	•	.	•	•	.	•

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Antivibration

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Integrated hydronic kit: 00											
0	AVX1000	AVX1000	AVX1004	AVX1004	AVX1004	AVX1004	AVX1004	AVX1006	AVX1006	AVX1010	AVX1010
A, L	AVX1000	AVX1004	AVX1004	AVX1004	AVX1004	AVX1006	AVX1006	AVX1010	AVX1010	AVX1016	AVX1016
E	AVX1004	AVX1006	AVX1006	AVX1006	AVX1006	AVX1010	AVX1013	AVX1024	AVX1024	AVX1033	AVX1033
Integrated hydronic kit: AA, AB, AC, AD, AE, AF, AG, AH, BA, BB, BC											
0	AVX1003	AVX1003	AVX1005	AVX1005	AVX1005	AVX1005	AVX1005	AVX1005	AVX1008	AVX1012	AVX1012
A, L	AVX1003	AVX1005	AVX1005	AVX1005	AVX1005	AVX1008	AVX1008	AVX1008	AVX1012	AVX1017	AVX1017
E	AVX1005	AVX1008	AVX1008	AVX1008	AVX1008	AVX1012	AVX1015	AVX1025	AVX1025	AVX1035	AVX1035
Integrated hydronic kit: AI, AJ, BD, BI	, BF, BG, BH, BI, BJ										
0	AVX1003	AVX1003	AVX1005	AVX1005	AVX1005	AVX1005	AVX1005	AVX1008	AVX1008	AVX1012	AVX1012
A, L	AVX1003	AVX1005	AVX1005	AVX1005	AVX1005	AVX1008	AVX1008	AVX1012	AVX1012	AVX1017	AVX1017
E	AVX1005	AVX1008	AVX1008	AVX1008	AVX1008	AVX1012	AVX1015	AVX1025	AVX1025	AVX1035	AVX1035
Integrated hydronic kit: DA, DB, DC, F	A, PB, PC, PD, PE, P	F, PG, PH									
0	AVX1001	AVX1001	AVX1004	AVX1004	AVX1004	AVX1004	AVX1004	AVX1009	AVX1009	AVX1010	AVX1010
A, L	AVX1001	AVX1004	AVX1004	AVX1004	AVX1004	AVX1009	AVX1009	AVX1010	AVX1010	AVX1016	AVX1016
E	AVX1004	AVX1006	AVX1006	AVX1006	AVX1009	AVX1010	AVX1013	AVX1024	AVX1024	AVX1034	AVX1034
Integrated hydronic kit: DD, DE, DF, D	G, DH, PI, PJ										
0	AVX1001	AVX1001	AVX1004	AVX1004	AVX1004	AVX1004	AVX1004	AVX1009	AVX1009	AVX1011	AVX1011
A, L	AVX1001	AVX1004	AVX1004	AVX1004	AVX1004	AVX1009	AVX1009	AVX1011	AVX1011	AVX1016	AVX1016
E	AVX1004	AVX1007	AVX1007	AVX1007	AVX1009	AVX1011	AVX1014	AVX1024	AVX1024	AVX1034	AVX1034
Integrated hydronic kit: DI, DJ											
0	AVX1002	AVX1002	AVX1004	AVX1004	AVX1004	AVX1004	AVX1004	AVX1007	AVX1007	AVX1011	AVX1011
A, L	AVX1002	AVX1004	AVX1004	AVX1004	AVX1004	AVX1007	AVX1007	AVX1011	AVX1011	AVX1016	AVX1016
E	AVX1004	AVX1007	AVX1007	AVX1007	AVX1007	AVX1011	AVX1014	AVX1024	AVX1024	AVX1034	AVX1034

Condensation control temperature

Ver	0800	0900	1000	1100	1200	1400	
ans: °	0000	0700	1000	1100	1200	1400	
0	DCPX130	DCPX130	DCPX131	DCPX131	DCPX131	DCPX131	
A	DCPX130	DCPX131	DCPX131	DCPX131	DCPX131	DCPX132	
E, L	As standard	As standard	As standard	As standard	As standard	As standard	
Ver	1600	1805	2006		2206	2406	
ans: °							
0	DCPX131	DCPX155	DCPX155		DCPX156	DCPX156	
A	DCPX132	DCPX156	DCPX156	X156 DCPX134 DCPX134		DCPX134	
	As standard	As standard		As standard As standard As sta		A . I I	

Device for peak current reduction

Ver	0800	0900	1000	1100	1200	1400
°, A, E, L	DRENRB0800 (1)	DRENRB0900 (1)	DRENRB1000 (1)	DRENRB1100 (1)	DRENRB1200 (1)	DRENRB1400 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz, x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Ver	1600	1805	2006	2206	2406
°, A, E, L	DRENRB1600 (1)	DRENRB1805 (1)	DRENRB2006 (1)	DRENRB2206 (1)	DRENRB2406 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0800	0900	1000	1100	1200	1400
0	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1100	RIFNRB1200	RIFNRB1400
A, L	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1100	RIFNRB1200	RIFNRB1401
E	RIFNRB0800	RIFNRB0901	RIFNRB1001	RIFNRB1001	RIFNRB1201	RIFNRB1401

A grey background indicates the accessory must be assembled in the factory

Ver	1600	1805	2006	2206	2406
0	RIFNRB1600	RIFNRB1805	RIFNRB2006	RIFNRB2206	RIFNRB2406
A, L	RIFNRB1601	RIFNRB1805	RIFNRB2006	RIFNRB2216	RIFNRB2416
E	RIFNRB1601	RIFNRB1815	RIFNRB2016	RIFNRB2216	RIFNRB2416

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
0	GP2VN	GP2VN	GP3VN	GP3VN	GP3VN	GP3VN	GP3VN	GP4G	GP4G	GP5G	GP5G
A, L	GP2VN	GP3VN	GP3VN	GP3VN	GP3VN	GP4VN	GP4VN	GP5G	GP5G	GP6V	GP6V
E	GP3VN	GP4VN	GP4VN	GP4VN	GP4VN	GP5VN	GP6V	GP7V	GP7V	GP8V	GP8V

A grey background indicates the accessory must be assembled in the factory

The units 0800-0900 H°, 0800 HL/HA with the optional "storage tank" are 3970 mm long, and they must mount the GP2VNA grids.

Condensate drip

Ver	0800	0900	1000	1100	1200	1400
0	BRC1x2 (1)	BRC1x2 (1)	BRC1x3 (1)	BRC1x3 (1)	BRC1x3 (1)	BRC1x3 (1)
A, L	BRC1x2 (1)	BRC1x3 (1)	BRC1x3 (1)	BRC1x3 (1)	BRC1x3 (1)	BRC1x4 (1)
E	BRC1x3 (1)	BRC1x4 (1)	BRC1x4 (1)	BRC1x4 (1)	BRC1x4 (1)	BRC1x5 (1)

(1) Condensate drip tray. Consider 1 for each V-block.
A grey background indicates the accessory must be assembled in the factory

Ver	1600	1805	2006	2206	2406
0	BRC1x3 (1)	BRC1x4 (1)	BRC1x4 (1)	BRC1x5 (1)	BRC1x5 (1)
A, L	BRC1x4 (1)	BRC1x5 (1)	BRC1x5 (1)	BRC1x6 (1)	BRC1x6 (1)
E	BRC1x6 (1)	BRC1x7 (1)	BRC1x7 (1)	BRC1x8 (1)	BRC1x8 (1)

⁽¹⁾ Condensate drip tray. Consider 1 for each V-block.
A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Fiel	d	Description
1,2,	3	NRB
4,5,	6,7	Size 0800, 0900, 1000, 1100, 1200, 1400, 1600, 1805, 2006, 2206, 2406
8		Operating field
	Χ	Electronic thermostatic expansion valve (1)
	0	Standard mechanic thermostatic valve
9		Model
	Н	Heat pump
10		Heat recovery
	D	With desuperheater (2)
	0	Without heat recovery
11		Version
	0	Standard
	Α	High efficiency
	Ε	Silenced high efficiency
	L	Standard silenced
12		Coils
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	٧	Copper pieps-Coated aluminium fins
	0	Copper-aluminium
13		Fans
	J	Inverter
	0	Standard
14		Power supply
	0	400V ~ 3 50Hz with magnet circuit breakers
15,1	16	Integrated hydronic kit
	00	Without hydronic kit
		Kit with n° 1 pump
	PA	Pump A
	PB	Pump B
	PC	Pump C
	PD	Pump D
	PE	Pump E
	PF	Pump F
	PG	Pump G
	PH	Pump H
	PI	Pump I
	PJ	Pump J (3)
	_	· · · · · · · · · · · · · · · · · · ·

Field	Description
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump (4)
DB	Pump B + stand-by pump (4)
DC	Pump C + stand-by pump (4)
DD	Pump D + stand-by pump (4)
DE	Pump E + stand-by pump (4)
DF	Pump F + stand-by pump (4)
DG	Pump G + stand-by pump (4)
DH	Pump H + stand-by pump (4)
DI	Pump I + stand-by pump (4)
DJ	Pump J + stand-by pump (5)
	Kit with storage tank and n° 1 pump
AA	Storage tank and pump A
AB	Storage tank and pump B
AC	Storage tank and pump C
AD	Storage tank and pump D
AE	Storage tank and pump E
AF	Storage tank and pump F
AG	Storage tank and pump G
AH	Storage tank and pump H
Al	Storage tank and pump I
AJ	Storage tank and pump J (3)
	Kit with storage tank and n° 1 pump + stand-by pump
BA	Storage tank with pump A + stand-by pump (4)
BB	Storage tank with pump B + stand-by pump (4)
BC	Storage tank with pump C + stand-by pump (4)
BD	Storage tank with pump D + stand-by pump (4)
BE	Storage tank with pump E + stand-by pump (4)
BF	Storage tank with pump F + stand-by pump (4)
BG	Storage tank with pump G + stand-by pump (4)
BH	Storage tank with pump H + stand-by pump (4)
BI	Storage tank with pump I + stand-by pump (4)
BJ	Storage tank with pump J + stand-by pump (5)

- (1) Electronic thermostatic as standard from size 1805÷2406.
 (2) The desuperheater must be intercepted in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
 (3) For all configurations including pump J please contact the factory.
 (4) None of the hydronic kits with twin pump (from DA to DJ and from BA to BJ) are compatible for the following sizes and versions with desuperheater D: 1805-2006 version °.
 (5) For all combinations with pump J, please contact our head office. None of the hydronic kits with twin pump (from DA to DJ and from BA to BJ) are compatible for the following sizes and versions with desuperheater D: 1805-2006 version °.

PERFORMANCE SPECIFICATIONS

NDR LIO

NKD II.												
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	196,4	218,0	251,8	279,2	314,2	353,8	389,0	456,7	501,9	568,7	616,1
Input power	kW	74,1	86,1	91,7	107,9	119,5	141,6	155,6	172,6	193,2	211,2	231,1
Cooling total input current	A	131,0	150,0	163,0	189,0	207,0	242,0	263,0	296,0	331,0	365,0	398,0
EER	W/W	2,65	2,53	2,74	2,59	2,63	2,50	2,50	2,65	2,60	2,69	2,67
Water flow rate system side	I/h	33794	37515	43314	48020	54046	60853	66910	78531	86311	97783	105939
Pressure drop system side	kPa	34	24	32	26	33	31	37	32	38	37	42
Heating performance 40 °C / 45 °C (2)												
Heating capacity	kW	215,0	237,4	275,0	306,0	343,9	366,2	412,6	478,4	527,7	592,0	643,2
Input power	kW	70,2	77,7	89,6	99,8	112,3	121,7	137,0	157,3	174,3	193,9	210,7
Heating total input current	A	125,0	138,0	158,0	175,0	195,0	212,0	236,0	274,0	304,0	340,0	369,0
COP	W/W	3,06	3,06	3,07	3,07	3,06	3,01	3,01	3,04	3,03	3,05	3,05
Water flow rate system side	I/h	37311	41207	47745	53116	59705	63585	71640	83071	91620	102803	111681
Pressure drop system side	kPa	42	28	38	32	40	34	42	36	42	40	46

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

NRB HL

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	197,9	227,9	247,7	275,2	301,1	359,1	392,2	453,8	495,0	552,5	592,9
Input power	kW	75,3	78,6	89,8	106,2	123,2	133,0	153,4	169,0	193,9	208,9	234,1
Cooling total input current	A	126,0	133,0	150,0	176,0	203,0	220,0	252,0	280,0	321,0	347,0	390,0
EER	W/W	2,63	2,90	2,76	2,59	2,44	2,70	2,56	2,69	2,55	2,64	2,53
Water flow rate system side	l/h	34040	39194	42596	47339	51779	61758	67431	78030	85114	95003	101921
Pressure drop system side	kPa	14	18	15	19	14	20	18	23	23	29	17
Heating performance 40 °C / 45 °C (2)												
Heating capacity	kW	209,8	250,3	274,3	304,8	334,3	394,3	431,0	497,4	543,0	609,3	654,3
Input power	kW	67,1	79,5	87,1	98,9	108,2	126,2	136,7	158,3	173,1	194,8	208,8
Heating total input current	A	119,0	139,0	152,0	171,0	187,0	216,0	234,0	272,0	299,0	336,0	363,0
COP	W/W	3,13	3,15	3,15	3,08	3,09	3,12	3,15	3,14	3,14	3,13	3,13
Water flow rate system side	l/h	36429	43447	47619	52924	58032	68469	74854	86379	94306	105817	113644
Pressure drop system side	kPa	15	22	19	23	17	24	21	28	28	35	21

NRB HA

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	206,2	243,8	266,9	297,0	329,2	385,5	425,3	488,4	538,3	601,4	651,3
Input power	kW	71,8	78,2	88,1	102,2	117,2	129,2	147,2	163,7	184,8	201,3	222,3
Cooling total input current	Α	127,0	141,0	157,0	179,0	203,0	225,0	254,0	285,0	321,0	352,0	389,0
EER	W/W	2,87	3,12	3,03	2,91	2,81	2,98	2,89	2,98	2,91	2,99	2,93
Water flow rate system side	l/h	35459	41942	45909	51076	56619	66291	73125	83982	92547	103407	111966
Pressure drop system side	kPa	15	21	18	22	17	23	21	27	27	34	21
Heating performance 40 °C / 45 °C (2)												
Heating capacity	kW	214,3	254,4	279,0	310,5	341,2	400,9	438,9	506,0	553,2	620,0	666,5
Input power	kW	66,6	79,3	86,7	97,1	106,2	124,8	137,1	157,5	171,8	193,5	207,0
Heating total input current	Α	120,0	142,0	155,0	172,0	187,0	219,0	240,0	277,0	303,0	342,0	368,0
COP	W/W	3,22	3,21	3,22	3,20	3,21	3,21	3,20	3,21	3,22	3,20	3,22
Water flow rate system side	l/h	37204	44148	48436	53909	59226	69618	76226	87877	96076	107669	115772
Pressure drop system side	kPa	16	23	20	24	18	25	22	29	29	36	22

NRB HE

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C/7 °C (1)												
Cooling capacity	kW	209,6	241,7	264,7	294,5	326,7	377,8	432,4	489,4	540,5	597,8	647,7
Input power	kW	67,3	77,4	85,0	98,1	112,4	125,3	139,1	157,0	177,4	192,3	215,2
Cooling total input current	A	115,0	132,0	144,0	164,0	187,0	208,0	230,0	261,0	296,0	322,0	362,0
EER	W/W	3,12	3,12	3,11	3,00	2,91	3,02	3,11	3,12	3,05	3,11	3,01
Water flow rate system side	I/h	36053	41586	45538	50642	56185	64960	74341	84155	92932	102793	111352
Pressure drop system side	kPa	15	20	18	22	16	22	21	27	27	33	21
Heating performance 40 °C / 45 °C (2)												
Heating capacity	kW	223,4	258,1	283,7	316,7	349,3	403,2	458,7	520,7	571,9	634,1	683,9
Input power	kW	69,3	80,5	87,9	98,5	109,0	126,1	143,1	162,7	177,1	198,2	211,7
Heating total input current	A	122,0	140,0	153,0	170,0	188,0	216,0	244,0	278,0	305,0	341,0	367,0
COP	W/W	3,22	3,21	3,23	3,22	3,20	3,20	3,21	3,20	3,23	3,20	3,23
Water flow rate system side	I/h	38791	44787	49248	54989	60660	70010	79655	90422	99327	110122	118791
Pressure drop system side	kPa	17	23	20	25	19	25	24	31	31	38	23

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C /7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

ELECTRIC DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Electric data													
	0	A	168,6	185,0	209,8	239,2	268,5	297,5	326,5	379,8	424,6	462,1	491,1
Maximum current (FLA)	A,L	A	168,6	193,5	209,8	239,2	268,5	306,0	335,0	388,3	433,1	470,6	499,6
	E	A	177,1	202,0	218,3	247,7	277,0	314,5	352,0	405,3	450,1	487,6	516,6
	٥	A	357,2	412,4	437,2	489,9	519,2	631,7	660,7	714,0	758,8	796,3	825,3
Peak current (LRA)	A,L	A	357,2	420,9	437,2	489,9	519,2	640,2	669,2	722,5	767,3	804,8	833,8
	E	A	365,7	429,4	445,7	498,4	527,7	648,7	686,2	739,5	784,3	821,8	850,8

ENERGY INDICES (REG. 2016/2281 EU)

NRB H°

NRD II												
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
UE 813/2013 performance in average ambient condit	ions (averag	e) - 35 °C - Pdo	esignh ≤ 400	kW (1)								
Pdesignh	kW	203	224	260	289	325	346	296	343	379	425	462
SCOP	W/W	3,65	3,65	3,65	3,68	3,65	3,60	3,73	3,73	3,80	3,73	3,80
ηsh	%	143,00	143,00	143,00	144,00	143,00	141,00	146,00	143,00	149,00	146,00	149,00
SEER - 12/7 (EN14825:2018) with standard fans (2)												
SEER	W/W	3,79	3,66	3,88	3,81	3,91	3,80	3,89	3,92	3,80	- (3)	- (3)
Seasonal efficiency	%	148,40	143,50	152,20	149,50	153,20	149,10	152,70	153,80	149,00	- (3)	- (3)
SEER - (EN14825:2018) 12/7 with inverter fans (2)												
SEER	W/W	-	-	-	-	-	-	-	-	-	- (3)	- (3)
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	- (3)	- (3)
SEER - 23/18 (EN14825: 2018) with standard fans (4)												
SEER	W/W	-	-	-	-	-	-	-	-	-	4,67	4,76
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	183,90	187,30
SEER - 23/18 (EN14825: 2018) with inverter fans												
SEER	W/W	-	-	-	-	-	-	-	-	-	4,88	5,02
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	192,30	197,70
SEPR - (EN14825: 2018) High temperature with invert	er fans (4)											
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,53	5,54
SEPR - (EN14825: 2018) High temperature with stand	ard fans (4)											
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,53	5,54

NRB HL

INKD FIL												
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
UE 813/2013 performance in average ambient condit	ions (averag	e) - 35 °C - Pd	esignh ≤ 400	kW (1)								
Pdesignh	kW	197	235	258	286	314	370	306	353	385	433	464
SCOP	W/W	3,73	3,75	3,75	3,68	3,68	3,73	3,93	3,83	3,95	3,83	3,93
ηsh	%	146,00	147,00	147,00	144,00	144,00	146,00	154,00	150,00	155,00	150,00	154,00
SEER - 12/7 (EN14825:2018) with standard fans (2)												
SEER	W/W	3,83	4,01	3,92	3,90	3,82	4,05	3,99	4,04	3,87	- (3)	- (3)
Seasonal efficiency	%	150,30	157,20	153,90	149,60	159,00	156,40	156,60	158,60	151,80	- (3)	- (3)
SEER - (EN14825:2018) 12/7 with inverter fans (2)												
SEER	W/W	-	-	-	-	-	-	-	-	-	- (3)	- (3)
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	- (3)	- (3)
SEER - 23/18 (EN14825: 2018) with standard fans (4)												
SEER	W/W	-	-	-	-	-	-	-	-	-	4,72	4,67
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	185,70	183,60
SEER - 23/18 (EN14825: 2018) with inverter fans												
SEER	W/W	-	-	-	-	-	-	-	-	-	5,08	5,11
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	200,30	201,20
SEPR - (EN14825: 2018) High temperature with stand	ard fans (4)											
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,51	5,51
SEPR - (EN14825: 2018) High temperature with invert	er fans (4)											
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,51	5,51
(4) 500 1 1 6 1 1 1 (25.00)												

⁽¹⁾ Efficiencies for low temperature applications (35 °C)
(2) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(3) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C / 7°C
(4) Calculation performed with FIXED water flow rate.

⁽¹⁾ Efficiencies for low temperature applications (35 °C)
(2) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(3) Non-compliant with 2016/2281 EU regulation for comfort applications 12 °C / 7 °C
(4) Calculation performed with FIXED water flow rate.

539

NRB HA

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
UE 813/2013 performance in average ambient conditi	ons (average	e) - 55 °C - Pde	esignh ≤ 400	kW (1)								
Pdesignh	kW	196	233	255	284	312	367	304	351	384	430	462
SCOP	W/W	3,03	3,08	3,03	3,08	3,03	3,10	3,13	3,08	3,30	3,08	3,15
ηsh	%	118,00	120,00	118,00	120,00	118,00	121,00	122,00	120,00	129,00	120,00	123,00
SEER - 12/7 (EN14825:2018) with standard fans (2)												
SEER	W/W	3,96	4,13	4,09	4,09	4,07	4,23	4,22	4,22	4,10	- (3)	- (3)
Seasonal efficiency	%	155,40	162,10	160,40	160,60	159,70	166,10	165,60	165,80	161,0	- (3)	- (3)
SEER - (EN14825:2018) 12/7 with inverter fans (2)												
SEER	W/W	-	-	-	-	-	-	-	-	-	4,58	4,57
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	180,3%	179,6%
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	-	-
SEER - 23/18 (EN14825: 2018) with standard fans (4)												
SEER	W/W	-	-	-	-	-	-	-	-	-	4,96	5,01
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	195,30	197,40
SEER - 23/18 (EN14825: 2018) with inverter fans												
SEER	W/W	-	-	-	-	-	-	-	-	-	4,58	4,57
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	-	-
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	180,30	179,60
SEPR - (EN14825: 2018) High temperature with standa	ard fans (4)											
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,52	5,52
SEPR - (EN14825: 2018) High temperature with invert	er fans (4)											
SEPR	W/W	-	-	-	-	-	-	-	-		5,52	5,52

NRB HE

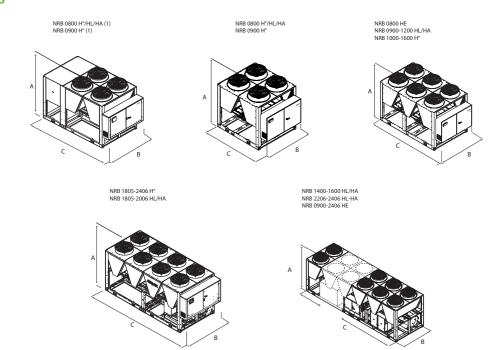
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
UE 813/2013 performance in average ambient condition	ns (average) - 55 °C - Pde	esignh ≤ 400	kW (1)								
Pdesignh	kW	204	236	259	290	320	369	318	361	397	440	474
SCOP	W/W	3,05	3,08	3,05	3,10	3,03	3,08	3,13	3,05	3,30	3,08	3,15
ηsh	%	119,00	120,00	119,00	121,00	118,00	120,00	122,00	119,00	129,00	120,00	123,00
SEER - 12/7 (EN14825:2018) with standard fans (2)												
SEER	W/W	4,16	4,15	4,18	4,19	4,16	4,27	4,39	4,36	4,22	- (3)	- (3)
Seasonal efficiency	%	163,40	163,00	164,10	164,70	163,40	167,90	172,70	171,40	165,80	- (3)	- (3)
SEER - (EN14825:2018) 12/7 with inverter fans (2)												
SEER	W/W	-	-	-	-	-	-	-	-	-	4,71	4,67
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	185,4%	183,7%
SEER - 23/18 (EN14825: 2018) with standard fans (4)												
SEER	W/W	-	-	-	-	-	-	-	-	-	5,17	5,20
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	203,60	204,90
SEER - 23/18 (EN14825: 2018) with inverter fans												
SEER	W/W	-	-	-	-	-	-	-	-	-	4,71	4,67
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	-	-
SEPR - (EN14825: 2018) High temperature with standa	rd fans (4)											
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,52	5,54
SEPR - (EN14825: 2018) High temperature with inverte	r fans (4)											
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,52	5,54

⁽¹⁾ Efficiencies for average temperature applications (55 °C)
(2) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(3) Non-compliant with 2016/2281 EU regulation for comfort applications 12 °C / 7 °C
(4) Calculation performed with FIXED water flow rate.

⁽¹⁾ Efficiencies for average temperature applications (55 °C)
(2) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(3) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C/7°C
(4) Calculation performed with FIXED water flow rate.

FANS

Size	'		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Fans: °													
Fan													
Туре	°,A,E,L	type						Axial					
Fan motor	°,A	type						Asynchronous					
Fan motor	E,L	type					Asynch	ronous with p	nase cut				
	٥	no.	4	4	6	6	6	6	6	8	8	10	10
Number	A,L	no.	4	6	6	6	6	8	8	10	10	12	12
	E	no.	6	8	8	8	8	10	12	14	14	16	16
	0	m³/h	80000	80000	120000	120000	120000	120000	120000	160000	160000	200000	200000
A! G	A	m³/h	80000	120000	120000	120000	120000	160000	160000	200000	200000	240000	240000
Air flow rate	E	m³/h	90000	120000	120000	120000	120000	150000	180000	210000	210000	240000	240000
	L	m³/h	60000	90000	90000	90000	90000	120000	120000	150000	150000	180000	180000


GENERAL TECHNICAL DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Compressor													
Туре	°,A,E,L	type						Scroll					
Compressor regulation	°,A,E,L	Туре						0n-0ff					
Number	°,A,E,L	no.	4	4	4	4	4	4	4	5	6	6	6
Circuits	°,A,E,L	no.	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	°,A,E,L	type						R410A					
	0	kg	44,0	44,0	54,0	62,0	62,0	60,0	60,0	81,0	82,0	100,0	95,0
Refrigerant charge (1)	Α	kg	44,0	60,0	64,0	62,0	66,0	81,0	78,0	99,0	102,0	117,0	119,0
Kerrigeralit Charge (1)	E	kg	58,0	76,5	78,0	76,0	78,0	93,0	112,0	136,0	143,0	152,0	152,0
	L	kg	44,0	60,0	64,0	62,0	66,0	78,0	78,0	104,0	102,0	117,0	117,0
System side heat exchanger													
Туре	°,A,E,L	type						Brazed plate					
Hydraulic connections													
Connections (in/out)	°,A,E,L	Туре						Grooved joints					
Hydraulic connections without hydronic	kit												
Sizes (in/out)	°,A,E,L	Ø	3"	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"
Hydraulic connections with hydronic kit													
Sizes (in/out)	°,A,E,L	Ø	3"	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"
Sound data calculated in cooling mode	(2)												
	0	dB(A)	89,5	89,5	91,6	91,6	91,6	91,6	91,6	93,1	93,1	94,2	94,2
Sound power level	Α	dB(A)	89,5	91,6	91,6	91,6	91,6	93,1	93,1	94,2	94,2	95,1	95,1
Souria power level	E	dB(A)	84,6	86,1	86,1	86,1	86,1	87,2	88,2	89,4	89,9	91,1	91,6
	L	dB(A)	82,6	84,6	84,6	84,6	84,6	86,1	86,1	87,7	88,2	89,6	90,1
	0	dB(A)	57,4	57,4	59,3	59,3	59,3	59,3	59,3	60,7	60,7	61,7	61,7
Cound proceure level (10 m)	Α	dB(A)	57,4	59,3	59,3	59,3	59,3	60,7	60,7	61,6	61,6	62,5	62,5
Sound pressure level (10 m)	E	dB(A)	52,4	53,7	53,7	53,7	53,7	54,7	55,5	56,7	57,2	58,2	58,7
	L	dB(A)	50,5	52,4	52,4	52,4	52,4	53,8	53,8	55,2	55,7	57,0	57,5

In the versions without a hydronic kit, the water filter is supplied with a connection point for making the connection. In the versions with a hydronic kit, it is supplied ready-mounted.

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

(1) Additional module needed to contain the hydronic kit with "accumulation" option in sizes: NRB 0800H°, 0900H° NRB 0800 HL/HA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Dimensions and weights without hy	dronic kit												
A	°,A,E,L	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	°,A,E,L	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	۰	mm	2780	2780	3970	3970	3970	3970	3970	5160	5160	6350	6350
(A,L	mm	2780	3970	3970	3970	3970	4760	4760	6350	6350	7140	7140
	E	mm	3970	4760	4760	4760	4760	5950	7140	8330	8330	9520	9520

■ The units 0800-0900 H°, 0800 HL/HA with the optional "storage tank" are 3970 mm long.

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Integrated hydronic kit: 00													
Weights													
	0	kg	2520	2580	3160	3210	3250	3310	3340	4200	4370	4990	5030
Empty weight	A,L	kg	2550	3130	3200	3240	3320	3970	4040	4780	4990	5490	5730
•	E	kg	3080	3770	3840	3870	3950	4510	5020	5860	6080	6610	6800

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRB 0800-2406 W

Reversible air/water heat pump with shell and tube heat exchanger

Cooling capacity 196,4 ÷ 647,7 kW – Heating capacity 209,8 ÷ 683,9 kW

- · Shell and tube heat exchanger
- · High efficiency also at partial loads
- Night mode
- HP floating: ESEER +7% with inverter fans

DESCRIPTION

Reversible outdoor heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

They are outdoor units with axial fan scroll compressors and Shell and tube exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

FEATURES

Operating field

Working at full load up to -10 °C outside air temperature in winter, and up to 50 °C in summer. Hot water production up to 55 °C.

(for more information, refer to the technical documentation).

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

It is standard in all sizes from 1805 to 2406.

Option integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, high or low head, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables

in real time and the ad adjustment includes complete management of the alarms and their log.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: available for all models with inverter fans or with DCPX. Together with continuous fan modulation, it optimises unit operation in any working point, enhancing energy efficiency with partial loads. ESEER up to +7% with inverter fans.
- Night mode: only in the non-silenced versions with the fan to be, inverter or phase-cut or with the DCPX accessory, a silenced operation profile can be set, which is useful, for example, at night for greater acoustic comfort, but always ensures performance even at peak load hours.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

AVX: Spring anti-vibration supports.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

BRC1: Condensate drip tray. Consider 1 for each V-block.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
AER485P1	°,A,E,L	•	•	•	•	•	•	•	•	•	•	•
AERBACP	°,A,E,L	•	•	•	•	•	•	•	•	•	•	•
AERLINK	°,A,E,L							•		•		
AERNET	°,A,E,L	•	•	•	•	•	•	•	•	•	•	•
FL	°,A,E,L		•	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	°,A,E,L	•			•		•				•	•
PGD1	°,A,E,L	•	•	•	•	•	•	•			•	•

Remote panel

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
PR4	°,A,E,L	•	•	•	•	•	•	•	.	•	•	•

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Antivibration

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Integrated hydronic kit: 00											
0	AVX1001	AVX1001	AVX1004	AVX1004	AVX1004	AVX1004	AVX1004	AVX1123	AVX1123	AVX1124	AVX1124
A, L	AVX1001	AVX1004	AVX1004	AVX1004	AVX1004	AVX1123	AVX1123	AVX1124	AVX1124	AVX1115	AVX1115
E	AVX1004	AVX1123	AVX1123	AVX1123	AVX1123	AVX1124	AVX1119	AVX1117	AVX1117	AVX1116	AVX1116
Integrated hydronic kit: DA, DB, DC	, DD, DE, DF, DG, DH,	DI, DJ, PA, PB, P	C, PD, PE, PF, P	G, PH, PI, PJ							
0	-	-	AVX1004	AVX1004	AVX1004	-	-	AVX1123	AVX1123	AVX1124	AVX1124
A, L	-	AVX1004	-	-	-	AVX1123	AVX1123	AVX1124	AVX1124	AVX1115	AVX1115
E	AVX1004	AVX1123	AVX1123	AVX1123	AVX1123	AVX1124	AVX1119	AVX1117	AVX1117	AVX1116	AVX1116

Device for peak current reduction

Ver	0800	0900	1000	1100	1200	1400
°, A, E, L	DRENRB0800 (1)	DRENRB0900 (1)	DRENRB1000 (1)	DRENRB1100 (1)	DRENRB1200 (1)	DRENRB1400 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered.

A grey background indicates the accessory must be assembled in the factory

Ver	1600	1805	2006	2206	2406
°, A, E, L	DRENRB1600 (1)	DRENRB1805 (1)	DRENRB2006 (1)	DRENRB2206 (1)	DRENRB2406 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0800	0900	1000	1100	1200	1400
0	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1100	RIFNRB1200	RIFNRB1400
A, L	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1100	RIFNRB1200	RIFNRB1401
E	RIFNRB0800	RIFNRB0901	RIFNRB1001	RIFNRB1101	RIFNRB1201	RIFNRB1401

A grey background indicates the accessory must be assembled in the factory

Ver	1600	1805	2006	2206	2406
0	RIFNRB1600	RIFNRB1805	RIFNRB2006	RIFNRB2206	RIFNRB2406
A, L	RIFNRB1601	RIFNRB1805	RIFNRB2006	RIFNRB2216	RIFNRB2416
E	RIFNRB1601	RIFNRB1815	RIFNRB2016	RIFNRB2216	RIFNRB2416

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Integrated hydronic kit: 00											
0	GP2VN	GP2VN	GP3VN	GP3VN	GP3VN	GP3VN	GP3VN	GP4VN	GP4VN	GP5VN	GP5VN
A	GP2VN	GP3VN	GP3VN	GP3VN	GP3VN	GP4VN	GP4VN	GP5VN	GP4VN	GP6V	GP6V
E	GP3VN	GP4VN	GP4VN	GP4VN	GP4VN	GP4VN	GP6V	GP7V	GP7V	GP8V	GP8V
L	GP2VN	GP3VN	GP3VN	GP3VN	GP3VN	GP5VN	GP4VN	GP5VN	GP5VN	GP6V	GP6V
Integrated hydronic kit: DA, DB, DC, DD,	DE, DF, DG, DH, I	DI, DJ, PA, PB, P	C, PD, PE, PF, PC	G, PH, PI, PJ							
0	-	-	GP3VN	GP3VN	GP3VN	-	-	GP4VN	GP4VN	GP5VN	GP5VN
A	-	GP3VN	-	-	-	GP4VN	GP4VN	GP5VN	GP4VN	GP6V	GP6V
E	GP3VN	GP4VN	GP4VN	GP4VN	GP4VN	GP4VN	GP6V	GP7V	GP7V	GP8V	GP8V
L	-	GP3VN	-	-	-	GP5VN	GP4VN	GP5VN	GP5VN	GP6V	GP6V

A grey background indicates the accessory must be assembled in the factory

Condensate drip

Ver	0800	0900	1000	1100	1200	1400
0	BRC1x2 (1)	BRC1x2 (1)	BRC1x3 (1)	BRC1x3 (1)	BRC1x3 (1)	BRC1x3 (1)
A, L	BRC1x2 (1)	BRC1x3 (1)	BRC1x3 (1)	BRC1x3 (1)	BRC1x3 (1)	BRC1x4 (1)
F	BRC1x3 (1)	BRC1x4 (1)	BRC1x4 (1)	BRC1x4 (1)	BRC1x4 (1)	BRC1x5 (1)

(1) Condensate drip tray. Consider 1 for each V-block.
A grey background indicates the accessory must be assembled in the factory

Ver	1600	1805	2006	2206	2406
0	BRC1x3 (1)	BRC1x4 (1)	BRC1x4 (1)	BRC1x5 (1)	BRC1x5 (1)
A, L	BRC1x4 (1)	BRC1x5 (1)	BRC1x5 (1)	BRC1x6 (1)	BRC1x6 (1)
E	BRC1x6 (1)	BRC1x7 (1)	BRC1x7 (1)	BRC1x8 (1)	BRC1x8 (1)

(1) Condensate drip tray. Consider 1 for each V-block.
A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NRB
4,5,6,7	Size 0800, 0900, 1000, 1100, 1200, 1400, 1600, 1805, 2006, 2206, 2406
8	Operating field
Х	Electronic thermostatic expansion valve
0	Standard mechanic thermostatic valve
9	Model
W	Heat pump with shell and tube heat exchanger
10	Heat recovery
D	With desuperheater (1)
0	Without heat recovery
11	Version
0	Standard
Α	High efficiency
E	Silenced high efficiency
L	Standard silenced
12	Coils
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
0	Copper-aluminium
13	Fans
J	Inverter
0	Standard
14	Power supply

Field	Description
0	400V ~ 3 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit
00	Without hydronic kit
PA	Pump A
PB	Pump B
PC	Pump C
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J (2)
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump (2)

(1) The desuperheater can only be used with cold running.(2) For all configurations including pump J please contact the factory.

Compatibility of models with hydronic units available with a configurator

Version		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Standard	H°	-	-	•	•		-	-	•	•	•	•	•	•	•	•	•	•
Standard silenced	HL	-	•	-	-	-	•	•	•	•	•	•	•	•	•	•	•	•
High efficiency	HA	-	•	-	-	-									•	•	•	
Silenced high efficiency	HE		•	•	•	•	•	•						•	•		•	•

NRB-0800-2406-HP-T_Y_CE50_02 544 www.aermec.com

PERFORMANCE SPECIFICATIONS

NRB H°

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C / 7 °C (1)												
Cooling capacity	kW	196,4	218,0	251,8	279,2	314,2	353,8	389,0	456,7	501,9	568,7	616,1
Input power	kW	74,1	86,1	91,7	107,9	119,5	141,6	155,6	172,6	193,2	211,2	231,1
Cooling total input current	A	131,0	150,0	163,0	189,0	207,0	242,0	263,0	296,0	331,0	365,0	398,0
EER	W/W	2,65	2,53	2,74	2,59	2,63	2,50	2,50	2,65	2,60	2,69	2,67
Water flow rate system side	l/h	33794	37515	43314	48020	54046	60853	66910	78531	86311	97783	105939
Pressure drop system side	kPa	34	24	32	26	33	31	37	32	38	37	42
Heating performance 40 °C / 45 °C (2)												
Heating capacity	kW	215,0	237,4	275,0	306,0	343,9	366,2	412,6	478,4	527,7	592,0	643,2
Input power	kW	70,2	77,7	89,6	99,8	112,3	121,7	137,0	157,3	174,3	193,9	210,7
Heating total input current	Α	125,0	138,0	158,0	175,0	195,0	212,0	236,0	274,0	304,0	340,0	369,0
COP	W/W	3,06	3,06	3,07	3,07	3,06	3,01	3,01	3,04	3,03	3,05	3,05
Water flow rate system side	I/h	37311	41207	47745	53116	59705	63585	71640	83071	91620	102803	111681
Pressure drop system side	kPa	42	28	38	32	40	34	42	36	42	40	46

NRB HL

MIDTIE												
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	197,9	227,9	247,7	275,2	301,1	359,1	392,2	453,8	495,0	552,5	592,9
Input power	kW	75,3	78,6	89,8	106,2	123,2	133,0	153,4	169,0	193,9	208,9	234,1
Cooling total input current	A	126,0	133,0	150,0	176,0	203,0	220,0	252,0	280,0	321,0	347,0	390,0
EER	W/W	2,63	2,90	2,76	2,59	2,44	2,70	2,56	2,69	2,55	2,64	2,53
Water flow rate system side	l/h	34040	39194	42596	47339	51779	61758	67431	78030	85114	95003	101921
Pressure drop system side	kPa	14	18	15	19	14	20	18	23	23	29	17
Heating performance 40 °C / 45 °C (2)												
Heating capacity	kW	209,8	250,3	274,3	304,8	334,3	394,3	431,0	497,4	543,0	609,3	654,3
Input power	kW	67,1	79,5	87,1	98,9	108,2	126,2	136,7	158,3	173,1	194,8	208,8
Heating total input current	A	119,0	139,0	152,0	171,0	187,0	216,0	234,0	272,0	299,0	336,0	363,0
COP	W/W	3,13	3,15	3,15	3,08	3,09	3,12	3,15	3,14	3,14	3,13	3,13
Water flow rate system side	I/h	36429	43447	47619	52924	58032	68469	74854	86379	94306	105817	113644
Pressure drop system side	kPa	15	22	19	23	17	24	21	28	28	35	21

NRB HA

MINDIIA												
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	206,2	243,8	266,9	297,0	329,2	385,5	425,3	488,4	538,3	601,4	651,3
Input power	kW	71,8	78,2	88,1	102,2	117,2	129,2	147,2	163,7	184,8	201,3	222,3
Cooling total input current	Α	127,0	141,0	157,0	179,0	203,0	225,0	254,0	285,0	321,0	352,0	389,0
EER	W/W	2,87	3,12	3,03	2,91	2,81	2,98	2,89	2,98	2,91	2,99	2,93
Water flow rate system side	I/h	35459	41942	45909	51076	56619	66291	73125	83982	92547	103407	111966
Pressure drop system side	kPa	15	21	18	22	17	23	21	27	27	34	21
Heating performance 40 °C / 45 °C (2)												
Heating capacity	kW	214,3	254,4	279,0	310,5	341,2	400,9	438,9	506,0	553,2	620,0	666,5
Input power	kW	66,6	79,3	86,7	97,1	106,2	124,8	137,1	157,5	171,8	193,5	207,0
Heating total input current	Α	120,0	142,0	155,0	172,0	187,0	219,0	240,0	277,0	303,0	342,0	368,0
COP	W/W	3,22	3,21	3,22	3,20	3,21	3,21	3,20	3,21	3,22	3,20	3,22
Water flow rate system side	I/h	37204	44148	48436	53909	59226	69618	76226	87877	96076	107669	115772
Pressure drop system side	kPa	16	23	20	24	18	25	22	29	29	36	22

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C /7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C /7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

NRB HE

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Cooling performance 12 °C / 7 °C (1)												
Cooling capacity	kW	209,6	241,7	264,7	294,5	326,7	377,8	432,4	489,4	540,5	597,8	647,7
Input power	kW	67,3	77,4	85,0	98,1	112,4	125,3	139,1	157,0	177,4	192,3	215,2
Cooling total input current	Α	115,0	132,0	144,0	164,0	187,0	208,0	230,0	261,0	296,0	322,0	362,0
EER	W/W	3,12	3,12	3,11	3,00	2,91	3,02	3,11	3,12	3,05	3,11	3,01
Water flow rate system side	l/h	36053	41586	45538	50642	56185	64960	74341	84155	92932	102793	111352
Pressure drop system side	kPa	15	20	18	22	16	22	21	27	27	33	21
Heating performance 40 °C / 45 °C (2)												
Heating capacity	kW	223,4	258,1	283,7	316,7	349,3	403,2	458,7	520,7	571,9	634,1	683,9
Input power	kW	69,3	80,5	87,9	98,5	109,0	126,1	143,1	162,7	177,1	198,2	211,7
Heating total input current	Α	122,0	140,0	153,0	170,0	188,0	216,0	244,0	278,0	305,0	341,0	367,0
COP	W/W	3,22	3,21	3,23	3,22	3,20	3,20	3,21	3,20	3,23	3,20	3,23
Water flow rate system side	I/h	38791	44787	49248	54989	60660	70010	79655	90422	99327	110122	118791
Pressure drop system side	kPa	17	23	20	25	19	25	24	31	31	38	23

ELECTRIC DATA

Size	'		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Electric data													
	0	Α	168,6	185,0	209,8	239,2	268,5	297,5	326,5	423,4	487,6	516,6	570,9
Maximum current (FLA)	A,L	Α	168,6	193,5	209,8	239,2	268,5	306,0	335,0	468,1	512,9	561,3	590,3
	E	А	177,1	202,0	218,3	247,7	277,0	314,5	352,0	487,5	532,3	580,7	609,7
	0	А	357,2	412,4	437,2	489,9	519,2	631,7	660,7	757,6	821,8	850,8	905,1
Peak current (LRA)	A,L	А	357,2	420,9	437,2	489,9	519,2	640,2	669,2	802,3	847,1	895,5	924,5
	E	Α	365,7	429,4	445,7	498,4	527,7	648,7	686,2	821,7	866,5	914,9	943,9

ENERGY INDICES (REG. 2016/2281 EU)

NRB H°

	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
ns (average) - 35 °C - Pde	signh ≤ 400	kW (1)								
kW	203	224	260	289	325	346	296	343	379	425	462
W/W	3,65	3,65	3,65	3,68	3,65	3,60	3,73	3,73	3,80	3,73	3,80
%	143,00	143,00	143,00	144,00	143,00	141,00	146,00	143,00	149,00	146,00	149,00
W/W	3,79	3,66	3,88	3,81	3,91	3,80	3,89	3,92	3,80	- (3)	- (3)
%	148,40	143,50	152,20	149,50	153,20	149,10	152,70	153,80	149,00	- (3)	- (3)
W/W	-	-	-	-	-	-	-	-	-	- (3)	- (3)
%	-	-	-	-	-	-	-	-	-	- (3)	- (3)
W/W	-	-	-	-	-	-	-	-	-	4,67	4,76
%	-	-	-	-	-	-	-	-	-	183,90	187,30
W/W	-	-	-	-	-	-	-	-	-	4,88	5,02
%	-	-	-	-	-	-	-	-	-	-	-
rd fans (4)											
W/W	-	-	-	-	-	-	-	-	-	5,53	5,54
r fans (4)											
W/W	-	-	-	-	-	-	_	-	-	5,53	5,54
	W/W % W/W	wis (average) - 35 °C - Pde kW 203 W/W 3,65 % 143,00 W/W 3,79 % 148,40 W/W - % - W/W - W/	ons (average) - 35 °C - Pdesignh ≤ 400 kW 203 224 W/W 3,65 3,65 % 143,00 143,00 W/W 3,79 3,66 % 148,40 143,50 W/W % W/W W/W -	wis (average) - 35 °C - Pdesignh ≤ 400 kW (1) kW 203 224 260 W/W 3,65 3,65 3,65 % 143,00 143,00 143,00 W/W 3,79 3,66 3,88 % 148,40 143,50 152,20 W/W	ons (average) - 35 °C - Pdesignh ≤ 400 kW (1) kW 203 224 260 289 W/W 3,65 3,65 3,65 3,68 % 143,00 143,00 143,00 144,00 W/W 3,79 3,66 3,88 3,81 % 148,40 143,50 152,20 149,50 W/W W/W W/W W/W Trians (4) W/W Trans (4)	ons (average) - 35 °C - Pdesignh ≤ 400 kW (1) kW 203 224 260 289 325 W/W 3,65 3,65 3,65 3,68 3,65 % 143,00 143,00 143,00 144,00 143,00 W/W 3,79 3,66 3,88 3,81 3,91 % 148,40 143,50 152,20 149,50 153,20 W/W % W/W W/W w/W W/W W/W w/W w/W w/W w/W w/W w/W w/W w/W w/W w/W w/W	was (average) - 35 °C - Pdesignh ≤ 400 kW (1) kW 203 224 260 289 325 346 W/W 3,65 3,65 3,65 3,68 3,65 3,60 % 143,00 143,00 144,00 143,00 141,00 W/W 3,79 3,66 3,88 3,81 3,91 3,80 % 148,40 143,50 152,20 149,50 153,20 149,10 W/W - - - - - - W/W - - - - - - W/W - - - - - - - W/W - - - - - - - - W/W - <td>was (average) - 35 °C - Pdesignh ≤ 400 kW (1) kW 203 224 260 289 325 346 296 W/W 3,65 3,65 3,65 3,68 3,65 3,60 3,73 % 143,00 143,00 144,00 143,00 141,00 146,00 W/W 3,79 3,66 3,88 3,81 3,91 3,80 3,89 % 148,40 143,50 152,20 149,50 153,20 149,10 152,70 W/W - - - - - - - % - - - - - - - W/W - - - - -</td> <td> No. No.</td> <td> No. No.</td> <td> No. No.</td>	was (average) - 35 °C - Pdesignh ≤ 400 kW (1) kW 203 224 260 289 325 346 296 W/W 3,65 3,65 3,65 3,68 3,65 3,60 3,73 % 143,00 143,00 144,00 143,00 141,00 146,00 W/W 3,79 3,66 3,88 3,81 3,91 3,80 3,89 % 148,40 143,50 152,20 149,50 153,20 149,10 152,70 W/W - - - - - - - % - - - - - - - W/W - - - - -	No. No.	No. No.	No. No.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C /7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Efficiencies for low temperature applications (35 °C)
(2) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(3) Non-compliant with 2016/2281 EU regulation for comfort applications 12 °C / 7 °C
(4) Calculation performed with FIXED water flow rate.

NRB HL

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
UE 813/2013 performance in average ambient conditi	ons (average	e) - 35 °C - Pde	esignh ≤ 400	kW (1)								
Pdesignh	kW	197	235	258	286	314	370	306	353	385	433	464
SCOP	W/W	3,73	3,75	3,75	3,68	3,68	3,73	3,93	3,83	3,95	3,83	3,93
ηsh	%	146,00	147,00	147,00	144,00	144,00	146,00	154,00	150,00	155,00	150,00	154,00
SEER - 12/7 (EN14825:2018) with standard fans (2)												
SEER	W/W	3,83	4,01	3,92	3,90	3,82	4,05	3,99	4,04	3,87	- (3)	- (3)
Seasonal efficiency	%	150,30	157,20	153,90	149,60	159,00	156,40	156,60	158,60	151,80	- (3)	- (3)
SEER - (EN14825:2018) 12/7 with inverter fans (2)												
SEER	W/W	-	-	-	-	-	-	-	-	-	- (3)	- (3)
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	- (3)	- (3)
SEER - 23/18 (EN14825: 2018) with standard fans (4)												
SEER	W/W	-	-	-	-	-	-	-	-	-	4,72	4,67
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	185,70	183,60
SEER - 23/18 (EN14825: 2018) with inverter fans												
SEER	W/W	-	-	-	-	-	-	-	-	-	5,08	5,11
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	-	-
SEPR - (EN14825: 2018) High temperature with standa	rd fans (4)									-	-	
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,51	5,51
SEPR - (EN14825: 2018) High temperature with inverte	er fans (4)											
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,51	5,51

(1) Efficiencies for low temperature applications (35 °C)
(2) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(3) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C/7°C
(4) Calculation performed with FIXED water flow rate.

NKB HA												
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
UE 813/2013 performance in average ambient conditi	ions (average) - 55 °C - Pd	esignh ≤ 400	kW (1)								
Pdesignh	kW	196	233	255	284	312	367	304	351	384	430	462
SCOP	W/W	3,03	3,08	3,03	3,08	3,03	3,10	3,13	3,08	3,30	3,08	3,15
ηsh	%	118,00	120,00	118,00	120,00	118,00	121,00	122,00	120,00	129,00	120,00	123,00
SEER - 12/7 (EN14825:2018) with standard fans (2)												
SEER	W/W	3,96	4,13	4,09	4,09	4,07	4,23	4,22	4,22	4,10	- (3)	- (3)
Seasonal efficiency	%	155,40	162,10	160,40	160,60	159,70	166,10	165,60	165,80	161,0	- (3)	- (3)
SEER - (EN14825:2018) 12/7 with inverter fans (2)												
SEER	W/W	-	-	-	-	-	-	-	-	-	4,58	4,57
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	180,3%	179,6%
SEER - 23/18 (EN14825: 2018) with standard fans (4)												
SEER	W/W	-	-	-	-	-	-	-	-	-	4,96	5,01
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	195,30	197,40
SEER - 23/18 (EN14825: 2018) with inverter fans												
SEER	W/W	-	-	-	-	-	-	-	-	-	4,58	4,57
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	-	-
SEPR - (EN14825: 2018) High temperature with standa	ard fans (4)											
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,52	5,52
SEPR - (EN14825: 2018) High temperature with invert	er fans (4)											
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,52	5,52

(1) Efficiencies for average temperature applications (55 °C)
(2) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(3) Non-compliant with 2016/2281 EU regulation for comfort applications 12 °C / 7 °C
(4) Calculation performed with FIXED water flow rate.

547

NRB HE

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
UE 813/2013 performance in average ambient conditi	ons (average	e) - 55 °C - Pde	esignh ≤ 400	kW (1)								
Pdesignh	kW	204	236	259	290	320	369	318	361	397	440	474
SCOP	W/W	3,05	3,08	3,05	3,10	3,03	3,08	3,13	3,05	3,30	3,08	3,15
ηsh	%	119,00	120,00	119,00	121,00	118,00	120,00	122,00	119,00	129,00	120,00	123,00
SEER - 12/7 (EN14825:2018) with standard fans (2)		-								-	-	
SEER	W/W	4,16	4,15	4,18	4,19	4,16	4,27	4,39	4,36	4,22	- (3)	- (3)
Seasonal efficiency	%	163,40	163,00	164,10	164,70	163,40	167,90	172,70	171,40	165,80	- (3)	- (3)
SEER - (EN14825:2018) 12/7 with inverter fans (2)												
SEER	W/W	-	-	-	-	-	-	-	-	-	4,71	4,67
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	185,4%	183,7%
SEER - 23/18 (EN14825: 2018) with standard fans (4)												
SEER	W/W	-	-	-	-	-	-	-	-	-	5,17	5,20
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	203,60	204,90
SEER - 23/18 (EN14825: 2018) with inverter fans												
SEER	W/W	-	-	-	-	-	-	-	-	-	4,71	4,67
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	-	-
SEPR - (EN14825: 2018) High temperature with standa	rd fans (4)	-								-	-	
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,52	5,54
SEPR - (EN14825: 2018) High temperature with inverte	er fans (4)											
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,52	5,54

GENERAL TECHNICAL DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Compressor													
Туре	°,A,E,L	type		-				Scroll					
Compressor regulation	°,A,E,L	Туре						On-Off					
Number	°,A,E,L	no.	4	4	4	4	4	4	4	5	6	6	6
Circuits	°,A,E,L	no.	2	2	2	2	2	2	2	2	2	2	2
D. 6:	°,A,L	type						R410A					
Refrigerant	E	type											
	٥	kg	41,0	42,0	55,0	56,0	56,0	58,0	58,0	84,0	84,0	100,0	100,0
Refrigerant charge (1)	A,L	kg	43,0	56,0	58,0	58,0	60,0	84,0	87,0	100,0	103,0	116,0	125,0
	E	kg	56,0	80,0	82,0	82,0	84,0	97,0	113,0	137,0	140,0	153,0	162,0
System side heat exchange	r												
Туре	°,A,E,L	type		-				Shell and tube					
Hydraulic connections													
Connections (in/out)	°,A,E,L	Туре		-				Grooved joints	;				
Hydraulic connections with	out hydronic kit												
Cinco (in local)	0	Ø	5"	5"	5"	5"	5"	5"	5"	6"	6"	6"	6"
Sizes (in/out)	A,E,L	Ø	5"	5"	5"	5"	6"	6"	6"	6"	6"	6"	6"
Hydraulic connections with	hydronic kit												
-	0	Ø	-	-	3"	3"	3"	-	-	4"	4"	4"	4"
Sizes (in/out)	A,L	Ø	-	3"	-	-	-	3″	4"	4"	4"	4"	4"
	E	Ø	3″	3"	3"	3"	3″	3″	4"	4"	4"	4"	4"

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

Water filter not supplied. Installation is mandatory or the guarantee will void.

⁽¹⁾ Efficiencies for average temperature applications (55 °C)
(2) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(3) Non-compliant with 2016/2281 EU regulation for comfort applications 12 °C / 7 °C
(4) Calculation performed with FIXED water flow rate.

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Fan													
Туре	°,A,E,L	type						Axial					
Fan motor	°,A	type						Asynchronous					
raii iiivivi	E,L	type					Asynch	ronous with ph	iase cut				
	0	no.	4	4	6	6	6	6	6	8	8	10	10
Number	A,L	no.	4	6	6	6	6	8	8	10	10	12	12
	E	no.	6	8	8	8	8	10	12	14	14	16	16
	0	m³/h	80000	80000	120000	120000	120000	120000	120000	160000	160000	200000	200000
Air flow rate	Α	m³/h	80000	120000	120000	120000	120000	160000	160000	200000	200000	240000	240000
	Е	m³/h	90000	120000	120000	120000	120000	150000	180000	210000	210000	240000	240000
	L	m³/h	60000	90000	90000	90000	90000	120000	120000	150000	150000	180000	180000
Sound data calculated in cooli	ng mode (1)												
	٥	dB(A)	89,5	89,5	91,6	91,6	91,6	91,6	91,6	93,1	93,1	94,2	94,2
Cound namer lavel	Α	dB(A)	89,5	91,6	91,6	91,6	91,6	93,1	93,1	94,2	94,2	95,1	95,1
Sound power level	E	dB(A)	84,6	86,1	86,1	86,1	86,1	87,2	88,2	89,4	89,9	91,1	91,6
	L	dB(A)	82,6	84,6	84,6	84,6	84,6	86,1	86,1	87,7	88,2	89,6	90,1
	0	dB(A)	57,4	57,4	59,3	59,3	59,3	59,3	59,3	60,7	60,7	61,7	61,7
Cound proceure loyal (10 m)	Α	dB(A)	57,4	59,3	59,3	59,3	59,3	60,7	60,7	61,6	61,6	62,5	62,5
Sound pressure level (10 m)	E	dB(A)	52,4	53,7	53,7	53,7	53,7	54,7	55,5	56,7	57,2	58,2	58,7
	L	dB(A)	50,5	52,4	52,4	52,4	52,4	53,8	53,8	55,2	55,7	57,0	57,5

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

NRB 0800 - 0900 ° NRB 0800 L/A NRB 1000 - 1600 ° NRB 0900 - 1200 L/A NRB 0800 E NRB 1805 - 2006 ° NRB 1400 - 1600 L/A NRB 0900 - 1200 E NRB 2206 - 2406 ° NRB 1805 - 2406 L/A NRB 1400 - 2406 E

Size				0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Dimensions and weights	without hydronic	c kit												
A		°,A,E,L	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В		°,A,E,L	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
		0	mm	2780	2780	3970	3970	3970	3970	3970	5160	5160	6350	6350
(A,L	mm	2780	3970	3970	3970	3970	4760	4760	6350	6350	7140	7140
		E	mm	3970	4760	4760	4760	4760	5950	7140	8330	8330	9520	9520
Dimensions and weights	with pump/s													
		0	mm	-	-	2450	2450	2450	-	-	2450	2450	2450	2450
A		A,L	mm	-	2450	-	-	-	2450	2450	2450	2450	2450	2450
		E	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
		0	mm	-	-	2200	2200	2200	-	-	2200	2200	2200	2200
В		A,L	mm	-	2200	-	-	-	2200	2200	2200	2200	2200	2200
		E	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
		0	mm	-	-	3970	3970	3970	-	-	5160	5160	6350	6350
(A,L	mm	-	3970	-	-	-	4760	4760	6350	6350	7140	7140
		E	mm	3970	4760	4760	4760	4760	5950	7140	8330	8330	9520	9520
Size			0800	0900	1000	1100		1200	1400	1600	1805	2006	2206	2406
Integrated hydro	nic kit: 00													
Weights														
	0	kg	2670	2730	3310	3360		3400	3460	3490	4350	4520	5190	5230
Empty weight	A,L	kg	2700	3280	3350	3390		3470	4120	4240	4980	5190	5690	6030
	E	kg	3230	3920	3990	4020		4100	4660	5220	6060	6280	6810	7100

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. 0442633111 - Telefax 044293577 www.aermec.com

549

CL 025-200

Air-water chiller

Cooling capacity 5,8 ÷ 41 kW

- Standard version
- Version with Integrated hydronic kit system side
- · Fan Plug-fan

DESCRIPTION

Chillers for indoor installation for chilled water production with scroll compressors, plugfan fans, external copper coils with aluminum louvers.

The base, the structure and the panels are made of galvanized steel treated

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A With storage tank and pump

P With pump

FEATURES

Operating field

Operation at full load up to 46°C external air temperature. Unit can produce chilled water up to -10°C .

EC fan plug-fan

The units are equipped with plug-fans and inverter motors coupled directly with the fan, with the electronic condensation control as standard, which adjusts the air flow according to the actual system requirements, with benefits in terms of consumption and noise reduction.

In addition, compared to conventional centrifugal fans, they do not feature belt and pulley transmission, resulting in easy flow adjustment, compactness, versatility, easy maintenance and no vibrations.

Air supply

Horizontal or vertical, adjustable during installation for all sizes. Directional air discharge hood:

- plastic for sizes 050 to 090
- galvanised steel for the other sizes

Version with Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations to obtain a solution that allows you to save money and to facilitate installation.

Hot water production

In the configuration with desuperheater, it is also possible to produce free-hot water.

MODUCONTROL CONTROL

The command panel of the unit allows the rapid setting of the working parameters of the machine, and their visualisation. The display consists of 4 figures and various LEDs for indicating the type of operational mode, the visualisation of the parameters set and of any alarms triggered. The card stores all the default settings and any modifications.

The regulation using an outside air temperature sensor allows a dynamic control of the water temperature produced by increasing the energy efficiency of the system.

ACCESSORIES

AERBAC-MODU: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP. The accessory is supplied with the unit and must be installed on an external electrical panel.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERSET: It makes it possible to automatically compensate for the operation setting of the unit to which it is connected, based on a 0-10V MODBUS input signal. Mandatory accessory MODU-485BL.

MODU-485BL: RS-485 interface for supervision systems with MODBUS protocol.

MULTICONTROL: Allows the simultaneous control of several units (up to 4), installed in the same hydraulic system.

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

SPLW: System water temperature sensor. In most cases the loose supplied sensors for each chiller/heat pump are sufficient. In cases of a common flow/ return header this sensor can be used to control the common system supply water temperature for the chillers connected to the header, or it can be used for temperature monitoring

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ For the installation of the PR4 remote panel, the MODU-485BL communication interface is indispensable.

VT: Anti-vibration supports.

CLPA: Galvanised steel plenum to be installed on the condenser coil, facilitates duct installations.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

KR: Anti-freeze electric heater for the plate heat exchanger.

GPCL: Protection grille for the source side exchange coil.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Accessories

Model	Ver	025	030	050	070	090	100	150	200
AERBAC-MODU	°,A,P	•	•	•	•	•	•	•	•
AERLINK	°,A,P	•	•	•	•	•	•		•
AERSET	°,A,P	•	•	•	•	•	•	•	•
MODU-485BL	°,A,P	•	•	•	•	•	•		•
MULTICONTROL	°,A,P	•		•	•	•	•	•	•
PR3	°,A,P	•	•	•	•	•	•	•	•
SGD	°,A,P	•		•	•	•	•		•
SPLW (1)	°,A,P	•	•	•		•			

⁽¹⁾ Probe required for MULTICONTROL to manage the secondary circuit system.

Remote panel

Model	Ver	025	030	040	050	070	080	090	100	150	200
PR4	°,A,P	•	•	•	•	•		•	•	•	•

For the installation of the PR4 remote panel, the MODU-485BL communication interface is indispensable.

Antivibration

Ver	025	030	050	070	090	100	150	200
°, P	VT9	VT9	VT9	VT9	VT9	VT15	VT15	VT15
A	VT15A	VT15A	VT15A	VT15A	VT15A	VT15	VT15	VT15

Galvanised steel plenum

Ver	025	030	050	070	090	100	150	200
°, A, P	CLPA1 (1)	CLPA1 (1)	CLPA2 (2)	CLPA2 (2)	CLPA2 (2)	CLPA3	CLPA3	CLPA3

⁽¹⁾ Not compatible with the GPCL1 accessory(2) Not compatible with the GPCL2 accessory

Device for peak current reduction

Ver	025	030	050	070	090	100	150	200
°, A, P	DRE5 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)				

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered.

Antifreeze electric heater

Ver	025	030	050	070	090	100	150	200
°, A, P	KR2	KR2	KR2	KR2	KR2	KR100	KR100	KR100

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	025	030	050	070	090	100	150	200
°, A, P	GPCL1	GPCL1	GPCL2	GPCL2	GPCL2	GPCL3	GPCL3	GPCL3

A grey background indicates the accessory must be assembled in the factory

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2	α
3,4,5	Size 025, 030, 050, 070, 090, 100, 150, 200
6	Model
0	Cooling only
7	Execution
0	Standard
8	Version
0	Standard
A	With storage tank and pump
P	With pump
9	Heat recovery
D	With desuperheater (1)
0	Without heat recovery
10	Coils
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
•	Copper-aluminium
11	Operating field
Υ	Low temperature mechanic thermostatic valve (2)
Z	Low temperature electronic thermostatic valve (3)
0	Standard mechanic thermostatic valve (4)
12	Evaporator
C	Motocondensing unit
0	Standard
13	Power supply
M	230V ~ 3 50Hz (5)
0	400V ~ 3N 50Hz with magnet circuit breakers (6)

⁽¹⁾ It is only available in size CL 050 ÷ 200; If the unit is also fitted with one of the low temperature valves in addition to the desuperheater, it is necessary to always guarantee a water temperature of 35°C at the inlet of the desuperheater.

(2) Water produced from 0 °C ÷ - 10 °C

(3) Water produced from 0 °C ÷ 4 °C (4) Water produced from 4 °C ÷ 18 °C (5) Only for CL 025 ÷ 030 sizes (6) Only for CL 025 ÷ 200 sizes

PERFORMANCE SPECIFICATIONS CL ° - (version °) - (400V 3N ~ 50Hz / 220V -: 50Hz)

CL.	- (version °) - (400V 3N ~ 50Hz / 230V	~ 50HZ)
_		

Size		025	030	050	070	090	100	150	200
		023	030	030	0/0	090	100	130	200
Cooling performance 12 °C / 7 °C (1)									
Cooling capacity	kW	5,8	7,1	12,7	16,3	20,2	26,3	33,0	40,6
Input power	kW	2,2	2,6	4,3	5,5	6,8	8,8	11,3	14,4
Cooling total input current - 400V	A	4,8	5,1	8,4	10,0	13,0	17,0	19,0	25,0
Cooling total input current - 230V	A	10,0	13,0	-	-	-	-	-	-
EER	W/W	2,70	2,72	2,98	3,00	2,98	2,99	2,91	2,82
Water flow rate system side	I/h	1008	1233	2189	2817	3484	4533	5695	7001
Pressure drop system side	kPa	19	26	27	29	29	45	53	72

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

CL $^{\circ}$ - (versions A/P) - (400V 3N \sim 50Hz / 230V \sim 50Hz)

Size		025	030	050	070	090	100	150	200
Cooling performance 12 °C/7 °C(1)									
Cooling capacity	kW	5,9	7,2	12,8	16,5	20,4	26,5	33,4	41,0
Input power	kW	2,1	2,6	4,2	5,4	6,8	8,9	11,6	14,6
Cooling total input current - 400V	A	5,1	5,4	9,0	11,0	13,0	18,0	21,0	27,0
Cooling total input current - 230V	A	11,0	14,0	-	-	-	-	-	-
EER	W/W	2,76	2,78	3,02	3,04	3,02	2,97	2,87	2,81
Water flow rate system side	l/h	1008	1233	2189	2817	3484	4533	5695	7001
Useful head system side	kPa	71	62	73	66	58	83	131	122

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY DATA

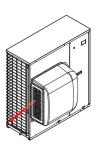
Size			025	030	050	070	090	100	150	200
SEER - 12/7 (EN14825:2018) with	h standard fans (1)									
CLLD	0	W/W	4,11	4,11	4,10	4,11	4,12	4,38	4,32	4,10
SEER	A,P	W/W	4,22	4,22	4,17	4,21	4,22	4,21	4,13	4,12
Casanal afficiency	0	%	161,3%	161,4%	161,1%	161,3%	161,8%	172,0%	169,7%	161,0%
Seasonal efficiency	A,P	%	165,7%	165,7%	163,8%	165,2%	165,6%	165,5%	162,3%	161,8%
SEER - 23/18 (EN14825: 2018) w	ith standard fans (2)									
CEED	0	W/W	4,72	4,47	4,50	4,44	4,52	5,13	4,99	4,51
SEER	A,P	W/W	4,86	4,62	4,64	4,58	4,72	4,90	4,65	4,36
C	0	%	185,9%	175,9%	176,8%	174,7%	177,7%	202,2%	196,6%	177,2%
Seasonal efficiency	A,P	%	191,2%	181,7%	182,6%	180,0%	185,7%	193,1%	183,0%	171,5%
SEPR - (EN14825: 2018) High ter	nperature with standar	d fans (2)								
CEDD	0	W/W	5,38	5,10	5,10	5,03	5,04	5,67	5,59	5,30
SEPR	A,P	W/W	5,49	5,21	5,18	5,13	5,16	5,56	5,37	5,20

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

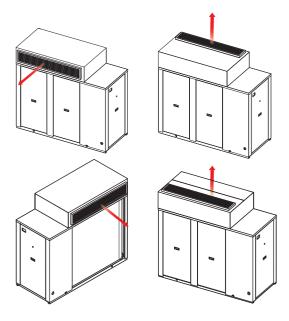
ELECTRIC DATA

LLLC I MIC DAIA										
Size			025	030	050	070	090	100	150	200
Power supply: °										
Electric data										
Marrian comment (FLA)	٥	А	11,0	11,6	13,6	15,4	20,4	27,4	30,8	40,8
Maximum current (FLA)	A,P	Α	11,4	12,0	14,4	16,1	21,1	29,3	33,8	43,8
Dools surrount (LDA)	٥	А	44,6	40,6	77,2	77,2	105,2	90,9	92,6	125,6
Peak current (LRA)	A,P	A	45,0	41,0	77,9	77,9	105,9	92,8	95,6	128,6
Size			025	030	050	070	090	100	150	200
Power supply: M										
Electric data										
Marrian coment (FLA)	٥	А	22,0	25,0	-	-	-	-	-	-
Maximum current (FLA)	A,P	A	22,6	25,6	-	-	-	-	-	-
DI	0	А	67,0	88,0	-	-	-	-	-	-
Peak current (LRA)	A.P	Α	67.6	88.6	-	-	-	-	-	_

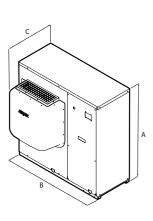
GENERAL TECHNICAL DATA

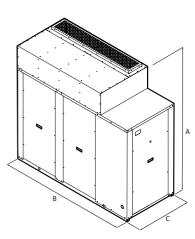

Size			025	030	050	070	090	100	150	200
Compressor										
Туре	°,A,P	type				Sc	roll			
Compressor regulation	°,A,P	Туре				0n	-off			
Number	°,A,P	no.	1	1	1	1	1	2	2	2
Circuits	°,A,P	no.	1	1	1	1	1	1	1	1
Refrigerant	°,A,P	type				R4	10A			
Refrigerant charge (1)	°,A,P	kg	1,5	2,7	4,0	4,0	4,0	5,5	7,5	7,5
System side heat exchanger										
Туре	°,A,P	type				Braze	d plate			
Number	°,A,P	no.	1	1	1	1	1	1	1	1
Hydraulic connections										
Connections (in/out)	°,A,P	Туре				Ga	s - F			
Size (in)	°,A,P	Ø				1	1/4			
Size (out)	°,A,P	Ø				1	1/4			
Fan										
Туре	°,A,P	type				Plug	g-fan			
Fan motor	°,A,P	type				Inve	erter			
Number	°,A,P	no.	1	1	1	1	1	2	2	2
Air flow rate	°,A,P	m³/h	4000	4000	6500	6500	7500	10000	12000	12000
High static pressure	°,A,P	Pa	50	50	50	50	50	50	50	50
Intake plus machine body										
Sound power level	°,A,P	dB(A)	78,0	78,0	73,0	73,0	76,0	74,0	79,0	79,0
Sound pressure level in cooling mode (10 m)	°,A,P	dB(A)	46,0	46,0	41,0	41,0	44,0	42,0	47,0	47,0
Machine exhaust										
Sound power level	°,A,P	dB(A)	78,0	78,0	78,0	78,0	81,0	78,0	83,0	83,0
Sound pressure level in cooling mode (10 m)	°,A,P	dB(A)	46,0	46,0	46,0	46,0	49,0	47,0	52,0	52,0

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.


DISCHARGE HOOD POSSIBLE CONFIGURATIONS

CL 025 ÷ 090


CL 100 ÷ 200


- Air supply Horizontal or vertical, adjustable during installation for all sizes. Directional air discharge hood:
- plastic for sizes 050 to 090
- galvanised steel for the other sizes

DIMENSIONS

CL 025 ÷ 090

CL 100 ÷ 200

Size			025	030	050	070	090	100	150	200
Dimensions and weights										
A	°,A,P	mm	1028	1281	1281	1281	1281	1674	1674	1674
D	°,P	mm	1005	1006	1160	1160	1160	1897	1897	1897
В	A	mm	1366	1458	1610	1610	1610	1897	1897	1897
C	°,A,P	mm	702	754	798	798	798	801	801	801
	0	kg	127	160	208	210	212	469	471	475
Empty weight	A	kg	157	201	252	260	256	532	537	542
	P	kg	133	166	217	225	221	482	487	492

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

CL 025H-200H

Reversible air/water heat pump

Cooling capacity 6,5 ÷ 50,9 kW – Heating capacity 7,7 ÷ 44,8 kW

- Cooling / heating / high-temperature water production even for DHW production.
- Water produced up to 60 °C
- Heating operations with external temperatures down to -15 °C
- Fan Plug-fan

DESCRIPTION

Reversible air/water heat pump for air conditioning systems with cold water production for cooling rooms and hot water for heating and/or domestic hot water services, suitable for connection with small or medium users. The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A With storage tank and pump

P With pump

FEATURES

Operating field

Working at full load up to -15 $^{\circ}$ C outside air temperature in winter, and up to 46 $^{\circ}$ C in summer. Hot water production up to 60 $^{\circ}$ C.

EC fan plug-fan

The units are equipped with plug-fans and inverter motors coupled directly with the fan, with the electronic condensation control as standard, which adjusts the air flow according to the actual system requirements, with benefits in terms of consumption and noise reduction.

In addition, compared to conventional centrifugal fans, they do not feature belt and pulley transmission, resulting in easy flow adjustment, compactness, versatility, easy maintenance and no vibrations.

Air supply

Horizontal or vertical, adjustable during installation for all sizes.

Directional air discharge hood:

- plastic for sizes 050 to 090
- galvanised steel for the other sizes

Version with Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations to obtain a solution that allows you to save money and to facilitate installation.

Hot water production

Special attention has been paid to winter operation: compared with traditional heat pumps, the operating limits have been extended thanks to particular technological expedients.

MODUCONTROL CONTROL

The command panel of the unit allows the rapid setting of the working parameters of the machine, and their visualisation. The display consists of 4 figures and various LEDs for indicating the type of operational mode, the visualisation of the parameters set and of any alarms triggered. The card stores all the default settings and any modifications.

The regulation using an outside air temperature sensor allows a dynamic control of the water temperature produced by increasing the energy efficiency of the system.

ACCESSORIES

AERBAC-MODU: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP. The accessory is supplied with the unit and must be installed on an external electrical panel.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERSET: It makes it possible to automatically compensate for the operation setting of the unit to which it is connected, based on a 0-10V MODBUS input signal. Mandatory accessory MODU-485BL.

 $\begin{tabular}{ll} \textbf{MODU-485BL:} RS-485 interface for supervision systems with MODBUS protocol. \\ \end{tabular}$

MULTICONTROL: Allows the simultaneous control of several units (up to 4), installed in the same hydraulic system.

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

SDHW: Domestic hot water sensor. To be used with a storage tank for the control of water temperature produced.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating

system during the photovoltaic production phase and release it at times when heating demand is highest.

SPLW: System water temperature sensor. In most cases the loose supplied sensors for each chiller/heat pump are sufficient. In cases of a common flow/ return header this sensor can be used to control the common system supply water temperature for the chillers connected to the header, or it can be used for temperature monitoring

VT: Anti-vibration supports.

CLPA: Galvanised steel plenum to be installed on the condenser coil, facilitates duct installations.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ For the installation of the PR4 remote panel, the MODU-485BL communication interface is indispensable.

FACTORY FITTED ACCESSORIES

KRB: Electric anti-freeze resistance kit for base.

GPCL: Protection grille for the source side exchange coil.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Accessories

Model	Ver	025	030	040	050	070	080	090	100	150	200
AERBAC-MODU	°,A,P	•	•	•	•	•	•	•	•	•	•
AERLINK	°,A,P										
AERSET	°,A,P	•	•	•	•	•	•	•	•	•	•
MODU-485BL	°,A,P	•				•	•	•	•	•	•
MULTICONTROL	°,A,P										
PR3	°,A,P	•	•	•		•	•	•	•	•	•
SDHW (1)	°,A,P	•	•	•	•						
SGD	°,A,P	•	•	•	•	•	•	•	•	•	
SPLW (2)	°,A,P		•	•	•	•	•		•		•

- (1) Probe required for MULTICONTROL for managing the domestic hot water system.
- (2) Probe required for MULTICONTROL to manage the secondary circuit system.
- MODU-485BL = Accessory mandatory for the production of domestic hot water

Remote panel

Model	Ver	025	030	040	050	070	080	090	100	150	200
PR4	°,A,P		•	•	•		•	•	•	•	•

For the installation of the PR4 remote panel, the MODU-485BL communication interface is indispensable.

Antivibration

Ver	025	030	040	050	070	080	090	100	150	200
°, P	VT9	VT15	VT15	VT15						
A	VT15A	VT15	VT15	VT15						

BSKW: Electric heater kit

Ver	025	030	040	050	070	080	090	100	150	200
Power supply: M										
° A D	BS4KW230M,	BS4KW230M,	BS4KW230M,							
°, A, P	BS6KW230M	BS6KW230M	BS6KW230M	-	-	-	-	-	-	
Power supply: °										
· · · · · · · · · · · · · · · · · · ·	BS6KW400T,									
°, A, P	BS9KW400T									

Galvanised steel plenum

Ver	025	030	040	050	070	080	090	100	150	200
°, A, P	CLPA1 (1)	CLPA1 (1)	CLPA2 (2)	CLPA3	CLPA3	CLPA3				

- (1) Not compatible with the GPCL1 accessory (2) Not compatible with the GPCL2 accessory

Device for peak current reduction

Ver	025	030	040	050	070	080	090	100	150	200
Power supply: °										
°, A, P	DRE5 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)						

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Electric Heater for the Base

Electric fied to the base										
Ver	025	030	040	050	070	080	090	100	150	200
°, A, P	KRB4 (1)	KRB4 (1)	KRB5 (1)	KRB6 (1)	KRB6 (1)	KRB6 (1)				

⁽¹⁾ Incompatible with the condensate collection basin accessory with integrated resistance.

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion arid

_	iiti-iiiti usioii gi iu										
Ξ	Ver	025	030	040	050	070	080	090	100	150	200
	°, A, P	GPCL1	GPCL1	GPCL2	GPCL2	GPCL2	GPCL2	GPCL2	GPCL3	GPCL3	GPCL3

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

CONTIGO	INION .
Field	Description
1,2	α
3,4,5	Size 025, 030, 040, 050, 070, 080, 090, 100, 150, 200
6	Model
Н	Heat pump
7	Execution
0	Standard
8	Version
0	Standard
А	With storage tank and pump (1)
Р	With pump
9	Heat recovery
0	Without heat recovery
10	Coils
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
0	Copper-aluminium
11	Operating field
Y	Low temperature mechanic thermostatic valve (2)
Z	Low temperature electronic thermostatic valve (3)
0	Standard mechanic thermostatic valve (4)
12	Evaporator
0	Standard
13	Power supply
M	230V ~ 50Hz (5)
0	400V 3N ∼ 50Hz (6)

 ⁽¹⁾ The version with integrated storage tank is not suitable for the production of domestic hot water (DHW).
 (2) Water produced from 0 °C ÷ - 10 °C
 (3) Water produced from 0 °C ÷ 4 °C

CL - (H°) - (400V 3N ~ 50Hz / 230V ~ 50Hz)

Size		025	030	040	050	070	080	090	100	150	200
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	6,4	8,4	10,4	11,9	14,0	15,5	19,0	23,9	31,3	37,6
Input power	kW	2,6	3,1	3,8	4,2	4,8	5,6	6,8	8,2	10,9	14,4
Cooling total input current - 400V	A	5,5	6,3	6,6	7,5	8,3	9,6	13,0	14,0	21,0	26,0
Cooling total input current - 230V	A	13,0	15,0	16,0	-	-	-	-	-	-	-
EER	W/W	2,44	2,73	2,74	2,87	2,90	2,77	2,81	2,93	2,86	2,61
Water flow rate system side	l/h	1104	1441	1785	2054	2411	2676	3272	4122	5388	6477
Pressure drop system side	kPa	13	12	13	11	15	26	26	34	22	43
Heating performance 40 °C / 45 °C (2)											
Heating capacity	kW	7,9	9,8	12,5	14,4	15,9	18,6	21,0	27,8	34,8	43,8
Input power	kW	2,3	2,9	3,7	4,1	4,7	5,5	6,5	8,1	10,6	14,4
Heating total input current - 400V	A	5,5	6,2	6,4	7,5	8,1	9,2	13,0	14,0	19,0	26,0
Heating total input current - 230V	A	12,0	14,0	15,0	-	-	-	-	-	-	-
COP	W/W	3,41	3,32	3,40	3,52	3,36	3,40	3,20	3,44	3,27	3,03
Water flow rate system side	l/h	1368	1693	2164	2502	2756	3214	3634	4822	6034	7581
Pressure drop system side	kPa	19	16	18	17	21	32	34	49	30	42

⁽⁴⁾ Water produced from 4 °C ÷ 18 °C (5) Only for CL 025 ÷ 040 sizes (6) Only for CL 025 ÷ 200 sizes

PERFORMANCE SPECIFICATIONS 12 °C/ 7 °C - 40 °C/ 45 °C

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C /7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

CL - (HP/HA) - (400V 3N ~ 50Hz / 230V ~ 50Hz)

Size		025	030	040	050	070	080	090	100	150	200
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	6,5	8,4	10,5	12,0	14,1	15,7	19,1	24,2	31,6	38,0
Input power	kW	2,6	3,0	3,7	4,2	4,8	5,6	6,7	8,3	11,3	14,7
Cooling total input current - 400V	A	5,8	6,7	7,0	8,1	8,9	10,0	14,0	15,0	23,0	28,0
Cooling total input current - 230V	A	13,0	16,0	16,0	-	-	-	-	-	-	-
EER	W/W	2,49	2,79	2,79	2,90	2,94	2,82	2,85	2,91	2,81	2,58
Water flow rate system side	l/h	1104	1441	1785	2054	2411	2676	3272	4122	5388	6477
Useful head system side	kPa	76	75	69	92	86	80	64	99	158	145
Heating performance 40 °C / 45 °C (2)											
Heating capacity	kW	7,8	9,7	12,4	14,3	15,8	18,4	20,8	27,6	34,5	43,4
Input power	kW	2,3	2,9	3,6	4,1	4,7	5,4	6,5	8,2	11,0	14,8
Heating total input current - 400V	Α	5,9	6,6	6,8	8,1	8,7	9,9	13,0	15,0	21,0	28,0
Heating total input current - 230V	A	12,0	15,0	16,0	-	-	-	-	-	-	-
COP	W/W	3,42	3,34	3,42	3,50	3,35	3,40	3,21	3,35	3,14	2,92
Water flow rate system side	l/h	1368	1693	2164	2502	2756	3214	3634	4822	6034	7581
Useful head system side	kPa	68	67	56	84	78	66	53	72	133	103

PERFORMANCE SPECIFICATIONS 23 °C/ 18 °C - 30 °C/ 35 °C

CL - (H°) - (400V 3N ~ 50Hz / 230V ~ 50Hz)

Size		025	030	040	050	070	080	090	100	150	200
Cooling performance 23 °C / 18 °C (1)	'										
Cooling capacity	kW	8,5	11,1	13,8	15,8	18,6	20,6	25,2	31,7	41,6	49,9
Input power	kW	2,8	3,3	4,0	4,4	5,1	6,0	7,2	8,7	11,6	15,4
Cooling total input current - 400V	A	5,8	6,6	6,9	8,0	8,7	10,0	14,0	15,0	22,0	27,0
Cooling total input current - 230V	A	13,0	16,0	17,0	-	-	-	-	-	-	-
EER	W/W	3,05	3,42	3,43	3,59	3,63	3,45	3,50	3,63	3,57	3,24
Water flow rate system side	l/h	1472	1922	2381	2740	3216	3570	4364	5498	7187	8639
Pressure drop system side	kPa	23	21	23	20	27	46	46	60	39	77
Heating performance 30 °C / 35 °C (2)											
Heating capacity	kW	8,2	10,1	12,9	15,0	16,5	19,2	21,7	28,9	36,1	45,4
Input power	kW	2,0	2,5	3,1	3,5	4,0	4,6	5,5	6,8	9,0	12,4
Heating total input current - 400V	А	4,7	5,3	5,4	6,4	6,8	7,8	11,0	12,0	16,0	22,0
Heating total input current - 230V	A	10,0	12,0	13,0	-	-	-	-	-	-	-
COP	W/W	4,16	4,08	4,15	4,30	4,12	4,17	3,93	4,22	3,99	3,67
Water flow rate system side	l/h	1413	1749	2235	2585	2846	3320	3754	4981	6233	7832
Pressure drop system side	kPa	20	17	19	18	22	34	36	52	32	45

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/ 35 °C; External air 7 °C d.b. / 6 °C w.b.

CL - (HP/HA) - (400V 3N ~ 50Hz / 230V ~ 50Hz)

Size		025	030	040	050	070	080	090	100	150	200
Cooling performance 23 °C / 18 °C (1)											
Cooling capacity	kW	8,6	11,2	13,9	16,0	18,7	20,8	25,4	32,0	41,9	50,3
Input power	kW	2,7	3,2	4,0	4,4	5,1	5,9	7,2	8,9	12,1	15,8
Cooling total input current - 400V	A	6,2	7,0	7,3	8,6	9,4	11,0	15,0	16,0	24,0	30,0
Cooling total input current - 230V	A	14,0	17,0	17,0	-	-	-	-	-	-	-
EER	W/W	3,13	3,50	3,50	3,64	3,69	3,52	3,55	3,58	3,45	3,18
Water flow rate system side	l/h	1472	1922	2381	2740	3216	3570	4364	5498	7187	8639
Useful head system side	kPa	63	59	48	79	66	55	27	41	81	57
Heating performance 30 °C / 35 °C (2)											
Heating capacity	kW	8,1	10,0	12,8	14,8	16,3	19,1	21,6	28,6	35,8	45,0
Input power	kW	1,9	2,4	3,1	3,4	4,0	4,6	5,5	7,0	9,4	12,8
Heating total input current - 400V	А	5,0	5,6	5,8	7,0	7,5	8,5	11,0	13,0	18,0	24,0
Heating total input current - 230V	А	11,0	13,0	14,0	-	-	-	-	-	-	-
СОР	W/W	4,18	4,11	4,19	4,30	4,13	4,19	3,94	4,09	3,80	3,52
Water flow rate system side	l/h	1413	1749	2235	2585	2846	3320	3754	4981	6233	7832
Useful head system side	kPa	66	65	54	82	76	63	49	65	124	93

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/ 35 °C; External air 7 °C d.b. / 6 °C w.b.

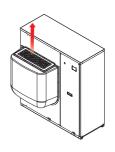
ENERGY DATA

Size			025	030	040	050	070	080	090	100	150	200
Cooling capacity with low leaving	g water temp (UE n° 20	16/2281)										
SEER	0	W/W	2,93	3,27	3,32	3,45	3,43	3,27	3,39	4,06	4,06	3,66
DEEK	A,P	W/W	3,11	3,47	3,53	3,62	3,62	3,46	3,60	4,06	3,85	3,60
	0	%	114,20	127,60	129,60	134,80	134,00	127,80	132,40	159,20	159,20	143,40
ηςς	A,P	%	121,40	135,90	138,00	142,00	141,70	135,30	141,00	159,50	150,80	141,10
UE 811/2013 performance in aver	rage ambient conditio	ns (average) -	35 °C - Pdesig	nh ≤ 70 kW (1)							
Pdesignh	°,A,P	kW	-	-	-	-	-	-	-	-	-	-
CCOD	٥	W/W	3,35	3,35	3,45	3,58	3,45	3,53	3,30	3,53	3,35	3,23
SCOP	A,P	W/W	3,43	3,43	3,53	3,63	3,50	3,58	3,35	3,45	3,23	3,20
	٥	%	131,00	131,00	135,00	140,00	135,00	138,00	129,00	138,00	131,00	126,00
ηsh	A,P	%	134,00	134,00	138,00	142,00	137,00	140,00	131,00	135,00	126,00	125,00
Efficiency energy class	°,A,P		A+	A+	A+	A+	A+	A+	A+	A+	A+	A+

⁽¹⁾ Efficiencies for low temperature applications (35 °C)

ELECTRIC DATA

Size			025	030	040	050	070	080	090	100	150	200
Power supply: °												
Electric data												
Power supply: ° Electric data Maximum current (FLA)	٥	A	11,0	11,9	11,9	13,5	14,7	15,2	20,4	27,0	30,3	40,8
Maximum current (FLA)	A,P	A	11,4	12,4	12,3	14,3	15,4	15,9	21,1	29,0	33,4	43,8
DI	0	A	44,6	44,6	57,1	64,2	74,2	94,2	105,2	77,7	109,3	125,6
Peak current (LKA)	A,P	A	45,0	45,0	57,6	64,9	74,9	94,9	105,9	79,6	112,4	128,6
Size	,		025	030	040	050	070	080	090	100	150	200
Power supply: M												
Electric data												
Power supply: ° Electric data Maximum current (FLA) Peak current (LRA) Size Power supply: M	0	A	19,0	24,0	24,0	-	-	-	-	-	-	-
Maximum current (FLA)	A,P	A	19,8	24,7	25,0	-	-	-	-	-	-	-
Dook surrent /LDA)	0	Α	86.0	96.0	96,0	-	-	-	-	-	-	-
DI												

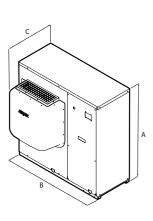

GENERAL TECHNICAL DATA

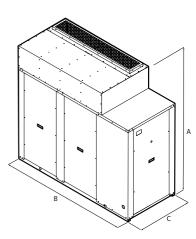
Size			025	030	040	050	070	080	090	100	150	200
Compressor												
Туре	°,A,P	type					Sc	roll				
Compressor regulation	°,A,P	Туре					0n	-off				
Number	°,A,P	no.	1	1	1	1	1	1	1	2	2	2
Circuits	°,A,P	no.	1	1	1	1	1	1	1	1	1	1
Refrigerant	°,A,P	type					R4	10A				
Refrigerant charge (1)	°,A,P	kg	2,7	2,7	4,3	5,6	5,6	5,6	5,7	8,3	8,0	7,5
System side heat exchanger												
Туре	°,A,P	type					Braze	d plate				
Number	°,A,P	no.	1	1	1	1	1	1	1	1	1	1
Hydraulic connections					-							
Connections (in/out)	°,A,P	Туре					Ga	s - F				
Size (in)	°,A,P	Ø					1	1/4				
Size (out)	°,A,P	Ø					1	1/4				
Fan												
Туре	°,A,P	type					Plu	g-fan				
Fan motor	°,A,P	type					Inv	erter				
Number	°,A,P	no.	1	1	1	1	1	1	1	2	2	2
Air flow rate	°,A,P	m³/h	4000	4000	6500	6500	6500	6500	7500	10000	12000	16000
High static pressure	°,A,P	Pa	50	50	50	80	80	80	80	80	100	100
Intake plus machine body												
Sound power level	°,A,P	dB(A)	78,0	78,0	73,0	73,0	73,0	73,0	76,0	74,0	79,0	80,0
Sound pressure level in cooling mode (10 m)	°,A,P	dB(A)	46,0	46,0	41,0	41,0	41,0	41,0	44,0	42,0	47,0	48,0
Machine exhaust												
Sound power level	°,A,P	dB(A)	78,0	78,0	78,0	78,0	78,0	78,0	81,0	78,0	83,0	85,0
Sound pressure level in cooling mode (10 m)	°,A,P	dB(A)	46,0	46,0	46,0	46,0	46,0	46,0	49,0	47,0	52,0	54,0

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.


DISCHARGE HOOD POSSIBLE CONFIGURATIONS

CL 025 ÷ 090


CL 100 ÷ 200


- Air supply Horizontal or vertical, adjustable during installation for all sizes.
- Directional air discharge hood:
- plastic for sizes 050 to 090
- galvanised steel for the other sizes

DIMENSIONS

CL 025 ÷ 090

CL 100 ÷ 200

Size			025	030	040	050	070	080	090	100	150	200
Dimensions and weights												
A	°,A,P	mm	1028	1028	1281	1281	1281	1281	1281	1674	1674	1674
D.	°,P	mm	1005	1005	1160	1160	1160	1160	1160	1897	1897	1897
В	A	mm	1366	1366	1610	1610	1610	1610	1610	1897	1897	1897
C	°,A,P	mm	702	702	798	798	798	798	798	801	801	801
	0	kg	142	142	229	229	240	240	234	504	527	515
Empty weight	A	kg	172	172	274	274	284	284	279	567	593	581
	Р	kg	148	148	239	239	250	250	243	517	543	531

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NLC 0280-1250

Air-water chiller

Cooling capacity 53 ÷ 322 kW

- · High efficiency also at partial loads
- · Complete air flow versatility
- EC fan Plug-fan with high performance

DESCRIPTION

Chiller offering chilled/hot water, designed to mit air conditioning needs in residential / commercial complexes or industrial applications.

Indoor units with Scroll compressors, centrifugal fans and plate heat exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to $\,46^{\circ}\text{C}\,$ external air temperature. Unit can produce chilled water up to -10 $^{\circ}\text{C}$.

Units mono or dual-circuit

The range includes units with 2 compressors in single circuit and units with 4 compressors divided into two independent circuits.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

EC fan plug-fan

The units are equipped with plug-fans and inverter motors coupled directly with the fan, with the electronic condensation control as standard, which adjusts the air flow according to the actual system requirements, with benefits in terms of consumption and noise reduction.

In addition, compared to conventional centrifugal fans, they do not feature belt and pulley transmission, resulting in easy flow adjustment, compactness, versatility, easy maintenance and no vibrations.

Version with Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations to obtain a solution that allows you to save money and to facilitate installation.

Hot water production

In the configuration with desuperheater or total recovery, it is also possible to produce free-hot water.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating

system during the photovoltaic production phase and release it at times when heating demand is highest.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

AVX: Spring anti-vibration supports.
VT: Anti-vibration supports.
FLG: Flange for ducts.
FILW: Water filter

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

KRQ: Electric heater for the control and electric power board.

KRA: Anti-freeze electric heater for the buffer tank.

C-TOUCH: 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
AER485P1	°,A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	°,A,E		•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERLINK	°,A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET	°,A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
FL	°,A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	°,A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PGD1	°,A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SGD	°,A,E	•	٠	•	٠											
Model	Ver	0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
C-TOUCH	°,A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Remote panel

Model	Ver	0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
PR4	°,A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	· ·

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

FILTROW

Ver	0280	0300	0330	0350	0550	0600	0650	0675
°, A, E	FILTRO W DN50 (1)	FILTRO W DN65 (1)						

(1) Installation is mandatory, contrarily garantee becomes void.

Ver	0700	0750	0800	0900	1000	1100	1250
°, A, E	FILTRO W DN65 (1)	FILTRO W DN65 (1)	FILTRO W DN80 (1)				

(1) Installation is mandatory, contrarily garantee becomes void.

Flange for ducts

Ver	0280	0300	0330	0350	0550	0600	0650	0675
0	FLG1	FLG1	FLG1	FLG1	FLG1	FLG2 x 2 (1)	FLG2 x 2 (1)	FLG2 x 2 (1)
A, E	FLG1	FLG1	FLG1	FLG1	FLG2 x 2 (1)			

(1) x... indicates the quantity to buy.

Ver	0700	0750	0800	0900	1000	1100	1250
0	FLG1 x 2 (1)	FLG1 + FLG2 x 2 (1)	FLG2 x 4 (1)	FLG1 + FLG2 x 2 (1)	FLG2 x 4 (1)	FLG2 x 4 (1)	FLG2 x 4 (1)
A, E	FLG1 x 2 (1)	FLG1 + FLG2 x 2 (1)	FLG2 x 4 (1)	FLG2 x 4 (1)	FLG2 x 4 (1)	FLG2 x 4 (1)	FLG2 x 4 (1)

(1) x... indicates the quantity to buy.

Antivibration

Ver	0280	0300	0330	0350	0550	0600	0650	0675
Integrated hydronic kit: 00								
°, A, E	VT17	VT17	VT17	VT17	-	-	-	-
Integrated hydronic kit: 01, 02, 03, 0	4, 05, 06, 07, 08							
°, A, E	VT11	VT11	VT11	VT11	-	-	-	-
Integrated hydronic kit: P1, P2, P3, P	4, P5, P6, P7, P8							
°, A, E	VT13	VT13	VT13	VT13	-	-	-	-
, n, L	VIII	VIII	VIII	VIII)				

The accessory cannot be fitted on the configurations indicated with -

Antivibration

Alltiviblation								
Ver	0280	0300	0330	0350	0550	0600	0650	0675
Integrated hydronic kit: 00								
0	-	-	-	-	AVX437	AVX421	AVX421	AVX421
A, E	-	-	-	-	AVX421	AVX421	AVX421	AVX421
Integrated hydronic kit: 01, 02, 03, 0	4, 05, 06, 07, 08							
0	-	-	-	-	AVX439	AVX423	AVX423	AVX423
A, E	-	-	-	-	AVX423	AVX423	AVX423	AVX423
Integrated hydronic kit: P1, P3, P5, F	77							
0	-	-	-	-	AVX438	AVX421	AVX421	AVX421
A, E	-	-	-	-	AVX421	AVX421	AVX421	AVX421

Ver	0280	0300	0330	0350	0550	0600	0650	0675
ntegrated hydronic kit: P2, P4, P6, P8								
0	-	-	-	-	AVX438	AVX422	AVX422	AVX422
A, E	-	-	-	-	AVX422	AVX422	AVX422	AVX422
ne accessory cannot be fitted on the config	urations indicated with							
Ver	0700	0750	0800	0900		1000	1100	1250
ntegrated hydronic kit: 00								
0	AVX424	AVX440	AVX440	AVX444		AVX431	AVX431	AVX431
A, E	AVX424	AVX428	AVX431	AVX431		AVX431	AVX431	AVX431
ntegrated hydronic kit: 01, 03, 05, 07								
0	AVX427	AVX441	AVX441	AVX446		AVX435	AVX434	AVX434
A, E	AVX427	AVX430	AVX434	AVX434		AVX434	AVX434	AVX434
ntegrated hydronic kit: 02, 04, 06, 08								
0	AVX427	AVX441	AVX441	AVX446		AVX435	AVX436	AVX436
A, E	AVX427	AVX430	AVX435	AVX435		AVX435	AVX436	AVX436
ntegrated hydronic kit: P1, P3, P5, P7								
0	AVX425	AVX425	AVX442	AVX445		AVX432	AVX432	AVX432
A, E	AVX425	AVX429	AVX432	AVX432		AVX432	AVX432	AVX432
ntegrated hydronic kit: P2, P4, P6, P8			****			NN/:	1187	***
0	AVX426	AVX426	AVX443	AVX445		AVX433	AVX433	AVX433
A, E	AVX426	AVX429	AVX433	AVX433		AVX433	AVX433	AVX433
ORE: Device for peak current	reduction							
Ver	0280	0300	0330	0350	0550	0600	0650	0675
°, A, E	DRE275 (1)	DRE275 (1)	DRE300 (1)	DRE350 (1)	DRE552 (1)	DRE602 (1)	DRE652 (1)	DRE675 (1
1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory n	d 400V 3 ~ 50Hz. x 2 or x	3 (if present) indicates the			DILESSE (1)	DILOUZ (I)	DILEGSZ (1)	DILEO75 (
<u>, , , , , , , , , , , , , , , , , , , </u>	-		0800	0900		1000	1100	1250
Ver °, A, E 1) Only for supplies of 400V 3N ~ 50Hz and	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or >	0750 DRE552 x 2	0800 DRE552 x 2 quantity to be ordered	0900 DRE602 x 3	2	1000 DRE652 x 2	1100 DRE675 x 2	1250 DRE1250 (1)
Ver °, A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory no supplies of the accessory	DRE350 x 2 1 400V 3 ~ 50Hz. x 2 or x nust be assembled in the	0750 DRE552 x 2 3 (if present) indicates the factory	DRE552 x 2 quantity to be ordered	DRE602 x :		DRE652 x 2	DRE675 x 2	DRE1250 (1)
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory nower factor correction Ver	0700 DRE350 x 2 1 400V 3 ~ 50Hz. x 2 or x nust be assembled in the	0750 DRES52 x 2 3 (if present) indicates the factory 0300	DRE552 x 2 quantity to be ordered	DRE602 x :	0550	DRE652 x 2	DRE675 x 2	DRE1250 (1)
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory nower factor correction Ver , A, E	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or x nust be assembled in the 0280 RIFNLC1	0750 DRE552 x 2 3 (if present) indicates the factory 0300 RIFNLC1	DRE552 x 2 quantity to be ordered	DRE602 x :		DRE652 x 2	DRE675 x 2	DRE1250 (1)
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory notes. Power factor correction Ver , A, E grey background indicates the accessory notes.	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or x nust be assembled in the 0280 RIFNLC1 nust be assembled in the	0750 DRE552 x 2 3 (if present) indicates the factory 0300 RIFNLC1	DRE552 x 2 quantity to be ordered 0330 RIFNLC2	DRE602 x. I. 0350 RIFNLC3	0550	DRE652 x 2 0600 RIFNLC1	DRE675 x 2 0650 RIFNLC1	DRE1250 (1) 0675 RIFNLC4
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory notes. Ver , A, E A grey background indicates the accessory notes.	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or a nust be assembled in the 0280 RIFNLC1 nust be assembled in the 0700	0750 DRE552 x 2 3 (if present) indicates the factory 0300 RIFNLC1 - factory 0750	DRE552 x 2 quantity to be ordered 0330 RIFNLC2	DRE602 x. I. 0350 RIFNLC3	0550 RIFNLC1	DRE652 x 2 0600 RIFNLC1	0650 RIFNLC1	0675 RIFNIC4
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory nower factor correction Ver , A, E grey background indicates the accessory nower factor correction ver , A, E , A, E 1) x indicates the quantity to buy.	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or x nust be assembled in the 0280 RIFNLC1 nust be assembled in the 0700 RIFNLC3 x 2 (1)	0750 DRE552 x 2 3 (if present) indicates the factory 0300 RIFNLC1 factory 0750 RIFNLC3 + RIFNLC2 (1)	DRE552 x 2 quantity to be ordered 0330 RIFNLC2	DRE602 x. I. 0350 RIFNLC3	0550 RIFNLC1	DRE652 x 2 0600 RIFNLC1	DRE675 x 2 0650 RIFNLC1	0675 RIFNLC4
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory nervice of the accessory of t	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or 2 nust be assembled in the 0280 RIFNLC1 nust be assembled in the 0700 RIFNLC3 x 2 (1) nust be assembled in the	0750 DRE552 x 2 3 (if present) indicates the factory 0300 RIFNLC1 - factory 0750 RIFNLC3 + RIFNLC2 (1)	DRE552 x 2 quantity to be ordered 0330 RIFNLC2 0800 RIFNLC1 x 2 (1)	DRE602 x. I. 0350 RIFNLC3 0900 RIFNLC1 x 2	0550 RIFNLC1	0600 RIFNLC1 1000 RIFNLC1 x 2 (1)	0650 RIFNLC1 1100 RIFNLC4 x 2 (1)	0675 RIFNLC4 1250 RIFNLC3 x 2 (**
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory in Ver , A, E grey background indicates the accessory in Ver , A, E , A, E 1) x indicates the quantity to buy, grey background indicates the accessory in Anti-condensate electric books	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or x nust be assembled in the 0280 RIFNLC1 nust be assembled in the 0700 RIFNLC3 x 2 (1) nust be assembled in the	0750 DRE552 x 2 3 (if present) indicates the factory 0300 RIFNLC1 -factory 0750 RIFNLC3 + RIFNLC2 (1)	DRE552 x 2 quantity to be ordered 0330 RIFNLC2 0800 RIFNLC1 x 2 (1)	DRE602 x. I. 0350 RIFNLC3 0900 RIFNLC1 x 2	0550 RIFNLC1 (1)	0600 RIFNLC1 1000 RIFNLC1 x2 (1)	0650 RIFNLC1 1100 RIFNLC4 x 2 (1)	DRE1250 (1) 0675 RIFNLC4 1250 RIFNLC3 x 2 (1)
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory not the company of the company	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or x nust be assembled in the 0280 RIFNLC1 nust be assembled in the 0700 RIFNLC3 x 2 (1) nust be assembled in the ard resistance 0280 KRQ	0750 DRE552 x 2 3 (if present) indicates the factory 0300 RIFNLC1 -factory 0750 RIFNLC3 + RIFNLC2 (1) -factory 0300 KRQ	DRE552 x 2 quantity to be ordered 0330 RIFNLC2 0800 RIFNLC1 x 2 (1)	DRE602 x. I. 0350 RIFNLC3 0900 RIFNLC1 x 2	0550 RIFNLC1	0600 RIFNLC1 1000 RIFNLC1 x 2 (1)	0650 RIFNLC1 1100 RIFNLC4 x 2 (1)	DRE1250 (1) 0675 RIFNLC4 1250 RIFNLC3 x 2 (
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory not the company of the company	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or x nust be assembled in the 0280 RIFNLC1 nust be assembled in the 0700 RIFNLC3 x 2 (1) nust be assembled in the ard resistance 0280 KRQ	0750 DRE552 x 2 3 (if present) indicates the factory 0300 RIFNLC1 -factory 0750 RIFNLC3 + RIFNLC2 (1) -factory 0300 KRQ	DRE552 x 2 quantity to be ordered 0330 RIFNLC2 0800 RIFNLC1 x 2 (1)	DRE602 x. I. 0350 RIFNLC3 0900 RIFNLC1 x 2	0550 RIFNLC1 (1)	0600 RIFNLC1 1000 RIFNLC1 x2 (1)	0650 RIFNLC1 1100 RIFNLC4 x 2 (1)	DRE1250 (1) 0675 RIFNLC4 1250 RIFNLC3 x 2 (1)
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory now received by the supplies of 400V 3N ~ 50Hz and grey background indicates the accessory now received by the supplies of 400V 3N ~ 50Hz and grey background indicates the accessory now received by the supplies of 400V 3N ~ 50Hz and grey background indicates the accessory now received by the supplies of 400V 3N ~ 50Hz and grey background indicates the accessory now received background indicates the accessory no	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or x nust be assembled in the 0280 RIFNLC1 nust be assembled in the 0700 RIFNLC3 x 2 (1) nust be assembled in the 4rd resistance 0280 KRQ nust be assembled in the	0750 DRE552 x 2 3 (if present) indicates the factory 0300 RIFNLC1 -factory 0750 RIFNLC3 + RIFNLC2 (1) -factory 0300 KRQ -factory 0750	DRE552 x 2 quantity to be ordered 0330 RIFNLC2 0800 RIFNLC1 x 2 (1) 0330 KRQ	DRE602 x. 1. 0350 RIFNLC3 0900 RIFNLC1 x 2 0350 KRQ	0550 RIFNLC1 (1)	0600 RIFNLC1 1000 RIFNLC1 x 2 (1) 0600 KRQ	0650 RIFNLC1 1100 RIFNLC4x2 (1) 0650 KRQ	DRE1250 (1 0675 RIFNLC4 1250 RIFNLC3 x 2 (0675 KRQ
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory in Ver , A, E grey background indicates the accessory in Ver , A, E 1) x indicates the quantity to buy, grey background indicates the accessory in the condensate electric boat Ver , A, E grey background indicates the accessory in the condensate electric boat Ver , A, E grey background indicates the accessory in the condensate electric boat Ver , A, E grey background indicates the accessory in the condensate electric boat ver	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or x nust be assembled in the 0280 RIFNLC1 nust be assembled in the 0700 RIFNLC3 x 2 (1) nust be assembled in the ard resistance 0280 KRQ nust be assembled in the	0750 DRE552 x 2 3 (if present) indicates the factory 0300 RIFNLC1 -factory 0750 RIFNLC3 + RIFNLC2 (1) -factory 0300 KRQ	DRE552 x 2 quantity to be ordered 0330 RIFNLC2 0800 RIFNLC1 x 2 (1) 0330 KRQ	DRE602 x. 1. 0350 RIFNLC3 0900 RIFNLC1 x 2 0350 KRQ	0550 RIFNLC1 (1)	0600 RIFNLC1 1000 RIFNLC1 × 2 (1) 0600 KRQ	0650 RIFNLC1 1100 RIFNLC4x2(1) 0650 KRQ	0675 RIFNLC4 1250 RIFNLC3 x 2 (
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory in Ver , A, E grey background indicates the accessory in Ver , A, E 1) x indicates the quantity to buy, grey background indicates the accessory in Anti-condensate electric boat Ver , A, E grey background indicates the accessory in Ver , A, E grey background indicates the accessory in Ver , A, E	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or youst be assembled in the 0280 RIFNLC1 nust be assembled in the 0700 RIFNLC3 x 2 (1) nust be assembled in the 0700 kreater resistance 0280 kreater resistance 0700 kreater resistance 0700 kreater resistance 0700 kreater resistance	0750 DRE552 x 2 3 (if present) indicates the factory 0300 RIFNLC1 -factory 0750 RIFNLC3 + RIFNLC2 (1) -factory 0300 KRQ -factory 0750 KRQ	DRE552 x 2 quantity to be ordered 0330 RIFNLC2 0800 RIFNLC1 x 2 (1) 0330 KRQ	DRE602 x. 1. 0350 RIFNLC3 0900 RIFNLC1 x 2 0350 KRQ	0550 RIFNLC1 (1)	0600 RIFNLC1 1000 RIFNLC1 x 2 (1) 0600 KRQ	0650 RIFNLC1 1100 RIFNLC4x2 (1) 0650 KRQ	DRE1250 (1) 0675 RIFNLC4 1250 RIFNLC3 x 2 (1) 0675 KRQ
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory in Ver , A, E grey background indicates the accessory in Ver , A, E 1) x indicates the quantity to buy, grey background indicates the accessory in Anti-condensate electric book Ver , A, E grey background indicates the accessory in Ver , A, E grey background indicates the accessory in Ver , A, E grey background indicates the accessory in Ver , A, E grey background indicates the accessory in Ver , A, E	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or 2 nust be assembled in the 0280 RIFNLC1 nust be assembled in the 0700 RIFNLC3 x 2 (1) nust be assembled in the ard resistance 0280 KRQ nust be assembled in the 0700 KRQ nust be assembled in the	0750 DRE552 x 2 3 (if present) indicates the factory 0300 RIFNLC1 factory 0750 RIFNLC3 + RIFNLC2 (1) factory 0300 KRQ factory 0750 KRQ	DRE552 x 2 quantity to be ordered 0330 RIFNLC2 0800 RIFNLC1 x 2 (1) 0330 KRQ	DRE602 x. 1. 0350 RIFNLC3 0900 RIFNLC1 x 2 0350 KRQ	0550 RIFNLC1 (1)	0600 RIFNLC1 1000 RIFNLC1 x 2 (1) 0600 KRQ	0650 RIFNLC1 1100 RIFNLC4x2 (1) 0650 KRQ	DRE1250 (1 0675 RIFNLC4 1250 RIFNLC3 x 2 (0675 KRQ
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory in Ver , A, E grey background indicates the accessory in Ver , A, E 1) x indicates the quantity to buy, grey background indicates the accessory in Anti-condensate electric book Ver , A, E grey background indicates the accessory in Ver , A, E grey background indicates the accessory in Ver , A, E grey background indicates the accessory in Ver , A, E grey background indicates the accessory in Anti-freeze electric heater for Ver	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or 2 nust be assembled in the 0280 RIFNLC1 nust be assembled in the 0700 RIFNLC3 x 2 (1) nust be assembled in the ard resistance 0280 KRQ nust be assembled in the 0700 KRQ nust be assembled in the 1000 RRQ	0750 DRE552 x 2 3 (if present) indicates the factory 0300 RIFNLC1 factory 0750 RIFNLC3 + RIFNLC2 (1) factory 0300 KRQ factory 0750 KRQ	DRE552 x 2 quantity to be ordered 0330 RIFNLC2 0800 RIFNLC1 x 2 (1) 0330 KRQ	DRE602 x. 1. 0350 RIFNLC3 0900 RIFNLC1 x 2 0350 KRQ	0550 RIFNLC1 (1)	0600 RIFNLC1 1000 RIFNLC1 x 2 (1) 0600 KRQ	0650 RIFNLC1 1100 RIFNLC4x2 (1) 0650 KRQ	DRE1250 (1 0675 RIFNLC4 1250 RIFNLC3 x 2 (0675 KRQ
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) x indicates the quantity to buy. grey background indicates the accessory in Anti-condensate electric book Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Anti-freeze electric heater for Ver	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or 2 nust be assembled in the 0280 RIFNLC1 nust be assembled in the 0700 RIFNLC3 x 2 (1) nust be assembled in the ard resistance 0280 KRQ nust be assembled in the 0700 KRQ nust be assembled in the 1000 RRQ	0750 DRE552 x 2 3 (if present) indicates the factory 0300 RIFNLC1 - factory 0750 RIFNLC3 + RIFNLC2 (1) - factory 0300 KRQ - factory 0750 KRQ - factory	DRE552 x 2 quantity to be ordered 0330 RIFNLC2 0800 RIFNLC1 x 2 (1) 0330 KRQ 0800 KRQ	DRE602 x. I. 0350 RIFNLC3 0900 RIFNLC1 x 2 0350 KRQ 0RRQ	0550 RIFNLC1 (1) 0550 KRQ	0600 RIFNLC1 1000 RIFNLC1 x 2 (1) 0600 KRQ	0650 RIFNLC1 1100 RIFNLC4 x 2 (1) 0650 KRQ 1100 KRQ	0675 RIFNLC3 × 2 (0675 KRQ 1250 KRQ
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) x indicates the quantity to buy. grey background indicates the accessory in Anti-condensate electric book Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Anti-freeze electric heater for Ver	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or 2 nust be assembled in the 0280 RIFNLC1 nust be assembled in the 0700 RIFNLC3 x 2 (1) nust be assembled in the ard resistance 0280 KRQ nust be assembled in the 0700 KRQ nust be assembled in the 1000 RRQ	0750 DRE552 x 2 3 (if present) indicates the factory 0300 RIFNLC1 - factory 0750 RIFNLC3 + RIFNLC2 (1) - factory 0300 KRQ - factory 0750 KRQ - factory	DRE552 x 2 quantity to be ordered 0330 RIFNLC2 0800 RIFNLC1 x 2 (1) 0330 KRQ 0800 KRQ	DRE602 x. I. 0350 RIFNLC3 0900 RIFNLC1 x 2 0350 KRQ 0RRQ	0550 RIFNLC1 (1) 0550 KRQ	0600 RIFNLC1 1000 RIFNLC1 x 2 (1) 0600 KRQ	0650 RIFNLC1 1100 RIFNLC4 x 2 (1) 0650 KRQ 1100 KRQ	0675 RIFNLC3 × 2 (0675 KRQ 1250 KRQ
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) x indicates the quantity to buy. grey background indicates the accessory in Anti-condensate electric book Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or youts be assembled in the 0280 RIFNLC1 nust be assembled in the 0700 RIFNLC3 x 2 (1) nust be assembled in the 0280 KRQ nust be Assembled in the 0280 No 105, 06, 07, 08 KRA1	0750 DRE552 x 2 3 (if present) indicates the factory 0300 RIFNLC1 -factory 0750 RIFNLC3 + RIFNLC2 (1) -factory 0300 KRQ -factory 0750 KRQ -factory 0750 KRQ -factory KRQ -factory RRQ -factory NKRQ -factory RRQ -factory NKRQ	DRE552 x 2 quantity to be ordered 0330 RIFNLC2 0800 RIFNLC1 x 2 (1) 0330 KRQ 0800 KRQ	DRE602 x. 1. 0350 RIFNLC3 0900 RIFNLC1 x 2 0350 KRQ 0800 KRQ	0550 RIFNLC1 (1) 0550 KRQ	0600 RIFNLC1 1000 RIFNLC1 x 2 (1) 0600 KRQ 1000 CRQ	0650 RIFNLC1 1100 RIFNLC4 x 2 (1) 0650 KRQ 1100 KRQ	0675 RIFNLC3 × 2 () 0675 KRQ 1250 0675 KRQ
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory in the properties of 400V 3N ~ 50Hz and grey background indicates the accessory in the properties of the properties of 400V 3N ~ 50Hz and grey background indicates the accessory in the properties of the p	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or 2 nust be assembled in the 0280 RIFNLC1 nust be assembled in the 0700 RIFNLC3 x 2 (1) nust be assembled in the ard resistance 0280 KRQ nust be assembled in the 0700 KRQ nust be assembled in the RQ nust be assembled in the 0280 05, 06, 07, 08 KRA1	0750 DRE552 x 2 3 (if present) indicates the factory 0300 RIFNLC1 -factory 0750 RIFNLC3 + RIFNLC2 (1) -factory 0300 KRQ -factory 0750 KRQ -factory 0750 KRQ -factory 0750 KRQ -factory -fa	DRE552 x 2 quantity to be ordered 0330 RIFNLC2 0800 RIFNLC1 x 2 (1) 0330 KRQ 0800 KRQ 0800 KRQ	0350 RIFNLC3 0900 RIFNLC1 x 2 0350 KRQ 0900 KRQ 0350 KRQ	0550 RIFNLC1 (1) 0550 KRQ	0600 RIFNLC1 ×2 (1) 0600 KRQ 1000 KRQ KRQ	0650 RIFNLC1 1100 RIFNLC4 x 2 (1) 0650 KRQ 1100 KRQ KRQ	0675 RIFNLC3 x 2 (0675 KRQ 0675 KRQ
Ver , A, E 1) Only for supplies of 400V 3N ~ 50Hz and grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) x indicates the quantity to buy. grey background indicates the accessory in Anti-condensate electric book Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E 1) grey background indicates the accessory in Ver , A, E	0700 DRE350 x 2 d 400V 3 ~ 50Hz. x 2 or x nust be assembled in the 0280 RIFNLC1 nust be assembled in the 0700 RIFNLC3 x 2 (1) nust be assembled in the 0700 KRQ nust be assembled in the 0700 KRA nust be assembled in the 0700 KRA1 nust be assembled in the	0750 DRE552 x 2 3 (if present) indicates the factory 0300 RIFNLC1 -factory 0750 RIFNLC3 + RIFNLC2 (1) -factory 0300 KRQ -factory 0750 KRQ -factory 0750 KRQ -factory KRQ -factory RRQ -factory NKRQ -factory RRQ -factory NKRQ	DRE552 x 2 quantity to be ordered 0330 RIFNLC2 0800 RIFNLC1 x 2 (1) 0330 KRQ 0800 KRQ	DRE602 x. 1. 0350 RIFNLC3 0900 RIFNLC1 x 2 0350 KRQ 0800 KRQ	0550 RIFNLC1 (1) 0550 KRQ	0600 RIFNLC1 1000 RIFNLC1 x 2 (1) 0600 KRQ 1000 CRQ	0650 RIFNLC1 1100 RIFNLC4 x 2 (1) 0650 KRQ 1100 KRQ	0675 RIFNLC3 × 2 (** 0675 RIFNLC3 × 2 (** 0675 KRQ 1250 KRQ 0675

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NLC
4,5,6,7	Size
	0280, 0300, 0330, 0350, 0550, 0600, 0650, 0675, 0700, 0750, 0800, 0900, 1000, 1100, 1250
8	Operating field
X	Electronic thermostatic expansion valve (1)
Y	Low temperature mechanic thermostatic valve (2)
Z	Low temperature electronic thermostatic valve (2)
0	Standard mechanic thermostatic valve (1)
9	Model
C	Motocondensing unit
0	Cooling only
10	Heat recovery
D	With desuperheater (3)
T	With total recovery (4)
0	Without heat recovery
11	Version
0	Standard
Α	High efficiency
E	Silenced high efficiency
12	Coils
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
• • • • • • • • • • • • • • • • • • •	Copper-aluminium Copper-aluminium
13	Fans
13	
	Inverter
14	Power supply
	400V ~ 3 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit
00	Without hydronic kit
	Kit with storage tank and pump/s
01	Storage tank with low head pump
02	Storage tank with low head pump + stand-by pump
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
	Kit with storage tank and inverter pump/s
05	Storage tank with low-head inverter pump
06	Storage tank with low head inverter pump + stand-by pump
07	Storage tank with high head inverter pump
8	Storage tank with high head inverter pump + stand-by pump
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with pump/s, with inverter speed
P5	Single low head pump + fixed speed inverter (5)
P6	Single low head pump with fixed speed inverter + stand-by pump (5)
P7	Single high head pump + fixed speed inverter (5)
P8	Single high head pump with fixed speed inverter + stand-by pump (5)
10	Single migh near painty with fixed speed inverter. 1. Status by painty (3)

⁽¹⁾ Water produced from 4 °C ÷ 18 °C
(2) Water produced from 4 °C ÷ -10 °C
(3) The temperature of the water in the heat exchanger inlet must never drop below 35°C.
(4) Options not available for standard unit "o", condensing unit and with alls hydronic kit.
(5) The speed of the inverter pump must be set upon commissioning, according to the useful static pressure required; once it has been set, the pump will work at a constant flow rate.

PERFORMANCE SPECIFICATIONS

NLC - °

Size		0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Fans: J																
Cooling performance 12 °C / 7 °C (1)																
Cooling capacity	kW	52,1	57,1	62,8	75,4	94,2	112,0	123,0	137,4	151,4	170,2	189,7	220,2	242,6	277,4	306,7
Input power	kW	20,4	23,4	24,3	28,9	39,3	44,3	50,1	53,7	58,6	66,6	79,0	86,4	99,8	107,6	121,3
Cooling total input current	А	38,0	42,0	46,0	57,0	68,0	77,0	85,0	92,0	113,0	121,0	136,0	148,0	169,0	181,0	208,0
EER	W/W	2,56	2,44	2,59	2,61	2,40	2,53	2,45	2,56	2,58	2,56	2,40	2,55	2,43	2,58	2,53
Water flow rate system side	I/h	8969	9828	10807	12972	16236	19277	21167	23676	26081	29294	32644	37884	41733	47712	52763
Pressure drop system side	kPa	19	22	28	27	43	27	31	43	37	30	38	35	35	41	48

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NLC - A

Size		0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Fans: J																
Cooling performance 12 °C/7 °C (1)																
Cooling capacity	kW	54,0	59,4	66,9	78,6	106,3	119,5	129,2	146,3	157,4	177,9	209,7	233,2	257,6	290,6	319,2
Input power	kW	19,5	21,5	23,4	27,7	37,7	42,9	45,0	52,4	55,3	60,3	75,4	84,8	89,6	105,7	115,9
Cooling total input current	Α	36,0	40,0	43,0	53,0	63,0	71,0	73,0	87,0	107,0	113,0	126,0	139,0	146,0	173,0	198,0
EER	W/W	2,77	2,76	2,85	2,84	2,82	2,78	2,87	2,79	2,85	2,95	2,78	2,75	2,88	2,75	2,75
Water flow rate system side	l/h	9295	10223	11511	13539	18298	20566	22250	25188	27095	30617	36080	40118	44310	49980	54911
Pressure drop system side	kPa	20	24	22	30	25	30	36	36	25	25	33	33	35	37	43

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NLC - E

Size		0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Fans: J																
Cooling performance 12 °C/7 °C(1)																
Cooling capacity	kW	52,2	58,0	64,2	73,4	102,9	115,6	124,5	142,6	151,1	171,3	201,2	224,8	248,0	282,8	310,6
Input power	kW	19,3	21,5	23,7	27,4	37,6	42,7	45,9	52,5	55,4	60,1	74,9	85,2	90,6	105,8	116,0
Cooling total input current	А	36,0	39,0	43,0	53,0	62,0	69,0	73,0	85,0	106,0	112,0	123,0	138,0	146,0	170,0	197,0
EER	W/W	2,70	2,70	2,71	2,67	2,74	2,71	2,71	2,72	2,73	2,85	2,69	2,64	2,74	2,67	2,68
Water flow rate system side	I/h	8986	9982	11047	12628	17714	19896	21442	24552	25995	29483	34637	38675	42661	48640	53433
Pressure drop system side	kPa	19	23	20	26	23	29	34	34	23	24	31	30	33	35	41

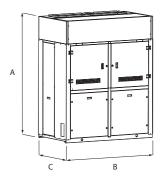
(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

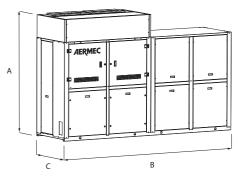
ENERGY INDICES (REG. 2016/2281 EU)

Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Fans: J																	
SEER - 12/7 (EN14825: 2018) (1)																	
	٥	W/W	5,33	5,02	4,92	4,97	4,25	4,87	4,57	4,73	4,28	4,15	4,10	4,12	4,10	4,15	4,10
SEER	A	W/W	5,79	5,77	5,33	5,34	5,24	5,33	5,15	5,03	4,75	4,93	4,55	4,46	4,63	4,42	4,35
	E	W/W	4,83	4,98	4,74	4,80	4,58	4,70	4,53	4,55	4,48	4,63	4,19	4,14	4,31	4,19	4,12
	٥	%	210,30	197,80	193,90	195,80	167,10	191,60	179,60	186,00	168,20	162,80	161,00	161,90	161,10	163,10	161,00
Seasonal efficiency	Α	%	228,60	227,60	210,20	210,40	206,70	210,10	202,90	198,30	186,90	194,00	178,80	175,50	182,30	173,90	171,10
	E	%	190,30	196,00	186,70	189,00	180,10	185,00	178,30	179,10	176,20	182,10	164,60	162,70	169,20	164,40	161,90
SEER - 23/18 (EN14825: 2018) (2)																	
	0	W/W	6,25	5,89	5,79	5,84	5,02	5,72	5,37	5,58	5,08	4,91	4,86	4,90	4,86	4,93	4,87
SEER	Α	W/W	6,84	6,82	6,27	6,27	6,17	6,27	6,07	5,93	5,62	5,84	5,39	5,29	5,49	5,25	5,16
	E	W/W	5,68	5,85	5,58	5,64	5,39	5,54	5,35	5,37	5,29	5,46	4,96	4,90	5,10	4,95	4,88
	0	%	246,80	232,50	228,50	230,50	197,70	225,80	211,90	220,10	200,00	193,40	191,40	192,80	191,50	194,10	191,60
Seasonal efficiency	A	%	270,60	269,70	247,60	247,70	243,60	247,80	239,80	234,30	221,80	230,40	212,40	208,50	216,60	206,90	203,50
	E	%	224,20	230,80	220,30	222,70	212,70	218,40	211,00	211,80	208,60	215,50	195,30	193,00	200,90	195,00	192,00
SEPR - (EN 14825: 2018) (2)																	
	0	W/W	6,54	6,22	6,12	6,02	5,18	5,73	5,32	5,70	5,45	5,08	5,04	5,25	5,04	5,07	5,03
SEPR	A	W/W	6,87	6,88	6,44	6,47	6,21	6,35	5,98	5,90	5,94	6,32	5,65	5,40	5,72	5,41	5,39
	E	W/W	5,91	5,92	5,65	5,55	5,14	5,36	5,03	5,15	5,12	5,48	5,09	5,01	5,09	5,05	5,03

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA


ELECTRIC DATA																	
Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Electric data																	
Maximum aument (FLA)	0	Α	52,0	56,0	62,0	73,0	103,0	111,0	119,0	132,0	146,0	169,0	206,0	222,0	238,0	263,0	289,0
Maximum current (FLA)	A,E	Α	52,0	56,0	62,0	73,0	92,0	111,0	119,0	132,0	146,0	158,0	183,0	210,0	238,0	263,0	289,0
Deals surrent (LDA)	0	Α	128,0	130,0	133,0	216,0	261,0	273,0	281,0	358,0	290,0	346,0	353,0	372,0	400,0	489,0	515,0
Peak current (LRA)	A,E	A	128,0	130,0	133,0	216,0	273,0	273,0	281,0	358,0	290,0	357,0	376,0	384,0	400,0	489,0	515,0


GENERAL TECHNICAL DATA

Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Fans: J												0.00					
Compressor																	
Туре	°,A,E	type								Scroll							
Compressor regulation	°,A,E	Type								On/Off							
Number	°,A,E	no.	2	2	2	2	2	2	2	2	4	4	4	4	4	4	4
Circuits	°,A,E	no.	1	1	1	1	_ -	1	1	-	2	2	2	2	2	2	2
Refrigerant	°,A,E	type								R410A							
The street of th	0	kg	7,0	7,0	8,5	9,0	13,7	15,0	18,0	19,0	9,5	8,3	13,8	13,5	15,0	19,1	19,1
Refrigerant load circuit 1 (1)	A	kq	8,7	8,5	9,5	10,0	18,0	18,7	22,0	22,0	10,7	9,5	18,7	19,5	22,0	22,0	22,0
······ y ····························	E	kg	8.7	8,5	9,5	10,0	18,0	18,7	21,0	21,5	10,7	9,5	18.7	19,0	21,1	22,0	22,0
	0	kg	-	-	_	-	-	-	-		9,5	12,3	13,8	13,5	15,0	19,1	19,1
Refrigerant load circuit 2 (1)	A	kg	-	-	-	-	-	_	-	-	10,7	17,0	18,7	19,5	22,0	22,0	22,0
nemgerant roug en care 2 (1)	E	kg	-	_	_	-	_	_	-	_	10,7	17,0	18.7	19,0	20,6	22,0	22,0
System side heat exchanger		9									,	,0	,	.,,,,	20,0		
Туре	°,A,E	type							F	Brazed plat	e						
Number	°,A,E	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
(1) The load indicated in the table is ar		_	ue. The fina	l value of	the refrige	rant load i	s indicated	on the un	it's technic	cal label. Fo	r further i	nformatio	n contact t	he office.			
Size	·		0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Integrated hydronic kit:	00		0200	0300	0330	0330	0330	0000	0030	0073	0700	0730	0000	0,00	1000	1100	1230
System side hydraulic connections	-																
Connections (in/out)	°,A,E	Туре							G	rooved join	tc						
Connections (in/out)	,,,,,,	Ø	2"	2"	2"	2"	2"	2″1/2	2"1/2	2" 1/2	2"1/2	2" 1/2	3"	3"	3"	3″	3"
Sizes (in/out)	A,E	Ø	2"	2"	2"	2"	2"1/2	2" 1/2	2" 1/2	2" 1/2	2"1/2	2"1/2	3"	3"	3"	3"	3"
Cina	.,,-		0280	0300	0330	0350	0550	0600	0650	0675	0700		0800	0900	1000	1100	1250
Size Integrated hydronic kit:	01 02 03 04	1 05 0							0030	00/3	0/00	0750	0000	0900	1000	1100	1230
System side hydraulic connections	01, 02, 03, 0-	1, 03, 0	0, 07, 0	0,11,	1 2, 1 3,	17,13	, 1 0, 1	,,,,									
Connections (in/out)	°,A,E	Туре							G	rooved join	tc						
Sizes (in/out)	°,A,E	Ø	2"	2"	2"	2"	2″1/2	2″1/2	2"1/2	2" 1/2	2"1/2	2" 1/2	3″	3"	3″	3″	3"
	,,,,,,,																
Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Fans: J																	
Fan																	
Туре	°,A,E	type							F.C.1	Plug-fun							
Fan motor	°,A,E	type							ECI	nverter mo							
							_					4	4	6	8	8	8
Number		no.	2	2	2	2	2	4	4	4	4					8	8
Number		no.	2	2	2	2	4	4	4	4	4	6	8	8	8		
	A,E	no. no. m³/h	2 21600	2 24000	2 21150	2 23600	4 23200	4 34050	4 34050	4 38200	4 47150	46750	46350	62150	68100	66650	71750
Number Air flow rate	A,E A	no. no. m³/h m³/h	2 21600 21150	2 24000 23600	2 21150 19400	2 23600 22050	4 23200 27700	4 34050 33350	4 34050 27150	4 38200 32750	4 47150 44050	46750 57900	46350 55350	62150 55350	68100 54300	66650 65450	65450
Air flow rate	A,E	no. no. m³/h	2 21600	2 24000	2 21150	2 23600	4 23200	4 34050	4 34050	4 38200	4 47150	46750	46350	62150	68100	66650	
	A,E A A E	no. no. m³/h m³/h m³/h	2 21600 21150 15000	2 24000 23600 18400	2 21150 19400 14650	2 23600 22050 16450	4 23200 27700 14900	4 34050 33350 22200	4 34050 27150 14600	4 38200 32750 21750	4 47150 44050 32900	46750 57900 41900	46350 55350 29850	62150 55350 29850	68100 54300 29200	66650 65450 43500	65450 43500
Air flow rate Machine exhaust	A,E A E	no. no. m³/h m³/h m³/h	2 21600 21150 15000	2 24000 23600 18400 85,6	2 21150 19400 14650 82,9	2 23600 22050 16450 85,4	4 23200 27700 14900 87,5	4 34050 33350 22200 83,9	4 34050 27150 14600	4 38200 32750 21750 86,1	4 47150 44050 32900 88,4	46750 57900 41900 89,6	46350 55350 29850 90,5	62150 55350 29850 86,9	68100 54300 29200 86,9	66650 65450 43500 89,1	65450 43500 89,1
Air flow rate	A,E A E	no. no. m³/h m³/h m³/h dB(A)	2 21600 21150 15000 83,3 83,6	2 24000 23600 18400 85,6 86,1	2 21150 19400 14650 82,9 81,9	2 23600 22050 16450 85,4 84,5	4 23200 27700 14900 87,5 82,9	4 34050 33350 22200 83,9 85,2	4 34050 27150 14600 83,9 82,9	4 38200 32750 21750 86,1 85,1	4 47150 44050 32900 88,4 87,5	46750 57900 41900 89,6 85,8	46350 55350 29850 90,5 85,9	62150 55350 29850 86,9 88,2	68100 54300 29200 86,9 85,9	66650 65450 43500 89,1 88,1	65450 43500 89,1 88,1
Air flow rate Machine exhaust Sound power level	A,E A E	no. no. m³/h m³/h m³/h	2 21600 21150 15000	2 24000 23600 18400 85,6	2 21150 19400 14650 82,9	2 23600 22050 16450 85,4	4 23200 27700 14900 87,5	4 34050 33350 22200 83,9	4 34050 27150 14600	4 38200 32750 21750 86,1	4 47150 44050 32900 88,4	46750 57900 41900 89,6	46350 55350 29850 90,5	62150 55350 29850 86,9	68100 54300 29200 86,9	66650 65450 43500 89,1	65450 43500 89,1
Air flow rate Machine exhaust	A,E A E A E	no. no. m³/h m³/h m³/h dB(A) dB(A)	2 21600 21150 15000 83,3 83,6 76,7	2 24000 23600 18400 85,6 86,1 80,1	2 21150 19400 14650 82,9 81,9 76,5	2 23600 22050 16450 85,4 84,5 78,3	4 23200 27700 14900 87,5 82,9 75,2	4 34050 33350 22200 83,9 85,2 78,5	4 34050 27150 14600 83,9 82,9 75,2	4 38200 32750 21750 86,1 85,1 78,4	4 47150 44050 32900 88,4 87,5 81,3	46750 57900 41900 89,6 85,8 80,0	46350 55350 29850 90,5 85,9 78,2	62150 55350 29850 86,9 88,2 81,5	68100 54300 29200 86,9 85,9 78,2	66650 65450 43500 89,1 88,1 81,4	65450 43500 89,1 88,1 81,4
Air flow rate Machine exhaust Sound power level Intake plus machine body	A,E A E A E	no. no. m³/h m³/h m³/h dB(A) dB(A) dB(A)	2 21600 21150 15000 83,3 83,6 76,7	2 24000 23600 18400 85,6 86,1 80,1	2 21150 19400 14650 82,9 81,9 76,5	2 23600 22050 16450 85,4 84,5 78,3	4 23200 27700 14900 87,5 82,9 75,2	4 34050 33350 22200 83,9 85,2 78,5	4 34050 27150 14600 83,9 82,9 75,2	4 38200 32750 21750 86,1 85,1 78,4	4 47150 44050 32900 88,4 87,5 81,3	46750 57900 41900 89,6 85,8 80,0	46350 55350 29850 90,5 85,9 78,2	86,9 88,2 81,5	86,9 86,9 78,2 87,2	66650 65450 43500 89,1 88,1 81,4	65450 43500 89,1 88,1 81,4
Air flow rate Machine exhaust Sound power level	A,E A E A E	no. no. m³/h m³/h m³/h dB(A) dB(A)	2 21600 21150 15000 83,3 83,6 76,7	2 24000 23600 18400 85,6 86,1 80,1	2 21150 19400 14650 82,9 81,9 76,5	2 23600 22050 16450 85,4 84,5 78,3	4 23200 27700 14900 87,5 82,9 75,2	4 34050 33350 22200 83,9 85,2 78,5	4 34050 27150 14600 83,9 82,9 75,2	4 38200 32750 21750 86,1 85,1 78,4	4 47150 44050 32900 88,4 87,5 81,3	46750 57900 41900 89,6 85,8 80,0	46350 55350 29850 90,5 85,9 78,2	62150 55350 29850 86,9 88,2 81,5	68100 54300 29200 86,9 85,9 78,2	66650 65450 43500 89,1 88,1 81,4	65450 43500 89,1 88,1 81,4

 566
 www.aermec.com
 NLC-0280-1250-CO_Y_UN50_12

DIMENSIONS

Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Integrated hydronic kit: 00																	
Dimensions and weights																	
<u>A</u>	°,A,E	mm	2154	2154	2154	2154	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196
В —	•	mm	1750	1750	1750	1750	1750	3150	3150	3150	3500	3500	3500	4900	6300	6300	6300
	A,E	mm	1750	1750	1750	1750	3150	3150	3150	3150	3500	4900	6300	6300	6300	6300	6300
<u>(</u>	°,A,E	mm	950	950	950	950	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Empty weight -		kg	759	759	787	798	994	1409	1415	1450	1510	1682	1858	2294	2692	2775	2789
	A,E	kg	775	775	809	813	1432	1436	1470	1485	1553	2156	2728	2744	2818	2844	2858
Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Integrated hydronic kit: 01, 0	3, 05, 07	7															
Dimensions and weights																	
A	°,A,E	mm	2154	2154	2154	2154	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196
В -	٥	mm	3400	3400	3400	3400	3500	4150	4150	4150	5250	4900	5250	5900	7300	7300	7300
	A,E	mm	3400	3400	3400	3400	4150	4150	4150	4150	5250	5900	7300	7300	7300	7300	7300
(°,A,E	mm	950	950	950	950	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Empty weight —	٥	kg	973	973	1001	1022	1479	1691	1707	1741	1889	2061	2259	2599	3018	3101	3115
	A,E	kg	989	989	1023	1038	1715	1719	1761	1777	1931	2438	3035	3050	3144	3170	3184
Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Integrated hydronic kit: 02, 0	14, 06, 08	3															
Dimensions and weights																	
A	°,A,E	mm	2154	2154	2154	2154	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196
	0	mm	3400	3400	3400	3400	3500	4150	4150	4150	5250	4900	5250	5900	7300	7300	7300
В —	A,E	mm	3400	3400	3400	3400	4150	4150	4150	4150	5250	5900	7300	7300	7300	7300	7300
(°,A,E	mm	950	950	950	950	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Faranticonsists	0	kg	1016	1016	1044	1076	1533	1745	1770	1804	1942	2114	2334	2674	3114	3197	3211
Empty weight —	A,E	kg	1032	1032	1066	1091	1768	1772	1824	1840	1985	2492	3110	3126	3240	3266	3280
Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Integrated hydronic kit: P1, F	P3. P5. P	7	0200	- 0300	- 0330	- 0330	- 0330		0030	- 00/5	0,00	0,50			1000	1100	
Dimensions and weights	-,,.	-															
A	°,A,E	mm	2154	2154	2154	2154	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196
	0	mm	2500	2500	2500	2500	2500	3150	3150	3150	4250	4250	7300	4900	6300	6300	6300
В —	A,E	mm	2500	2500	2500	2500	3150	3150	3150	3150	4250	4900	6300	6300	6300	6300	6300
(°,A,E	mm	950	950	950	950	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	0	kg	888	888	916	937	1146	1468	1483	1518	1664	1836	2041	2375	2793	2876	2890
Empty weight —	A,E	kg	904	904	939	953	1491	1495	1538	1554	1707	2215	2809	2825	2919	2945	2959
Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Integrated hydronic kit: P2, F	04 P6 P	R	0200	0300	0330	0330	0330	0000	0030	00/3	0/00	0/30	0000	0700	1000	1100	1230
Dimensions and weights	-, i U, F																
A	°,A,E	mm	2154	2154	2154	2154	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196
	,η,ι	mm	2500	2500	2500	2500	2500	3150	3150	3150	4250	4250	7300	4900	6300	6300	6300
В —	A,E	mm	2500	2500	2500	2500	3150	3150	3150	3150	4250	4900	6300	6300	6300	6300	6300
	°,A,E	mm	950	950	950	950	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	,n,L o	kq	931	960	991	1199	1522	1546	1581	1718	1890	2117	2451	2888	2972	3054	2986
Empty weight	A	kg	948	948	982	1007	1545	1549	1601	1617	1760	2268	2885	2900	3014	3040	3054
	E	kg	948	948	982	1007	1545	1549	1601	1617	1760	2268	2885	2900	3014	3040	931
	Ĺ	ку	740	740	702	1007	1,14,1	1,147	1001	1017	1/00	ZZU0	2003	Z 700	JU14	JU4U	731

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NLC 0280H-1250H

Reversible air/water heat pump

Cooling capacity 53 ÷ 322 kW – Heating capacity 55 ÷ 342 kW

- · High efficiency also at partial loads
- Complete air flow versatility
- EC fan Plug-fan with high performance

DESCRIPTION

Reversible heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

Indoor units with Scroll compressors, centrifugal fans and plate heat exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Work up to 44°C of outdoor air temperature at full load, depending on size and version. For further details refer to the selection software / technical documentation.

Units mono or dual-circuit

The range includes units with 2 compressors in single circuit and units with 4 compressors divided into two independent circuits.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

EC fan plug-fan

The units are equipped with plug-fans and inverter motors coupled directly with the fan, with the electronic condensation control as standard, which adjusts the air flow according to the actual system requirements, with benefits in terms of consumption and noise reduction.

In addition, compared to conventional centrifugal fans, they do not feature belt and pulley transmission, resulting in easy flow adjustment, compactness, versatility, easy maintenance and no vibrations.

Version with Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations to obtain a solution that allows you to save money and to facilitate installation.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

FLG: Flange for ducts. **FILW:** Water filter

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

KRB: Electric anti-freeze resistance kit for base.

KRQ: Electric heater for the control and electric power board.

KRA: Anti-freeze electric heater for the buffer tank.

C-TOUCH: 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
AER485P1	A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	A,E	•		•	•	•	•	•	•	•	•	•	•	•	•	•
AERLINK	A,E		•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET	A,E		•	•	•	•	•	•	•	•	•	•	•	•	•	•
FL	A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	A,E		•	•	•	•	•	•		•	•	•	•	•	•	•
PGD1	A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SGD	A,E		•	•	•											

Remote panel

Model	Ver	0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
PR4	A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Water filter

Ver	0280	0300	0330	0350	0550	0600	0650	0675
A, E	FILTRO W DN50 (1)	FILTRO W DN65 (1)						
(1)								

(1) Installation is mandatory, contrarily garantee becomes void.

Ver	0700	0750	0800	0900	1000	1100	1250
A, E	FILTRO W DN80 (1)						

(1) Installation is mandatory, contrarily garantee becomes void.

Flange for ducts

Ver	0280	0300	0330	0350	0550	0600	0650	0675
A, E	FLG1	FLG1	FLG1	FLG1	FLG2 x 2 (1)			
(1) x indicates the quantity to buy.								
Ver	0700	0750	0800	0900		1000	1100	1250
A, E	FLG1 x 2 (1)	FLG1 + FLG2 x 2 (1)	FLG2 x 4 (1)	FLG2 x 4	(1) F	LG2 x 4 (1)	FLG2 x 4 (1)	FLG2 x 4 (1)

(1) x... indicates the quantity to buy.

Antivibration

Ver	0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Integrated hydron	nic kit: 00														
A, E	VT17	VT17	VT17	VT17	-	-	-	-	-	-	-	-	-	-	-
Integrated hydron	nic kit: 01, 02, 0	3, 04, 05, 06	, 07, 08												
A, E	VT11	VT11	VT11	VT11	-	-	-	-	-	-	-	-	-	-	-
Integrated hydron	nic kit: P1, P2, F	P3, P4, P5, P	6, P7, P8												
A, E	VT13	VT13	VT13	VT13	-	-	-	-	-	-	-	-	-	-	-

The accessory cannot be fitted on the configurations indicated with -

Antivibration

Ver	0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Integrated hydron	ic kit: 00														
A, E	-	-	-	-	AVX410	AVX410	AVX410	AVX410	AVX410	AVX416	AVX418	AVX418	AVX420	AVX420	AVX420
Integrated hydron	ic kit: 01, 02, 0	3,04													
A, E	-	-	-	-	AVX412	AVX412	AVX412	AVX412	AVX415	AVX417	AVX419	AVX419	AVX419	AVX419	AVX419
Integrated hydron	ic kit: 05, 06, (7, 08													
A	-	-	-	-	AVX423	AVX412	AVX412	AVX412	AVX415	AVX417	AVX419	AVX419	AVX419	AVX419	AVX419
E	-	-	-	-	AVX412	AVX412	AVX412	AVX412	AVX415	AVX417	AVX419	AVX419	AVX419	AVX419	AVX419
Integrated hydron	ic kit: P1, P3, I	P5, P7													
A, E	-	-	-	-	AVX410	AVX410	AVX410	AVX410	AVX413	AVX416	AVX418	AVX418	AVX420	AVX420	AVX420
Integrated hydron	ic kit: P2, P4, I	P6, P8													
A, E	-	-	-	-	AVX411	AVX411	AVX411	AVX411	AVX414	AVX416	AVX418	AVX418	AVX420	AVX420	AVX420

The accessory cannot be fitted on the configurations indicated with -

DRE: Device for peak current reduction

Ver	0280	0300	0330	0350	0550	0600	0650	0675
A, E	DRE275 (1)	DRE275 (1)	DRE300 (1)	DRE350 (1)	DRE552 (1)	DRE602 (1)	DRE652 (1)	DRE675 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz, x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Ver	0700	0750	0800	0900	1000	1100	1250
A, E	DRE350 x 2	DRE552 x 2	DRE552 x 2	DRE602 x 2	DRE652 x 2	DRE675 x 2	DRE1250 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0280	0300	0330	0350	0550	0600	0650	0675
A, E	RIFNLC1	RIFNLC1	RIFNLC2	RIFNLC3	RIFNLC1	RIFNLC1	RIFNLC1	RIFNLC4

A grey background indicates the accessory must be assembled in the factory

Ver	0700	0750	0800	0900	1000	1100	1250
A, E	RIFNLC3 x 2 (1)	RIFNLC3 + RIFNLC2 (1)	RIFNLC1 x 2 (1)	RIFNLC1 x 2 (1)	RIFNLC1 x 2 (1)	RIFNLC4 x 2 (1)	RIFNLC3 x 2 (1)

(1) x... indicates the quantity to buy.
A grey background indicates the accessory must be assembled in the factory

Anti-condensate electric board resistance

Ver	0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
A, E	KRQ														

A grey background indicates the accessory must be assembled in the factory

Anti-freeze electric heater for the storage tank

Ver	0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
A, E	KRA1	KRA1	KRA1	KRA1	KRA2										

A grey background indicates the accessory must be assembled in the factory

Electric heater for the base

Ver	0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
A, E	KRB21 (1)	KRB21 (1)	KRB21 (1)	KRB21 (1)	KRB22 (1)	KRB22 (1)	KRB22 (1)	KRB22 (1)	KRB23 (1)	KRB24 (1)	KRB25 (1)				

⁽¹⁾ Incompatible with the condensate collection basin accessory with integrated resistance. A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	d	Description
1,2,3	3	NLC
4,5,0	6,7	Size 0280, 0300, 0330, 0350, 0550, 0600, 0650, 0675, 0700, 0750, 0800, 0900, 1000, 1100, 1250
8		Operating field (1)
	Χ	Electronic thermostatic expansion valve
	0	Standard mechanic thermostatic valve
9		Model
	Н	Heat pump
10		Heat recovery
	D	With desuperheater (2)
	0	Without heat recovery
11		Version
	Α	High efficiency
	Ε	Silenced high efficiency
12		Coils
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	٧	Copper pieps-Coated aluminium fins
	0	Copper-aluminium
13		Fans
	J	Inverter
14		Power supply
	0	400V ~ 3 50Hz with magnet circuit breakers
15,1	6	Integrated hydronic kit

Field	Description
00	Without hydronic kit
	Kit with storage tank and pump/s
01	Storage tank with low head pump
02	Storage tank with low head pump + stand-by pump
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
	Kit with storage tank and inverter pump/s
05	Storage tank with low-head inverter pump
06	Storage tank with low head inverter pump + stand-by pump
07	Storage tank with high head inverter pump
08	Storage tank with high head inverter pump + stand-by pump
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with pump/s, with inverter speed
P5	Single low head pump + fixed speed inverter (3)
P6	Single low head pump with fixed speed inverter + stand-by pump (3)
P7	Single high head pump + fixed speed inverter (3)
P8	Single high head pump with fixed speed inverter + stand-by pump (3)

- (1) Water produced from 4 °C ÷ 18 °C
- The desuperheater must be intercepted in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
 The speed of the inverter pump must be set upon commissioning, according to the useful static pressure required; once it has been set, the pump will work at a constant flow rate.

NLC-0280-1250-HP_Y_UN50_13 570 www.aermec.com

PERFORMANCE SPECIFICATIONS

NLC - HA / HE

NEC - HA / HE																	
Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Fans: J																	
Cooling performance 12 °C/7 °C(1)																	
Cooling capacity	A	kW	54,4	60,4	66,7	78,6	102,5	115,3	126,0	143,4	158,1	181,1	202,0	232,5	252,7	287,1	316,5
Cooling capacity	E	kW	52,1	58,2	63,5	75,0	97,8	110,6	118,5	136,8	150,2	172,1	192,7	223,8	242,2	273,7	305,0
Input namer	А	kW	20,0	22,5	24,4	28,6	37,7	43,4	46,9	54,6	57,4	66,3	74,7	87,1	93,6	108,9	127,4
Input power	E	kW	20,4	23,0	25,5	29,4	40,1	46,0	49,1	56,5	58,8	67,2	79,8	90,2	97,1	112,6	128,0
Cooling total input surrent	А	А	36,0	41,0	45,0	56,0	68,0	77,0	81,0	96,0	112,0	121,0	136,0	155,0	162,0	192,0	219,0
Cooling total input current	E	A	36,0	40,0	45,0	55,0	69,0	77,0	83,0	95,0	111,0	121,0	139,0	153,0	166,0	191,0	218,0
EED	A	W/W	2,72	2,69	2,73	2,75	2,72	2,66	2,69	2,63	2,75	2,73	2,70	2,67	2,70	2,64	2,48
EER -	E	W/W	2,55	2,53	2,49	2,55	2,44	2,40	2,41	2,42	2,55	2,56	2,42	2,48	2,49	2,43	2,38
Make day water system of de	A	I/h	9368	10396	11480	13535	17638	19855	21700	24691	27213	31158	34751	40001	43480	49382	54436
Water flow rate system side	E	I/h	8967	10021	10934	12905	16829	19040	20401	23542	25847	29620	33162	38500	41662	47091	52474
D	A	kPa	21	25	23	30	24	29	35	35	26	25	34	34	36	38	44
Pressure drop system side	E	kPa	20	24	20	27	20	25	29	30	24	25	33	35	38	42	53
Heating performance 40 °C / 45 °C (2)																	
Heating capacity	A,E	kW	56,4	63,5	70,7	82,6	109,8	122,4	137,1	156,5	168,5	193,6	218,3	244,7	273,4	312,4	348,1
Input power	A,E	kW	19,1	21,9	24,0	27,8	37,0	41,5	46,4	53,7	55,9	65,1	73,6	82,9	91,5	105,2	118,1
Heating total input current	A,E	A	36,0	40,0	44,0	54,0	65,0	74,0	78,0	91,0	105,0	114,0	129,0	145,0	153,0	179,0	199,0
COP	A,E	W/W	2,95	2,90	2,95	2,97	2,97	2,95	2,95	2,91	3,01	2,97	2,97	2,95	2,99	2,97	2,95
Water flow rate system side	A,E	I/h	9781	11023	12266	14321	19050	21235	23760	27154	29225	33591	37889	42470	47456	54236	60425
Pressure drop system side	A,E	kPa	22	27	25	32	27	32	40	41	29	28	38	37	41	43	52

ENERGY DATA

Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Fans: J																	
Cooling capacity with low leaving wa	ter temp (UE n° 2	2016/2281)															
SEER	A	W/W	4,48	4,50	4,52	4,71	4,89	4,74	4,65	4,52	4,38	4,33	4,51	4,47	4,36	4,29	4,08
.ER -	E	W/W	4,16	4,16	4,08	4,50	4,29	4,23	4,29	4,22	4,20	4,14	3,98	4,21	4,13	3,99	3,86
sr.	A	%	176,10	177,10	177,80	185,20	192,50	186,40	183,10	177,70	172,20	170,30	177,50	175,80	171,40	168,70	160,00
ηςς	E	%	163,20	163,50	160,30	177,10	168,50	166,00	168,40	165,90	165,00	162,60	156,20	165,30	162,20	156,40	151,40
UE 811/2013 performance in average	ambient conditi	ons (avera	ge) - 35 °C	- Pdesign	h ≤ 70 kV	<i>l</i> (1)											
SCOP	A,E	W/W	3,28	3,20	3,28	-	-	-	-	-	-	-	-	-	-	-	-
ηsh	A,E	%	128,00	125,00	128,00	-	-	-	-	-	-	-	-	-	-	-	-
Efficiency energy class	A,E		A+	A+	A+	-	-	-	-	-	-	-	-	-	-	-	-

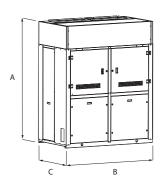
⁽¹⁾ Efficiencies for low temperature applications (35 °C)

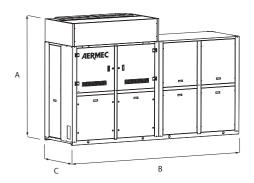
ELECTRIC DATA

Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Electric data																	
Maximum current (FLA)	A,E	Α	52,2	55,6	62,0	71,4	103,0	110,9	118,8	131,8	142,8	167,1	206,0	221,8	237,6	263,6	289,6
Peak current (LRA)	A,E	A	127,9	129,6	132,8	215,4	272,9	272,9	280,8	357,8	286,8	355,6	375,9	383,8	399,6	489,6	515,6

GENERAL TECHNICAL DATA

Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Fans: J																	
Compressor																	
Туре	A,E	type								Scroll							
Compressor regulation	A,E	Туре								On-Off							
Number	A,E	no.	2	2	2	2	2	2	2	2	4	4	4	4	4	4	4
Circuits	A,E	no.	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2
Refrigerant	A,E	type								R410A							
Refrigerant charge (1)	A,E	kg	9,2	9,5	11,0	11,0	18,5	20,0	25,0	25,0	23,0	32,0	42,0	42,0	50,0	50,0	50,0
System side heat exchanger																	
Туре	A,E	type							[Brazed plat	:e						
Number	A,E	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Hydraulic connections																	
Connections (in/out)	A,E	Туре							G	rooved joir	nts						
Sizes (in/out)	A,E	Ø	2"	2"	2"	2"	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"	3"	3″	3"	3"
Fan																	
Туре	A,E	type								Plug-fun							
Fan motor	A,E	type							EC I	nverter mo	otors						
Number	A,E	no.	2	2	2	2	4	4	4	4	4	6	8	8	8	8	8
Machine exhaust																	
	A	dB(A)	84,1	87,9	86,3	88,9	85,2	87,9	86,4	89,5	91,9	86,7	88,2	90,9	89,4	92,5	92,5
Sound power level	E	dB(A)	77,3	80,5	77,6	81,5	78,5	81,3	79,4	83,2	84,5	79,4	81,5	84,3	82,4	86,2	86,2


⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.


⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C /7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Intake plus machine body																	
Cound nower level	Α	dB(A)	78,9	81,7	80,6	83,1	83,9	85,1	84,4	85,7	85,3	86,0	87,2	88,2	87,2	88,9	89,3
Sound power level	E	dB(A)	75,1	78,0	76,0	79,7	82,3	82,8	82,3	84,1	82,7	85,3	85,3	85,8	85,3	87,1	88,2

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

DIMENSIONS

Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Dimensions and weights																	
A	A,E	mm	2154	2154	2154	2154	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196
В	A,E	mm	1750	1750	1750	1750	3150	3150	3150	3150	3500	4900	6300	6300	6300	6300	6300
C	A,E	mm	950	950	950	950	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Empty weight	A,E	kg	790	790	828	832	1452	1456	1492	1507	1586	2194	2768	2783	2863	2889	2903
Dimensions and weights with pump/s																	
A	A,E	mm	2154	2154	2154	2154	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196
В	A,E	mm	2500	2500	2500	2500	3150	3150	3150	3150	4250	4900	6300	6300	6300	6300	6300
(A,E	mm	950	950	950	950	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Dimensions and weights with storage tan	k and pump	/s															
A	A,E	mm	2154	2154	2154	2154	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196
В	A,E	mm	3400	3400	3400	3400	4150	4150	4150	4150	5250	5900	7300	7300	7300	7300	7300
C	A,E	mm	950	950	950	950	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100

NSM 1402-9603

Air-water chiller

Cooling capacity 302 ÷ 2100 kW

- Microchannel coil
- Night mode
- Operation up to 50 °C outdoor air
- HP floating: ESEER +5% with inverter fans

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

Outdoor units with high-efficiency screw compressors axial fans, microchannel external coils and plant side shell and tube heat exchanger.

In the unit with desuperheater, it is also possible to produce free-hot water. The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to 51 °C external air temperature depending on the size and vesion. For more information refer to the dedicated documentations or the selection program Magellano.

Unit with 2/3 cooling circuits

Unit with 2/3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Aluminium microchannel coils

The microchannel condensing aluminum coils ensure high levels of efficiency, reduced quantities of refrigerant and lower unit weight. The treatment "O" available as configurator it ensures high resistance to corrosion even in the most aggressive environments.

Inverter fans

Standard inverter fans for sizes and versions (°) from 2002 to 9603, optional for other sizes and versions. Option for all configurations.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

 As standard from size 5202÷6402 and 8403÷9603, optional for all other sizes.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, high or low head, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL PCO₅

Units include 1 control board for each compressor.

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: available for all models with inverter fans or with DCPX. Allows, with continuous fan modulation, to optimize the operation of the unit in any operating point, ensuring an increase in the energy efficiency at partial load. ESEER up to +5% with inverter fans
- Night mode: only in the non-silenced versions with the fan to be, inverter or phase-cut or with the DCPX accessory, a silenced operation profile can be set, which is useful, for example, at night for greater acoustic comfort, but always ensures performance even at peak load hours
- Possibility to control two units in a Master-Slave configuration (from size 1402 to 6402)

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud con-

nection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

 $\mbox{\bf RIF:}$ Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

KRS: Electric heater for the heat exchanger

ACCESSORIES COMPATIBILITY

Model	Ver	1402	1602 180	2 2002	2202	2352	2502	2652 2802	3002	3202	3402	3602	3902
AER485P1 x no. 2	°,A,E,L,N,U	•		•	•	•	•		•	•	•	•	•
AERBACP x no. 2	°,A,E,L,N,U	•		•	•	•	•		•	•	•		•
AERNET	°,A,E,L,N,U	•		•	•	•	•		•	•	•	•	•
MULTICHILLER-EVO	°,A,E,L,N,U	•		•	•	•	•		•	•	•	•	•
PRV3	°,A,E,L,N,U	•	• •	•	•	•	•		•	•	•	•	•
Model	Ver	4202	4502 4	802 5202	5602	600	2 6402	6503	6703	6903	7203	8403	9603
AER485P1 x no. 2	°,A,E,L,N,U	•	•		•	•	•						
	°,A,L							•	•	•	•	•	•
AER485P1 x no. 3	E,U							•	•	•	•		
	N							•					
AERBACP x no. 2	°,A,E,L,N,U	•	•	• •	•	•	•						
	°,A,L							•	•	•	•	•	•
AERBACP x no. 3	E,U							•	•	•	•		
	N N							•					
	°,A,L	•	•	• •	•	•	•	•	•	•	•	•	•
AERNET	E,U	•	•	• •	•	•	•	•	•	•	•		
	N	•	•		•	•	•	•		-			
	°,A,L	•	•	• •	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	E,U	•	•	• •	•	•	•	•	•	•	•		
	N	•	•	• •	•	•	•	•					
	°,A,L	•	•	• •	•	•	•	•	•	•	•	•	•
PRV3	E,U N	•	•		•	•	:	•	•	•	•		
Ver			1802							2/52	2002		2002
Fans: M	1402	1602	1802	2002		202	2352	2502		2652	2802		3002
0	DCPX110	DCPX110	DCPX110	DCPX110	DCF	X110	DCPX110	DCPX110	DC	CPX111	DCPX11	11	DCPX112
A	DCPX111	DCPX111	DCPX111	DCPX111		X112	DCPX112	DCPX112		CPX113	DCPX11		DCPX113
E, L, N	As standard	As standard	As standard	As standard		andard	As standard		_	standard	As stand		s standard
Ü	DCPX111	DCPX111	DCPX112	DCPX112		X113	DCPX113	DCPX114		CPX114	DCPX11		DCPX114
Ver	3202	3402	3602	3902	4	202	4502	4802		5202	5602		6002
Fans: M	3202	3102	3002	3702			1502	1002		-	3002		0002
0	DCPX112	DCPX112	DCPX112	DCPX113	DCP	X113	DCPX114	DCPX114	DC	CPX115	DCPX11	15	DCPX115
A	DCPX113	DCPX114	DCPX114	DCPX115		X115	DCPX116	DCPX116		CPX116	DCPX11		DCPX118
E, N	As standard	As standard	As standard	As standard		andard	As standard	d As standard	Ass	standard	As stand		s standard
Ĺ	As standard	As standard	As standard	As standard	As st	andard	As standard			standard	-		-
U	DCPX114	DCPX115	DCPX115	DCPX116		X117	DCPX117	DCPX118		CPX119	DCPX13	30	DCPX131
Ver	6402		6503	6703		690	03	7203		8403		96	503
Fans: M													
0	DCPX116	DCPX1	35+DCPX113	DCPX135+DCPX	113	DCPX125+	-DCPX114	DCPX114+DCPX1	36 D)CPX114+D0	PX136	DCPX114	+DCPX136
A	DCPX118		15+DCPX136	DCPX115+DCPX		DCPX116+		DCPX116+DCPX1		CPX117+DC			+DCPX137
E	As standard		standard	As standard		As star		As standard		-			-
L	As standard		standard	As standard		As star		As standard		As standa	ard		-
N	As standard		standard							_			_
11	AS Stallualu	A:	Stallualu	-		-		-		-			

Antivibration

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Integrated hydronic kit: 00, DA, DB, DC,	DD, DE, DF, D	G, DH, DI, DJ	, PA, PB, PC,	PD, PE, PF, I	PG, PH, PI, P.	J, TF, TG, TH,	TI, TJ							
0	AVX900	AVX900	AVX900	AVX904	AVX904	AVX904	AVX904	AVX904	AVX904	AVX959	AVX959	AVX960	AVX960	AVX911
A, L	AVX901	AVX901	AVX901	AVX904	AVX959	AVX959	AVX959	AVX903	AVX903	AVX903	AVX903	AVX909	AVX909	AVX907
E, U	AVX901	AVX901	AVX959	AVX959	AVX959	AVX903	AVX903	AVX906	AVX906	AVX906	AVX906	AVX907	AVX907	AVX912
N	AVX959	AVX959	AVX903	AVX903	AVX903	AVX906	AVX906	AVX907	AVX907	AVX907	AVX907	AVX912	AVX910	AVX913

Ver	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
ntegrated hydronic kit: 00, TF, TG		1302	1002	7202	3002	0002	0102	0303	0703	0,03	7203	0103	7003
o	AVX911	AVX909	AVX909	AVX907	AVX907	AVX907	AVX912	AVX914	AVX914	AVX915	AVX916	AVX916	AVX91
A, L	AVX907	AVX912	AVX912	AVX912	AVX910	AVX913	AVX913	AVX924	AVX924	AVX925	AVX925	AVX927	AVX92
E, U	AVX910	AVX910	AVX912 AVX913	AVX913	AVX920	AVX917	AVX918	AVX925	AVX927	AVX927	AVX928	-	
N N	AVX913	AVX917	AVX918	AVX919	AVX921	AVX921	AVX910	AVX926	- 111/02/	-	-		
ntegrated hydronic kit: DA, DB, D			AVAZIO	NVAZIZ	NVNJZI	NVAZI	NVAZI	AVAZZO					
o	AVX911	-		_		_							
A, L	AVX907										_		
E, U	AVX907 AVX910												
N	AVX910 AVX913												
ntegrated hydronic kit: DF, DG, DI					-	-		-					
o			AVX909	AVX907	AVX907	AVX907	AVX912						
A 1	AVX911	AVX909											
A, L	AVX907	AVX912	AVX912	AVX912	AVX910	AVX913	AVX913	-	-	-	-	-	-
E, U	AVX910	AVX910	AVX913	AVX913	AVX920	AVX917	AVX918	-	-	-	-	-	-
N	AVX913	AVX917	AVX918	AVX919	AVX921	AVX921	AVX921	-		-	-	-	
ower factor correction													
	1402		1602	1003		002	2202	331	·1	2502	3/53		2002
Ver	1402		1602	1802		002	2202	DIENCM		2502	2652	r20 5	2802
	RIFNSM14020		ISM1602Q	RIFNSM1802Q		M2002Q	RIFNSM2202Q	RIFNSM		RIFNSM2502Q	RIFNSM26		RIFNSM280
A, L	RIFNSM14020		ISM1602Q	RIFNSM1802Q		M2002Q	RIFNSM2202Q	RIFNSM		RIFNSM2502Q	RIFNSM26		RIFNSM280
E	RIFNSM14020		ISM1602Q	RIFNSM1802Q		M2002Q	RIFNSM2202Q	RIFNSM		RIFNSM2502C	RIFNSM26		RIFNSM280
N	RIFNSM14020		ISM1602Q	RIFNSM1802C		M2002Q	RIFNSM2202C	RIFNSM		RIFNSM2502C	RIFNSM26		RIFNSM280
U	RIFNSM14020	RIFN	ISM1602Q	RIFNSM1802Q	RIFNS	SM2002C	RIFNSM2202Q	RIFNSM	2352C	RIFNSM2502C	RIFNSM26	52Q F	RIFNSM280
grey background indicates the acces	ssory must be assembled	in the fact	tory										
Ver	3002		3202	3402	3	602	3902	420)2	4502	4802		5202
0	RIFNSM30020		ISM3202Q	RIFNSM3402Q	_	M3602Q	RIFNSM3902C	RIFNSM		RIFNSM4502C	RIFNSM48	02C F	RIFNSM520
A, E, L, U	RIFNSM30020		ISM3202C	RIFNSM3402C		M3602C	RIFNSM3902C	RIFNSM		RIFNSM4502C	RIFNSM48		RIFNSM520
N N	RIFNSM30020		ISM3202C	RIFNSM3402C		M3602C	RIFNSM3902C	RIFNSM		-	-		_
he accessory cannot be fitted on the													
Ver	5602		6002	6402	6	503	6703	690		7203	8403		9603
°, A, L	RIFNSM56020	RIFN	ISM6002C	RIFNSM6402C		-	-	-		-	-		-
he accessory cannot he fitted on the													
grey background indicates the acces	configurations indicated ssory must be assembled		tory										
grey background indicates the acces		in the fact	1602	1802	2	002	2202	23:	52	2502	2652		2802
grey background indicates the acce Grids	ssory must be assembled	in the fact	1602										
grey background indicates the accessifieds Ver o	ssory must be assembled 1402 GP3V	in the fact	1602 GP3V	GP3V	G	iP4V	GP4V	GP4	IV.	GP4V	GP4V		GP4V
grey background indicates the accessories Ver A, L	1402 GP3V GP4V	in the fact	1602 GP3V GP4V	GP3V GP4VN	G	iP4V iP4V	GP4V GP5V	GP4	IV 5V	GP4V GP5V	GP4V GP6V		GP4V GP6V
grey background indicates the accessories Ver A, L E, U	1402 GP3V GP4V GP4V	in the fact	1602 GP3V GP4V GP4V	GP3V GP4VN GP5V	G	iP4V iP4V iP5V	GP4V GP5V GP5V	GP4 GP5	5V 5V	GP4V GP5V GP6V	GP4V GP6V GP7V		GP4V GP6V GP7V
grey background indicates the accessories Ver A, L E, U N	1402 GP3V GP4V GP4V GP5V	in the fact	1602 GP3V GP4V GP4V GP5V	GP3V GP4VN	G	iP4V iP4V	GP4V GP5V	GP4	5V 5V	GP4V GP5V	GP4V GP6V		GP4V GP6V
grey background indicates the accessories Ver A, L E, U N grey background indicates the accessories	1402 GP3V GP4V GP4V GP5V ssory must be assembled	in the fact	1602 GP3V GP4V GP4V GP5V	GP3V GP4VN GP5V GP6V	G G	iP4V iP4V iP5V iP6V	GP4V GP5V GP5V GP6V	GP4 GP5 GP7	IV SV SV	GP4V GP5V GP6V GP7V	GP4V GP6V GP7V GP8V		GP4V GP6V GP7V GP8V
grey background indicates the accessories Ver A, L E, U N	1402 GP3V GP4V GP5V GP5V ssory must be assembled	in the fact	1602 GP3V GP4V GP4V GP5V	GP3V GP4VN GP5V GP6V	6 6 6	iP4V iP4V iP5V iP6V	GP4V GP5V GP5V GP6V	GP4 GP5 GP7 GP7	IV SV SV VV	GP4V GP5V GP6V GP7V	GP4V GP6V GP7V GP8V		GP4V GP6V GP7V GP8V
grey background indicates the accessive of the second of t	1402 GP3V GP4V GP4V GP5V ssory must be assembled	in the fact	1602 GP3V GP4V GP4V GP5V tory 3202 GP5V	GP3V GP4VN GP5V GP6V 3402 GP5V	6 6 6 3	P4V P4V P5V P6V 602	GP4V GP5V GP5V GP6V 3902 GP6V	GP4 GP5 GP7 420 GP6	5V 5V 7V 02	GP4V GP5V GP6V GP7V 4502 GP7V	GP4V GP6V GP7V GP8V 4802 GP7V		GP4V GP6V GP7V GP8V 5202 GP8V
grey background indicates the accessorids Ver A, L E, U N grey background indicates the accessory Ver A, L	1402 GP3V GP4V GP4V GP5V ssory must be assembled	in the fact	1602 GP3V GP4V GP4V GP5V tory 3202 GP5V GP6V	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V	6 6 6 6	P4V P5V P6V 602 P5V P7V	GP4V GP5V GP5V GP6V 3902 GP6V GP8V	GP4 GP5 GP6 GP7 420 GP6	5V 5V 7V 02 5V	GP4V GP5V GP6V GP7V 4502 GP7V GP9V	GP4V GP6V GP7V GP8V 4802 GP7V GP9V		GP4V GP6V GP7V GP8V 5202 GP8V GP9V
grey background indicates the accessories Ver A, L E, U N grey background indicates the accessories Ver v	1402 GP3V GP4V GP4V GP5V ssory must be assembled	in the fact	1602 GP3V GP4V GP4V GP5V Orory 3202 GP5V GP6V GP7V	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V GP8V	6 6 6 6	P4V P4V P5V P6V 602	GP4V GP5V GP5V GP6V 3902 GP6V GP8V GP9V	GP4 GP5 GP7 420 GP6	5V 5V 7V 02 5V	GP4V GP5V GP6V GP7V 4502 GP7V	GP4V GP6V GP7V GP8V 4802 GP7V		GP4V GP6V GP7V GP8V 5202 GP8V
grey background indicates the accessories Ver A, L E, U N grey background indicates the accessory Ver A, L	1402 GP3V GP4V GP4V GP5V ssory must be assembled	in the fact	1602 GP3V GP4V GP4V GP5V tory 3202 GP5V GP6V	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V	6 G G G G G G G G G G G G G G G G G G G	P4V P5V P6V 602 P5V P7V	GP4V GP5V GP5V GP6V 3902 GP6V GP8V	GP4 GP5 GP6 GP7 420 GP6	5V 5V 7V 02 5V 6V 6V	GP4V GP5V GP6V GP7V 4502 GP7V GP9V	GP4V GP6V GP7V GP8V 4802 GP7V GP9V		GP4V GP6V GP7V GP8V 5202 GP8V GP9V GP11V
grey background indicates the accessories Ver A, L E, U N grey background indicates the accessory Ver A, L E, U N	1402 GP3V GP4V GP4V GP5V ssory must be assembled 3002 GP5V GP6V GP7V GP8V	in the fact	1602 GP3V GP4V GP4V GP5V cory 3202 GP5V GP6V GP7V GP8V	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V GP8V	6 G G G G G G G G G G G G G G G G G G G	P4V P4V P5V P6V 602 P5V P7V	GP4V GP5V GP5V GP6V 3902 GP6V GP8V GP9V	GP2 GP3 GP3 GP3 GP4 GP6 GP6	5V 5V 7V 02 5V 6V 6V	GP4V GP5V GP6V GP7V 4502 GP7V GP9V GP10V	GP4V GP6V GP7V GP8V 4802 GP7V GP9V GP11V		GP4V GP6V GP7V GP8V 5202 GP8V GP9V GP11V
grey background indicates the accessories Ver A, L E, U N grey background indicates the accessory Ver A, L E, U N grey background indicates the accessory Ver A, L E, U N grey background indicates the accessory A, L E, U N grey background indicates the accessory Regular A A B B B B B B B B B B B B B B B B B	1402 GP3V GP4V GP4V GP5V ssory must be assembled 3002 GP5V GP6V GP7V GP8V	in the fact	1602 GP3V GP4V GP4V GP5V Corry 3202 GP5V GP6V GP7V GP8V	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V GP8V GP9V	3 3 G G G G G G G G G G G G G G G G G G	P4V P4V P5V P6V 602 P7V P7V P8V P10V	GP4V GP5V GP5V GP6V 3902 GP6V GP8V GP9V GP11V	GP2 GP2 GP2 GP2 GP2 GP2 GP1 GP1	10	GP4V GP5V GP6V GP7V 4502 GP7V GP9V GP10V GP6V+GP7V	GP4V GP6V GP7V GP8V 4802 GP7V GP9V GP11V GP7V+GP		GP4V GP6V GP7V GP8V 5202 GP8V GP9V GP11V GP7V+GP8
grey background indicates the accessories Ver A, L E, U N grey background indicates the accessory Ver A, L E, U N	1402 GP3V GP4V GP4V GP5V ssory must be assembled 3002 GP5V GP6V GP7V GP8V ssory must be assembled	in the fact	1602 GP3V GP4V GP4V GP5V GP5V GP5V GP6V GP7V GP8V GP02 GP02 GP02 GP02 GP02 GP02 GP03 GP04 GP05	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V GP8V GP9V	3 3 G G G G G G G G G G G G G G G G G G	P4V P4V P5V P6V P6V P6V P6V P6V P6V P6V P6V P6V P6	GP4V GP5V GP5V GP6V 3902 GP6V GP8V GP9V GP11V	GP2 GP2 GP2 GP2 GP2 GP2 GP3 GP1 GP1	22 25V 25V 22 25V 28V 20V 21V	GP4V GP5V GP6V GP7V 4502 GP7V GP9V GP10V GP6V+GP7V	GP4V GP6V GP7V GP8V 4802 GP7V GP9V GP11V GP7V+GP	P7V	GP4V GP6V GP7V GP8V 5202 GP8V GP9V GP11V GP7V+GP8
grey background indicates the accessories Ver A, L E, U N grey background indicates the accessories Ver A, L E, U N grey background indicates the accessories Ver A, L E, U N grey background indicates the accessories Ver o	1402 GP3V GP4V GP4V GP5V ssory must be assembled 3002 GP5V GP6V GP7V GP8V ssory must be assembled	in the fact	1602 GP3V GP4V GP4V GP5V Corry 3202 GP5V GP6V GP7V GP8V 6002 GP8V	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V GP8V GP9V	3 3 G G G G G G G G G G G G G G G G G G	602 602 602 603 603 603 603 603 603 603 603 603 603	GP4V GP5V GP5V GP6V 3902 GP6V GP8V GP9V GP11V	GP2 GP2 GP2 GP2 GP2 GP3 GP1 GP1 GP1	10	GP4V GP5V GP6V GP7V 4502 GP7V GP9V GP10V GP6V+GP7V 7203 GP11V	GP4V GP6V GP7V GP8V 4802 GP7V GP9V GP71V GP7V+GP	P7V	GP4V GP6V GP7V GP8V 5202 GP8V GP9V GP11V GP7V+GP8
grey background indicates the accessories Ver A, L E, U N grey background indicates the accessories Ver A, L E, U N grey background indicates the accessories Ver A, L E, U N grey background indicates the accessories A, L A, L A, L A, L	1402 GP3V GP4V GP4V GP5V ssory must be assembled 3002 GP5V GP6V GP7V GP8V ssory must be assembled GP8V GP8V GP8V	in the fact	1602 GP3V GP4V GP4V GP5V cory 3202 GP5V GP6V GP7V GP8V GP8V GP8V GP8V GP8V GP8V GP8V GP8V GP8V GP8V	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V GP8V GP9V 6402 GP9V	G G G G G G G G G G G G G G G G G G G	602 602 602 603 603 603 603 603 603 603 603 603 603	GP4V GP5V GP5V GP6V 3902 GP6V GP8V GP9V GP11V 6703 GP9V GP4V+GP8V	GP2 GP2 GP2 GP2 GP3 GP3 GP1 GP1 GP5 GP1	18V 15V 17V 102 16V 16V 16V 16V 16V 16V 16V 16V 16V 16V	GP4V GP5V GP6V GP7V 4502 GP7V GP9V GP10V GP6V+GP7V 7203 GP11V GP5V+GP9V	GP4V GP6V GP7V GP8V 4802 GP7V GP9V GP11V GP7V+GP 8403 GP11V GP5V+GP	P7V	GP4V GP6V GP7V GP8V 5202 GP8V GP9V GP11V GP7V+GP8
grey background indicates the accessirids Ver A, L E, U N grey background indicates the accessive shall be accessed by the shall be accessed	1402 GP3V GP4V GP4V GP5V ssory must be assembled 3002 GP5V GP6V GP7V GP8V ssory must be assembled GP7V GP8V GP8V GP11V GP6V+GP6V	in the fact	1602 GP3V GP4V GP4V GP5V Corry 3202 GP5V GP6V GP7V GP8V CORPY GP8V GP9V	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V GP8V GP9V GP9V GP11V GP7V+GP7V	G G G G G G G G G G G G G G G G G G G	602 602 602 603 604 605 602 603 603 603 603 603 603 603 603 603 603	GP4V GP5V GP5V GP6V 3902 GP6V GP8V GP9V GP11V 6703 GP9V GP4V+GP8V GP5V+GP10V	GP2 GP2 GP2 GP2 GP3 GP3 GP1 GP3 GP3 GP5V+	18V 15V 17V 102 16V 18V 10V 11V 100V 10V 10V 10V 10V 10V 10V 1	GP4V GP5V GP6V GP7V 4502 GP7V GP9V GP10V GP6V+GP7V 7203 GP11V GP5V+GP9V GP6V+GP11V	GP4V GP6V GP7V GP8V 4802 GP7V GP9V GP11V GP7V+GP 8403 GP11V GP5V+GP	P7V	GP4V GP6V GP7V GP8V 5202 GP8V GP9V GP11V GP7V+GP8 9603 GP11V GP6V+GP1
grey background indicates the accessories Ver A, L E, U N grey background indicates the accessories Ver A, L E, U N grey background indicates the accessories Ver A, L E, U N grey background indicates the accessories A, L A, L A, L A, L	1402 GP3V GP4V GP4V GP5V ssory must be assembled 3002 GP5V GP6V GP7V GP8V ssory must be assembled GP8V GP8V GP8V	in the fact	1602 GP3V GP4V GP4V GP5V cory 3202 GP5V GP6V GP7V GP8V GP8V GP8V GP8V GP8V GP8V GP8V GP8V GP8V GP8V	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V GP8V GP9V 6402 GP9V	G G G G G G G G G G G G G G G G G G G	602 602 602 603 603 603 603 603 603 603 603 603 603	GP4V GP5V GP5V GP6V 3902 GP6V GP8V GP9V GP11V 6703 GP9V GP4V+GP8V	GP2 GP2 GP2 GP2 GP3 GP3 GP1 GP1 GP5 GP1	18V 15V 17V 102 16V 18V 10V 11V 100V 10V 10V 10V 10V 10V 10V 1	GP4V GP5V GP6V GP7V 4502 GP7V GP9V GP10V GP6V+GP7V 7203 GP11V GP5V+GP9V	GP4V GP6V GP7V GP8V 4802 GP7V GP9V GP11V GP7V+GP 8403 GP11V GP5V+GP	P7V	GP4V GP6V GP7V GP8V 5202 GP8V GP9V GP11V GP7V+GP8
grey background indicates the accessrids Ver A, L E, U N grey background indicates the access Ver A, L E, U N grey background indicates the access Ver A, L E, U N grey background indicates the access Ver A, L E, U N	1402 GP3V GP4V GP4V GP5V Ssory must be assembled 3002 GP5V GP6V GP7V GP8V Ssory must be assembled GP8V GP8V GP8V GP8V GP8V GP8V GP8V GP8V	in the fact in the fact in the fact GP6	1602 GP3V GP4V GP4V GP5V Orry 3202 GP5V GP6V GP7V GP8V COTY GP8V GP8V SV+GP7V SV+GP7V SV+GP8V	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V GP8V GP9V GP9V GP11V GP7V+GP7V	G G G G G G G G G G G G G G G G G G G	602 602 602 603 604 605 602 603 603 603 603 603 603 603 603 603 603	GP4V GP5V GP5V GP6V 3902 GP6V GP8V GP9V GP11V 6703 GP9V GP4V+GP8V GP5V+GP10V	GP2 GP2 GP2 GP2 GP3 GP3 GP1 GP3 GP3 GP5V+	10	GP4V GP5V GP6V GP7V 4502 GP7V GP9V GP10V GP6V+GP7V 7203 GP11V GP5V+GP9V GP6V+GP11V	GP4V GP6V GP7V GP8V 4802 GP7V GP9V GP11V GP7V+GP 8403 GP11V GP5V+GP	P7V	GP4V GP6V GP7V GP8V 5202 GP8V GP9V GP11V GP7V+GP8 9603 GP11V GP6V+GP1
grey background indicates the accessories Ver A, L E, U N grey background indicates the accessories Ver A, L E, U N grey background indicates the accessories Ver A, L E, U N grey background indicates the accessories Ver A, L E, U N grey background indicates the accessories Ver A, L E, U N grey background indicates the accessories Ver A, L E, U N grey background indicates the accessories N grey background indicates the accessories R Grey background indic	1402 GP3V GP4V GP4V GP5V Ssory must be assembled 3002 GP5V GP6V GP7V GP8V Ssory must be assembled GP8V GP8V GP8V GP8V GP8V GP8V GP8V GP8V	in the fact in the fact in the fact GP6	1602 GP3V GP4V GP4V GP5V Orry 3202 GP5V GP6V GP7V GP8V COTY GP8V GP8V SV+GP7V SV+GP7V SV+GP8V	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V GP8V GP9V GP9V GP11V GP7V+GP7V	G G G G G G G G G G G G G G G G G G G	602 602 602 603 604 605 602 603 603 603 603 603 603 603 603 603 603	GP4V GP5V GP5V GP6V 3902 GP6V GP8V GP9V GP11V 6703 GP9V GP4V+GP8V GP5V+GP10V	GP2 GP2 GP2 GP2 GP3 GP3 GP1 GP3 GP3 GP5V+	10	GP4V GP5V GP6V GP7V 4502 GP7V GP9V GP10V GP6V+GP7V 7203 GP11V GP5V+GP9V GP6V+GP11V	GP4V GP6V GP7V GP8V 4802 GP7V GP9V GP11V GP7V+GP 8403 GP11V GP5V+GP	P7V	GP4V GP6V GP7V GP8V 5202 GP8V GP9V GP11V GP7V+GP8 9603 GP11V GP6V+GP1
grey background indicates the accessificats Ver A, L E, U N grey background indicates the accessificate Ver A, L E, U N grey background indicates the accessificate the accessificates th	1402 GP3V GP4V GP4V GP5V ssory must be assembled GP5V GP6V GP7V GP8V SSORY must be assembled GP7V GP8V SSORY must be assembled GP7V GP8V SSORY must be assembled GP8V GP8V+GP8V SSORY must be assembled	in the fact in the fact (GP6	1602 GP3V GP4V GP4V GP5V GP5V GP5V GP6V GP7V GP7V GP8V GP8V GP8V SV+GP7V SV+GP7V SV+GP8V	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V GP8V GP9V GP9V GP11V GP7V+GP7V GP8V+GP8V	G G G G G G G G G G G G G G G G G G G	602 602 602 602 602 602 602 602 602 602	GP4V GP5V GP5V GP6V 3902 GP6V GP8V GP9V GP11V 6703 GP9V GP4V+GP8V	GP2 GP2 GP2 GP2 GP2 GP3 GP1 GP1 GP5V+	15V 15V 15V 15V 15V 15V 15V 15V 15V 15V	GP4V GP5V GP6V GP7V 4502 GP7V GP9V GP10V GP6V+GP7V 7203 GP11V GP5V+GP9V GP6V+GP11V	GP4V GP6V GP7V GP8V 4802 GP7V GP9V GP11V GP7V+GP 8403 GP11V GP5V+GP	P7V	GP4V GP6V GP7V GP8V 5202 GP8V GP9V GP11V GP7V+GP8 GP11V GP6V+GP1
grey background indicates the accessive states accessive	1402 GP3V GP4V GP4V GP5V ssory must be assembled GP5V GP6V GP7V GP8V SSORY must be assembled GP7V GP8V SSORY must be assembled GP8V GP1V GP6V+GP6V GP8V GP8V GP1V GP8V+GP8V GP8V+GP8V SSORY must be assembled	in the fact in the fact (GP6	1602 GP3V GP4V GP4V GP5V GP5V GP5V GP5V GP6V GP7V GP7V GP8V GP8V GP8V GP8V GP8V GP9TV GP8V GP9TV GP8V GP9TV	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V GP8V GP9V GP9V GP9V GP7V+GP7V GP8V+GP8V	G G G G G G G G G G G G G G G G G G G	602 602 602 602 602 602 602 602 602 602	GP4V GP5V GP5V GP6V 3902 GP6V GP8V GP9V GP11V 6703 GP9V GP4V+GP8V GP5V+GP10V	GP2 GP2 GP2 GP2 GP2 GP2 GP1 GP1 GP1 GP5V+	18V 18V 18V 18V 18V 18V 19V 19V 19V 19V 19V 19V 19V 19V 19V 19	GP4V GP5V GP6V GP7V 4502 GP7V GP9V GP10V GP6V+GP7V 7203 GP11V GP5V+GP9V GP6V+GP11V	GP4V GP6V GP7V GP8V 4802 GP7V GP9V GP11V GP7V+GP	110V	GP4V GP6V GP7V GP8V 5202 GP8V GP9V GP11V GP7V+GP8 GP11V GP6V+GP1
grey background indicates the accessirids Ver A, L E, U N grey background indicates the accessive A, L E, U N grey background indicates the accessive A, L E, U N grey background indicates the accessive A, L E, U N grey background indicates the accessive A, L E, U N grey background indicates the accessive A, L E, U N Grey background indicates the accessive A, L E, U N Grey background indicates the accessive Beater exchangers Ver , A, L	1402 GP3V GP4V GP4V GP5V ssory must be assembled GP5V GP6V GP7V GP8V SSORY must be assembled GP8V GP8V GP8V GP8V GP8V GP8V GP8V GP8V	in the fact in the fact (GP6 GP8 in the fact	1602 GP3V GP4V GP4V GP5V GP5V GP5V GP5V GP6V GP7V GP8V GP7V GP8V SV+GP7V SV+GP8V GP7V SV+GP8V GP7V GP8	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V GP8V GP9V GP9V GP11V GP7V+GP7V GP8V+GP8V	G G G G G G G G G G G G G G G G G G G	602 602 602 602 602 602 602 602 602 602	GP4V GP5V GP5V GP6V 3902 GP6V GP8V GP9V GP11V 6703 GP9V GP4V+GP8V GP5V+GP10V	GP2 GP2 GP2 GP2 GP2 GP3 GP1 GP1 GP5V+ GP5V+	18V 18V 18V 18V 18V 18V 18V 18V 18V 18V	GP4V GP5V GP6V GP7V 4502 GP7V GP9V GP10V GP10V GP6V+GP7V 7203 GP11V GP5V+GP9V - 2502 KRS23	GP4V GP6V GP7V GP8V 4802 GP7V GP9V GP11V GP7V+GP 8403 GP11V GP5V+GP	110V	GP4V GP6V GP7V GP8V 5202 GP8V GP9V GP11V GP7V+GP8 9603 GP11V GP6V+GP1
grey background indicates the accessirids Ver A, L E, U N grey background indicates the access Ver A, L E, U N grey background indicates the access Ver A, L E, U N grey background indicates the access Ver A, L E, U N grey background indicates the access Ver Ver A, L E, U N Grey background indicates the access Ver Ver	1402 GP3V GP4V GP4V GP5V ssory must be assembled GP5V GP6V GP7V GP8V SSORY must be assembled GP7V GP8V SSORY must be assembled GP8V GP1V GP6V+GP6V GP8V GP8V GP1V GP8V+GP8V GP8V+GP8V SSORY must be assembled	in the fact in the fact (GP6 GP8 in the fact	1602 GP3V GP4V GP4V GP5V GP5V GP5V GP5V GP6V GP7V GP7V GP8V GP8V GP8V GP8V GP8V GP9TV GP8V GP9TV GP8V GP9TV	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V GP8V GP9V GP9V GP9V GP7V+GP7V GP8V+GP8V	G G G G G G G G G G G G G G G G G G G	602 602 602 602 602 602 602 602 602 602	GP4V GP5V GP5V GP6V 3902 GP6V GP8V GP9V GP11V 6703 GP9V GP4V+GP8V GP5V+GP10V	GP2 GP2 GP2 GP2 GP2 GP2 GP1 GP1 GP1 GP5V+	18V 18V 18V 18V 18V 18V 18V 18V 18V 18V	GP4V GP5V GP6V GP7V 4502 GP7V GP9V GP10V GP6V+GP7V 7203 GP11V GP5V+GP9V GP6V+GP11V	GP4V GP6V GP7V GP8V 4802 GP7V GP9V GP11V GP7V+GP	110V	GP4V GP6V GP7V GP8V 5202 GP8V GP9V GP11V GP7V+GP1
grey background indicates the accessirids Ver A, L E, U N grey background indicates the accessive service se	1402 GP3V GP4V GP4V GP5V ssory must be assembled 3002 GP5V GP6V GP7V GP8V GP8V GP8V GP11V GP6V+GP6V GP8V+GP8V Ssory must be assembled T402 KR522 KR523	in the fact in the fact in the fact (GPE GP8	1602 GP3V GP4V GP4V GP5V Cory 3202 GP5V GP6V GP7V GP8V Cory 6002 GP8V GP11V SV+GP7V SV+GP7V SV+GP8V CORY SV+GP8V SV	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V GP8V GP9V GP9V GP11V GP7V+GP7V GP8V+GP8V	G G G G G G G G G G G G G G G G G G G	602 602 602 602 602 602 602 602 602 602	GP4V GP5V GP5V GP6V 3902 GP6V GP8V GP9V GP11V 6703 GP9V GP4V+GP8V GP5V+GP10V	GP2 GP2 GP2 GP2 GP2 GP3 GP1 GP1 GP5V+ GP5V+	18V 18V 18V 18V 18V 18V 18V 18V 18V 18V	GP4V GP5V GP6V GP7V 4502 GP7V GP9V GP10V GP10V GP6V+GP7V 7203 GP11V GP5V+GP9V - 2502 KRS23	GP4V GP6V GP7V GP8V 4802 GP7V GP9V GP11V GP7V+GP 8403 GP11V GP5V+GP	110V	GP4V GP6V GP7V GP8V 5202 GP8V GP9V GP11V GP7V+GP1
grey background indicates the accessirids Ver A, L E, U N grey background indicates the accessive service se	1402 GP3V GP4V GP4V GP5V ssory must be assembled 3002 GP5V GP6V GP7V GP8V GP8V GP8V GP11V GP6V+GP6V GP8V+GP8V Ssory must be assembled T402 KR522 KR523	in the fact in the fact for GP6 GP8 in the fact	1602 GP3V GP4V GP4V GP5V Cory 3202 GP5V GP6V GP7V GP8V CORY GP8V SV+GP7V SV+GP7V SV+GP7V SV+GP8V CORY SV+GP8V CORY SV+GP8V CORY SV+GP8V CORY SV+GP8V CORY SV+GP8V CORY SV+GP8V CORY CORY SV+GP8V CORY CORY SV+GP8V CORY CORY CORY SV+GP8V CORY COR	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V GP8V GP9V GP9V GP11V GP7V+GP7V GP8V+GP8V	G G G G G G G G G G G G G G G G G G G	602 602 602 602 602 602 602 602 602 602	GP4V GP5V GP5V GP6V 3902 GP6V GP8V GP9V GP11V 6703 GP9V GP4V+GP8V GP5V+GP10V	GP2 GP2 GP2 GP2 GP2 GP3 GP1 GP1 GP5V+ GP5V+	19	GP4V GP5V GP6V GP7V 4502 GP7V GP9V GP10V GP10V GP6V+GP7V 7203 GP11V GP5V+GP9V - 2502 KRS23	GP4V GP6V GP7V GP8V 4802 GP7V GP9V GP11V GP7V+GP 8403 GP11V GP5V+GP	110V	GP4V GP6V GP7V GP8V 5202 GP8V GP9V GP11V GP7V+GP1
grey background indicates the accessive states accessive	1402 GP3V GP4V GP4V GP5V ssory must be assembled 3002 GP5V GP6V GP7V GP8V SSORY must be assembled GP8V GP1V GP8V+GP8V GP8V GP8V+GP8V GP8V+GP8V SSORY must be assembled 1402 KR522 KR523 SSORY must be assembled	in the fact in the fact GP6 GP8 in the fact	1602 GP3V GP4V GP4V GP5V GP5V GP5V GP5V GP6V GP6V GP7V GP8V GP7V GP8V GP8V GP8V GP8V GP8V GP7V GP8V GP8V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP8V GP8V GP7V GP8V GP8V GP7V GP8V GP7V GP8V GP8V GP7V GP8V GP7V GP8V GP8V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP8V GP7V GP7V GP8V GP7V	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V GP8V GP9V GP9V GP11V GP7V+GP7V GP8V+GP8V T802 KR523 KR523	G G G G G G G G G G G G G G G G G G G	602 602 602 602 603 604 605 605 607 607 608 608 608 608 608 608 608 608 608 608	GP4V GP5V GP5V GP6V 3902 GP6V GP8V GP9V GP11V 6703 GP9V GP4V+GP8V GP5V+GP10V - 2202 KR523 KR523	GP2 GP2 GP2 GP2 GP2 GP1 GP1 GP1 GP5V+ GP5V+ CP5V+ CP5V+	18V 18V 18V 18V 18V 19V 11V 10V 10V 10V 10V 10V 10V 10	GP4V GP5V GP6V GP7V 4502 GP7V GP9V GP10V GP6V+GP7V 7203 GP11V GP5V+GP9V GP6V+GP11V - 2502 KR523 KR523	GP4V GP6V GP8V GP8V GP8V GP7V GP7V+GP GP7V+GP 	110V	GP4V GP6V GP7V GP8V 5202 GP8V GP9V GP11V GP7V+GP8 9603 GP11V GP6V+GP1
A grey background indicates the access Grids Ver A, L E, U N A grey background indicates the access Ver A, L E, U N A grey background indicates the access Ver A, L E, U N A grey background indicates the access Ver A, L E, U N A grey background indicates the access Ver A, L E, U N A grey background indicates the access Ver A, L E, U N A grey background indicates the access Ver A, L E, N, U N A grey background indicates the access Ver A, L E, N, U A grey background indicates the access Ver	1402 GP3V GP4V GP4V GP5V ssory must be assembled 3002 GP5V GP6V GP7V GP8V SSORY must be assembled GP8V GP1V GP8V GP8V GP8V GP8V GP8V GP8V GP8V GP8	in the fact in the fact GP6 GP8 in the fact	1602 GP3V GP4V GP4V GP5V Cory 3202 GP5V GP6V GP7V GP8V CORY GP8V SV+GP7V SV+GP7V SV+GP7V SV+GP8V CORY SV+GP8V CORY SV+GP8V CORY SV+GP8V CORY SV+GP8V CORY SV+GP8V CORY SV+GP8V CORY CORY SV+GP8V CORY CORY SV+GP8V CORY CORY CORY SV+GP8V CORY COR	GP3V GP4VN GP5V GP6V 3402 GP5V GP7V GP8V GP9V 6402 GP9V GP11V GP7V+GP7V GP8V+GP8V 1802 KRS23 KRS23	G G G G G G G G G G G G G G G G G G G	602 602 602 602 603 604 605 605 607 608 608 609 608 609 609 609 609 609 609 609 609	GP4V GP5V GP5V GP6V 3902 GP6V GP8V GP9V GP11V 6703 GP9V GP4V+GP8V GP5V+GP10V - 2202 KR523 KR523	GP GP GP GP GP GP GP GP	100	GP4V GP5V GP6V GP7V 4502 GP7V GP9V GP10V GP6V+GP7V 7203 GP11V GP5V+GP9V GP6V+GP11V 2502 KRS23 KRS23	GP4V GP6V GP8V 4802 GP7V GP8V 4802 GP7V+GP GP7V+GP 8403 GP11V GP5V+GP	110V	GP4V GP6V GP7V GP8V 5202 GP8V GP9V GP11V GP7V+GP8 9603 GP11V

A grey background indicates the accessory must be assembled in the factory

N U KRS23

KRS23

KRS23

KRS23

KRS24

KRS24

KRS24

KRS24

KRS24

KRS24

KRS24

KRS24

KRS24

KRS23+KRS23

KRS23+KRS23

KRS24

KRS23+KRS23

KRS24

Ver	5602	6002	6402	6503	6703	6903	7203	8403	9603
0	KRS24								
A, L	KRS24	KRS24	KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24
E, U	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	-	-
N	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS24	-	-	-	-	-

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	d	Description
1,2,	3	NSM
4,5,	6,7	Size 1402, 1602, 1802, 2002, 2202, 2352, 2502, 2652, 2802, 3002, 3202, 3402, 3602 3902, 4202, 4502, 4802, 5202, 5602, 6002, 6402, 6503, 6703, 6903, 7203, 8403, 9603
8		Operating field
	Χ	Electronic thermostatic expansion valve (1)
	Υ	Low temperature mechanic thermostatic valve (2)
	Z	Low temperature electronic thermostatic valve (2)
	0	Standard mechanic thermostatic valve (3)
9		Model
	C	Motocondensing unit (4)
	0	Cooling only
10		Heat recovery
	D	With desuperheater (5)
	T	With total recovery (6)
	0	Without heat recovery
11		Version
	0	Standard
	Α	High efficiency
	E	Silenced high efficiency
	L	Standard silenced
	N	Silenced very high efficiency
	U	Very high efficiency
12		Coils
	1	Copper-aluminium
	0	Coated aluminium microchannel
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	٧	Copper pieps-Coated aluminium fins
	0	Aluminium microchannel
13		Fans
	J	Inverter
	М	Oversized
14		Power supply
	8	400V~3 50Hz with magnet circuit breakers
	0	400V~3 50Hz with fuses
15,1		Integrated hydronic kit

Field	Description
rieiu	Without hydronic kit
00	Without hydronic kit
	Kit with n° 1 pump
PA	Pump A
PB	Pump B
PC	Pump C
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump
	Kit with 2 pumps
TF	Double pump F (7)
TG	Double pump G (7)
TH	Double pump H (7)
TI	Double pump I (7)
TJ	Double pump J (7)

- (1) Water produced from 4° C \div 18 $^{\circ}$ C
 (2) Water produced from 4° C \div -8 $^{\circ}$ C
 (3) Water produced from 4° C \div -15 $^{\circ}$ C
 (4) The motor condensing units are not configurable with option D and T, and with the integrated hydronic
- (a) The intotal contensing units are not comparisone with option brain 1, and with the integrated hydrolic kit
 (5) The temperature of the water in the heat exchanger inlet must never drop below 35°C.
 (6) The models 1402° 1602° 1802° cannot have total recovery, which is available for all the other sizes and versions. If it is necessary to have total recovery as well as the hydronic kit, feasibility must be evaluated when ordering.
 (7) The unit from 5602 to 9603 can only have hydronic kit "TF TG TH- TI TJ"

PERFORMANCE SPECIFICATIONS

NSM - °

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	kW	307,5	348,9	397,0	450,3	489,4	524,7	543,8	577,3	613,8	680,5	725,1	770,1	813,8	906,1
Input power	kW	104,8	121,0	139,0	152,8	166,4	180,6	193,9	210,5	226,5	232,7	247,5	272,1	298,3	316,2
Cooling total input current	А	182,0	207,0	229,0	257,0	281,0	306,0	329,0	356,0	381,0	392,0	414,0	447,0	484,0	520,0
EER	W/W	2,93	2,88	2,86	2,95	2,94	2,91	2,81	2,74	2,71	2,92	2,93	2,83	2,73	2,87
Water flow rate system side	l/h	52881	59999	68270	77459	84185	90223	93509	99261	105543	117009	124685	132413	139916	155801
Pressure drop system side	kPa	27	36	38	49	57	26	28	33	35	39	42	47	38	46

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSM°

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C / 7 °C (1)														
Cooling capacity	kW	958,5	1051,2	1099,1	1168,1	1195,0	1237,7	1327,6	1393,8	1439,8	1578,6	1669,7	1742,2	1859,9
Input power	kW	345,9	360,3	388,1	403,4	430,8	453,1	460,3	488,6	517,2	559,8	575,1	659,2	730,6
Cooling total input current	Α	573,0	597,0	641,0	668,0	712,0	749,0	766,0	806,0	857,0	927,0	966,0	1103,0	1230,0
EER	W/W	2,77	2,92	2,83	2,90	2,77	2,73	2,88	2,85	2,78	2,82	2,90	2,64	2,55
Water flow rate system side	l/h	164794	180726	188953	200816	205451	212795	228246	239604	247511	271348	287011	299461	319697
Pressure drop system side	kPa	41	48	42	46	48	55	62	44	46	30	33	36	40

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSM - L

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	kW	302,4	344,0	392,7	428,1	490,9	513,8	537,4	583,4	602,8	664,4	709,1	771,0	826,1	908,8
Input power	kW	102,7	117,2	135,7	155,9	167,8	179,4	192,5	202,9	215,3	238,3	261,2	265,4	296,6	316,1
Cooling total input current	А	173,0	196,0	218,0	254,0	277,0	297,0	319,0	336,0	354,0	391,0	426,0	429,0	473,0	509,0
EER	W/W	2,94	2,94	2,89	2,75	2,93	2,86	2,79	2,88	2,80	2,79	2,72	2,91	2,79	2,88
Water flow rate system side	I/h	52016	59162	67531	73600	84402	88342	92402	100313	103652	114244	121903	132545	142018	156242
Pressure drop system side	kPa	27	36	38	18	24	25	28	33	31	36	23	23	25	32

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSM - L

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C / 7 °C (1)														
Cooling capacity	kW	949,7	1032,5	1076,9	1122,7	1183,7	1254,5	1295,6	1395,1	1436,6	1605,1	1649,4	1758,0	1946,7
Input power	kW	348,7	365,9	395,0	428,8	442,3	453,2	476,4	491,5	523,6	556,9	586,7	660,2	713,5
Cooling total input current	А	567,0	593,0	638,0	693,0	716,0	736,0	776,0	793,0	849,0	914,0	960,0	1067,0	1163,0
EER	W/W	2,72	2,82	2,73	2,62	2,68	2,77	2,72	2,84	2,74	2,88	2,81	2,66	2,73
Water flow rate system side	l/h	163268	177512	185148	193004	203496	215669	222723	239820	246956	275911	283536	302181	334622
Pressure drop system side	kPa	34	44	46	33	36	42	45	33	34	45	47	34	45

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSM - A

HOM - M															
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	kW	315,6	360,2	415,2	461,4	509,5	544,9	576,9	620,9	658,9	699,4	741,7	800,6	884,3	955,2
Input power	kW	99,0	113,7	133,7	148,3	161,8	173,6	183,3	197,5	208,3	223,6	237,4	253,4	281,2	303,8
Cooling total input current	Α	175,0	198,0	223,0	250,0	278,0	298,0	314,0	340,0	355,0	378,0	399,0	421,0	459,0	502,0
EER	W/W	3,19	3,17	3,11	3,11	3,15	3,14	3,15	3,14	3,16	3,13	3,12	3,16	3,15	3,14
Water flow rate system side	l/h	54280	61954	71417	79331	87600	93687	99196	106766	113293	120259	127516	137633	152015	164211
Pressure drop system side	kPa	30	39	43	21	26	28	32	37	37	40	25	25	29	36

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSM - A

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C / 7 °C (1)														
Cooling capacity	kW	1021,7	1084,5	1160,1	1213,2	1275,8	1352,3	1402,7	1462,2	1531,9	1682,9	1753,4	1908,6	2106,4
Input power	kW	328,5	347,0	371,7	389,2	410,5	432,6	451,5	466,3	493,4	534,6	560,2	614,3	673,3
Cooling total input current	А	547,0	577,0	614,0	647,0	685,0	725,0	758,0	772,0	821,0	897,0	936,0	1017,0	1132,0
EER	W/W	3,11	3,13	3,12	3,12	3,11	3,13	3,11	3,14	3,10	3,15	3,13	3,11	3,13
Water flow rate system side	l/h	175657	186457	199460	208561	219327	232478	241144	251345	263330	289291	301409	328062	362058
Pressure drop system side	kPa	39	49	53	38	42	49	52	36	39	49	53	41	52

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSM - E

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	kW	319,6	368,5	417,6	472,4	514,2	543,2	579,6	615,2	652,1	695,4	740,6	796,5	881,6	951,8
Input power	kW	101,7	117,4	132,3	150,0	165,4	173,7	186,0	194,8	210,1	224,0	238,6	255,4	283,8	305,7
Cooling total input current	Α	171,0	196,0	214,0	245,0	272,0	288,0	309,0	324,0	347,0	367,0	389,0	411,0	450,0	490,0
EER	W/W	3,14	3,14	3,16	3,15	3,11	3,13	3,12	3,16	3,10	3,11	3,10	3,12	3,11	3,11
Water flow rate system side	l/h	54958	63367	71800	81228	88406	93396	99657	105762	112115	119555	127316	136926	151562	163628
Pressure drop system side	kPa	15	14	18	21	24	26	30	24	26	29	26	25	29	36

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSM - E

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C/7 °C (1)														
Cooling capacity	kW	1018,9	1082,1	1159,1	1206,7	1265,2	1322,0	1389,6	1464,9	1528,1	1670,1	1752,6	-	-
Input power	kW	325,9	347,4	370,9	387,8	405,6	422,2	443,7	469,4	489,0	534,5	563,0	-	-
Cooling total input current	А	529,0	560,0	598,0	628,0	656,0	686,0	724,0	764,0	792,0	861,0	898,0	-	-
EER	W/W	3,13	3,11	3,13	3,11	3,12	3,13	3,13	3,12	3,13	3,12	3,11	-	-
Water flow rate system side	l/h	175173	186051	199271	207449	217481	227238	238869	251810	262683	287098	301260	-	-
Pressure drop system side	kPa	40	49	36	38	24	24	29	35	40	49	45	-	-

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSM - U

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	kW	331,0	378,1	432,1	481,7	527,6	564,7	590,5	635,0	675,3	708,2	750,8	811,2	902,5	975,6
Input power	kW	98,6	113,5	128,9	145,7	161,0	169,2	178,4	190,3	204,2	214,1	228,0	245,2	273,3	294,9
Cooling total input current	А	173,0	197,0	218,0	248,0	275,0	292,0	309,0	330,0	352,0	366,0	387,0	410,0	448,0	490,0
EER	W/W	3,36	3,33	3,35	3,31	3,28	3,34	3,31	3,34	3,31	3,31	3,29	3,31	3,30	3,31
Water flow rate system side	l/h	56933	65026	74302	82821	90716	97089	101524	109164	116096	121764	129073	139455	155146	167724
Pressure drop system side	kPa	17	15	19	21	25	28	31	25	28	30	26	26	30	37

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSM - U

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C/7 °C (1)														
Cooling capacity	kW	1043,4	1104,7	1184,6	1234,0	1301,2	1360,8	1419,5	1505,6 (2)	1579,3	1693,4	1772,6	-	-
Input power	kW	315,2	336,8	357,4	380,5	400,8	418,5	427,8	453,3	472,9	522,1	540,7	-	-
Cooling total input current	А	530,0	562,0	597,0	634,0	671,0	706,0	725,0	762,0	795,0	870,0	896,0	-	-
EER	W/W	3,31	3,28	3,31	3,24	3,25	3,25	3,32	3,32	3,34	3,24	3,28	-	-
Water flow rate system side	l/h	179384	189926	203652	212142	223669	233910	244004	258808	271482	291091	304708	-	-
Pressure drop system side	kPa	42	51	38	40	26	26	31	37	42	51	46	-	-

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Unit not Eurovent certified because it exceeds 1500 kW

NSM - N

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	kW	329,8	375,3	431,9	474,4	517,0	550,9	578,6	620,4	659,2	701,2	743,2	803,1	879,6	955,4
Input power	kW	98,1	113,1	127,6	144,8	160,4	168,7	178,2	190,1	204,5	217,3	231,1	247,6	270,2	292,6
Cooling total input current	Α	165,0	190,0	207,0	237,0	265,0	281,0	297,0	317,0	339,0	358,0	378,0	399,0	429,0	470,0
EER	W/W	3,36	3,32	3,38	3,28	3,22	3,27	3,25	3,26	3,22	3,23	3,22	3,24	3,26	3,27
Water flow rate system side	l/h	56717	64546	74260	81573	88881	94723	99476	106664	113329	120551	127777	138054	151226	164260
Pressure drop system side	kPa	16	15	19	21	24	28	30	25	27	29	26	25	30	37

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSM - N

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C / 7 °C (1)														
Cooling capacity	kW	1014,4	1086,1	1169,7	1219,0	1267,1	1317,0	1367,2	1452,6	-	-	-	-	-
Input power	kW	315,6	332,8	352,6	374,6	396,5	410,4	428,2	450,1	-	-	-	-	-
Cooling total input current	A	513,0	540,0	569,0	605,0	643,0	668,0	700,0	731,0	-	-	-	-	-
EER	W/W	3,21	3,26	3,32	3,25	3,20	3,21	3,19	3,23	-	-	-	-	-
Water flow rate system side	I/h	174394	186718	201086	209575	217799	226384	235022	249705	-	-	-	-	-
Pressure drop system side	kPa	40	35	44	44	26	26	30	37	-	-	-	-	-

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

579

ENERGY INDICES (REG. 2016/2281 EU)

Increased fan

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Fans: M																
SEPR - (EN 14825: 2018) (1)																
	٥	W/W	5,41	5,44	5,37	5,53	5,54	5,51	5,54	5,51	5,53	5,51	5,51	5,52	5,52	5,53
	A	W/W	5,70	5,67	5,57	5,54	5,61	5,60	5,62	5,62	5,65	5,51	5,52	5,53	5,60	5,61
CEDD	E	W/W	5,82	5,76	5,80	5,71	5,66	5,79	5,74	5,77	5,73	5,64	5,60	5,63	5,72	5,74
SEPR	L	W/W	5,62	5,59	5,48	5,54	5,53	5,52	5,56	5,54	5,60	5,52	5,52	5,52	5,55	5,54
	N	W/W	5,94	5,85	5,98	5,79	5,70	5,78	5,75	5,77	5,70	5,63	5,57	5,65	5,73	5,74
	U	W/W	5,91	5,85	5,89	5,81	5,77	5,88	5,84	5,87	5,83	5,75	5,68	5,74	5,82	5,84

Size			4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Fans: M	'												
SEPR - (EN 14825: 2018) (1)													
	0	W/W	5,53	5,52	5,53	5,52	5,52	5,64	5,51	5,54	5,55	5,51	5,54
	Α	W/W	5,60	5,57	5,60	5,60	5,57	5,66	5,61	5,71	5,69	5,62	5,68
CEDD	E	W/W	5,75	5,62	5,60	5,60	5,74	5,85	5,90	5,70	5,77	-	-
SEPR	L	W/W	5,55	5,54	5,56	5,55	5,52	5,64	5,61	5,68	5,66	5,63	5,68
	N	W/W	5,73	5,79	5,65	5,67	5,65	5,79	-	-	-	-	-
	U	W/W	5.85	5.73	5.71	5.72	5.84	5.93	5.98	5.82	5.87	_	_

⁽¹⁾ Calculation performed with FIXED water flow rate.

Inverter fan

iliverter fall																
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Fans: J																
SEER - 12/7 (EN14825: 2018) (1)																
	0	W/W	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	W/W	4,44	4,40	4,55	4,56	4,56	4,56	4,57	4,55	4,56	4,56	4,57	4,57	4,56	4,56
CLLD	E	W/W	4,48	4,47	4,57	4,57	4,58	4,58	4,58	4,58	4,58	4,59	4,59	4,59	4,59	4,60
SEER	L	W/W	4,43	4,39	4,53	4,55	4,56	4,56	4,56	4,55	4,56	4,56	4,56	4,56	4,56	4,56
	N	W/W	4,54	4,51	4,60	4,60	4,61	4,59	4,60	4,61	4,60	4,61	4,60	4,60	4,60	4,60
	U	W/W	4,49	4,48	4,57	4,59	4,60	4,59	4,59	4,59	4,59	4,59	4,59	4,59	4,59	4,60
	0	%	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	%	174,50	172,80	179,00	179,20	179,40	179,40	179,70	179,10	179,50	179,50	179,70	179,60	179,50	179,40
Casanal off sian au	E	%	176,30	175,60	179,60	179,80	180,20	180,00	180,10	180,00	180,20	180,60	180,40	180,40	180,50	180,80
Seasonal efficiency	L	%	174,00	172,40	178,30	179,00	179,30	179,20	179,20	179,00	179,40	179,20	179,30	179,30	179,30	179,20
	N	%	178,70	177,40	180,80	180,90	181,30	180,70	180,90	181,20	180,90	181,30	181,10	181,10	181,00	181,10
	U	%	176,60	176,10	179,80	180,40	180,90	180,50	180,70	180,60	180,70	180,60	180,60	180,40	180,50	180,90
SEPR - (EN 14825: 2018) (3)																
	0	W/W	5,41	5,44	5,37	5,53	5,54	5,51	5,54	5,51	5,53	5,51	5,51	5,52	5,52	5,53
	A	W/W	5,70	5,67	5,57	5,54	5,61	5,60	5,62	5,62	5,65	5,51	5,52	5,53	5,60	5,61
CEDD	E	W/W	5,82	5,76	5,80	5,71	5,66	5,79	5,74	5,77	5,73	5,64	5,60	5,63	5,72	5,74
SEPR	L	W/W	5,62	5,59	5,48	5,54	5,53	5,52	5,56	5,54	5,60	5,52	5,52	5,52	5,55	5,54
	N	W/W	5,94	5,85	5,98	5,79	5,70	5,78	5,75	5,77	5,70	5,63	5,57	5,65	5,73	5,74
	U	W/W	5,91	5,85	5,89	5,81	5,77	5,88	5,84	5,87	5,83	5,75	5,68	5,74	5,82	5,84

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C / 7°C
(3) Calculation performed with FIXED water flow rate.

Size			4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Fans: J															
SEER - 12/7 (EN14825: 2018) (1)															
	0	W/W	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	W/W	4,56	4,56	4,56	4,55	4,57	4,56	4,56	4,56	4,57	4,56	4,56	4,56	4,57
SEER	E	W/W	4,58	4,59	4,59	4,59	4,59	4,59	4,59	4,59	4,60	4,58	4,59	-	-
SEEK	L	W/W	4,55	4,56	4,55	4,56	4,56	4,57	4,56	4,57	4,56	4,56	4,56	4,56	4,56
	N	W/W	4,60	4,60	4,60	4,60	4,60	4,61	4,60	4,61	-	-	-	-	-
	U	W/W	4,59	4,59	4,60	4,60	4,60	4,60	4,59	4,60	4,60	4,59	4,59	-	-
	0	%	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	%	179,50	179,40	179,40	179,10	179,80	179,40	179,40	179,20	179,60	179,20	179,40	179,50	179,70
Caranal officiana.	E	%	180,30	180,60	180,70	180,60	180,40	180,40	180,60	180,50	180,90	180,20	180,40	-	-
Seasonal efficiency	L	%	179,00	179,20	179,10	179,20	179,40	179,60	179,40	179,60	179,30	179,20	179,50	179,40	179,50
	N	%	180,80	181,00	181,10	181,00	181,10	181,20	180,80	181,40	-	-	-	-	-
	U	%	180,40	180,60	180,80	180,90	180,90	180,80	180,60	180,80	180,90	180,60	180,60	-	-
SEPR - (EN 14825: 2018) (3)															
	0	W/W	5,51	5,52	5,53	5,52	5,53	5,52	5,52	5,64	5,51	5,54	5,55	5,51	5,54
	A	W/W	5,56	5,60	5,60	5,57	5,60	5,60	5,57	5,66	5,61	5,71	5,69	5,62	5,68
SEPR	E	W/W	5,75	5,70	5,75	5,62	5,60	5,60	5,74	5,85	5,90	5,70	5,77	-	-
ארזכ	L	W/W	5,51	5,53	5,55	5,54	5,56	5,55	5,52	5,64	5,61	5,68	5,66	5,63	5,68
	N	W/W	5,71	5,71	5,73	5,79	5,65	5,67	5,65	5,79	-	-	-	-	-
	U	W/W	5,85	5,81	5,85	5,73	5,71	5,72	5,84	5,93	5,98	5,82	5,87	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C/7°C
(3) Calculation performed with FIXED water flow rate.

FI FCTRIC DATA

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Electric data																
	0	А	229,0	257,0	284,0	324,0	357,0	379,0	400,0	433,0	458,0	466,0	466,0	514,0	562,0	619,0
Mariana arrant (FLA)	A,L	Α	235,0	263,0	291,0	324,0	364,0	385,0	406,0	437,0	462,0	462,0	462,0	516,0	564,0	619,0
Maximum current (FLA)	E,U	А	235,0	263,0	297,0	330,0	364,0	391,0	413,0	444,0	468,0	468,0	468,0	523,0	571,0	625,0
	N	A	242,0	270,0	303,0	337,0	370,0	398,0	419,0	450,0	475,0	475,0	475,0	529,0	583,0	644,0
	•	A	251,0	292,0	335,0	380,0	403,0	450,0	467,0	502,0	512,0	521,0	521,0	645,0	685,0	814,0
Peak current (LRA)	A,L	A	257,0	299,0	342,0	380,0	409,0	456,0	473,0	507,0	517,0	517,0	517,0	647,0	687,0	814,0
reak current (LNA)	E,U	A	257,0	299,0	348,0	386,0	409,0	462,0	480,0	513,0	523,0	523,0	523,0	653,0	693,0	821,0
	N N	A	263,0	305,0	354,0	392,0	415,0	469,0	486,0	519,0	529,0	529,0	529,0	660,0	706,0	839,0
Size																
Size			4202	4502	4802	5202	5602	600	02 64	102	6503	6703	6903	7203	8403	9603
Electric data			4202	4502	4802	5202	5602	600	02 64	102	6503	6703	6903	7203	8403	9603
	0	A	4202 667,0	4502 714,0	4802 753,0	5202 805,0	5602 848,0					997,0	6903 1084,0	7203	1266,0	9603 1368,0
Electric data		A A						882	,0 92	14,0	949,0					
			667,0	714,0	753,0	805,0	848,0	913	,0 92 ,0 94	14,0 17,0	949,0 955,0	997,0	1084,0	1137,0	1266,0	1368,0
Electric data	A,L	Α	667,0 667,0	714,0 712,0	753,0 751,0	805,0 813,0	848,0 865,0) 882) 913) 902	,0 92 ,0 94 ,0 94	14,0 17,0 13,0	949,0 955,0	997,0 1003,0	1084,0 1094,0	1137,0 1133,0	1266,0 1268,0	1368,0
Electric data	A,L E,U	A A	667,0 667,0 679,0	714,0 712,0 718,0	753,0 751,0 770,0	805,0 813,0 813,0	848,0 865,0 862,0 887,0	913 902 921	,0 92 ,0 94 ,0 95	14,0 17,0 13,0 15,0	949,0 955,0 968,0 987,0	997,0 1003,0 1022,0	1084,0 1094,0 1100,0	1137,0 1133,0 1145,0	1266,0 1268,0 -	1368,0 1406,0 -
Electric data Maximum current (FLA)	A,L E,U N	A A A	667,0 667,0 679,0 692,0	714,0 712,0 718,0 743,0	753,0 751,0 770,0 789,0	805,0 813,0 813,0 838,0	848,0 865,0 862,0 887,0 1147,0	913 902 921 0 1259	,0 92 ,0 94 ,0 94 ,0 95	14,0 17,0 13,0 15,0 164,0	949,0 955,0 968,0 987,0 038,0	997,0 1003,0 1022,0	1084,0 1094,0 1100,0	1137,0 1133,0 1145,0	1266,0 1268,0 - -	1368,0 1406,0 -
Electric data	A,L E,U N	A A A	667,0 667,0 679,0 692,0 841,0	714,0 712,0 718,0 743,0 914,0	753,0 751,0 770,0 789,0 936,0	805,0 813,0 813,0 838,0 1100,0	848,0 865,0 862,0 887,0 1147,0	913 902 921 0 1259 0 1290	,0 92 ,0 94 ,0 94 ,0 95 9,0 12	14,0 17,0 13,0 15,0 164,0 187,0	949,0 955,0 968,0 987,0 038,0 044,0	997,0 1003,0 1022,0 - 1065,0	1084,0 1094,0 1100,0 - 1160,0	1137,0 1133,0 1145,0 - 1197,0	1266,0 1268,0 - - 1446,0	1368,0 1406,0 - - 1552,0

GENERAL TECHNICAL DATA

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802
Compressor											
Туре	°,A,E,L,N,U	type					Screw				
Number	°,A,E,L,N,U	no.	2	2	2	2	2	2	2	2	2
Circuits	°,A,E,L,N,U	no.	2	2	2	2	2	2	2	2	2
Refrigerant	°,A,E,L,N,U	type					R134a				
	•	kg	24,0	24,0	24,0	30,0	30,0	35,0	35,0 (2)	35,0	35,0
	A	kg	26,5	34,0 (2)	28,0	28,0	34,0	35,0	38,5	40,5	45,0
Defrigurant load circuit 1 (1)	E	kg	28,0	30,0	41,0 (2)	41,0 (2)	46,0 (2)	43,0	41,0	46,0	45,0
Refrigerant load circuit 1 (1)	L	kg	24,0	34,0 (2)	37,0 (2)	28,0	34,0	35,0	38,5	40,0	42,0 (2)
	N	kg	36,0 (2)	38,0 (2)	44,0 (2)	44,0 (2)	49,0 (2)	53,0 (2)	56,0 (2)	60,0 (2)	64,0 (2)
	U	kg	32,0 (2)	34,0 (2)	34,0	35,0	46,0 (2)	49,0 (2)	49,0	46,0 (2)	45,0 (2)
	0	kg	24,0	25,0	25,0	41,0	33,0	38,0	37,0 (2)	37,5	36,5
	A	kg	28,0	34,0 (2)	29,5	36,0	34,0	49,0	40,5	45,0	47,5
Deficience land singuit 2 (1)	E	kg	30,0	31,5	41,0 (2)	46,0 (2)	46,0 (2)	45,0	46,0	52,0	53,0
Refrigerant load circuit 2 (1)	L	kg	27,0	34,0 (2)	37,0 (2)	36,0	34,0	40,0	40,5	43,0	46,0 (2)
	N	kg	36,0 (2)	38,0 (2)	44,0 (2)	49,0 (2)	49,0 (2)	56,0 (2)	56,0 (2)	64,0 (2)	64,0 (2)
	U	kg	32,0 (2)	34,0 (2)	36,0	41,5	46,0 (2)	53,0 (2)	54,0	52,0 (2)	48,5 (2)
Refrigerant load circuit 3 (1)	°,A,E,L,N,U	kg	-	-	-	-	-	-	-	-	-
System side heat exchanger											
Туре	°,A,E,L,N,U	type					Shell and tube				
Number	°,A,E,L,N,U	no.	1	1	1	1	1	1	1	1	1

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) The refrigerant gas charge is approximate, for more information contact the office.

Size			3002	3202	3402	3602	3902	4202	4502	4802	5202
Compressor											
Туре	°,A,E,L,N,U	type					Screw				
Number	°,A,E,L,N,U	no.	2	2	2	2	2	2	2	2	2
Circuits	°,A,E,L,N,U	no.	2	2	2	2	2	2	2	2	2
Refrigerant	°,A,E,L,N,U	type					R134a				
	0	kg	40,0	46,0	42,5	44,5	51,0	52,0	55,0	55,0 (2)	63,0 (2)
	A	kg	44,0 (2)	47,0	52,0 (2)	55,0	74,0 (2)	62,0	67,0	67,0	70,0
D. 6	E	kg	45,0 (2)	57,0	54,0 (2)	74,0 (2)	60,0 (2)	70,0	89,0 (2)	80,0 (2)	100,0 (2)
Refrigerant load circuit 1 (1)	L	kg	44,0	47,0	52,0 (2)	54,0	56,0 (2)	62,0	67,0 (2)	67,0	70,0
	N	kg	64,0 (2)	55,0 (2)	72,0 (2)	81,0 (2)	85,0 (2)	92,0 (2)	99,0 (2)	110,0 (2)	114,0 (2)
	U	kg	60,0 (2)	54,5	58,0	58,0	60,0 (2)	70,0	89,0 (2)	80,0	85,0 (2)
	0	kg	50,0	48,0	46,0	46,0	59,0	59,0	64,0	64,0 (2)	70,0 (2)
	A	kg	52,0 (2)	50,0	55,0 (2)	60,0	81,0 (2)	70,0	78,0	78,0	82,0
Defrie avent land singuit 2 (1)	E	kg	53,0 (2)	59,0	59,0 (2)	74,0 (2)	77,0 (2)	85,0	96,0 (2)	90,0 (2)	110,0 (2)
Refrigerant load circuit 2 (1)	L	kg	52,0	50,0	55,0 (2)	58,0	72,0 (2)	70,0	79,0 (2)	78,0	82,0
	N	kg	69,0 (2)	57,0 (2)	77,0 (2)	81,0 (2)	92,0 (2)	92,0 (2)	107,0 (2)	110,0 (2)	124,0 (2)
	U	kg	65,0 (2)	59,0	62,0	63,0	77,0 (2)	85,0	96,0 (2)	90,0	103,0 (2)
Refrigerant load circuit 3 (1)	°,A,E,L,N,U	kg	-	-	-	-	-	-	-	-	-
System side heat exchanger											
Туре	°,A,E,L,N,U	type					Shell and tube				
Number	°,A,E,L,U	no.	1	1	1	1	1	1	1	1	1
Number	N	no.	1	1	1	1	1	1	2	2	2

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) The refrigerant gas charge is approximate, for more information contact the office.

Size			5602	6002	6402	6503	6703	6903	7203	8403	9603
Compressor	'		'								
Туре	°,A,E,L,N,U	type					Screw				
	°,A,L	no.	2	2	2	3	3	3	3	3	3
Number	E,U	no.	2	2	2	3	3	3	3	-	-
	N	no.	2	2	2	3	-	-	-	-	-
	°,A,L	no.	2	2	2	3	3	3	3	3	3
Circuits	E,U	no.	2	2	2	3	3	3	3	-	-
	N	no.	2	2	2	3	-	-	-	-	-
Refrigerant	°,A,E,L,N,U	type					R134a				
	0	kg	65,0 (2)	62,0	70,0 (2)	67,0 (2)	55,0	78,0 (2)	62,0 (2)	99,0 (2)	112,0 (2)
	A	kg	106,0 (2)	82,0	82,0 (2)	74,0 (2)	81,0 (2)	85,0 (2)	70,0	106,0 (2)	80,0
D. 6	E	kg	113,0 (2)	86,0	95,0 (2)	77,0 (2)	89,0 (2)	89,0 (2)	100,0 (2)	-	-
Refrigerant load circuit 1 (1)	L	kg	106,0 (2)	82,0	82,0 (2)	74,0 (2)	81,0 (2)	85,0 (2)	70,0 (2)	106,0 (2)	80,0
	N	kg	128,0 (2)	128,0 (2)	138,0 (2)	85,0 (2)	-	-	-	-	-
	U	kg	113,0 (2)	86,0	95,0	77,0 (2)	89,0 (2)	89,0 (2)	100,0 (2)	-	-

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) The refrigerant gas charge is approximate, for more information contact the office.

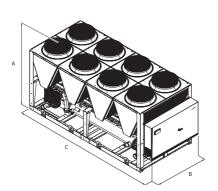
Size			5602	6002	6402	6503	6703	6903	7203	8403	9603
	0	kg	71,0 (2)	73,0	80,0 (2)	74,0 (2)	61,0	85,0 (2)	70,0 (2)	99,0 (2)	112,0 (2)
	A	kg	106,0 (2)	99,0	99,0 (2)	81,0 (2)	81,0 (2)	92,0 (2)	75,0	106,0 (2)	95,0
Defrigarant load circuit 2 (1)	E	kg	113,0 (2)	98,0	97,0 (2)	85,0 (2)	89,0 (2)	96,0 (2)	100,0 (2)	-	-
Refrigerant load circuit 2 (1)	L	kg	106,0 (2)	99,0	99,0 (2)	81,0 (2)	81,0 (2)	92,0 (2)	75,0 (2)	106,0 (2)	95,0
	N	kg	128,0 (2)	138,0 (2)	138,0 (2)	92,0 (2)	-	-	-	-	-
	U	kg	113,0 (2)	98,0	97,0	85,0 (2)	89,0 (2)	96,0 (2)	100,0 (2)	-	-
	0	kg	-	-	-	74,0 (2)	65,0	85,0 (2)	80,0 (2)	99,0 (2)	112,0 (2)
	A	kg	-	-	-	81,0 (2)	81,0 (2)	92,0 (2)	75,0	106,0 (2)	85,0
Refrigerant load circuit 3 (1)	E,U	kg	-	-	-	85,0 (2)	89,0 (2)	96,0 (2)	100,0 (2)	-	-
	L	kg	-	-	-	81,0 (2)	81,0 (2)	92,0 (2)	75,0 (2)	106,0 (2)	85,0
	N	kg	-	-	-	92,0 (2)	-	-	-	-	-
System side heat exchanger											
Туре	°,A,E,L,N,U	type					Shell and tube				
	0	no.	1	1	1	1	1	1	1	1	1
Number	A,L	no.	1	1	1	2	2	2	2	2	2
Number	E,U	no.	2	2	2	2	2	2	2	-	-
	N	no.	2	2	2	2	-	-	-	-	-

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) The refrigerant gas charge is approximate, for more information contact the office.

FANS DATA

Oversized			1402	1/02	1003	2002	2202	2252	2502	2/52	2002
Size Fans: M			1402	1602	1802	2002	2202	2352	2502	2652	2802
Increased fan											
Type	°,A,E,L,N,U	type					axials				
туре	°,A,U	type					Asynchronous			-	
Fan motor	,x,o E,L,N	type				Async	hronous with pha	nca cut			
Fan	L,L,IV	турс				Asylic	illollous with plic	ise cut			
I all	0	no.	6	6	6	8	8	8	8	8	8
	A,L	no.	8	8	8	8	10	10	10	12	12
Number		no.	8	8	10	10	10	12	12	14	14
	N	no.	10	10	12	12	12	14	14	16	16
With static pressure	IV	110.	10	10	12	12	12	- 14	14	10	10
with static pressure	0	m³/h	96000	96000	96000	128000	128000	128000	128000	144000	144000
	A	m³/h	128000	128000	128000	128000	160000	160000	160000	192000	192000
	A E	m³/h	92000	92000	115000	115000	115000	138000	138000	161000	161000
Air flow rate	L	m³/h	92000	92000	92000	92000	115000	115000	115000	138000	138000
	N	m³/h	115000	115000	138000	138000	138000	161000	161000	184000	184000
	N	m³/h	128000	128000	160000	160000	160000	192000	192000	224000	224000
	0	Pa	50	50	50	50	50	50	50	- 224000	- 224000
High static pressure	A,E,L,N,U	Pa	50	50	50	50	50	50	50	50	50
Without Static pressure	A,E,L,N,U	га	30	30	30	30	30	30	30	30	30
without static pressure	0	m³/h	108000	108000	108000	144000	144000	144000	144000	144000	144000
	A	m³/h	144000	144000	144000	144000	180000	180000	180000	216000	216000
	E	m³/h	92000	92000	115000	115000	115000	138000	138000	161000	161000
Air flow rate	L	m³/h	92000	92000	92000	92000	115000	115000	115000	138000	138000
	L N	m³/h	115000	115000	138000	138000	138000	161000	161000	184000	184000
	N	m³/h	144000	144000	180000	180000	180000	216000	216000	252000	252000
High static pressure	°,A,E,L,N,U	Pa	0	0	0	0	0	0	0	0	0
With static pressure	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	I a		U	U	- 0					U
with static pressure	0	dB(A)	96,8	97,0	97,2	97,6	97,8	98,0	98,2	98,4	98,4
	A	dB(A)	97,3	97,0	97,2	97,0	98,2	98,3	98,4	98,8	98,9
	E	dB(A)	89,3	89,4	90,2	90,3	90,4	90,8	91,2	91,8	92,0
Sound power level	L	dB(A)	88,9	89,0	89,1	89,2	90,4	90,5	90,6	90,8	90,9
	N	dB(A)	90,0	90,4	90,9	91,0	91,1	91,4	91,4	92,1	92,2
	N	dB(A)	97,0	97,4	98,0	98,2	98,4	98,8	98,8	99,0	99,1
Without Static pressure	U	UD(A)	37,0	77,4	70,0	70,2	70,4	70,0	70,0	77,0	77,1
without static pressure	0	dB(A)	97,5	97,6	97,6	97,9	98,1	98,2	98,4	98,4	98,4
	A	dB(A)	98,2	98,2	97,6	97,9	99,1	99,2	98,4	98,4	99,8
	E	dB(A)	89,3	89,4	90,0	90,3	99,1	99,2	99,2	91,8	92,0
Sound power level		dB(A)	88,9	89,0	89,1	89,2	90,4	90,8	90,6	90,8	90,9
	L N	dB(A)	90,0	90,4	90,9	91,0	91,1	91,4	91,4	92,1	92,2
	N	dB(A)	97,9	98,2	98,9	99,1	99,2	99,7	99,7	100,0	100,1
	U	up(n)									
Size			3002	3202	3402	3602	3902	4202	4502	4802	5202
Fans: M			-						-		
Increased fan	0										
Туре	°,A,E,L,N,U	type	-				axials		-		
Fan motor	°,A,U	type					Asynchronous				
	E,L,N	type				Async	hronous with pha	ise cut			


Size			3002	3202	3402	3602	3902	4202	4502	4802	5202
Fan			3002	3202	3102	3002		1202	1502	1002	3202
	0	no.	10	10	10	10	12	12	14	14	16
	A,L	no.	12	12	14	14	16	16	18	18	18
Number	E,U	no.	14	14	16	16	18	20	20	22	22
	N	no.	16	16	18	20	22	22	26	28	30
With static pressure											
	0	m³/h	180000	180000	180000	180000	216000	216000	252000	252000	288000
	A	m³/h	192000	192000	224000	224000	256000	256000	288000	288000	324000
Air flow rate	E	m³/h	161000	161000	184000	184000	207000	230000	230000	253000	253000
All flow fale	L	m³/h	138000	138000	161000	161000	184000	184000	207000	207000	234000
	N	m³/h	184000	184000	207000	230000	253000	253000	299000	322000	345000
	U	m³/h	224000	224000	256000	256000	288000	320000	320000	352000	352000
	0	Pa	-	-	-	-	-	-	-	-	-
High static pressure	A,L	Pa	50	50	50	50	50	50	50	50	-
	E,N,U	Pa	50	50	50	50	50	50	50	50	50
Without Static pressure											
		m³/h	180000	180000	180000	180000	216000	216000	252000	252000	288000
	A	m³/h	216000	216000	252000	252000	288000	288000	324000	324000	324000
A: ()	E	m³/h	161000	161000	184000	184000	207000	230000	230000	253000	253000
Air flow rate	L	m³/h	138000	138000	161000	161000	184000	184000	207000	207000	234000
	N	m³/h	184000	184000	207000	230000	253000	253000	299000	322000	345000
	U	m³/h	252000	252000	288000	288000	324000	360000	360000	396000	396000
High static pressure	°,A,E,L,N,U	Pa	0	0	0	0	0	0	0	0	0
With static pressure											
·	٥	dB(A)	99,4	99,5	99,6	99,8	100,7	100,8	101,2	101,3	101,7
	Α	dB(A)	99,0	99,1	99,3	99,4	100,1	100,2	100,4	100,8	101,5
	E	dB(A)	92,2	92,3	92,8	93,0	93,2	93,5	93,6	93,7	93,8
Sound power level	L	dB(A)	91,0	91,1	91,3	91,4	92,4	92,5	93,0	93,1	93,2
	N	dB(A)	92,3	92,4	92,8	93,1	93,3	93,4	94,3	94,4	94,8
	U	dB(A)	99,2	99,3	99,9	100,0	100,4	100,7	101,0	101,3	101,6
Without Static pressure		,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, .	,	,		,,,		
	0	dB(A)	99,4	99,5	99,6	99,8	100,7	100,8	101,2	101,3	101,7
	A	dB(A)	99,9	100,0	100,2	100,3	101,0	101,1	101,3	101,7	101,5
	E	dB(A)	92,2	92,3	92,8	93,0	93,2	93,5	93,6	93,7	93,8
Sound power level		dB(A)	91,0	91,1	91,3	91,4	92,4	92,5	93,0	93,1	93,2
	N	dB(A)	92,3	92,4	92,8	93,1	93,3	93,4	94,3	94,4	94,8
	U	dB(A)	100,2	100,2	100,8	100,9	101,3	101,7	101,9	102,2	102,5
Ci		(-)	5602		6002	6402		6703	,,	6903	
Size Fans: M			3002		0002	0402	6503	0/03		0903	7203
Increased fan	9 A F I N II	4									
Туре	°,A,E,L,N,U	type					axials				
Fan motor	°,A,U	type				Λ	Asynchronous			,	
Fa.,.	E,L,N	type				ASY	nchronous with ph	iase cut			
Fan	0		44		11	10	40	40		20	22
		no.	16		16	18	18	18		20	22
Number	A,L	no.	20		22	22	24	24		28	28
	E,U	no.	24		26	28	28	30		30	32
Wish stations	N	no.	32		32	32	34	-		-	-
With static pressure	0	3 #				22.422				24000	
		m³/h	288000		288000	324000	324000	324000		360000	396000
			360000		396000	396000	384000	384000		448000	448000
Air flow rate	A	m³/h						345000		345000	368000
	A E	m³/h	276000		299000	322000	322000			222000	322000
······································	E L	m³/h m³/h	276000 260000		286000	286000	276000	276000		322000	
	E L N	m³/h m³/h m³/h	276000 260000 368000		286000 368000	286000 368000	276000 391000	276000 -		-	-
	E L N U	m ³ /h m ³ /h m ³ /h m ³ /h	276000 260000 368000 384000		286000 368000 416000	286000 368000 448000	276000 391000 448000	276000 - 480000		480000	512000
	E L N U	m³/h m³/h m³/h m³/h Pa	276000 260000 368000 384000		286000 368000 416000 -	286000 368000 448000	276000 391000 448000 -	276000 - 480000 -		- 480000 -	- 512000 -
	E L N U	m³/h m³/h m³/h m³/h Pa	276000 260000 368000 384000 -		286000 368000 416000 -	286000 368000 448000 - -	276000 391000 448000 - 50	276000 - 480000 - 50		- 480000 - 50	512000 - 50
	E L N U • A,L E,U	m³/h m³/h m³/h m³/h Pa Pa	276000 260000 368000 384000 - - - 50		286000 368000 416000 - - 50	286000 368000 448000 - - 50	276000 391000 448000 - 50 50	276000 - 480000 - 50 50		- 480000 - 50 50	- 512000 - 50 50
High static pressure	E L N U	m³/h m³/h m³/h m³/h Pa	276000 260000 368000 384000 -		286000 368000 416000 -	286000 368000 448000 - -	276000 391000 448000 - 50	276000 - 480000 - 50		- 480000 - 50	512000 - 50
High static pressure	E L N U • A,L E,U	m³/h m³/h m³/h m³/h Pa Pa Pa	276000 260000 368000 384000 - - 50 50		286000 368000 416000 - - 50 50	286000 368000 448000 - - 50 50	276000 391000 448000 - 50 50	276000 - 480000 - 50 50		- 480000 - 50 50	512000 - 50 50 -
High static pressure	E L N U • A,L E,U	m ³ /h m ³ /h m ³ /h m ³ /h Pa Pa Pa Pa Pa	276000 260000 368000 384000 - - - 50 50		286000 368000 416000 - - 50 50	286000 368000 448000 - - 50 50 324000	276000 391000 448000 - 50 50 50 50	276000 - 480000 - 50 50 - 324000		- 480000 - 50 50 - 360000	512000 - 50 50 - 396000
High static pressure	E L N U A,L E,U N	m ³ /h m ³ /h m ³ /h m ³ /h Pa Pa Pa Pa Pa m ³ /h m ³ /h	276000 260000 368000 384000 - - - 50 50 288000 360000		286000 368000 416000 - - 50 50 288000 396000	286000 368000 448000 - - 50 50 324000 396000	276000 391000 448000 - 50 50 50 324000 432000	276000 - 480000 - 50 50 - 324000 432000		- 480000 - 50 50 - 360000 504000	512000 - 50 50 - 396000 504000
High static pressure Without Static pressure	E L N U • A,L E,U N	m³/h m³/h m³/h m³/h m³/h Pa Pa Pa Pa Pa m³/h m³/h m³/h	276000 260000 368000 384000 - - - 50 50 288000 360000 276000		286000 368000 416000 - - 50 50 288000 396000 299000	286000 368000 448000 - - 50 50 324000 396000 322000	276000 391000 448000 - 50 50 50 324000 432000 322000	276000 - 480000 - 50 50 - 324000 432000 345000		- 480000 - 50 50 - 360000 504000 345000	512000 - 50 50 - 396000 504000 368000
High static pressure Without Static pressure	E L N U • A,L E,U N	m³/h m³/h m³/h m³/h m³/h Pa Pa Pa Pa Pa m³/h m³/h m³/h m³/h	276000 260000 368000 384000 50 50 288000 360000 2760000 2600000		286000 368000 416000 50 50 288000 396000 299000 286000	286000 368000 448000 - - 50 50 324000 396000 322000 286000	276000 391000 448000 - 50 50 50 324000 432000	276000 - 480000 - 50 50 - 324000 432000		- 480000 - 50 50 - 360000 504000	512000 - 50 50 - 396000 504000
High static pressure Without Static pressure	E L N U • A,L E,U N	m³/h m³/h m³/h m³/h m³/h Pa Pa Pa Pa Pa m³/h m³/h m³/h m³/h m³/h m³/h	276000 260000 368000 384000 50 50 288000 360000 276000 260000 368000		286000 368000 416000 50 50 288000 396000 299000 286000 368000	286000 368000 448000 - - 50 50 324000 396000 322000 286000 368000	276000 391000 448000 - 50 50 50 324000 432000 322000	276000 - 480000 - 50 50 - 324000 432000 345000		- 480000 - 50 50 - 360000 504000 345000 322000 -	512000 - 50 50 - 396000 504000 368000
High static pressure Without Static pressure Air flow rate	E L N U • A,L E,U N N • A E L N U U	m³/h m³/h m³/h m³/h m³/h Pa Pa Pa Pa Pa m³/h m³/h m³/h m³/h	276000 260000 368000 384000 50 50 288000 360000 2760000 2600000		286000 368000 416000 50 50 288000 396000 299000 286000	286000 368000 448000 - - 50 50 324000 396000 322000 286000	276000 391000 448000 - 50 50 50 324000 432000 322000 276000	276000 - 480000 - 50 50 - 324000 432000 345000 276000		- 480000 - 50 50 - 360000 504000 345000 322000	512000 - 50 50 - 396000 504000 368000 322000
High static pressure Without Static pressure	E L N U • A,L E,U N	m³/h m³/h m³/h m³/h m³/h Pa Pa Pa Pa Pa m³/h m³/h m³/h m³/h m³/h m³/h	276000 260000 368000 384000 50 50 288000 360000 276000 260000 368000		286000 368000 416000 50 50 288000 396000 299000 286000 368000	286000 368000 448000 - - 50 50 324000 396000 322000 286000 368000	276000 391000 448000 - 50 50 50 324000 432000 322000 276000 391000	276000 - 480000 - 50 50 - 324000 432000 345000		- 480000 - 50 50 - 360000 504000 345000 322000 -	512000 - 50 50 - 396000 504000 368000 322000

With static pressure				5602		6002	6402	6503	6703		6903	7203
Sample	Nith static pressure			3002			V.V.	3343	0.03			. 200
Sound power level	The state pressure	0	dR(A)	101 7		101.8	102.1	102.3	102.4		103.0	103,1
Fig.		Λ	. ,									102,4
March Marc												
No.	Sound power level						· · · · · · · · · · · · · · · · · · ·					94,8
Without Static pressure		L	. ,									94,3
Without Static pressure												-
Sound power level		U	dB(A)	102,0		102,1	102,2	102,2	102,3		102,4	102,4
March Marc	Nithout Static pressure											
Fig.		0	dB(A)	101,7		101,8	102,1	102,3	102,4		103,0	103,1
		A	dB(A)	101,7		101,9	102,0	102,9	103,0		103,2	103,3
		E	dB(A)	93,9		94.0	94.2	94,3	94,3		94,4	94,8
Note 18	Sound power level											94,3
New Parison									71,2		74,5	71,5
Size			. ,				-		103.3		103.4	103,4
			ub(n)	102,7		105,0	103,2	103,2	103,3		105,1	103,1
Part				1402	1602	1802	2002	2202	2352	2502	2652	2802
Mariantoria				1402	1002	1002	2002	2202	2332	2302	2032	2002
Name Part Name Part Name		0 4 5 1 11 11	4									
Marche Part												
Number A,L No. 8 8 8 10 10 10 12 12 14 14 16 16 17 18 18 18 18 18 19 19 19	an motor		type									
Marie Mari			no.									8
F.U no. 8 8 10 10 10 10 11 12 12 14 14 16 18 18 18 18 18 18 18	lumbor	A,L	no.	8	8	8	8	10	10	10	12	12
N	number	E,U	no.	8	8	10	10	10	12	12	14	14
1			no.	10	10	12	12	12	14	14	16	16
1400 1400	nverter fan											
Air flow rate A my h 12800 12800 12800 12800 16000 18000 18		0	m ³ /h	96000	96000	96000	128000	128000	128000	128000	144000	14400
F m³/h 9200 9200 11500 11500 11500 13000 13000 13000 13000 16100 16100 16000 13000 13000 13000 13000 16100 16000 130												16000
The control of the												
N	Air flow rate											16100
12800 12800 16000 16000 16000 16000 19200 19200 22400 19200 19200 22400 192000 192											161000	16100
Pa 120							18000	18000		21000	24000	24000
Pa 120			m³/h	128000	128000	160000	160000	160000	192000	192000	224000	22400
	link stations and	0	Pa		120	120	120	120	120	120	75	75
Sound data calculated in cooling mode (1) Sound power level O',A,E,L,N,U dB(A) O'	ligh static pressure	A.F.I.N.U	Pa	120	120	120	120	120	120	120	120	120
Fans: J Fan Type \$\(\frac{\(\)^{\}_{A},E_{L},I_{N},U}{\} \) type \$\(\)^{\}_{A},E_{L},I_{N},U \) type \$\(\)^{\}_{A},I_{L} \) no. 10 10 10 10 10 12 12 12 14 14 14 16 16 16 18 18 18 18 18 18 18 16 16 16 18 18 18 18 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	·	o o i incusuremento in				·						5202
Type					3202	5102	3002		1202	1302	1002	3202
Type °,A,E,L,N,U type axials Fan motor °,A,E,L,N,U type Inverter Number ° no. 10 10 10 12 12 14 14 A,L no. 12 12 14 14 16 16 18 18 18 E,U no. 14 14 16 16 18 20 20 22 26 28 Inverter fan B "n³/h 18000 18000 18000 21600 21600 25200 25200 2520 A m³/h 19200 19200 22400 22400 25600 25600 28800 2880 Airflourte E m³/h 16100 16100 18400 18400 20700 23000 23000 23000 23000 23000 23000 23000 23000 23000 23000 23000 23000 23000 23000 23000												
Number Orange A,E,L,N,U type		O A E I NIII	tuno				-	avials				
Number 0												
Number A,L no. 12 12 14 14 16 16 18 18 18 18 19 19 19 19	an motor											
E,U no. 14 14 16 16 18 20 20 22 22 N no. 16 16 18 20 20 22 22 26 28 28 28 28 28			no.	10	10	10	10	12	12	14	14	16
E,U no. 14 14 16 16 18 20 22 22 26 28	lumber		no.		12		14	16	16		18	18
Newterfan 0	rumwt1	E,U	no.	14	14	16	16	18	20	20	22	22
° m³/h 180000 180000 180000 216000 216000 252000 2520 A m³/h 192000 192000 224000 224000 256000 256000 288000 2880 B m³/h 161000 161000 184000 184000 207000 230000 230000 25300		N	no.	16	16	18	20	22	22	26	28	30
° m³/h 180000 180000 180000 216000 216000 252000 2520 A m³/h 192000 192000 224000 224000 256000 256000 288000 2880 B m³/h 161000 161000 184000 184000 207000 230000 230000 25300	nverter fan											
A m³/h 192000 192000 224000 224000 256000 256000 288000 28800 E m³/h 161000 161000 184000 184000 207000 230000 230000 25300		0	m³/h	180000	180000	180000	180000	216000	216000	252000	252000	28800
E m³/h 161000 161000 184000 207000 230000 230000 25300		Α									288000	32400
											253000	25300
m³/h 129000 129000 161000 161000 104000 104000 104000 107000 107000	Air flow rate	L	m³/h	138000				184000	184000		207000	23400
											322000	34500
											352000	35200
<u>° Pa 75 75 75 75 75 75 75 75 75 75 75 75 75 </u>												75
	ligh static pressure		Pa	120	120	120	120	120	120	120	120	75
			Pa	120	120	120	120	120	120	120	120	120
Sound data calculated in cooling mode (1)	ound data calculated in cooling mod											
•			dB(A)	99.4	99.5	99.6	99.8	100.7	100.8	101.7	101,3	101,7
		Δ									100,8	101,5
							· · · · · · · · · · · · · · · · · · ·				93,7	93,8
AUDIT DOWER IEVEL	ound power level											
· L dB(A) 91,0 91,1 91,3 91,4 92,4 92,5 93,0 93,1											93,1	93,2
N dB(A) 92,3 92,4 92,8 93,1 93,3 93,4 94,3 94,4											94,4	94,8
		U	dB(A)	99,2	99,3	00.0	100.0	100,4	100,7	101,0	101,3	101,6
	Sound power: calculated on the basis	s of measurements m	ade in accordan	ce with UNI EN ISO	9614-2, as re			ound pressure m	easured in free fie	ld (in compli	ance with UNI EN	ISO 3744).
(1) Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with U	•	s of measurements m	ade in accordan			quired for Eurove	ent certification. S			ld (in compli		
(1) Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with USE)	iize	s of measurements m	ade in accordan			quired for Eurove	ent certification. S			ld (in compli		ISO 3744). 7203
1) Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification.)	iize Fans: J	s of measurements m	ade in accordan			quired for Eurove	ent certification. S			ld (in compli		
(1) Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 9614-2, as required for Eurovent certification.)	iize Fans: J an					quired for Eurove	ent certification. S	6503		ld (in compli		
(1) Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with U	ize Fans: J Fan	°,A,E,L,N,U	type			quired for Eurove	ent certification. S	6503		ld (in compli		

Size			5602	6002	6402	6503	6703	6903	7203
	٥	no.	16	16	18	18	18	20	22
lumber	A,L	no.	20	22	22	24	24	28	28
lullibel	E,U	no.	24	26	28	28	30	30	32
	N	no.	32	32	32	34	-	-	-
nverter fan									
	0	m³/h	288000	288000	324000	324000	324000	360000	396000
	A	m³/h	360000	396000	396000	384000	384000	448000	448000
i ()	E	m³/h	276000	299000	322000	322000	345000	345000	368000
ir flow rate	L	m³/h	260000	286000	286000	276000	276000	322000	322000
	N	m³/h	368000	368000	368000	391000	-	-	-
	U	m³/h	384000	416000	448000	448000	480000	480000	512000
	0	Pa	75	75	75	75	75	75	75
link stationussassus	A,L	Pa	75	75	75	120	120	120	120
igh static pressure	E,U	Pa	120	120	120	120	120	120	120
	N	Pa	120	120	120	120	-	-	-
ound data calculated in coolin	g mode (1)								
	0	dB(A)	101,7	101,8	102,1	102,3	102,4	103,0	103,1
	A	dB(A)	101,7	101,9	102,0	102,0	102,1	102,3	102,4
ound nouser lovel	E	dB(A)	93,9	94,0	94,2	94,3	94,3	94,4	94,8
ound power level	L	dB(A)	93,7	93,9	94,0	94,2	94,2	94,3	94,3
	N	dB(A)	95,0	95,2	95,3	95,4	-	-	-
	U	dB(A)	102,0	102,1	102,2	102,2	102,3	102,4	102,4

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Dimensions and weights																
A	°,A,E,L,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	°,A,E,L,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	0	mm	3970	3970	3970	5160	5160	5160	5160	5160	5160	6350	6350	6350	6350	7140
	A,L	mm	5160	5160	5160	5160	6350	6350	6350	7140	7140	7140	7140	8330	8330	9520
(E,U	mm	5160	5160	6350	6350	6350	7140	7140	8330	8330	8330	8330	9520	9520	10710
	N	mm	6350	6350	7140	7140	7140	8330	8330	9520	9520	9520	9520	10710	11900	13090
Size			4202	4502	4802	5202	5602	600	2 6	5402	6503	6703	6903	7203	8403	9603
Dimensions and weights																
	°,A,L	mm	2450	2450	2450	2450	2450	245	0 2	2450	2450	2450	2450	2450	2450	2450
A	E,U	mm	2450	2450	2450	2450	2450	245	0 2	2450	2450	2450	2450	2450	-	-
	N	mm	2450	2450	2450	2450	2450	245	0 2	2450	2450	-	-	-	-	-
	°,A,L	mm	2200	2200	2200	2200	2200	220	0 2	2200	2200	2200	2200	2200	2200	2200
В	E,U	mm	2200	2200	2200	2200	2200	220	0 2	2200	2200	2200	2200	2200	-	-
	N	mm	2200	2200	2200	2200	2200	220	0 2	2200	2200	-	-	-	-	-
	0	mm	7140	8330	8330	9520	9520	952	0 1	0710	11110	11110	11900	13090	13090	13090
	A,L	mm	9520	10710	10710	10710	11900	1309	90 1	3090	14280	14280	16660	16660	17850	20230
(E,U	mm	11900	11900	13090	13090	14280	1547	70 1	6660	16660	17850	17850	19040	-	-
	N	mm	13090	15470	16660	17850	19040	1904	10 1	9040	20230	-	-	-	-	-

For transport reasons, the units with the depth of more than 13090 mm are shipped separately. For more information, please refer to the technical manual and / or installation.

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Integrated hydronic kit: 00																
Weights																
_	0	kg	3660	3702	3831	4670	5040	5053	5077	5273	5396	5922	5977	6410	6901	7477
Empty weight	A,L	kg	4213	4249	4373	4699	5472	5488	5691	6228	6424	6477	6577	7656	8129	8647
Empty weight -	E,U	kg	4373	4394	4840	5431	5785	6333	6356	6805	6896	6914	6953	8149	8660	9431
	N	kg	4791	4812	5373	5965	6318	6741	6764	7254	7346	7416	7508	8882	9759	10383
_	0	kg	3753	3790	3962	4801	5171	5202	5226	5548	5671	6244	6299	6732	7214	7790
Weight functioning	A,L	kg	4306	4337	4505	4848	5621	5637	5966	6503	6747	6799	6871	8173	8645	9152
Weight functioning -	E,U	kg	4505	4543	4989	5753	6107	6655	6679	7118	7209	7279	7352	8718	9177	9936
	N	kg	4923	4962	5522	6287	6641	7063	7086	7567	7659	7729	7802	9399	10276	10888
Size			4202	4502	4802	5202	5602	600	02 6	402	6503	6703	6903	7203	8403	9603
																7003
Integrated hydronic kit: 00														7200	0103	7003
Integrated hydronic kit: 00 Weights														7200	0.103	7003
	0	kg	7574	7993	8302	8826	8954		17 9	719	11612	11688	12216	12761	13047	13176
Weights	° A,L	kg kg	7574 8710					901			11612 13354					
				7993	8302	8826	8954	901	18 1	1060		11688	12216	12761	13047	13176
Weights	A,L	kg	8710	7993 9428	8302 9481	8826 9902	8954 10433	901 3 110) 1220	18 1 61 1	1060 2701	13354	11688 13417	12216 14572	12761 14625	13047 15743	13176
Weights	A,L E,U	kg kg	8710 9922	7993 9428 9983	8302 9481 10887	8826 9902 11013	8954 10433 11820	901 3 110 0 1220 1 1360	18 1 61 1 66 1	1060 2701 3709	13354 14514	11688 13417	12216 14572 15119	12761 14625	13047 15743 -	13176
Weights - Empty weight -	A,L E,U N	kg kg kg	8710 9922 10456	7993 9428 9983 11646	8302 9481 10887 12355	8826 9902 11013 12989	8954 10433 11820 12721	901 3 110 0 1220 1 1360 952	18 1: 61 1: 66 1: 22 1:	1060 2701 3709 0224	13354 14514 16119	11688 13417 15005	12216 14572 15119	12761 14625 16034	13047 15743 -	13176 16934 -
Weights	A,L E,U N	kg kg kg kg	8710 9922 10456 7868	7993 9428 9983 11646 8287	8302 9481 10887 12355 8819	8826 9902 11013 12989 9342	8954 10433 11820 12721 9471	901 3 110 0 1220 1 1360 952 7 118	18 1: 61 1: 66 1: 22 1: 98 1:	1060 2701 3709 0224 1940	13354 14514 16119 12527	11688 13417 15005 - 12603	12216 14572 15119 - 13089	12761 14625 16034 - 13633	13047 15743 - - 13920	13176 16934 - - 14048

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NSMI 1251-6102

Air-water chiller

Cooling capacity 285,6 ÷ 1342,6 kW

- Microchannel coil
- Night mode
- Operation up to 50 °C outdoor air
- Low electrical consumption

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

Outdoor units with high-efficiency screw compressors axial fans, microchannel external coils and plant side shell and tube heat exchanger.

In the unit with desuperheater, it is also possible to produce free-hot water. The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to 50 °C external air temperature depending on the size and vesion. For more information refer to the dedicated documentations or the selection program Magellano.

Unit with 1 / 2 cooling circuits

Unit with 1–2 refrigerant circuits.

The single circuit units have the inverter compressor, while the dual-circuit have an asynchronous compressor on/off switch and an inverter, the combination provides both high efficiency at part load and full load.

Aluminium microchannel coils

The microchannel condensing aluminum coils ensure high levels of efficiency, reduced quantities of refrigerant and lower unit weight. The treatment "O" available as configurator it ensures high resistance to corrosion even in the most aggressive environments.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, high or low head, to obtain a solution that allows you to save money and to facilitate installation.

Low noise version

Silenced versions "E" feature a special compressor jacket which ensures a further noise reduction of approximately 4dB.

CONTROL PCO⁵

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night mode: only in the non-silenced versions is it possible to set a silenced operating mode, which is useful for example at night for greater acoustic comfort but always guarantees performance even at peak load times.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

FACTORY FITTED ACCESSORIES

GP_: Anti-intrusion grid kit

KRS: Electric heater for the heat exchanger

ACCESSORIES COMPATIBILITY

Accessories

Model	Ver	1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
AER485P1	A,E	•	•	•												
AER485P1 x no. 2	A,E				•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	A,E	•	•	•												
AERBACP x no. 2	A,E				•		•							•		
AERNET	A,E	•	•	•	•	•	•	•	•	•	•	•		•	•	•
MULTICHILLER-EVO	A.F															

Antivibration

Ver	1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
A	AVX991	AVX992	AVX993	AVX996	AVX970	AVX995	AVX995	AVX995	AVX996	AVX988	AVX997	AVX998	AVX998	AVX998	AVX998
E	AVX991	AVX992	AVX994	AVX996	AVX970	AVX995	AVX995	AVX995	AVX996	AVX988	AVX997	AVX998	AVX998	AVX998	AVX998

Heater exchangers

neater exchangers															
Ver	1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
A, E	KRS23	KRS24													

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid kit

Ver	1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
A, E	GP4V	GP4V	GP5V	GP5V	GP6V	GP7V	GP7V	GP7V	GP8V	GP9V	GP10V	GP11V	GP11V	GP11V	GP11V

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3,4	NSMI
5,6,7,8	Size 1251, 1601, 1801, 2352, 2652, 2802, 3202, 3402, 3802, 4102, 4402, 4802, 5202, 5702, 6102
9	Model
٥	Cooling only
10	Heat recovery
D	With desuperheater (1)
T	With total recovery
0	Without heat recovery
11	Version
Α	High efficiency
E	Silenced high efficiency
12	Coils
I	Copper-aluminium
0	Coated aluminium microchannel
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
0	Aluminium microchannel
13	Fans
J	Inverter
0	Standard
14	Power supply
0	400V~3 50Hz with fuses
15,16	Integrated hydronic kit
	Without hydronic kit
00	Without hydronic kit
	Kit with n° 1 pump

Field	Description
PA	Pump A
PB	Pump B
PC	Pump C
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J (2)
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump (2)
	Kit with 2 pumps
TF	Double pump F
TG	Double pump G
TH	Double pump H
TI	Double pump I
TJ	Double pump J (2)

Minimum water temperature of 35 °C must always be ensured at heat exchanger inlet if working with low temperatures of water produced in the primary circuit.
 For all configurations including pump J please contact the factory.

PERFORMANCE SPECIFICATIONS

NSMI - A/E

Size		1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Cooling performance 12 °C / 7 °C (1)																
Cooling capacity	kW	285,6	382,0	464,0	519,1	605,4	659,4	725,2	802,4	842,6	948,0	1008,8	1110,4	1204,3	1253,0	1342,6
Input power	kW	91,3	120,2	149,5	167,1	194,3	212,3	232,7	257,5	269,9	304,8	324,7	356,2	397,4	415,9	454,6
Cooling total input current	А	155,0	200,0	245,0	293,0	337,0	360,0	393,0	431,0	443,0	517,0	547,0	619,0	665,0	728,0	761,0
EER	W/W	3,13	3,18	3,10	3,11	3,12	3,11	3,12	3,12	3,12	3,11	3,11	3,12	3,03	3,01	2,95
Water flow rate system side	l/h	49130	65700	79773	89247	104092	113376	124682	137945	144852	162983	173442	190903	207040	215409	230815
Pressure drop system side	kPa	45	15	21	18	25	28	33	27	30	39	45	38	44	49	55

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
SEER - 12/7 (EN14825:2018) with sta	ndard fans (1)																
SEER	A,E	W/W	4,75	4,82	4,78	4,90	4,92	4,90	4,91	4,93	4,93	4,90	4,88	4,90	4,85	4,70	4,69
Seasonal efficiency	A,E	%	186,8%	189,7%	188,0%	193,1%	193,9%	193,0%	193,3%	194,2%	194,3%	192,8%	192,2%	192,9%	191,0%	185,1%	184,7%
SEER - (EN14825:2018) 12/7 with in	erter fans (1)																
SEER	A,E	W/W	4,95	5,04	5,00	5,01	5,03	5,01	5,02	5,04	5,04	5,00	4,99	5,00	4,96	4,81	4,80
Seasonal efficiency	A,E	%	194,9%	198,4%	196,8%	197,3%	198,1%	197,2%	197,6%	198,5%	198,5%	197,1%	196,4%	197,1%	195,3%	189,2%	188,8%
SEPR - (EN14825: 2018) High tempe	rature with stand	ard fans (2)														
SEPR	A,E	W/W	5,70	5,62	5,59	6,56	6,43	6,42	6,77	6,94	7,21	6,96	7,47	6,88	7,21	6,69	7,01
SEPR - (EN14825: 2018) High tempe	rature with invert	er fans (2)															
SEPR	A.E	W/W	5.70	5.62	5,59	6,56	6,43	6,42	6,77	6,94	7,21	6,96	7,47	6,88	7,21	6,69	7,01

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

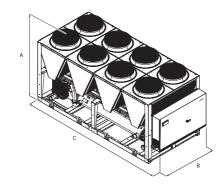
Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Electric data																	
Maximum current (FLA)	A,E	Α	251,3	291,3	377,7	442,0	473,0	519,4	519,4	567,4	653,8	708,1	753,5	874,8	917,2	1002,2	1036,2
Peak current (LRA)	A,E	Α	51,3	51,3	57,7	571,7	605,0	651,4	651,4	775,4	861,8	989,1	1059,4	1180,2	1335,2	1420,2	1532,2

GENERAL TECHNICAL DATA

		1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
A,E	type								Screw							
A,E	Туре			-	1+1	1+I	1+1	1+1	1+1	1+1	1+1	1+1	1+1	1+l	1+1	1+1
A,E	no.	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2
A,E	no.	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2
A,E	type								R134a							
A,E	kg	28,0	28,0	30,0	81,0	92,0	110,0	114,0	107,0	131,0	146,0	163,0	183,0	183,0	195,0	195,0
A,E	type							SI	hell and tu	be						
A,E	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
A,E	Туре							G	rooved join	its						
A,E	Ø	5"	6"	6"	6"	6"	6"	6"	8"	8"	8"	8"	10"	10"	10"	10"
	A,E A,E A,E A,E A,E A,E A,E	A,E Type A,E no. A,E type A,E kg A,E type A,E type A,E Type A,E Type A,E Type	A,E type A,E Type I A,E no. 1 A,E no. 1 A,E type	A,E type A,E Type I I A,E no. 1 1 A,E no. 1 1 A,E type A,E type A,E type A,E kg 28,0 28,0 A,E type A,E Type A,E Type A,E Type A,E Type	A,E type A,E Type I I I A,E no. 1 1 1 A,E no. 1 1 1 A,E type A,E kg 28,0 28,0 30,0 A,E type A,E type A,E type A,E Type A,E Type	A,E type A,E Type I I I 1 1+I A,E no. 1 1 1 2 A,E no. 1 1 1 2 A,E kg 28,0 28,0 30,0 81,0 A,E type A,E type A,E type A,E Type A,E Type A,E Type	A,E type A,E Type I I I 1+I 1+I A,E no. 1 1 1 2 2 A,E no. 1 1 1 2 2 A,E type A,E kg 28,0 28,0 30,0 81,0 92,0 A,E type A,E Type A,E Type A,E Type	A,E type A,E Type I I I 1+I 1+I 1+I A,E no. 1 1 1 2 2 2 A,E no. 1 1 1 2 2 2 A,E type A,E type A,E kg 28,0 28,0 30,0 81,0 92,0 110,0 A,E type A,E Type A,E Type	A,E type A,E Type I I 1+I 1+I	A,E type Screw A,E Type I I I+I I+I	A,E type Screw A,E Type I I I +I 1+I 1+I	A,E type Screw A,E Type I I I +I 1+I 1+I	A,E type Screw A,E Type I I I +I I+I I+I	A,E type	A,E type Screw A,E Type I I I 1+I 1+I <td< td=""><td>A,E type Screw A,E Type I I I I+I <td< td=""></td<></td></td<>	A,E type Screw A,E Type I I I I+I I+I <td< td=""></td<>

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

Fans


Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Fans: °																	
Fan																	
Туре	A,E	type								Axial							
Fan motor	A,E	type							Asynchro	nous with	phase cut						
Number	A,E	no.	8	8	10	10	12	14	14	14	16	18	20	22	22	22	22
Air flow rate	A,E	m³/h	128000	128000	160000	160000	192000	224000	224000	224000	256000	288000	320000	396000	396000	396000	396000

Sound data

Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Sound data calculated in cooling mode (1))																
Count manual and	Α	dB(A)	97,2	98,6	98,6	98,6	98,8	99,9	99,9	100,3	100,3	100,4	101,0	102,9	103,2	102,9	103,2
Sound power level –	E	dB(A)	92,9	95,8	95,9	94,7	95,1	96,1	96,1	97,3	97,4	97,7	98,0	99,9	99,9	99,9	99,9
Cound proceure lovel (10 m)	Α	dB(A)	64,8	66,2	66,1	66,1	66,2	67,1	67,1	67,5	67,5	67,4	67,9	69,7	69,9	69,7	69,9
Sound pressure level (10 m)	E	dB(A)	60,6	63,4	63,4	62,1	62,5	63,3	63,3	64,6	64,5	64,7	64,8	66,7	66,7	66,7	66,7

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Dimensions and weights																	
A	A,E	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
C	A,E	mm	4760	4760	5950	6400	7140	8330	8330	8330	9520	10710	11900	13090	13090	13090	13090
Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Integrated hydronic kit: 00																	
Dimensions and weights																	
Empty weight	Α	kg	3752	4162	4578	6039	6447	6896	6987	7635	8103	8872	9324	10798	10888	10918	10991
Empty weight -	E	kg	4054	4464	4880	6642	7050	7499	7590	8239	8706	9475	9928	11637	11727	11757	11830
Wainha functioning	A	kg	3832	4416	4832	6360	6768	7206	7275	8165	8632	9389	9841	11730	11819	11835	11908
Weight functioning -	E	kg	4134	4718	5134	6964	7371	7809	7878	8768	9236	9993	10445	12568	12658	12674	12747

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NS

Reversible air/water heat pump

Cooling capacity 251 ÷ 731 kW - Heating capacity 281 ÷ 786 kW

- · High efficiency also at partial loads
- Electronic expansion valve

DESCRIPTION

Reversible outdoor heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Working at full load up to -10 $^{\circ}$ C outside air temperature in winter, and up to 48 $^{\circ}$ C in summer. Hot water production up to 55 $^{\circ}$ C (for more details refer to the technical documentation).

Bi-tri circuit unit

The units are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, high or low head, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

GP M: Anti-intrusion grid.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

KRS: Electric heater for the heat exchanger

AK: Acoustic kit that lowers the noise level even further, thanks to the special coating on the panelling or on those components that produce the most noise in the unit. Available for the low noise version only.

ACCESSORIES COMPATIBILITY

Model	Ver	1251	1401	1402	1601	1602	1801	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
AER485P1	A,E	•	•		•		•											
AER485P1 x no. 2	A,E																	
AERBACP	A,E	•	•															
AERBACP x no. 2	A,E					•												•
AERNET	A,E	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
MULTICHILLER-EVO	A,E	•	•		•	•	•	•				•	•	•	•	•		•
PRV3	A,E	•											•					•

Condensation control temperature

Ver	1251	1401	1402	1601	1602	1801	1802	2002	2202
A	DCPX69	DCPX69	DCPX68	DCPX69	DCPX68	DCPX69	DCPX68	DCPX73	DCPX73
E	As standard	As standard	As standard	As standard	As standard	As standard	As standard	As standard	As standard
Ver	2352	2502	2652	2802		3002	3202	3402	3602
Ver A	2352 DCPX73	2502 DCPX73	2652 DCPX73	2802 DCPX73		3002 DCPX73	3202 DCPX73	3402 DCPX73	3602 DCPX73

Anti-intrusion grid

	9								
Ver	1251	1401	1402	1601	1602	1801	1802	2002	2202
A, E	GP300M	GP300M	GP300B	GP300M	GP300B	GP400M	GP400B	GP500B	GP500B
Ver	2352	2502	2652	2802	30	002	3202	3402	3602
A. E	GP500B	GP500B	GP500B	GP500B	GP300N	1+300M	GP300M+300M	GP300M+400M	GP400M+400M

Antivibration

Ver	1251	1401	1402	1601	1602	1801	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Integrated hydror	nic kit: 00																
Α, Ε	AVX536	AVX536	AVX537	AVX536	AVX538	AVX540	AVX541	AVX543	AVX543	AVX545	AVX549	AVX551	AVX551	AVX554	AVX556	AVX557	AVX559
Integrated hydror	nic kit: PA																
A, E	AVX536	AVX536	AVX537	AVX536	AVX538	AVX540	AVX541	AVX543	AVX543	AVX545	AVX550	AVX551	AVX551	AVX553	AVX553	AVX557	AVX559
Integrated hydroi	nic kit: PC, PE,	PG, PJ															
A, E	AVX536	AVX536	AVX538	AVX536	AVX538	AVX540	AVX541	AVX543	AVX543	AVX545	AVX550	AVX551	AVX551	AVX553	AVX555	AVX557	AVX559

Heater exchangers

Ver	1251	1401	1402	1601	1602	1801	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
A, E	KRS11	KRS11	KRS19	KRS11	KRS19	KRS11	KRS19	KRS14	KRS14	KRS14	KRS14						

A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	1251	1401	1402	1601	1602	1801	1802	2002	2202
A, E	RIFNSH1251	RIFNSH1401	RIFNSH1402	RIFNSH1601	RIFNSH1602	RIFNSH1801	RIFNSH1802	RIFNSH2002	RIFNSH2202
A grey background in	dicates the accessory mu	st be assembled in the f	actory						
Ver	2352	2502	2652	2802		3002	3202	3402	3602
A, E	RIFNSH2352	RIFNSH2502	RIFNSH2652	RIFNSH28	02 RI	FNSH3002	RIFNSH3202	RIFNSH3402	RIFNSH3602

A grey background indicates the accessory must be assembled in the factory

Acoustic kit

Ver	1251	1401	1402	1601	1602	1801	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
A, E	AK (1)																

NSH-1251-3602-HP_Y_UN50_08 592 www.aermec.com

⁽¹⁾ Available only in low noise version
A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2	NS
3,4,5,6	Size 1251, 1401, 1402, 1601, 1602, 1801, 1802, 2002, 2202, 2352, 2502, 2652, 2802, 3002, 3202, 3402, 3602
7	Operating field
Х	Electronic thermostatic expansion valve
8	Model
Н	Heat pump
9	Heat recovery
D	With desuperheater
0	Without heat recovery
10	Version
A	High efficiency
E	Silenced high efficiency
11	Coils
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
0	Copper-aluminium
12	Fans
J	Inverter
0	Standard
13	Power supply
8	400V~3 50Hz with magnet circuit breakers
0	400V~3 50Hz with fuses
14,15	Integrated hydronic kit
	Without hydronic kit
00	Without hydronic kit
	Kit with n° 1 pump
PA	Pump A
PC	Pump C
PE	Pump E
PG	Pump G
PJ	Pump J (1)

⁽¹⁾ For all configurations including pump J please contact the factory.

PERFORMANCE SPECIFICATIONS

NS - HA

Size		1251	1401	1402	1601	1602	1801	1802	2002	2202
Cooling performance 12 °C / 7 °C (1)										
Cooling capacity	kW	262,7	281,7	257,7	309,7	315,6	365,6	365,6	384,6	414,5
Input power	kW	86,9	95,0	94,9	107,8	108,3	128,3	125,3	132,5	138,8
Cooling total input current	Α	149,0	164,0	168,0	185,0	186,0	215,0	216,0	227,0	233,0
EER	W/W	3,02	2,96	2,72	2,87	2,91	2,85	2,92	2,90	2,99
Water flow rate system side	l/h	45186	48451	44327	53262	54292	62883	62883	66147	71302
Pressure drop system side	kPa	38	41	36	27	50	43	43	47	53
Heating performance 40 °C / 45 °C (2)										
Heating capacity	kW	281,4	297,4	281,4	332,3	342,5	393,5	395,5	412,5	450,6
Input power	kW	88,2	94,2	93,2	104,0	106,8	126,7	123,7	133,9	141,3
Heating total input current	Α	150,0	163,0	165,0	180,0	182,0	212,0	213,0	229,0	236,0
COP	W/W	3,19	3,16	3,02	3,20	3,21	3,11	3,20	3,08	3,19
Water flow rate system side	l/h	48838	51618	48838	57701	59439	68303	68651	71605	78210
Pressure drop system side	kPa	47	49	47	33	64	54	54	58	67

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C /7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

Size		2352	2502	2652	2802	3002	3202	3402	3602
Cooling performance 12 °C/7 °C (1)									
Cooling capacity	kW	454,6	499,5	524,5	547,5	591,5	619,6	675,5	731,4
Input power	kW	158,4	173,5	186,7	195,9	202,6	215,4	235,9	256,4
Cooling total input current	A	268,0	295,0	318,0	335,0	349,0	370,0	400,0	430,0
EER	W/W	2,87	2,88	2,81	2,80	2,92	2,88	2,86	2,85
Water flow rate system side	I/h	78174	85906	90201	94153	101712	106523	116144	125766
Pressure drop system side	kPa	37	38	40	43	34	27	35	43
Heating performance 40 °C / 45 °C (2)									
Heating capacity	kW	502,5	541,5	563,6	585,6	629,5	664,5	725,6	786,7
Input power	kW	157,9	171,0	177,1	185,4	198,0	207,8	230,4	253,1
Heating total input current	A	267,0	292,0	303,0	318,0	342,0	359,0	391,0	423,0
COP	W/W	3,18	3,17	3,18	3,16	3,18	3,20	3,15	3,11
Water flow rate system side	I/h	87247	94025	97849	101673	109320	115403	126004	136606
Pressure drop system side	kPa	49	47	49	53	41	33	43	54

	1251	1401	1402	1601	1602	1801	1802	2002	2202
kW	250,7	266,7	242,7	292,7	301,6	343,6	349,6	366,6	394,5
kW	91,8	101,9	100,8	115,7	116,2	136,1	132,2	140,3	146,5
А	161,0	178,0	181,0	202,0	202,0	234,0	233,0	246,0	254,0
W/W	2,73	2,62	2,41	2,53	2,60	2,52	2,65	2,61	2,69
l/h	43125	45874	41750	50341	51887	59103	60134	63055	67865
kPa	32	37	33	24	46	38	39	43	48
kW	281,4	297,4	281,4	332,3	342,5	393,5	395,5	412,5	450,6
kW	88,2	94,2	93,2	104,0	106,8	126,7	123,7	133,9	141,3
Α	150,0	163,0	165,0	180,0	182,0	212,0	213,0	229,0	236,0
W/W	3,19	3,16	3,02	3,20	3,21	3,11	3,20	3,08	3,19
l/h	48838	51618	48838	57701	59439	68303	68651	71605	78210
kPa	47	49	47	33	64	54	54	58	67
	kW A W/W I/h kPa kW kW A W/W I/h	kW 250,7 kW 91,8 A 161,0 W/W 2,73 I/h 43125 kPa 32 kW 281,4 kW 88,2 A 150,0 W/W 3,19 I/h 48838	kW 250,7 266,7 kW 91,8 101,9 A 161,0 178,0 W/W 2,73 2,62 I/h 43125 45874 kPa 32 37 kW 281,4 297,4 kW 88,2 94,2 A 150,0 163,0 W/W 3,19 3,16 I/h 48838 51618	kW 250,7 266,7 242,7 kW 91,8 101,9 100,8 A 161,0 178,0 181,0 W/W 2,73 2,62 2,41 I/h 43125 45874 41750 kPa 32 37 33 kW 281,4 297,4 281,4 kW 88,2 94,2 93,2 A 150,0 163,0 165,0 W/W 3,19 3,16 3,02 I/h 48838 51618 48838	kW 250,7 266,7 242,7 292,7 kW 91,8 101,9 100,8 115,7 A 161,0 178,0 181,0 202,0 W/W 2,73 2,62 2,41 2,53 I/h 43125 45874 41750 50341 kPa 32 37 33 24 kW 281,4 297,4 281,4 332,3 kW 88,2 94,2 93,2 104,0 A 150,0 163,0 165,0 180,0 W/W 3,19 3,16 3,02 3,20 I/h 48838 51618 48838 57701	kW 250,7 266,7 242,7 292,7 301,6 kW 91,8 101,9 100,8 115,7 116,2 A 161,0 178,0 181,0 202,0 202,0 W/W 2,73 2,62 2,41 2,53 2,60 I/h 43125 45874 41750 50341 51887 kPa 32 37 33 24 46 kW 281,4 297,4 281,4 332,3 342,5 kW 88,2 94,2 93,2 104,0 106,8 A 150,0 163,0 165,0 180,0 182,0 W/W 3,19 3,16 3,02 3,20 3,21 I/h 48838 51618 48838 57701 59439	kW 250,7 266,7 242,7 292,7 301,6 343,6 kW 91,8 101,9 100,8 115,7 116,2 136,1 A 161,0 178,0 181,0 202,0 202,0 234,0 W/W 2,73 2,62 2,41 2,53 2,60 2,52 I/h 43125 45874 41750 50341 51887 59103 kPa 32 37 33 24 46 38 kW 281,4 297,4 281,4 332,3 342,5 393,5 kW 88,2 94,2 93,2 104,0 106,8 126,7 A 150,0 163,0 165,0 180,0 182,0 212,0 W/W 3,19 3,16 3,02 3,20 3,21 3,11 I/h 48838 51618 48838 57701 59439 68303	kW 250,7 266,7 242,7 292,7 301,6 343,6 349,6 kW 91,8 101,9 100,8 115,7 116,2 136,1 132,2 A 161,0 178,0 181,0 202,0 202,0 234,0 233,0 W/W 2,73 2,62 2,41 2,53 2,60 2,52 2,65 I/h 43125 45874 41750 50341 51887 59103 60134 kPa 32 37 33 24 46 38 39 kW 281,4 297,4 281,4 332,3 342,5 393,5 395,5 kW 88,2 94,2 93,2 104,0 106,8 126,7 123,7 A 150,0 163,0 165,0 180,0 182,0 212,0 213,0 W/W 3,19 3,16 3,02 3,20 3,21 3,11 3,20 1/h 48838 51618	kW 250,7 266,7 242,7 292,7 301,6 343,6 349,6 366,6 kW 91,8 101,9 100,8 115,7 116,2 136,1 132,2 140,3 A 161,0 178,0 181,0 202,0 202,0 234,0 233,0 246,0 W/W 2,73 2,62 2,41 2,53 2,60 2,52 2,65 2,61 I/h 43125 45874 41750 50341 51887 59103 60134 63055 kPa 32 37 33 24 46 38 39 43 kW 281,4 297,4 281,4 332,3 342,5 393,5 395,5 412,5 kW 88,2 94,2 93,2 104,0 106,8 126,7 123,7 133,9 A 150,0 163,0 165,0 180,0 182,0 212,0 213,0 229,0 W/W 3,19 3,16

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C /7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

Size		2352	2502	2652	2802	3002	3202	3402	3602
Cooling performance 12 °C/7 °C (1)									
Cooling capacity	kW	435,6	487,6	506,5	517,5	559,6	585,6	636,5	687,5
Input power	kW	169,3	192,4	202,5	210,6	217,4	231,2	251,6	272,0
Cooling total input current	A	293,0	333,0	349,0	365,0	380,0	403,0	436,0	468,0
EER	W/W	2,57	2,53	2,50	2,46	2,57	2,53	2,53	2,53
Water flow rate system side	l/h	74910	83844	87108	88998	96214	100681	109444	118206
Pressure drop system side	kPa	34	35	37	39	30	24	31	38
Heating performance 40 °C / 45 °C (2)									
Heating capacity	kW	502,5	541,5	563,6	585,6	629,5	664,5	725,6	786,7
Input power	kW	157,9	171,0	177,1	185,4	198,0	207,8	230,4	253,1
Heating total input current	A	267,0	292,0	303,0	318,0	342,0	359,0	391,0	423,0
COP	W/W	3,18	3,17	3,18	3,16	3,18	3,20	3,15	3,11
Water flow rate system side	l/h	87247	94025	97849	101673	109320	115403	126004	136606
Pressure drop system side	kPa	49	47	49	53	41	33	43	54

ENERGY DATA

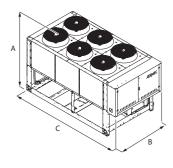
LINENGI DAI	Λ																		
Size			1251	1401	1402	1601	1602	1801	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
UE 813/2013 perform	ance in avera	age ambie	nt conditi	ons (aver	age) - 35 °	C - Pdesig	nh ≤ 400	kW (1)											
Pdesignh	A,E	kW	185	195	185	218	225	259	260	271	297	330	356	370	385	325	342	374	400
SCOP	A,E	W/W	3,33	3,28	3,23	3,33	3,33	3,23	3,33	3,20	3,30	3,30	3,30	3,33	3,30	3,35	3,40	3,33	3,28
ηsh	A,E	%	130.0%	128.0%	126.0%	130.0%	130.0%	126.0%	130.0%	125.0%	129.0%	129.0%	129.0%	130.0%	129.0%	131.0%	133.0%	130.0%	128.0%
SEER - 12/7 (EN14825	:2018) with s	tandard f	ans (2)																
SEER -	Α	W/W	3,88	3,81	3,46	3,76	3,68	3,71	3,73	3,70	3,80	3,72	3,74	3,66	3,64	3,81	3,76	3,73	3,72
JEEN	E	W/W	3,41	3,28	3,00	3,19	3,23	3,19	3,32	3,28	3,37	3,28	3,23	3,18	3,12	3,30	3,25	3,23	3,23
Seasonal efficiency	Α	%	152.1%	149.4%	135.2%	147.4%	144.2%	145.2%	146.0%	145.0%	149.0%	145.7%	146.6%	143.5%	142.5%	149.5%	147.5%	146.1%	145.8%
Seasonal eniciency	E	%	133.4%	128.1%	116.8%	124.4%	126.2%	124.7%	129.7%	128.2%	131.8%	128.1%	126.3%	124.3%	121.7%	129.1%	126.9%	126.1%	126.2%

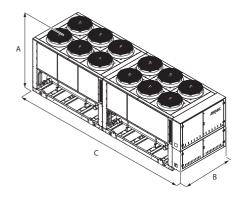
⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Efficiencies for low temperature applications (35 °C)
(2) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.

ELECTRIC DATA


Size			1251	1401	1402	1601	1602	1801	1802	2002	2202
Electric data											
Maximum current (FLA)	A,E	Α	209,0	242,0	276,0	258,0	276,0	316,0	325,0	352,0	370,0
Peak current (LRA)	A,E	А	327,0	387,0	251,0	431,0	251,0	472,0	305,0	313,0	350,0
Size			2352	2502	2652	280)2	3002	3202	3402	3602
Electric data											
Maximum current (FLA)	A,E	А	390,0	410,0	443,0	476	,0	500,0	516,0	574,0	631,0
Peak current (LRA)	A,E	Α	365,0	436,0	461,0	521	,0	534,0	578,0	612,0	653,0


GENERAL TECHNICAL DATA

Size			1251	1401	1402	1601	1602	1801	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Compressor																			
Туре	A,E	type									Screw								
Compressor regulation	A,E	Туре									0n/0ff								
Number	A,E	no.	1	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2
Circuits	A,E	no.	1	1	2	1	2	1	2	2	2	2	2	2	2	2	2	2	2
Partialisation of the unit with	Α	%	40-100	40-100	20-100	40-100	20-100	40-100	20-100	20-100	20-100	20-100	20-100	20-100	20-100	20-100	20-100	20-100	20-100
electronic thermostatic expansion valve	E	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Refrigerant	A,E	type									R134a								
Definement land singuit 1 /1)	Α	kg	90,0	92,0	43,0	100,0	57,0	138,0	57,0	55,0	80,0	80,0	85,0	-	97,0	92,0	-	110,0	138,0
Refrigerant load circuit 1 (1)	E	kg	90,0	92,0	43,0	118,0	57,0	138,0	57,0	55,0	80,0	80,0	85,0	-	97,0	92,0	118,0	110,0	138,0
D. 6 i	Α	kg	-	-	45,0	-	57,0	-	57,0	75,0	102,0	85,0	85,0	-	97,0	100,0	-	145,0	138,0
Refrigerant load circuit 2 (1)	E	kg	-	-	45,0	-	57,0	-	57,0	75,0	102,0	85,0	85,0	-	97,0	118,0	118,0	145,0	138,0
Total oil charge	A,E	kg	22,0	19,0	30,0	19,0	30,0	35,0	30,0	30,0	30,0	37,0	44,0	41,0	38,0	38,0	38,0	54,0	70,0
System side heat exchanger																			
Туре	A,E	type								Sh	nell and tu	be							
Number	A,E	no.	1	1	2	1	2	1	2	2	1	1	1	1	1	2	2	2	2
Minimumton flour make	Α	l/h	22593	24226	22164	26631	27146	31442	31442	33074	35651	39087	42953	45101	47077	50856	53262	58072	62883
Minimum water flow rate —	E	I/h	21563	22937	20875	25171	25944	29552	30067	31528	33933	37455	41922	43554	44499	48107	50341	54722	59103
Maximum water flow rate —	Α	I/h	75310	80752	73878	88770	90487	104805	104805	110245	118837	130290	143177	150335	156922	169520	177538	193573	209610
maximum water now rate —	E	I/h	71875	76457	69583	83902	86478	98505	100223	105092	113108	124850	139740	145180	148330	160357	167802	182407	197010
Water content	A,E	1	96,0	101,2	96,0	98,1	101,2	132,9	132,9	132,9	159,8	159,8	149,9	220,7	220,7	199,3	196,2	231,0	265,8
System side hydraulic connection	ns																		
Connections (in/out)	A,E	Type								Gr	rooved joir	ıts							
Sizes (in/out)	A,E	Ø									6"								
Sound data calculated in cooling	mode (2)																		
Cound nouser lovel —	Α	dB(A)	93,5	93,5	94,0	94,5	95,0	96,0	96,0	96,5	96,5	96,5	97,0	97,0	97,0	97,0	97,5	98,3	99,0
Sound power level —	E	dB(A)	88,5	88,5	89,0	89,5	90,0	91,0	91,0	91,5	91,5	91,5	92,0	92,0	92,0	92,0	92,5	93,3	94,0
Sound proceure level (10 m)	Α	dB(A)	61,3	61,3	61,8	62,3	62,8	63,6	63,6	64,0	64,0	64,0	64,5	64,5	64,5	64,4	64,9	65,6	66,2
Sound pressure level (10 m) —	E	dB(A)	56,3	56,3	56,8	57,3	57,8	58,6	58,6	59,0	59,0	59,0	59,5	59,5	59,5	57,4	59,9	60,6	61,2
Sound pressure level (1 m)	Α	dB(A)	73,8	73,8	74,3	74,8	75,3	75,8	75,8	75,9	75,9	75,9	76,4	76,4	76,4	75,8	76,3	76,8	77,2
Journa pressure level (1 III)	Е	dB(A)	68,8	68,8	69,3	69,8	70,3	70,8	70,8	70,9	70,9	70,9	71,4	71,4	71,4	70,8	71,3	71,8	72,2

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1251	1401	1402	1601	1602	1801	1802	2002	220	2 23	52 2	502	2652	2802	3002	3202	3402	3602
Dimensions and weights																				
A	A,E	mm	2450	2450	2450	2450	2450	2450	2450	2450	245	0 24	50 2	450	2450	2450	2450	2450	2450	2450
В	A,E	mm	2200	2200	2200	2200	2200	2200	2200	2200	220	0 22	00 2	200	2200	2200	2200	2200	2200	2200
C	A,E	mm	3780	3780	3780	3780	3780	4770	4770	5750	575	50 57	50 5	750	5750	5750	7160	7160	8150	9140
Size				1251	1401	1402	1601	1602	1801	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Integrated hydronic k	it: 00																			
Dimensions and weights																				
Empty weight		A,E	kg	3245	3280	3570	3435	3835	4115	4005	4385	4570	4940	5265	5470	5610	6540	6745	7425	8105
Weight functioning		A,E	kg	3340	3380	3665	3535	3935	4250	4140	4520	4730	5100	5415	5690	5830	6740	6940	7655	8370

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NSG

Air-water chiller

Cooling capacity 228 ÷ 1580 kW

- Microchannel coil
- · High efficiency also at partial loads
- Night mode

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

Outdoor units with high-efficiency screw compressors axial fans, microchannel external coils and plant side shell and tube heat exchanger.

In the unit with desuperheater, it is also possible to produce free-hot water. The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

N Silenced very high efficiency

U Very high efficiency

FEATURES

HFO R1234ze refrigerant gas

HFO R1234ze is a mixture featuring:

da ODP = 0 e GWP (Global Warming Potential) = 7, R134a GWP = 1430; with thermodynamic properties that guarantee and sometimes improve efficiencies achieved with HFC refrigerants.

Bi-tri circuit unit

Unit with 2/3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Aluminium microchannel coils

The microchannel condensing aluminum coils ensure high levels of efficiency, reduced quantities of refrigerant and lower unit weight. The treatment "O" available as configurator it ensures high resistance to corrosion even in the most aggressive environments.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, high or low head, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL PCO.

Units include 1 control board for each compressor.

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night mode: only in the non-silenced versions with the fan to be, inverter or phase-cut or with the DCPX accessory, a silenced operation profile can be set, which is useful, for example, at night for greater acoustic comfort, but always ensures performance even at peak load hours.
- Possibility to control two units in a Master-Slave configuration (from size 1402 to 6402)

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

AERSET: It makes it possible to automatically compensate for the operation setting of the unit to which it is connected, based on a 0-10V MODBUS input signal. Mandatory accessory MODU-485BL.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

KRS: Electric heater for the heat exchanger

ACCESSORIES COMPATIBILITY

Model	Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
AER485P1 x no. 2	°,A,E,L,N,U	•	•	•	•	•		•	•			•	•	•	•
AERBACP x no. 2	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET	°,A,E,L,N,U	•	•	•		•		•	•						•
AERSET	°,A,E,L,N,U	•		•		•		•	•	•					
MULTICHILLER-EVO	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PRV3	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Model	Ver	4202	4502	4802	5202	5602	6002	2 640)2 6	503	6703	6903	7203	8403	9603
AER485P1 x no. 2	°,A,E,L,N,U	•	•	•	•	•	•	•							
	°,A,L									•	•		•	•	
AER485P1 x no. 3	E,U										•	•	•		
	N									•					
AERBACP x no. 2	°,A,E,L,N,U	•	•		•	•	•	•							
	°,A,L									•	•	•	•	•	•
AERBACP x no. 3	E,U										•	•	•		
	N									•					
	°,A,L	•	•	•	•	•	•			•	•	•	•	•	•
AERNET	E,U	•			•	•	•			•	•	•	•		
	N	•	•		•	•	•			•					
	°,A,L	•	•	•	•	•	•	•		•	•	•	•	•	•
AERSET	E,U	•		•	•	•	•			•	•	•	•		
	N	•	•	•	•	•	•			•					
	°,A,L	•	•	•	•	•	•			•	•	•	•	•	•
MULTICHILLER-EVO	E,U	•	•	•	•	•	•			•	•	•	•		
	N	•	•	•	•	•	•	•		•					
	°,A,L	•	•	•	•	•	•	•		•	•	•	•	•	•
PRV3	E,U	•	•	•	•	•	•	•		•	•	•			
	N														

Condensation control temperature

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002
Fans: M										
٥	DCPX110	DCPX110	DCPX110	DCPX110	DCPX110	DCPX110	DCPX110	DCPX111	DCPX111	DCPX112
A	DCPX111	DCPX111	DCPX111	DCPX111	DCPX112	DCPX112	DCPX112	DCPX113	DCPX113	DCPX113
E, L, N	As standard	As standard	As standard	As standard	As standard	As standard	As standard	As standard	As standard	d As standard
U	DCPX111	DCPX111	DCPX112	DCPX112	DCPX113	DCPX113	DCPX114	DCPX114	DCPX114	DCPX114
Ver	3202	3402	3602	3902	4202	4502	4802	5202	5602	6002
Fans: M										
0	DCPX112	DCPX112	DCPX112	DCPX113	DCPX113	DCPX114	DCPX114	DCPX115	DCPX115	DCPX115
A	DCPX113	DCPX114	DCPX114	DCPX115	DCPX115	DCPX116	DCPX116	DCPX116	DCPX117	DCPX118
E, L, N	As standard	As standard	As standard	As standard	As standard	As standard	As standard	As standard	As standard	d As standard
U	DCPX114	DCPX115	DCPX115	DCPX116	DCPX117	DCPX117	DCPX118	DCPX119	DCPX130	DCPX131
Ver	6402		6503	6703	69	103	7203	8403		9603
Fans: M								-		
0	DCPX116	DCPX1	35+DCPX113	DCPX135+DCPX113	DCPX125-	+DCPX114	DCPX114+DCPX136	DCPX114+D	CPX136	DCPX114+DCPX136
A	DCPX118	DCPX1	15+DCPX136	DCPX115+DCPX136	DCPX116-	+DCPX136	DCPX116+DCPX136	DCPX117+D	CPX136	-
E, N	As standard	As	standard	As standard	As sta	indard	As standard	-		-
L	As standard	As	standard	As standard	As sta	indard	As standard	As stand	ard	As standard
U	DCPX132	DCPX1	16+DCPX137	DCPX117+DCPX137	DCPX117-	+DCPX137	DCPX118+DCPX137	-		-

The accessory cannot be fitted on the configurations indicated with -

Antivibration

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Integrated hydron	ic kit: 00													
0	AVX962	AVX962	AVX962	AVX963	AVX963	AVX963	AVX963	AVX968	AVX968	AVX966	AVX966	AVX966	AVX966	AVX965
A, L	AVX963	AVX963	AVX963	AVX963	AVX964	AVX964	AVX966	AVX965	AVX965	AVX970	AVX965	AVX967	AVX967	AVX969
E, U	AVX963	AVX963	AVX964	AVX966	AVX966	AVX965	AVX965	AVX967	AVX967	AVX967	AVX967	AVX969	AVX969	AVX971
N	AVX964	AVX964	AVX987	AVX965	AVX965	AVX967	AVX967	AVX969	AVX969	AVX969	AVX969	AVX971	AVX961	AVX972

Ver	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Integrated hydror	nic kit: 00												
0	AVX965	AVX967	AVX967	AVX969	AVX969	AVX969	AVX971	AVX978	AVX978	AVX983	AVX984	AVX984	AVX984
A, L	AVX969	AVX971	AVX971	AVX971	AVX961	AVX972	AVX972	AVX979	AVX979	AVX980	AVX980	AVX986	AVX981
E, U	AVX961	AVX961	AVX972	AVX972	AVX976	AVX973	AVX974	AVX980	AVX982	AVX982	AVX985	-	-
N	ΔVX972	ΔVX973	Δ\/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ΔVX975	ΔVΧ977	Δ\/ \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Δ\/ \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ΔVX981	_	_	_	_	_

Power factor correction

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
°, A, E, L, N, U	RIF (1)													

(1) Contact the factory A grey background indicates the accessory must be assembled in the factory

Ver	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
°, A, L	RIF (1)												
E, U	RIF (1)	-	-										
N	RIF (1)	-	-	-	-	-							

(1) Contact the factory
A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
٥	GP3V	GP3V	GP3V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V	GP5V	GP5V	GP5V	GP5V	GP6V
A	GP4V	GP4V	GP4V	GP5V	GP5V	GP5V	GP5V	GP6V	GP6V	GP6V	GP6V	GP7V	GP7V	GP8V
E, U	GP4V	GP4V	GP5V	GP5V	GP5V	GP6V	GP6V	GP7V	GP7V	GP7V	GP7V	GP8V	GP8V	GP9V
L	GP4V	GP4V	GP4V	GP4V	GP5V	GP5V	GP5V	GP6V	GP6V	GP6V	GP6V	GP7V	GP7V	GP8V
N	GP5V	GP5V	GP6V	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V	GP8V	GP8V	GP9V	GP10V	GP11V

A grey background indicates the accessory must be assembled in the factory $% \left(1\right) =\left(1\right) \left(1\right)$

Ver	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
0	GP6V	GP7V	GP7V	GP8V	GP8V	GP8V	GP9V	GP9V	GP9V	GP10V	GP11V	GP11V	GP11V
A, L	GP8V	GP9V	GP9V	GP9V	GP10V	GP11V	GP11V	GP4V+GP8V	GP4V+GP8V	GP5V+GP9V	GP5V+GP9V	GP5V+GP10V	GP6V+GP11V
E, U	GP10V	GP10V	GP11V	GP11V	GP6V+GP6V	GP6V+GP7V	GP7V+GP7V	GP5V+GP9V	GP5V+GP10V	GP5V+GP10V	GP6V+GP11V	-	-
N	GP11V	GP6V+GP7V	GP7V+GP7V	GP7V+GP8V	GP8V+GP8V	GP8V+GP8V	GP8V+GP8V	GP6V+GP11V	-	-	-	-	-

A grey background indicates the accessory must be assembled in the factory

Heater exchangers

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002
°, A, L	KRS22	KRS22	KRS23							
E, N, U	KRS23									

A grey background indicates the accessory must be assembled in the factory

Ver	3202	3402	3602	3902	4202	4502	4802	5202	5602	6002
0	KRS23	KRS23	KRS23	KRS23	KRS23	KRS23	KRS24	KRS24	KRS24	KRS24
A, L	KRS23	KRS24	KRS24	KRS24	KRS24	KRS24	KRS24	KRS24	KRS24	KRS24
E, U	KRS23	KRS24	KRS24	KRS24	KRS24	KRS24	KRS24	KRS24	KRS23+KRS23	KRS23+KRS23
N	KRS23	KRS24	KRS24	KRS24	KRS24	KRS24	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23

A grey background indicates the accessory must be assembled in the factory

Ver	6402	6503	6703	6903	7203	8403	9603
0	KRS24						
A, L	KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24
E, U	KRS23+KRS23	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	-	-
N	KRS23+KRS23	KRS23+KRS24	-	-	-	-	-

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field		Description
1,2,3	3	NSG
4,5,6	5,7	Size 1402, 1602, 1802, 2002, 2202, 2352, 2502, 2652, 2802, 3002, 3202, 3402, 3602 3902, 4202, 4502, 4802, 5202, 5602, 6002, 6402, 6503, 6703, 6903, 7203, 8403, 9603
8		Operating field
	Χ	Electronic thermostatic expansion valve (1)
	Z	Low temperature electronic thermostatic valve (2)
9		Model
	0	Cooling only
10		Heat recovery
	D	With desuperheater (3)
	T	With total recovery (4)
	0	Without heat recovery
11		Version
	0	Standard
	Α	High efficiency
	Е	Silenced high efficiency
	L	Standard silenced
	N	Silenced very high efficiency
	U	Very high efficiency
12		Coils
	0	Coated aluminium microchannel
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	٧	Copper pieps-Coated aluminium fins
	0	Aluminium microchannel
13		Fans
	J	Inverter
	М	Oversized
14		Power supply
	2	230V~3 50Hz with fuses (5)
	4	230V~3 50Hz with magnet circuit breakers (5)
	5	500V~3 50Hz with fuses (6)
	8	400V~3 50Hz with magnet circuit breakers
	9	500V~3 50Hz with magnet circuit breakers (6)
	0	400V~3 50Hz with fuses

Field	Description
15,16	Integrated hydronic kit
00	Without hydronic kit
	Kit with n° 1 pump
PA	Pump A
PB	Pump B
PC	Pump C
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J (7)
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump (7)
	Kit with 2 pumps
TF	Double pump F (8)
TG	Double pump G (8)
TH	Double pump H (8)
TI	Double pump I (8)
TJ	Double pump J (8)

- (1) Water produced from 0 °C ÷ 23 °C
 (2) Water produced from 8 °C ÷ -10 °C; incompatible whit D and T
 (3) The temperature of the water in the heat exchanger inlet must never drop below 35°C.
 (4) The temperature of the water in the heat exchanger inlet must never drop below 35°C. The units from 1402° 1602° 1802° with total recovery are not configurable. For all other sizes and versions it is to be evaluated at the order stage.
 (5) Only for sizes from 1402 to 2202
 (6) Only for sizes from 1402 to 3202
 (7) For all configurations including pump J please contact the factory.
 (8) The unit from 5603 to 9603 can only have hydronic kit "TF TG TH TI TJ"

PERFORMANCE SPECIFICATIONS

NSG - °

NOG -															
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	kW	228,6	261,3	297,8	334,1	358,6	389,8	402,8	443,7	462,6	506,3	531,6	566,5	623,6	676,0
Input power	kW	74,3	85,8	100,4	108,3	119,9	129,9	138,2	151,6	162,6	167,0	175,7	193,9	214,9	228,2
Cooling total input current	А	138,0	156,0	174,0	192,0	214,0	233,0	248,0	271,0	289,0	297,0	309,0	332,0	359,0	390,0
EER	W/W	3,08	3,05	2,97	3,08	2,99	3,00	2,91	2,93	2,85	3,03	3,02	2,92	2,90	2,96
Water flow rate system side	I/h	39316	44954	51218	57461	61665	67027	69255	76286	79541	87045	91392	97398	107202	116226
Pressure drop system side	kPa	14	18	16	21	24	20	22	18	19	17	19	21	24	29
(1) D FN 14511 2022 H		1700	1												

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C/7 °C(1)														
Cooling capacity	kW	739,5	792,4	835,2	874,9	897,0	942,5	989,1	1060,2	1095,1	1215,2	1268,8	1333,1	1410,0
Input power	kW	251,7	263,0	281,6	288,8	302,5	320,8	329,9	355,3	375,5	407,7	419,3	461,7	512,0
Cooling total input current	А	434,0	454,0	482,0	500,0	524,0	558,0	581,0	609,0	649,0	701,0	728,0	805,0	900,0
EER	W/W	2,94	3,01	2,97	3,03	2,97	2,94	3,00	2,98	2,92	2,98	3,03	2,89	2,75
Water flow rate system side	l/h	127152	136250	143578	150403	154212	162036	170045	182263	188254	208871	218093	229141	242359
Pressure drop system side	kPa	33	38	28	31	33	38	42	29	31	20	22	25	28
(4) B. Ellerene en l		1-04												

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSG - L

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	kW	227,7	261,7	298,7	335,0	373,6	386,8	415,2	446,3	476,8	498,0	546,8	602,0	645,3	707,0
Input power	kW	72,7	84,0	98,1	112,6	120,1	128,4	138,3	144,3	155,8	165,4	179,1	193,2	212,5	231,2
Cooling total input current	A	131,0	148,0	165,0	192,0	208,0	224,0	242,0	252,0	270,0	284,0	303,0	318,0	342,0	375,0
EER	W/W	3,13	3,12	3,04	2,97	3,11	3,01	3,00	3,09	3,06	3,01	3,05	3,12	3,04	3,06
Water flow rate system side	I/h	39167	45014	51371	57614	64237	66506	71390	76738	81966	85616	94000	103492	110929	121547
Pressure drop system side	kPa	15	18	17	15	19	20	16	19	16	17	19	15	18	22

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C/7 °C (1)														
Cooling capacity	kW	743,5	806,3	841,6	893,3	933,8	982,7	1023,0	1083,7	1120,2	1222,9	1269,4	1383,5	1517,2 (2)
Input power	kW	252,4	266,7	283,5	297,7	306,0	315,5	334,5	357,8	379,1	402,0	421,5	465,5	504,7
Cooling total input current	A	416,0	437,0	465,0	490,0	507,0	533,0	563,0	583,0	623,0	670,0	699,0	763,0	848,0
EER	W/W	2,95	3,02	2,97	3,00	3,05	3,12	3,06	3,03	2,96	3,04	3,01	2,97	3,01
Water flow rate system side	l/h	127821	138615	144692	153568	160522	168943	175872	186277	192550	210223	218211	237808	260789
Pressure drop system side	kPa	24	31	33	24	26	31	33	22	24	31	33	26	32

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Unit not Eurovent certified because it exceeds 1500 kW

NSG - A

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	kW	233,0	267,3	306,8	346,4	383,4	397,6	429,0	458,6	491,7	511,7	561,1	619,9	669,1	731,1
Input power	kW	73,5	83,8	96,7	109,8	118,4	126,0	134,9	142,3	152,7	160,7	171,9	187,9	206,4	224,9
Cooling total input current	А	139,0	155,0	170,0	195,0	214,0	229,0	246,0	260,0	276,0	287,0	303,0	322,0	344,0	380,0
EER	W/W	3,17	3,19	3,17	3,15	3,24	3,16	3,18	3,22	3,22	3,18	3,26	3,30	3,24	3,25
Water flow rate system side	I/h	40072	45975	52777	59582	65922	68370	73757	78851	84535	87974	96463	106561	115027	125681
Pressure drop system side	kPa	15	19	18	16	20	22	17	20	16	18	20	16	19	24
(1) D. (- FN 14511 2022 H. (-)		1700	1 2 500												

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C/7 °C (1)														
Cooling capacity	kW	770,4	833,7	872,2	923,2	961,9	1011,0	1053,8	1121,6	1160,9	1263,4	1313,4	1432,8	1580,6 (2)
Input power	kW	243,7	258,6	273,6	291,5	301,9	312,6	330,2	347,1	365,9	390,3	408,0	451,1	495,6
Cooling total input current	А	417,0	440,0	466,0	502,0	524,0	554,0	583,0	588,0	625,0	676,0	701,0	769,0	866,0
EER	W/W	3,16	3,22	3,19	3,17	3,19	3,23	3,19	3,23	3,17	3,24	3,22	3,18	3,19
Water flow rate system side	l/h	132447	143336	149960	158709	165357	173799	181161	192795	199561	217184	225782	246285	271702
Pressure drop system side	kPa	26	33	36	26	28	33	35	24	26	33	36	27	35

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Unit not Eurovent certified because it exceeds 1500 kW

NSG - E

1430 - L															
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	kW	243,5	281,0	317,4	359,0	387,6	413,2	428,5	471,9	494,2	514,3	550,0	608,1	654,7	714,4
Input power	kW	73,6	86,3	96,5	111,1	122,0	126,7	133,3	144,0	153,3	160,2	172,1	188,9	204,8	222,5
Cooling total input current	Α	133,0	152,0	163,0	189,0	211,0	222,0	237,0	251,0	267,0	279,0	293,0	310,0	334,0	368,0
EER	W/W	3,31	3,26	3,29	3,23	3,18	3,26	3,21	3,28	3,22	3,21	3,20	3,22	3,20	3,21
Water flow rate system side	l/h	41877	48309	54578	61723	66638	71045	73675	81134	84968	88414	94560	104538	112548	122817
Pressure drop system side	kPa	12	11	14	9	11	12	13	15	16	18	19	16	18	23

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C/7 °C (1)														
Cooling capacity	kW	764,3	813,2	877,0	900,7	944,8	1000,3	1028,9	1101,9	1151,7	1242,8	1300,9	-	-
Input power	kW	236,0	255,6	273,4	283,8	292,9	310,2	318,7	343,0	357,9	392,1	407,8	-	-
Cooling total input current	A	399,0	428,0	450,0	475,0	495,0	519,0	544,0	572,0	599,0	656,0	673,0	-	-
EER	W/W	3,24	3,18	3,21	3,17	3,23	3,22	3,23	3,21	3,22	3,17	3,19	-	-
Water flow rate system side	l/h	131397	139814	150755	154839	162399	171941	176857	189402	197982	213642	223617	-	-
Pressure drop system side	kPa	26	32	24	25	16	16	19	23	26	32	24	-	-

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSG - U

	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
kW	249,3	288,6	324,9	369,0	399,5	423,8	440,0	483,4	507,1	526,0	564,2	623,1	674,9	735,2
kW	74,1	85,8	96,9	110,1	120,0	126,0	132,1	143,6	152,2	157,5	167,5	185,9	201,2	218,7
А	141,0	158,0	172,0	196,0	217,0	231,0	246,0	263,0	277,0	287,0	298,0	319,0	342,0	377,0
W/W	3,36	3,36	3,35	3,35	3,33	3,36	3,33	3,37	3,33	3,34	3,37	3,35	3,35	3,36
I/h	42866	49623	55869	63446	68694	72874	75659	83113	87181	90438	96990	107116	116011	126384
kPa	13	11	14	10	11	13	14	16	17	18	20	17	20	24
	kW A W/W I/h	kW 249,3 kW 74,1 A 141,0 W/W 3,36 I/h 42866	kW 249,3 288,6 kW 74,1 85,8 A 141,0 158,0 W/W 3,36 3,36 I/h 42866 49623	kW 249,3 288,6 324,9 kW 74,1 85,8 96,9 A 141,0 158,0 172,0 W/W 3,36 3,36 3,35 I/h 42866 49623 55869	kW 249,3 288,6 324,9 369,0 kW 74,1 85,8 96,9 110,1 A 141,0 158,0 172,0 196,0 W/W 3,36 3,36 3,35 3,35 I/h 42866 49623 55869 63446	kW 249,3 288,6 324,9 369,0 399,5 kW 74,1 85,8 96,9 110,1 120,0 A 141,0 158,0 172,0 196,0 217,0 W/W 3,36 3,36 3,35 3,35 3,33 I/h 42866 49623 55869 63446 68694	kW 249,3 288,6 324,9 369,0 399,5 423,8 kW 74,1 85,8 96,9 110,1 120,0 126,0 A 141,0 158,0 172,0 196,0 217,0 231,0 W/W 3,36 3,36 3,35 3,35 3,33 3,36 I/h 42866 49623 55869 63446 68694 72874	kW 249,3 288,6 324,9 369,0 399,5 423,8 440,0 kW 74,1 85,8 96,9 110,1 120,0 126,0 132,1 A 141,0 158,0 172,0 196,0 217,0 231,0 246,0 W/W 3,36 3,36 3,35 3,35 3,33 3,36 3,33 I/h 42866 49623 55869 63446 68694 72874 75659	kW 249,3 288,6 324,9 369,0 399,5 423,8 440,0 483,4 kW 74,1 85,8 96,9 110,1 120,0 126,0 132,1 143,6 A 141,0 158,0 172,0 196,0 217,0 231,0 246,0 263,0 W/W 3,36 3,36 3,35 3,35 3,33 3,36 3,33 3,37 I/h 42866 49623 55869 63446 68694 72874 75659 83113	kW 249,3 288,6 324,9 369,0 399,5 423,8 440,0 483,4 507,1 kW 74,1 85,8 96,9 110,1 120,0 126,0 132,1 143,6 152,2 A 141,0 158,0 172,0 196,0 217,0 231,0 246,0 263,0 277,0 W/W 3,36 3,36 3,35 3,35 3,33 3,36 3,33 3,37 3,33 I/h 42866 49623 55869 63446 68694 72874 75659 83113 87181	kW 249,3 288,6 324,9 369,0 399,5 423,8 440,0 483,4 507,1 526,0 kW 74,1 85,8 96,9 110,1 120,0 126,0 132,1 143,6 152,2 157,5 A 141,0 158,0 172,0 196,0 217,0 231,0 246,0 263,0 277,0 287,0 W/W 3,36 3,36 3,35 3,35 3,33 3,36 3,37 3,33 3,34 I/h 42866 49623 55869 63446 68694 72874 75659 83113 87181 90438	kW 249,3 288,6 324,9 369,0 399,5 423,8 440,0 483,4 507,1 526,0 564,2 kW 74,1 85,8 96,9 110,1 120,0 126,0 132,1 143,6 152,2 157,5 167,5 A 141,0 158,0 172,0 196,0 217,0 231,0 246,0 263,0 277,0 287,0 298,0 W/W 3,36 3,36 3,35 3,35 3,33 3,33 3,37 3,33 3,34 3,37 I/h 42866 49623 55869 63446 68694 72874 75659 83113 87181 90438 96990	kW 249,3 288,6 324,9 369,0 399,5 423,8 440,0 483,4 507,1 526,0 564,2 623,1 kW 74,1 85,8 96,9 110,1 120,0 126,0 132,1 143,6 152,2 157,5 167,5 185,9 A 141,0 158,0 172,0 196,0 217,0 231,0 246,0 263,0 277,0 287,0 298,0 319,0 W/W 3,36 3,36 3,35 3,35 3,33 3,36 3,33 3,34 3,37 3,35 I/h 42866 49623 55869 63446 68694 72874 75659 83113 87181 90438 96990 107116	kW 249,3 288,6 324,9 369,0 399,5 423,8 440,0 483,4 507,1 526,0 564,2 623,1 674,9 kW 74,1 85,8 96,9 110,1 120,0 126,0 132,1 143,6 152,2 157,5 167,5 185,9 201,2 A 141,0 158,0 172,0 196,0 217,0 231,0 246,0 263,0 277,0 287,0 298,0 319,0 342,0 W/W 3,36 3,36 3,35 3,35 3,33 3,36 3,33 3,37 3,33 3,34 3,37 3,35 3,35 I/h 42866 49623 55869 63446 68694 72874 75659 83113 87181 90438 9690 107116 116011

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C / 7 °C (1)														
Cooling capacity	kW	784,5	837,2	901,8	927,6	971,1	1026,7	1054,7	1133,1	1182,5	1280,2	1339,0	-	-
Input power	kW	232,3	250,1	268,3	277,9	288,3	306,2	315,5	337,3	352,2	383,1	399,1	-	-
Cooling total input current	Α	411,0	437,0	461,0	486,0	509,0	536,0	564,0	586,0	617,0	668,0	689,0	-	-
EER	W/W	3,38	3,35	3,36	3,34	3,37	3,35	3,34	3,36	3,36	3,34	3,36	-	-
Water flow rate system side	l/h	134866	143931	155027	159459	166915	176480	181297	194780	203262	220062	230162	-	-
Pressure drop system side	kPa	28	34	25	27	17	17	20	24	28	34	25	-	-

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSG - N

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	kW	245,2	283,6	318,2	364,5	394,3	417,2	432,9	475,2	498,1	517,4	552,6	613,0	669,6	727,4
Input power	kW	73,4	84,4	95,3	107,6	118,7	124,5	130,7	141,2	149,3	156,7	165,7	182,9	200,4	216,0
Cooling total input current	A	132,0	149,0	162,0	185,0	207,0	219,0	234,0	249,0	264,0	274,0	287,0	306,0	324,0	359,0
EER	W/W	3,34	3,36	3,34	3,39	3,32	3,35	3,31	3,37	3,34	3,30	3,34	3,35	3,34	3,37
Water flow rate system side	I/h	42156	48766	54716	62663	67797	71743	74443	81707	85643	88946	95006	105378	115107	125049
Pressure drop system side	kPa	13	11	15	9	11	13	14	15	17	18	20	16	20	24

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C / 7 °C (1)														
Cooling capacity	kW	766,9	834,2	880,8	925,4	961,2	1003,2	1036,3	1120,4	-	-	-	-	-
Input power	kW	230,1	248,2	261,5	275,0	286,5	296,1	311,6	333,3	-	-	-	-	-
Cooling total input current	A	395,0	413,0	435,0	458,0	480,0	509,0	537,0	557,0	-	-	-	-	-
EER	W/W	3,33	3,36	3,37	3,36	3,35	3,39	3,33	3,36	-	-	-	-	-
Water flow rate system side	l/h	131846	143411	151421	159089	165211	172435	178132	192584	-	-	-	-	-
Pressure drop system side	kPa	27	23	29	29	17	17	20	24	-	-	-	-	-

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Fans: M																
SEER - 12/7 (EN14825: 2018) (1)																
SEER	°,A,E,L,N,U	W/W	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
SEPR - (EN 14825: 2018) (3)																
	0	W/W	5,32	5,40	5,30	5,46	5,46	5,50	5,52	5,51	5,51	5,51	5,54	5,53	5,51	5,52
	A	W/W	5,53	5,59	5,47	5,51	5,59	5,56	5,55	5,56	5,57	5,51	5,53	5,59	5,57	5,58
CEDD	E	W/W	5,69	5,72	5,77	5,64	5,58	5,71	5,65	5,72	5,67	5,65	5,67	5,64	5,66	5,68
SEPR	L	W/W	5,46	5,56	5,43	5,53	5,54	5,52	5,52	5,52	5,55	5,55	5,75	5,61	5,52	5,52
	N	W/W	5,75	5,77	5,89	5,69	5,58	5,66	5,62	5,68	5,61	5,59	5,63	5,64	5,64	5,65
	U	W/W	5,73	5,78	5,81	5,70	5,65	5,76	5,71	5,77	5,72	5,70	5,72	5,70	5,72	5,74

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Not covered by standard (EN14825: 2018 for comfort applications, 12°C/7°C)
(3) Calculation performed with FIXED water flow rate.

Size			4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Fans: M															
SEER - 12/7 (EN14825: 2018) (1)															
SEER	°,A,E,L,N,U	W/W	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
SEPR - (EN 14825: 2018) (3)															
	0	W/W	5,53	5,52	5,52	5,52	5,52	5,51	5,52	5,53	5,52	5,52	5,55	5,52	5,52
	A	W/W	5,51	5,56	5,55	5,52	5,55	5,56	5,52	5,65	5,59	5,69	5,66	5,60	5,65
CEDD	E	W/W	5,69	5,64	5,69	5,56	5,56	5,56	5,69	5,81	5,86	5,67	5,72	-	-
SEPR	L	W/W	5,53	5,51	5,52	5,51	5,54	5,54	5,54	5,63	5,59	5,66	5,65	5,62	5,66
	N	W/W	5,61	5,62	5,64	5,69	5,57	5,60	5,56	5,71	-	-	-	-	-
	U	W/W	5.76	5.71	5,75	5,64	5,63	5,63	5,74	5,86	5,89	5,73	5,77	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Not covered by standard (EN14825: 2018 for comfort applications, 12°C/7°C)
(3) Calculation performed with FIXED water flow rate.

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Fans: J	'															
SEER - 12/7 (EN14825: 2018) (1)																
	۰	W/W	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	Α	W/W	4,43	4,40	4,48	4,54	4,51	4,54	4,56	4,56	4,56	4,56	4,57	4,57	4,56	4,57
SEER	E	W/W	4,46	4,47	4,55	4,55	4,55	4,58	4,57	4,59	4,57	4,58	4,58	4,58	4,59	4,57
SEEK	L	W/W	4,41	4,38	4,47	4,51	4,50	4,54	4,56	4,56	4,56	4,56	4,56	4,56	4,56	4,56
	N	W/W	4,51	4,48	4,57	4,55	4,56	4,60	4,60	4,61	4,60	4,60	4,61	4,61	4,60	4,60
	U	W/W	4,48	4,47	4,56	4,57	4,56	4,58	4,57	4,59	4,58	4,59	4,59	4,59	4,60	4,58
SEPR - (EN 14825: 2018) (3)																
	٥	W/W	5,32	5,40	5,30	5,46	5,46	5,50	5,52	5,51	5,51	5,51	5,54	5,53	5,51	5,52
	Α	W/W	5,50	5,60	5,50	5,50	5,60	5,60	5,60	5,60	5,60	5,50	5,50	5,60	5,60	5,60
SEPR	E	W/W	5,70	5,70	5,80	5,60	5,60	5,70	5,70	5,70	5,70	5,70	5,70	5,60	5,70	5,70
ארות	L	W/W	5,50	5,60	5,40	5,50	5,50	5,50	5,50	5,50	5,60	5,60	5,80	5,60	5,50	5,50
	N	W/W	5,80	5,80	5,90	5,70	5,60	5,70	5,60	5,70	5,60	5,60	5,60	5,60	5,60	5,70
	U	W/W	5,70	5,80	5,80	5,70	5,70	5,80	5,70	5,80	5,70	5,70	5,70	5,70	5,70	5,70

Size			4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Fans: J															
SEER - 12/7 (EN14825: 2018) (1)															
	0	W/W	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	W/W	4,57	4,57	4,56	4,56	4,56	4,57	4,56	4,57	4,57	4,58	4,57	4,57	4,58
CLLD	E	W/W	4,58	4,56	4,59	4,57	4,59	4,57	4,58	4,60	4,61	4,58	4,60	-	-
SEER	L	W/W	4,56	4,56	4,55	4,56	4,56	4,56	4,55	4,57	4,56	4,57	4,57	4,56	4,57
	N	W/W	4,60	4,59	4,61	4,60	4,60	4,59	4,60	4,62	-	-	-	-	-
	U	W/W	4,59	4,57	4,59	4,57	4,59	4,58	4,59	4,61	4,61	4,58	4,60	-	-
SEPR - (EN 14825: 2018) (3)															
	0	W/W	5,53	5,52	5,52	5,52	5,52	5,51	5,52	5,53	5,52	5,52	5,55	5,52	5,52
	A	W/W	5,50	5,60	5,60	5,50	5,60	5,60	5,50	5,70	5,60	5,70	5,70	5,60	5,70
CEDD	E	W/W	5,70	5,60	5,70	5,60	5,60	5,60	5,70	5,80	5,90	5,70	5,70	-	-
SEPR	L	W/W	5,50	5,50	5,50	5,50	5,50	5,50	5,50	5,60	5,60	5,70	5,70	5,60	5,70
	N	W/W	5,60	5,60	5,60	5,70	5,60	5,60	5,60	5,70	-	-	-	-	-
	U	W/W	5.80	5.70	5.80	5.60	5.60	5.60	5.70	5.90	5.90	5.70	5.80	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Not covered by standard (EN14825: 2018 for comfort applications, 12°C/7°C)
(3) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			1402	1602	1802	2002	2202	2352	2502	2652 28	02 30	02 3202	3402	3602	3902
Electric data															
	0	А	223,7	241,3	264,3	300,3	327,4	346,4	365,4	386,4 40	7,4 43	,3 446,3	470,3	494,3	543,1
Maximum current (FLA)	A,L	А	232,6	250,2	273,2	300,3	336,3	355,3	374,3	404,1 42	5,1 440),1 455,1	488,0	512,0	560,9
Maximum current (FLA)	E,U	Α	232,6	250,2	282,1	309,2	336,3	364,1	383,1	413,0 43	1,0 449	,0 464,0	496,9	520,9	569,8
	N	А	241,5	259,1	290,9	318,0	345,1	373,0	392,0	421,9 44	2,9 45	,9 472,9	505,8	538,7	593,4
	0	Α	252,0	287,1	329,4	376,3	395,0	442,0	459,0	486,0 49	3,7 59	,6 636,2	665,2	661,2	791,0
Deals suggest (LDA)	A,L	Α	260,9	296,0	338,3	376,3	403,9	450,9	467,9	503,7 51	1,4 600	5,4 645,0	682,9	678,9	8,808
Peak current (LRA)	E,U	Α	260,9	296,0	347,2	385,2	403,9	459,7	476,7	512,6 52),3 61	,3 653,9	691,8	687,8	817,7
	N	Α	269,8	304,9	356,0	394,0	412,7	468,6	485,6	521,5 52	9,2 62	1,2 662,8	700,7	705,6	841,3
Size			4202	4502	4802	5202	5602	600	2 6402	6503	6703	6903	7203	8403	9603
Electric data															
	0	А	583,1	625,0	658,0	697,9	728,9	760,	9 801,8	831,8	871,8	946,7	994,4	1087,4	1183,4
Mariana	A,L	А	600,9	642,8	675,8	706,8	746,7	793,	4 825,4	864,3	904,3	988,1	1021,1	1122,9	1236,7
Maximum current (FLA)	E,U	А	618,7	651,7	699,4	730,4	770,3	811,	2 852,1	882,1	930,9	996,9	1038,8	-	-
	N	Α	633,4	684,2	726,1	765,9	805,8	837,	8 869,8	908,7	-	-	-	-	-
	0	А	821,3	894,2	914,2	1078,1	1097,9	9 1209,	,9 1249,	8 993,9	1024,2	1117,1	1151,8	1346,4	1520,4
Deale sussessed (LDA)	A,L	Α	839,1	912,0	932,0	1087,0	1115,7	7 1242	,4 1273,	4 1026,4	1056,7	1158,5	1178,5	1381,9	1573,7
Peak current (LRA)	E,U	A	856,9	920,9	955,6	1110,6	1139,3	3 1260,	,2 1300,	1 1044,2	1083,3	1167,3	1196,2	-	-

GENERAL TECHNICAL DATA

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Compressor																
Туре	°,A,E,L,N,U	type							Sci	rew						
Number	°,A,E,L,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Circuits	°,A,E,L,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	°,A,E,L,N,U	type							R12	34ze						

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Not covered by standard (EN14825: 2018 for comfort applications, 12°C/7°C)
(3) Calculation performed with FIXED water flow rate.

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
	0	kg	24,0	24,0	23,0	30,0	30,0	35,0	35,0	35,0	35,0	40,0	46,0	42,5	44,5	51,0
	A	kg	26,5	34,0	28,0	30,5	34,0	35,0	38,5	40,5	45,0	43,0	47,0	52,0	55,0	74,0
Refrigerant load	E	kg	29,0	30,0	41,0	34,0	40,0	43,0	43,0	46,0	45,0	45,0	57,0	54,0	74,0	60,0
circuit 1 (1)	L	kg	24,0	26,0	37,0	28,0	34,0	35,0	38,5	40,0	42,0	44,0	47,0	52,0	54,0	56,0
	N	kg	36,0	38,0	34,0	44,0	49,0	53,0	56,0	60,0	64,0	64,0	55,0	72,0	81,0	85,0
	U	kg	32,0	34,0	34,0	35,0	46,0	49,0	49,0	46,0	45,0	60,0	54,5	58,0	58,0	75,0
	0	kg	24,0	25,0	25,0	41,0	33,0	38,0	37,0	37,5	35,0	50,0	48,0	46,0	46,0	59,0
	Α	kg	28,0	34,0	29,5	36,0	34,0	49,0	40,5	45,0	47,5	48,0	50,0	55,0	60,0	81,0
Refrigerant load	E	kg	29,0	31,5	41,0	40,0	40,0	45,0	45,0	52,0	53,0	53,0	59,0	59,0	74,0	77,0
circuit 2 (1)		kg	27,0	28.0	37,0	36,0	34,0	40.0	40,5	43,0	46,0	52,0	50.0	55,0	58,0	72,0
circuit 2 (1)	N N	kg	36,0	38,0	34,0	49,0	49,0	56,0	56,0	64,0	64,0	69,0	57,0	77,0	81,0	92,0
	U	kg	32,0	34,0	36,0	41,5	46,0	53,0	54,0	52,0	48,5	65,0	59,0	62,0	63,0	90,0
Refrigerant load		- Kg	32,0	Эт,0	30,0	כוד	то,о	33,0	JT,U	32,0	C,0F	03,0	37,0	02,0	03,0	70,0
circuit 3 (1)	°,A,E,L,N,U	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-
System side heat e	vchanner															
Type	°,A,E,L,N,U	type							Shell	and tube						-
Number	°,A,E,L,N,U	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1
(1) The load indicat				ary value. The	e final value	of the refrige	rant load is in		the unit's	technical la	bel. For furth	er informatio	n contact the	office.		
Size			4202	4502	4802	5202	5602	600	2 (5402	6503	6703	6903	7203	8403	9603
Compressor																7002
Туре	°,A,E,L,N,U	type		-						crew						
71	°,A,L	no.	2	2	2	2	2	2		2	3	3	3	3	3	3
Number	E,U	no.	2	2	2	2	2	2		2	3	3	3	3	-	-
	N	no.	2	2	2	2	2	2		2	3	_	-	-	_	-
	°,A,L	no.	2	2	2	2	2	2		2	3	3	3	3	3	3
Circuits	E,U	no.	2	2	2	2	2	2		2	3	3	3	3	-	-
	N	no.	2	2	2	2	2	2		2	3	-	-	-	-	-
Refrigerant	°,A,E,L,N,U	type							R1	234ze						
	0	kg	52,0	55,0	55,0	63,0	65,0	62,0		70,0	67,0	55,0	78,0	62,0	99,0	112,0
	A,L	kg	62,0	67,0	67,0	70,0	106,0	82,0		82,0	74,0	81,0	85,0	70,0	106,0	80,0
Refrigerant load	E	kg	70,0	89,0	80,0	100,0	113,0	86,0		95,0	77,0	89,0	89,0	100,0	-	-
circuit 1 (1)	N	kg	92,0	99,0	110,0	114,0	128,0	128,		38,0	85,0	-	-	-		_
	U	kg	70,0	89,0	80,0	85,0	113,0	86,0		95,0	77,0	89,0	89,0	100,0	-	_
	0	kq	59,0	64,0	64,0	70,0	71,0	73,0		80,0	74,0	61,0	85,0	70.0	99,0	112,0
	A	kq	70,0	78,0	78,0	82,0	106,0	99.0		99,0	81,0	81,0	92,0	75.0	106.0	95,0
Refrigerant load	E	kq	85,0	96.0	90,0	110,0	113,0	98.0		97,0	85,0	89,0	96,0	100.0	-	-
circuit 2 (1)		kq	70,0	79,0	78,0	82,0	106,0	99,0		99,0	81,0	81,0	92,0	75,0	106,0	95,0
	N N	kg	92,0	107,0	110,0	124,0	128,0	138,		38,0	92,0	-	-	-	-	-
	U	kg	85,0	96,0	90,0	103,0	113,0	98,0		97,0	85,0	89,0	96,0	100,0	_	
	0	kq	- 05,0	-	-	- 103,0	- 113,0	- 70,0	,	-	74,0	65,0	85,0	80,0	99,0	112,0
Refrigerant load	A,L	kq								_	81,0	81,0	92,0	75,0	106,0	85,0
circuit 3 (1)	E,U	kg								-	85,0	89,0	96,0	100,0	-	- 03,0
circuit 5 (1)	N	kg				-				-	92,0	- 07,0	- 50,0	-		
System side heat e		ĸУ			-		-			•	72,0	-	-	-	-	-
Type	°,A,E,L,N,U	type							Shall	and tube						
турс	,A,E,L,N,U ∘	no.	1	1	1	1	1	1	וואווכ	1	1	1	1	1	1	1
	A,L	no.	1	1	1	1	1	1		1	2	2	2	2	2	2
Number	A,L	110.	I	I	I		- 1			I	L	L				Z

N no. 1 2 2 2 2 2 2 2 2 - - - (1) The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

FANS DATA

FANS DATA																
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Fan																
Туре	°,A,E,L,N,U	type	Axial													
	0	no.	6	6	6	8	8	8	8	8	8	10	10	10	10	12
Normhau	A,L	no.	8	8	8	8	10	10	10	12	12	12	12	14	14	16
Number	E,U	no.	8	8	10	10	10	12	12	14	14	14	14	16	16	18
	N	no.	10	10	12	12	12	14	14	16	16	16	16	18	20	22
Size	'		4202	4502	4802	5202	5602	600	02 6	402	6503	6703	6903	7203	8403	9603
Fan																
Туре	°,A,E,L,N,U	type	Axial	Axial	Axial	Axial	Axial	Axi	al A	xial	Axial	Axial	Axial	Axial	Axial	Axial
	0	no.	12	14	14	16	16	16	5	18	18	18	20	22	22	22
Normalia and	A,L	no.	16	18	18	18	20	22)	22	24	24	28	28	30	34
Number	E,U	no.	20	20	22	22	24	26	5	28	28	30	30	32	-	-

Oversized

Oversized																
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Fans: M																
Increased fan																
Fan motor –	°,A,U	type								hronous						
	E,L,N	type						Asy	ynchronou	with phas	se cut		_			
Without Static pressure		2	400	4000	4004	4440	4440			4,	*****	46	4,	40	400	
-	0	m³/h	108000	108000	108000	144000	144000	144000	144000	144000	144000	180000	180000	180000	180000	216000
-	A	m ³ /h	144000	144000	144000	144000	180000	180000	180000	216000		216000	216000	252000	252000	288000
Air flow rate	E	m³/h	92000	92000	115000	115000	115000	138000	138000	161000		161000		184000	184000	207000
-	L	m³/h	92000	92000	92000	92000	115000	115000	115000	138000	138000	138000	138000	161000	161000	184000
-	N	m³/h	115000	115000	138000	138000	138000	161000	161000	184000	184000	184000		207000	230000	253000
	U	m³/h	144000	144000	180000	180000	180000	216000	216000	252000		252000		288000	288000	324000
-		dB(A)	98,0	98,0	98,0	98,0	98,0	98,0	98,0	98,0	98,0	99,0	99,0	100,0	100,0	101,0
-	A E	dB(A)	98,0	98,0	99,0	99,0	99,0	99,0	99,0	100,0	100,0	100,0	100,0	100,0	100,0	101,0
Sound power level -		dB(A)	89,0	89,0	90,0	90,0 89,0	90,0	91,0	91,0 91,0	92,0	92,0 91,0	92,0 91,0	92,0	93,0 91,0	93,0 91,0	93,0
-	N N	dB(A)	89,0 90,0	89,0 90,0	91,0	91,0	91,0	91,0 91,0	91,0	91,0 92,0	92,0	92,0	91,0 92,0	93,0	93,0	92,0 93,0
-	U	dB(A)	98,0	98,0	99,0	99,0	99,0	100,0	100,0	100,0	100,0	100,0	100,0	101,0	101,0	101,0
	U	ub(n)														
Size			4202	4502	4802	5202	5602	2 60	02 6	402	6503	6703	6903	7203	8403	9603
Fans: M																
Increased fan	°,A,U	timo							Acum	hronous						
Fan motor -	E,L,N	type						A.c.		hronous	ro cut					
Without Static pressure	E,L,IN	type						AS	ynchronou	s with pha	se cut					
without static pressure	0	m³/h	216000	252000	252000	288000	0 28800	00 288	000 33	4000 3	324000	324000	360000	396000	396000	396000
-	A	m ³ /h	288000	324000	324000							432000	504000	504000	540000	612000
-	E	m ³ /h	230000	230000	253000							345000	345000	368000	-	- 012000
Air flow rate –	l	m ³ /h	184000	207000	207000							276000	322000	322000	345000	442000
-	N	m ³ /h	253000	299000	322000						391000	-	-	-	-	-
_	U	m³/h	360000	360000	396000							540000	540000	576000	-	_
	0	dB(A)	101,0	101,0	101,0	102,0					102,0	102,0	103,0	103,0	103,0	103,0
-	A	dB(A)	101,0	101,0	102,0	101,0					103,0	103,0	103,0	103,0	104,0	104,0
-	E	dB(A)	94,0	94,0	94,0	94,0	94,0			94,0	94,0	94,0	94,0	95,0	-	-
Sound power level –	L	dB(A)	93,0	93,0	93,0	93,0	94,0			94,0	94,0	94,0	94,0	94,0	94,0	95,0
=	N	dB(A)	93,0	94,0	94,0	95,0	95,0			95,0	95,0	-	-	-	-	-
	U	dB(A)	102,0	102,0	102,0	102,0	103,0) 10:	3,0 1	03,0	103,0	103,0	103,0	103,0	-	-
Inverter																
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Fans: J																
Inverter fan																
Fan motor	°,A,E,L,N,U	type							-	erter						
-	•	m³/h	96000	96000	96000	128000	128000	128000	128000	144000		180000		180000	180000	216000
-	A	m ³ /h	128000	128000	128000	128000	160000	160000	160000	192000		192000	192000	224000	224000	256000
Air flow rate	E	m³/h	92000	92000	115000	115000	115000	138000	138000	161000	_	161000		184000	184000	207000
-	L	m³/h	92000	92000	92000	92000	115000	115000	115000	138000		138000		161000	161000	184000
-	N	m ³ /h	115000	115000	138000	138000	138000	161000	161000	184000		184000		207000	230000	253000
e 11, 11, 11 11 11 11 11 11 11 11 11 11 1	U	m³/h	128000	128000	160000	160000	160000	192000	192000	224000	224000	224000	224000	256000	256000	288000
Sound data calculated in cooling mode (1)	•	JD/4\	07.0	07.0	07.0	00.0	00.0	00.0	00.0	00.0		00.0	100.0	1000	1000	101.0
-		dB(A)	97,0	97,0	97,0	98,0	98,0	98,0	98,0	98,0	98,0	99,0	100,0	100,0	100,0	101,0
-	A	dB(A)	97,0	97,0	98,0	98,0	98,0	98,0	98,0	99,0	99,0	99,0	99,0	99,0	99,0	100,0
Sound power level -	E	dB(A)	89,0	89,0	90,0	90,0	90,0	91,0	91,0	92,0	92,0	92,0	92,0	93,0	93,0	93,0
-	L	dB(A)	89,0	89,0	89,0	89,0	90,0	91,0	91,0	91,0	91,0	91,0	91,0	91,0	91,0	92,0
_	N	dB(A)	90,0	90,0	91,0	91,0	91,0	91,0	91,0	92,0	92,0	92,0	92,0	93,0	93,0	93,0

^{98,0} (1) Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

98,0

99,0 99,0

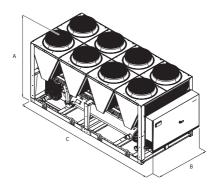
99,0

99,0

99,0

100,0

100,0


dB(A)

97,0

97,0 98,0

Size			4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Fans: J															
Inverter fan															
Fan motor	°,A,E,L,N,U	type							Inverter						
	0	m³/h	216000	252000	252000	288000	288000	288000	324000	324000	324000	360000	396000	396000	396000
	A	m³/h	256000	288000	288000	324000	360000	396000	396000	384000	384000	448000	448000	480000	612000
A:- G	E	m³/h	230000	230000	253000	253000	276000	299000	322000	322000	345000	345000	368000	-	-
Air flow rate	L	m³/h	184000	207000	207000	234000	260000	286000	286000	276000	276000	322000	322000	345000	442000
	N	m³/h	253000	299000	322000	345000	368000	368000	368000	391000	-	-	-	-	-
	U	m³/h	320000	320000	352000	352000	384000	416000	448000	448000	480000	480000	512000	-	-
Sound data calculated in cooling mode	(1)														
-	0	dB(A)	101,0	101,0	101,0	102,0	102,0	102,0	102,0	102,0	102,0	103,0	103,0	103,0	103,0
	A	dB(A)	100,0	100,0	101,0	102,0	102,0	102,0	102,0	102,0	102,0	102,0	102,0	103,0	104,0
6 1 1 1	E	dB(A)	94,0	94,0	94,0	94,0	94,0	94,0	94,0	94,0	94,0	94,0	95,0	-	-
Sound power level	L	dB(A)	93,0	93,0	93,0	93,0	94,0	94,0	94,0	94,0	94,0	94,0	94,0	94,0	95,0
	N	dB(A)	93,0	94,0	94,0	95,0	95,0	95,0	95,0	95,0	-	-	-	-	-
	U	dB(A)	101,0	101,0	101,0	102,0	102,0	102,0	102,0	102,0	102,0	102,0	102,0	-	-

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Dimensions and weights	-		1102	1002	1002	2002		2332		2032	2002	3002	3202	3102	3002	3,02
A	°,A,E,L,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	°,A,E,L,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	0	mm	3970	3970	3970	5160	5160	5160	5160	5160	5160	6350	6350	6350	6350	7540
	A,L	mm	5160	5160	5160	5160	6350	6350	6350	7540	7540	7540	7540	8730	8730	9920
C	E,U	mm	5160	5160	6350	6350	6350	7540	7540	8730	8730	8730	8730	9920	9920	11110
	N	mm	6350	6350	7540	7540	7540	8730	8730	9920	9920	9920	9920	11110	12300	13490
Size			4202	4502	4802	5202	5602	2 60	02 6	5402	6503	6703	6903	7203	8403	9603
Dimensions and weights	'											'				
	°,A,L	mm	2450	2450	2450	2450	2450	24:	50 2	2450	2450	2450	2450	2450	2450	2450
A	E,U	mm	2450	2450	2450	2450	2450	24.	50 2	2450	2450	2450	2450	2450	-	-
	N	mm	2450	2450	2450	2450	2450	24.	50 2	2450	2450	-	-	-	-	-
	°,A,L	mm	2200	2200	2200	2200	2200	220	00 2	2200	2200	2200	2200	2200	2200	2200
В	E,U	mm	2200	2200	2200	2200	2200	220	00 2	2200	2200	2200	2200	2200	-	-
	N	mm	2200	2200	2200	2200	2200	220	00 2	2200	2200	-	-	-	-	-
	0	mm	7540	8730	8730	9920	9920	992	20 1	1110	11110	11110	12300	13490	13490	13490
(A,L	mm	9920	11110	11110	11110	12300	0 134	90 1	3490	15080	15080	17460	17460	18650	21030
L	E,U	mm	12300	12300	13490	13490	15080	162	70 1	7460	17460	18650	18650	19840	-	-
	N	mm	13490	16270	17460	18650	19840	198	40 1	9840	21030	-	-	-	-	-

For transport reasons, the units with the depth of more than 13090 mm are shipped separately. For more information, please refer to the technical manual and / or installation.

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Integrated hydronic kit: 00																
Single module unit																
	0	kg	4108	4153	4275	5137	5468	5476	5485	5680	5690	6659	7153	7163	7188	7854
	Α	kg	4637	4684	4806	5137	5882	5890	6085	6696	6782	7261	7806	8486	8501	9029
Emptywaight	E	kg	4768	4800	5220	5814	6145	6755	6763	7198	7213	7707	7806	8940	8950	9719
Empty weight	L	kg	4637	4684	4806	5137	5882	5890	6085	6696	6782	7261	8223	8486	8501	9029
	N	kg	5179	5214	5822	6415	6746	7163	7177	7649	7659	8161	8223	9630	10062	10682
	U	kg	4768	4800	5220	5814	6145	6755	6763	7198	7213	7707	8672	8940	8950	9719
	0	kg	4186	4225	4393	5256	5586	5614	5622	5953	5962	6982	7475	7485	7501	8166
	Α	kg	4714	4757	4925	5275	6019	6028	6357	6968	7105	7583	8098	9016	9030	9547
Weight functioning	E	kg	4887	4937	5358	6137	6467	7077	7086	7510	7525	8019	8098	9470	9480	10237
weight functioning	L	kg	4714	4757	4925	5275	6019	6028	6357	6968	7105	7583	8515	9016	9030	9547
	N	kg	5298	5352	5959	6738	7069	7486	7500	7961	7971	8474	8515	10160	10592	11199
	U	kg	4887	4937	5358	6137	6467	7077	7086	7510	7525	8019	8964	9470	9480	10237
Size			4202	4502	4802	5202	5602	600	02 64	02 (5503	6703	6903	7203	8403	9603
Integrated hydronic kit: 00																
Single module unit																
	0	kg	7947	8389	8704	9252	9347	940	05 101	170 1	1843	11931	12488	13081	13400	13552
Empty weight	A,L	kg	9090	9829	9892	10315	10836	114	41 115	519	-	-	-	-	-	-
Empty weight	E,U	kg	10203	10282	11194	11284	-	-		-	-	-	-	-	-	-
	N	kg	10748	-	-	-	-	-		-	-	-	-	-	-	-
	0	kg	8239	8681	9234	9781	9877	992	22 106	587 1	2797	12885	13398	13990	14309	14462
Weight functioning	A,L	kg	9608	10334	10397	11247	11767	123	58 124	437	-	-	-	-	-	-
Weight functioning	E,U	kg	10720	10787	12125	12215	-	-		-	-	-	-	-	-	-
	N	kg	11265	-	-	-	-	-		-	-	-	-	-	-	-
Bimodule unit																
	0	kg	-	-	-	-	-	-		-	-	-	-	-	-	-
Empty weight module 1	A,L	kg	-	-	-	-		-	-		9029	9090	9829	9892	10836	11519
Empty weight module 1	E,U	kg	-	-	-	-	6276	627	76 67	41 9	9719	10203	10282	11194	-	-
	N	kg		6084	6517	6517	7126	712	26 71		0880		_			

Size			4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-
Former consistent mandrille 2	A,L	kg	-	-	-	-	-	-	-	5068	5068	5512	5512	5675	6265
Empty weight module 2	E,U	kg	-	-	-	-	6207	6671	6671	5482	5482	5512	5512	-	-
	N	kg	-	6448	6448	7056	7056	7120	7120	6014	-	-	-	-	-
	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-
Total anautomainht	A,L	kg	-	-	-	-	-	-	-	14098	14159	15342	15405	16511	17784
Total empty weight	E,U	kg	-	-	-	-	12483	12948	13412	15202	15685	15795	16706	-	-
	N	kg	-	12531	12965	13573	14182	14246	14310	16894	-	-	-	-	-
	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-
Wainha firmation in a mondulo 1	A,L	kg	-	-	-	-	-	-	-	9547	9608	10334	10397	11767	12437
Weight functioning module 1	E,U	kg	-	-	-	-	6589	6589	7053	10237	10720	10787	12125	-	-
	N	kg	-	6342	6776	6776	7438	7438	7502	11398	-	-	-	-	-
	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-
Wainha funationing module 2	A,L	kg	-	-	-	-	-	-	-	5327	5327	5771	5771	5987	6577
Weight functioning module 2	E,U	kg	-	-	-	-	6519	6984	6984	5741	5741	5771	5771	-	-
	N	kg	-	6706	6706	7369	7369	7433	7433	6273	-	-	-	-	-
	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-
Takalainkė froncėiau in n	A,L	kg	-	-	-	-	-	-	-	14874	14935	16105	16168	17755	19014
Total weight functioning	E,U	kg	-	-	-	-	13108	13572	14037	15978	16461	16558	17896	-	-
	N	kg	-	13049	13482	14144	14807	14871	14935	17670	-	-	-	-	-

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

TBA 1300-4325

Air-water chiller

Cooling capacity 328 ÷ 1404 kW

- · High efficiency also at partial loads
- Microchannel coil
- Low peak current (only 6 Amps!)
- Evaporator with low refrigerant charge
- Available also with R513A (XP10) refrigerant

DESCRIPTION

Air-cooled chiller designed to meet air conditioning needs in residential / commercial complexes or industrial applications.

These are outdoor units with oil free centrifugal compressor, axial fans, micro-channel coils, and shell and tube heat exchangers.

The base, the structure and the panels are made of steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to 43°C external air temperature depending on size and version. For further details refer to the selection software/technical documentation.

Units mono or dual-circuit

The units according to the size are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Oil free centrifugal compressor

Two-stage oil-free centrifugal compressor with magnetic levitation and inverter

Compressor features:

- Operates without oil as bearings are magnetic levitation type
- Continuous load modulation by varying rpm (from 30% to 100%)
- Low peak currents (only 6 Amps!)

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL PCO⁵

Units include 1 control board for each circuit.

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

Further features:

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

XLATB: This kit allows to extend the working range of the unit from 0 °C to -10 °C ambient temperature, thanks to an additional electric heater and a special insulating material for the heat exchanger.

GP_T: Anti-intrusion grid kit

ACCESSORIES COMPATIBILITY

Model	Ver	1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
AER485P1	A,E,N,U	•	•	•			•		•	•	
AER485P1 x no. 2	A,E,N,U				•			•			•
AERBACP	A,E,N,U										
AERBACP x no. 2	A,E,N,U				•			•			•
AERNET	A,E,N,U			•	•	•					•
MULTICHILLER-EVO	A,E,N,U		•				•		•		

Antivibration

Ver	1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Integrated hydronic kit: 00, DA, DB, D	C, DD, DE, DF, DG, DH	, DI, DJ, IA, IB, IC	, ID, IE, IF, IG, IH, I	II, IJ, JA, JB, JC, JI), JE, JF, JG, JH, JI	, JJ, KF, KG, KH, KI	, KJ, PA, PB, PC,	PD, PE, PF, PG, PH	I, PI, PJ, TF, TG, TI	H, TI, TJ
A, E	AVX. (1)	AVX500	AVX588	AVX592	AVX589	AVX. (1)	AVX593	AVX. (1)	AVX. (1)	AVX. (1)
N, U	AVX. (1)	AVX500	AVX592	AVX589	AVX. (1)	AVX593	AVX. (1)	AVX. (1)	AVX. (1)	AVX. (1)

(1) Contact us.

Kit low temperature

Ver	1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
A, E	XLATB1	XLATB3	XLATB5	XLATB6	XLATB7	XLATB6	XLATB7	XLATB7	XLATB8	XLATB8
N, U	XLATB2	XLATB5	XLATB5	XLATB5	XLATB7	XLATB6	XLATB6	XLATB7	XLATB8	XLATB8

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
A, E	GP3T	GP4T	GP5T	GP6T	GP7T	GP8T	GP9T	GP10T	GP10T	GP11T
N, U	GP3T	GP4T	GP6T	GP7T	GP8T	GP9T	GP10T	GP11T	GP11T	GP11T

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

_		GONATON
<u>Fiel</u>		Description
1,2,	.3	TBA
4,5,	6,7	Size 1300, 1350, 2300, 2325, 2350, 3300, 3320, 3340, 3350, 4325
8		Model
	0	Cooling only
9		Heat recovery
	0	Without heat recovery
10		Version
	Α	High efficiency
	E	Silenced high efficiency
	N	Silenced very high efficiency
	U	Very high efficiency
11		Coils
	1	Copper-aluminium
	0	Coated aluminium microchannel
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	٧	Copper pieps-Coated aluminium fins
	0	Aluminium microchannel
12		Fans
	J	Inverter
13		Power supply
	0	400V ~ 3 50Hz with magnet circuit breakers
14,	15	Integrated hydronic kit
	00	Without hydronic kit
	PA	Pump A
	PB	Pump B
	PC	Pump C
	PD	Pump D
	PE	Pump E
	PF	Pump F
	PG	Pump G
	PH	Pump H
	PI	Pump I
	PJ	Pump J (1)
	DA	Pump A + stand-by pump
	DB	Pump B + stand-by pump
	DC	Pump C + stand-by pump
	DD	Pump D + stand-by pump
	DE	Pump E + stand-by pump
_		1 11. 1

Field	4	Description
riell	DF	Pump F + stand-by pump
	DG	Pump G + stand-by pump
_	DH	Pump H + stand-by pump
	DI	Pump I + stand-by pump
_	DJ	Pump J + stand-by pump (1)
	IA	Pump A equipped with inverter device to work at fixed speed
	IB	Pump B equipped with inverter device to work at fixed speed
_	IC	Pump C equipped with inverter device to work at fixed speedr
_	ID	Pump D equipped with inverter device to work at fixed speed
_	IE	Pump E equipped with inverter device to work at fixed speed
	IF.	Pump F equipped with inverter device to work at fixed speed
	IG	Pump G equipped with inverter device to work at fixed speed
_	IH	Pump H equipped with inverter device to work at fixed speed
	<u> </u>	Pump I equipped with inverter device to work at fixed speed
	IJ	Pump J equipped with inverter device to work at fixed speed (1)
	JA	Pump A+stand-by pump, both equipped with inverter to work at fixed speed
	JB	Pump B+stand-by pump, both equipped with inverter to work at fixed speed
	JC	Pump C+stand-by pump, both equipped with inverter to work at fixed speed
	JD	Pump D+stand-by pump, both equipped with inverter to work at fixed speed
_	JE	Pump E+stand-by pump, both equipped with inverter to work at fixed speed
_	JF	
_	JG	Pump F+stand-by pump, both equipped with inverter to work at fixed speed Pump G+stand-by pump, both equipped with inverter to work at fixed speed
_	JH	Pump H+stand-by pump, both equipped with inverter to work at fixed speed
		71 1 11
_	JI JJ	Pump I+stand-by pump, both equipped with inverter to work at fixed speed Pump J+stand-by pump, both equipped with inverter to work at fixed speed (1)
	KF	
	KG	Doble pump F with inverter device to work at fixed speed
	KH	Doble pump G with inverter device to work at fixed speed
_		Doble pump H with inverter device to work at fixed speed
_	KI KJ	Doble pump I with inverter device to work at fixed speed Doble pump J with inverter device to work at fixed speed (1)
	TF	Double pump F
	TG	
	TH	Double pump G
		Double pump H
	TI	Double pump I
10	TJ	Double pump J (1)
16		Refrigerant gas
	G °	R513A (XP10)
	-	R134a

⁽¹⁾ For all configurations including pump J please contact the factory $% \left\{ 1\right\} =\left\{ 1\right\} =\left\{$

PERFORMANCE SPECIFICATIONS

TBA - (A)

IDA - (A)											
Size		1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	330,7	437,3	633,9	741,5	871,9	974,8	1087,0	1155,9	1256,9	1404,1
Input power	kW	95,3	125,9	183,0	214,9	254,8	279,5	314,9	334,9	369,1	413,3
Cooling total input current	А	150,7	200,9	286,2	346,4	416,6	446,9	502,1	547,3	592,3	667,6
EER	W/W	3,47	3,47	3,46	3,45	3,42	3,49	3,45	3,45	3,41	3,40
Water flow rate system side	l/h	56903	75228	109011	127504	149890	167604	186876	198728	216075	241381
Pressure drop system side	kPa	60	55	48	42	30	52	45	54	36	42

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

TBA - (E)

Size		1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	330,7	437,3	633,9	741,5	871,9	974,8	1087,0	1155,9	1256,9	1404,1
Input power	kW	95,3	125,9	183,0	214,9	254,8	279,5	314,9	334,9	369,1	413,3
Cooling total input current	A	150,7	200,9	286,2	346,4	416,6	446,9	502,1	547,3	592,3	667,6
EER	W/W	3,47	3,47	3,46	3,45	3,42	3,49	3,45	3,45	3,41	3,40
Water flow rate system side	l/h	56903	75228	109011	127504	149890	167604	186876	198728	216075	241381
Pressure drop system side	kPa	60	55	48	42	30	52	45	54	36	42

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

TBA - (U)

Size		1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	328,1	443,8	633,5	758,5	876,4	985,0	1088,0	1154,9	1256,9	1342,4
Input power	kW	92,3	124,4	178,8	213,2	245,5	275,4	306,8	326,3	358,1	386,6
Cooling total input current	A	145,7	200,9	281,4	341,6	401,9	437,1	487,3	522,6	582,6	627,6
EER	W/W	3,56	3,57	3,54	3,56	3,57	3,58	3,55	3,54	3,51	3,47
Water flow rate system side	l/h	56452	76308	108940	130424	150669	169356	187070	198556	216075	230760
Pressure drop system side	kPa	51	25	49	50	30	53	56	53	36	38

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

TBA - (N)

Size	'	1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	328,1	443,8	633,5	758,5	876,4	985,0	1088,0	1154,9	1256,9	1342,4
Input power	kW	92,3	124,4	178,8	213,2	245,5	275,4	306,8	326,3	358,1	386,6
Cooling total input current	A	145,7	200,9	281,4	341,6	401,9	437,1	487,3	522,6	582,6	627,6
EER	W/W	3,56	3,57	3,54	3,56	3,57	3,58	3,55	3,54	3,51	3,47
Water flow rate system side	l/h	56452	76308	108940	130424	150669	169356	187070	198556	216075	230760
Pressure drop system side	kPa	51	25	49	50	30	53	56	53	36	38

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
SEER - (EN14825:2018) 12/7 with inverter	fans (1)											
SEER	A,E	W/W	5,15	5,23	5,48	5,25	5,54	5,54	5,51	5,49	5,57	5,35
SEER	N,U	W/W	5,35	5,41	5,60	5,48	5,76	5,80	5,62	5,71	5,73	5,62
Cassanal afficients	A,E	%	203,1%	206,0%	216,0%	206,8%	218,4%	218,4%	217,5%	216,5%	219,8%	211,0%
Seasonal efficiency	N,U	%	211,0%	213,5%	221,0%	216,1%	227,3%	229,1%	221,9%	225,4%	226,3%	221,6%
SEPR - (EN14825: 2018) High temperature	e with inverte	r fans (2)										
CEDD	A,E	W/W	6,31	6,65	6,11	6,32	6,41	6,13	6,26	6,33	6,28	6,12
SEPR	N,U	W/W	6,47	6,61	6,52	6,80	6,49	6,62	6,57	6,50	6,47	6,40

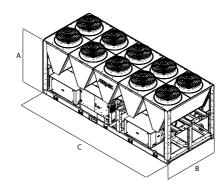
⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Electric data												
Maximum augreent (FLA)	A,E	Α	165,0	249,0	319,0	404,0	488,0	483,0	568,0	727,0	727,0	797,0
Maximum current (FLA)	N,U	A	165,0	249,0	329,0	413,0	498,0	493,0	577,0	737,0	737,0	797,0
Deale comment (LDA)	A,E	A	36,0	45,0	200,0	210,0	305,0	374,0	470,0	565,0	565,0	720,0
Peak current (LRA)	N,U	A	36.0	45.0	210.0	305,0	315.0	384.0	479.0	575.0	575.0	720,0

GENERAL TECHNICAL DATA

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Compressor												
Туре	A,E,N,U	type					Cent	rifugal				
Compressor regulation	A,E,N,U	Туре					Inv	erter				
Number	A,E,N,U	no.	1	1	2	2	2	3	3	3	3	4
Circuits	A,E,N,U	no.	1	1	1	2	1	1	2	1	1	2
Refrigerant	A,E,N,U	type					R1	34a				
Defiinament shawe (1)	A,E	kg	81,0	166,0	152,0	243,0	285,0	264,0	306,0	317,0	387,0	398,0
Refrigerant charge (1)	N,U	kg	81,0	166,0	163,0	254,0	296,0	275,0	317,0	328,0	398,0	398,0
System side heat exchanger												
Туре	A,E,N,U	type					Shell a	nd tube				
Number	A,E,N,U	no.	1	1	1	1	1	1	1	1	1	1
Hydraulic connections												
Connections (in/out)	A,E,N,U	Туре					Groove	ed joints				,
Since (in / 1 and)	A,E	Ø	3"	4"	6"	6"	6"	6"	6"	6"	8"	8"
Sizes (in/out)	N,U	Ø	6"	6"	6"	6"	6"	6"	6"	6"	8"	8"
Fan												
Туре	A,E,N,U	type					ax	ials				
Fan motor	A,E,N,U	type					Inv	erter				
	A,E	no.	6	8	10	12	14	16	18	20	20	22
Number	N,U	no.	6	8	12	14	16	18	20	22	22	22
A:- 0	A,E	m³/h	112920	150560	188200	225840	263480	301120	338760	376400	376400	414040
Air flow rate	N,U	m³/h	112920	150560	225840	263480	301120	338760	376400	414040	414040	414040


⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

SOUND DATA

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Sound data calculated in cooling mode (1)											
	Α	dB(A)	88,3	89,9	90,8	92,5	93,0	92,8	93,9	95,3	95,3	95,3
Cound nouseal and	E	dB(A)	82,3	83,9	84,8	86,5	87,0	86,8	87,9	89,3	89,3	89,3
Sound power level	N	dB(A)	82,3	84,0	85,3	86,8	87,1	87,1	88,1	89,5	89,5	89,3
	U	dB(A)	88,3	90,0	91,3	92,8	93,1	93,1	94,1	95,5	95,5	95,3
	Α	dB(A)	56,1	57,5	58,3	59,9	60,2	59,9	60,9	62,2	62,2	62,1
Cound procesure level (10 m)	E	dB(A)	50,1	51,5	52,3	53,9	54,2	53,9	54,9	56,2	56,2	56,1
Sound pressure level (10 m)	N	dB(A)	50,1	51,6	52,7	54,0	54,2	54,1	55,0	56,3	56,3	56,1
	U	dB(A)	56,1	57,6	58,7	60,0	60,2	60,1	61,0	62,3	62,3	62,1

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Integrated hydronic kit KI, KJ, PA, PB, PC, PD, PI					IA, IB, IC,	ID, IE, IF,	IG, IH, II, I	J, JA, JB, J	IC, JD, JE,	JF, JG, JH,	JI, JJ, KF,	KG, KH,
Dimensions and weights	_,,,,.	, , , .	<u> </u>									
A	A,E,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
(A,E	mm	3570	4760	5950	7140	8330	9520	10710	11900	11900	13090
	N,U	mm	3570	4760	7140	8330	9520	10710	11900	13090	13090	13090
Size			1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Integrated hydronic kit	: 00											
Weights												
	A	kg	2770	3480	4500	5550	6390	6760	7950	8240	8600	9700
Emptyweight	E	kg	2850	3590	4630	5720	6580	6980	8190	8510	8870	10000
Empty weight	N	kg	2880	3810	5120	5950	7060	7430	8200	8950	9320	10000
	U	kg	2800	3700	4950	5760	6840	7180	7920	8650	9010	9700
	A	kg	2840	3560	4630	5730	6650	6960	8210	8500	8940	9990
Wainha firmation in a	E	kg	2920	3670	4760	5900	6840	7180	8450	8770	9210	10290
Weight functioning	N	kg	2960	3940	5250	6100	7320	7630	8410	9210	9660	10290
	U	kg	2880	3830	5080	5910	7100	7380	8130	8910	9350	9990

TBG 1230-4310

Air-water chiller

Cooling capacity 200 ÷ 1165 kW

- · High efficiency also at partial loads
- Microchannel coil
- Low peak current (only 6 Amps!)
- Evaporator with low refrigerant charge

DESCRIPTION

Air-cooled chiller designed to meet air conditioning needs in residential / commercial complexes or industrial applications.

These are outdoor units with oil free centrifugal compressor, axial fans, micro-channel coils, and shell and tube heat exchangers.

The base, the structure and the panels are made of steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to 43°C external air temperature depending on size and version. For further details refer to the selection software/technical documentation

Units mono or dual-circuit

The units according to the size are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Oil free centrifugal compressor

Two-stage oil-free centrifugal compressor with magnetic levitation and inverter

Compressor features:

- Operates without oil as bearings are magnetic levitation type
- Continuous load modulation by varying rpm (from 30% to 100%)

Low peak currents (only 6 Amps!)

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations, to obtain a solution that allows you to save money and to facilitate installation.

HFO R1234ze refrigerant gas

HFO R1234ze is a mixture featuring:

da ODP = 0 e GWP (Global Warming Potential) = 7, R134a GWP = 1430; with thermodynamic properties that guarantee and sometimes improve efficiencies achieved with HFC refrigerants.

CONTROL PCO⁵

Units include 1 control board for each circuit.

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

Further features:

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

XLATB: This kit allows to extend the working range of the unit from 0 °C to -10 °C ambient temperature, thanks to an additional electric heater and a special insulating material for the heat exchanger.

GP_T: Anti-intrusion grid kit

ACCESSORIES COMPATIBILITY

Model	Ver	1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
AER485P1	A,E,N,U	•	•	•		•		•	•		
AER485P1 x no. 2	A,E,N,U				•		•			•	•
AERBACP	A,E,N,U										
AERBACP x no. 2	A,E,N,U				•		•			•	•
AERNET	A,E,N,U			•	•	•					•
MULTICHILLER-EVO	A,E,N,U		•	•	•	•	•		•		

Antivibration

Ver	1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Integrated hydronic kit: 00, DA, DB, I	DC, DD, DE, DF, DG, DH	, DI, DJ, IA, IB, IC	, ID, IE, IF, IG, IH, I	II, IJ, JA, JB, JC, JI), JE, JF, JG, JH, JI	, JJ, KF, KG, KH, KI	, KJ, PA, PB, PC,	PD, PE, PF, PG, PH	I, PI, PJ, TF, TG, TI	I, TI, TJ
A, E	AVX596	AVX. (1)	AVX597	AVX588	AVX592	AVX. (1)	AVX. (1)	AVX593	AVX. (1)	AVX. (1)
N, U	AVX. (1)	AVX500	AVX588	AVX592	AVX589	AVX. (1)	AVX593	AVX. (1)	AVX. (1)	AVX. (1)

(1) Contact us.

XLATB: Kit for low temperature

Ver	1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
A, E, N, U	XLATB1	XLATB3	XLATB4	XLATB5	XLATB5	XLATB6	XLATB6	XLATB6	XLATB7	XLATB7

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
A, E	GP2T	GP3T	GP4T	GP5T	GP6T	GP7T	GP8T	GP9T	GP10T	GP11T
N, U	GP3T	GP4T	GP5T	GP6T	GP7T	GP8T	GP9T	GP10T	GP11T	GP11T

A grey background indicates the accessory must be assembled in the factory $% \left(1\right) =\left(1\right) \left(1\right)$

CONFIGURATOR

Fiel	d	Description
1,2,	,3	TBG
	,6,7	Size 1230, 1310, 2230, 2270, 2310, 3270, 3280, 3310, 4270, 4310
8		Model
	0	Cooling only
9		Heat recovery
	0	Without heat recovery
10		Version
	Α	High efficiency
	Ε	Silenced high efficiency
	N	Silenced very high efficiency
	U	Very high efficiency
11		Coils
	1	Copper-aluminium
	0	Coated aluminium microchannel
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	V	Copper pieps-Coated aluminium fins
	0	Aluminium microchannel
12		Fans
	J	Inverter
13		Power supply
	0	400V ~ 3 50Hz with magnet circuit breakers
14,	15	Integrated hydronic kit
	00	Without hydronic kit
	PA	Pump A
	PB	Pump B
	PC	Pump C
	PD	Pump D
	PE	Pump E
	PF	Pump F
	PG	Pump G
	PH	Pump H
	PI	Pump I
	PJ	Pump J (1)
	DA	Pump A + stand-by pump
	DB	Pump B + stand-by pump
	DC	Pump C + stand-by pump

Field	Description
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump (1)
IA	Pump A equipped with inverter device to work at fixed speed
IB	Pump B equipped with inverter device to work at fixed speed
IC	Pump C equipped with inverter device to work at fixed speedr
ID	Pump D equipped with inverter device to work at fixed speed
IE	Pump E equipped with inverter device to work at fixed speed
IF	Pump F equipped with inverter device to work at fixed speed
IG	Pump G equipped with inverter device to work at fixed speed
IH	Pump H equipped with inverter device to work at fixed speed
II	Pump I equipped with inverter device to work at fixed speed
IJ	Pump J equipped with inverter device to work at fixed speed (1)
JA	Pump A+stand-by pump, both equipped with inverter to work at fixed speed
JB	Pump B+stand-by pump, both equipped with inverter to work at fixed speed
JC	Pump C+stand-by pump, both equipped with inverter to work at fixed speed
JD	Pump D+stand-by pump, both equipped with inverter to work at fixed speed
JE	Pump E+stand-by pump, both equipped with inverter to work at fixed speed
JF	Pump F+stand-by pump, both equipped with inverter to work at fixed speed
JG	Pump G+stand-by pump, both equipped with inverter to work at fixed speed
JH	Pump H+stand-by pump, both equipped with inverter to work at fixed speed
JI	Pump I+stand-by pump, both equipped with inverter to work at fixed speed
JJ	Pump J+stand-by pump, both equipped with inverter to work at fixed speed (1)
KF	Doble pump F with inverter device to work at fixed speed
KG	Doble pump G with inverter device to work at fixed speed
KH	Doble pump H with inverter device to work at fixed speed
KI	Doble pump I with inverter device to work at fixed speed
KJ	Doble pump J with inverter device to work at fixed speed (1)
TF	Double pump F
TG	Double pump G
TH	Double pump H
TI	Double pump I
TJ	Double pump J (1)

⁽¹⁾ For all configurations including pump J please contact the factory.

PERFORMANCE SPECIFICATIONS

TBG - (A)

	1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
kW	199,9	296,6	417,6	502,3	600,1	687,0	791,4	900,3	1033,3	1165,3
kW	57,7	86,1	121,5	146,6	174,8	199,1	231,3	262,2	305,7	345,1
A	95,5	140,7	200,9	241,2	291,4	326,6	386,9	437,1	502,3	577,6
W/W	3,46	3,45	3,44	3,43	3,43	3,45	3,42	3,43	3,38	3,38
l/h	34397	51028	71817	86370	103190	118120	136075	154785	177653	200332
kPa	28	43	29	32	37	36	38	40	41	46
	kW A W/W I/h	kW 199,9 kW 57,7 A 95,5 W/W 3,46 I/h 34397	kW 199,9 296,6 kW 57,7 86,1 A 95,5 140,7 W/W 3,46 3,45 I/h 34397 51028	kW 199,9 296,6 417,6 kW 57,7 86,1 121,5 A 95,5 140,7 200,9 W/W 3,46 3,45 3,44 I/h 34397 51028 71817	kW 199,9 296,6 417,6 502,3 kW 57,7 86,1 121,5 146,6 A 95,5 140,7 200,9 241,2 W/W 3,46 3,45 3,44 3,43 I/h 34397 51028 71817 86370	kW 199,9 296,6 417,6 502,3 600,1 kW 57,7 86,1 121,5 146,6 174,8 A 95,5 140,7 200,9 241,2 291,4 W/W 3,46 3,45 3,44 3,43 3,43 I/h 34397 51028 71817 86370 103190	kW 199,9 296,6 417,6 502,3 600,1 687,0 kW 57,7 86,1 121,5 146,6 174,8 199,1 A 95,5 140,7 200,9 241,2 291,4 326,6 W/W 3,46 3,45 3,44 3,43 3,43 3,45 I/h 34397 51028 71817 86370 103190 118120	kW 199,9 296,6 417,6 502,3 600,1 687,0 791,4 kW 57,7 86,1 121,5 146,6 174,8 199,1 231,3 A 95,5 140,7 200,9 241,2 291,4 326,6 386,9 W/W 3,46 3,45 3,44 3,43 3,43 3,45 3,42 I/h 34397 51028 71817 86370 103190 118120 136075	kW 199,9 296,6 417,6 502,3 600,1 687,0 791,4 900,3 kW 57,7 86,1 121,5 146,6 174,8 199,1 231,3 262,2 A 95,5 140,7 200,9 241,2 291,4 326,6 386,9 437,1 W/W 3,46 3,45 3,44 3,43 3,43 3,45 3,42 3,43 I/h 34397 51028 71817 86370 103190 118120 136075 154785	kW 199,9 296,6 417,6 502,3 600,1 687,0 791,4 900,3 1033,3 kW 57,7 86,1 121,5 146,6 174,8 199,1 231,3 262,2 305,7 A 95,5 140,7 200,9 241,2 291,4 326,6 386,9 437,1 502,3 W/W 3,46 3,45 3,44 3,43 3,43 3,45 3,42 3,43 3,38 I/h 34397 51028 71817 86370 103190 118120 136075 154785 177653

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

TBG - (E)

Size		1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	199,9	296,6	417,6	502,3	600,1	687,0	791,4	900,3	1033,3	1165,3
Input power	kW	57,7	86,1	121,5	146,6	174,8	199,1	231,3	262,2	305,7	345,1
Cooling total input current	А	95,5	140,7	200,9	241,2	291,4	326,6	386,9	437,1	502,3	577,6
EER	W/W	3,46	3,45	3,44	3,43	3,43	3,45	3,42	3,43	3,38	3,38
Water flow rate system side	l/h	34397	51028	71817	86370	103190	118120	136075	154785	177653	200332
Pressure drop system side	kPa	28	43	29	32	37	36	38	40	41	46

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

TBG - (U)

Size		1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Cooling performance 12 °C / 7 °C (1)	,										
Cooling capacity	kW	230,7	324,2	439,6	511,1	604,5	709,0	807,9	906,9	1011,3	1112,5
Input power	kW	65,3	91,2	124,4	143,9	170,1	201,3	230,6	257,3	290,2	323,2
Cooling total input current	А	105,7	150,9	206,2	236,4	276,6	331,9	392,1	427,3	477,6	537,6
EER	W/W	3,53	3,55	3,53	3,55	3,55	3,52	3,50	3,52	3,49	3,44
Water flow rate system side	l/h	39688	55753	75597	87882	103946	121900	138909	155919	173873	191260
Pressure drop system side	kPa	37	32	32	33	38	39	39	41	39	42

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

TBG - (N)

Size	'	1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	230,7	324,2	439,6	511,1	604,5	709,0	807,9	906,9	1011,3	1112,5
Input power	kW	65,3	91,2	124,4	143,9	170,1	201,3	230,6	257,3	290,2	323,2
Cooling total input current	A	105,7	150,9	206,2	236,4	276,6	331,9	392,1	427,3	477,6	537,6
EER	W/W	3,53	3,55	3,53	3,55	3,55	3,52	3,50	3,52	3,49	3,44
Water flow rate system side	l/h	39688	55753	75597	87882	103946	121900	138909	155919	173873	191260
Pressure drop system side	kPa	37	32	32	33	38	39	39	41	39	42

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
SEER - (EN14825:2018) 12/7 with inverter	fans (1)											
SEER	A,E	W/W	5,44	5,52	5,76	5,44	5,85	5,70	5,77	5,78	5,61	5,60
SEEK	N,U	W/W	5,63	6,03	5,97	5,71	6,04	5,80	5,89	5,93	5,81	5,71
Seasonal efficiency -	A,E	%	214,6%	217,6%	227,5%	214,6%	231,1%	225,1%	227,6%	228,3%	221,5%	220,8%
	N,U	%	222,3%	238,0%	235,9%	225,2%	238,7%	229,0%	232,5%	234,0%	229,2%	225,5%
SEPR - (EN14825: 2018) High temperature	with inverte	r fans (2)										
SEPR —	A,E	W/W	6,34	5,98	5,99	6,54	6,35	6,60	6,05	6,07	5,98	5,97
	N,U	W/W	6,47	6,21	6,18	6,78	6,56	6,73	6,20	6,23	6,17	6,09

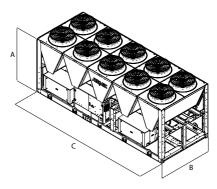
⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Electric data												
Maximum current (FLA)	A,E	Α	115,0	180,0	229,0	294,0	359,0	408,0	528,0	538,0	587,0	707,0
Maximum current (FLA)	N,U	A	125,0	189,0	239,0	304,0	368,0	418,0	538,0	547,0	597,0	707,0
Peak current (LRA) —	A,E	A	26,0	36,0	151,0	220,0	230,0	180,0	249,0	424,0	209,0	608,0
	N.U	Α	36.0	45.0	161.0	230.0	239.0	190.0	259.0	433.0	219.0	608,0

GENERAL TECHNICAL DATA

Size	·		1230	1310	2230	2270	2310	3270	3280	3310	4270	4310		
Compressor														
Туре	A,E,N,U	type					Centr	ifugal						
Compressor regulation	A,E,N,U	Туре					Inve	erter						
Number	A,E,N,U	no.	1	1	2	2	2	3	3	3	3	4		
Circuits	A,E,N,U	no.	1	1	1	2	1	2	1	1	2	2		
Refrigerant	A,E,N,U	type					R12	34ze						
Defiinement shawe (1)	A,E	kg	71,0	110,0	142,0	177,0	188,0	254,0	265,0	307,0	318,0	328,0		
Refrigerant charge (1)	N,U	kg	82,0	121,0	153,0	188,0	198,0	265,0	276,0	286,0	328,0	328,0		
System side heat exchanger														
Туре	A,E,N,U	type		Shell and tube										
Number	A,E,N,U	no.	1	1	1	1	1	1	1	1	1	1		
Hydraulic connections														
Connections (in/out)	A,E,N,U	Туре					Groove	d joints						
Sizes (in/out)	A,E,N,U	Ø	3"	4"	5"	6"	6"	6"	6"	6"	6"	6"		
Fan														
Туре	A,E,N,U	type					ax	ials						
Fan motor	A,E,N,U	type					Inve	erter						
Number	A,E	no.	4	6	8	10	12	14	16	18	20	22		
Number	N,U	no.	6	8	10	12	14	16	18	20	22	22		
Air flow rate	A,E	m³/h	75280	112920	150560	188200	225840	263480	301120	338760	376400	414040		
	N,U	m³/h	112920	150560	188200	225840	263480	301120	338760	376400	414040	414040		


⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

SOUND DATA

Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Sound data calculated in cooling mode (1	1)											
	Α	dB(A)	85,2	88,4	88,2	90,1	91,4	91,3	92,9	93,1	93,1	94,2
Sound power level	E	dB(A)	82,2	85,4	85,2	87,1	88,4	88,3	89,9	90,1	90,1	91,2
	N	dB(A)	83,3	85,9	85,8	87,5	88,7	88,6	90,1	90,3	90,3	91,2
	U	dB(A)	86,3	88,9	88,8	90,5	91,7	91,6	93,1	93,3	93,3	94,2
Sound pressure level (10 m) —	Α	dB(A)	53,3	56,5	55,8	57,6	58,8	58,5	60,0	60,1	60,0	61,0
	E	dB(A)	50,3	53,5	52,8	54,6	55,8	55,5	57,0	57,1	57,0	58,0
	N	dB(A)	51,1	53,5	53,3	54,9	55,9	55,7	57,1	57,2	57,1	58,0
	U	dB(A)	54,1	56,5	56,3	57,9	58,9	58,7	60,1	60,2	60,1	61,0

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

		1220	1210	2220	2270	2210	2270	2200	2210	4270	4310
		1230	1310	2230	22/0	2310	32/0	3280	3310	42/0	43 10
t: 00											
	mm										2450
	mm		2200	2200	2200	2200	2200		2200	2200	2200
A,E	mm	2780	3970	5160	5950	7140	8330	9520	10710	11900	13090
N,U	mm	3570	4760	5950	7140	8330	9520	10710	11900	13090	13090
		1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
t: DA, DB, DC, DI	D, DE, DF,	DG, DH, [OI, DJ, IA,	IB, IC, ID,	IE, IF, IG, I	H, II, IJ, J	A, JB, JC, J	D, JE, JF, J	IG, JH, JI, .	JJ, KF, KG,	KH, KI,
PF, PG, PH, PI, PJ	, TF, TG, 1	TH, TI, TJ									
A,E,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
A,E,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
A,E	mm	3970	5160	5160	5950	7140	8330	9520	10710	11900	13090
N,U	mm	3570	4760	5950	7140	8330	9520	10710	11900	13090	13090
		1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
t: 00											
				-			-				
A	kg	2470	2980	4020	4800	5250	6490	6950	7440	8900	9510
E	kg	2520	3060	4130	4940	5410	6680	7170	7690	9170	9810
N	kg	2840	3590	4560	5420	5890	7150	7620	8130	9610	9800
U	kg	2760	3480	4430	5250	5700	6930	7370	7850	9310	9500
A	ka	2540	3050	4110	4930	5390	6670	7150	7650	9160	9780
E		2590		4220	5070	5550		7370	7900	9430	10080
							-				10070
U	ka ka	2830	3560	4520				7570	8060	9570	9770
	t: DA, DB, DC, DI PF, PG, PH, PI, PJ A,E,N,U A,E N,U t: 00 A E N U A E N	A,E,N,U mm A,E,N,U mm A,E, mm N,U mm t: DA, DB, DC, DD, DE, DF, PF, PG, PH, PI, PJ, TF, TG, 1 A,E,N,U mm A,E,N,U mm A,E,N,U mm A,E mm N,U mm t: 00 t: Q kg A kg E kg N kg E kg N kg E kg N kg E kg N kg	A,E,N,U mm 2450 A,E,N,U mm 2200 A,E mm 2780 N,U mm 3570 1230 t: DA, DB, DC, DD, DE, DF, DG, DH, I PF, PG, PH, PI, PJ, TF, TG, TH, TI, TJ A,E,N,U mm 2450 A,E,N,U mm 2200 A,E mm 3970 N,U mm 3570 1230 t: OO A kg 2470 E kg 2520 N kg 2840 U kg 2760 A kg 2540 E kg 2590 N kg 2910	### A,E,N,U mm 2450 2450 A,E,N,U mm 2200 2200 A,E mm 2780 3970 N,U mm 3570 4760 #### 1230 1310 #### 1250 2450 A,E,N,U mm 3570 4760 #### 1230 1310 #### 1230 1310 #### 1230 1310 ### 2450 2450 A,E,N,U mm 2450 2450 A,E,N,U mm 2200 2200 A,E mm 3970 5160 N,U mm 3570 4760 #### 1230 1310 #### 1230 1310 ##### 1230 1310 #### 1230 130 #### 1230 130 #### 1230 #### 1230 #### 1230 #### 1230 #### 1230 #### 1230 #### 1230 #### 1230	### A,E,N,U mm 2450 2450 2450 A,E,N,U mm 2200 2200 2200 A,E mm 2780 3970 5160 N,U mm 3570 4760 5950	### A,E,N,U mm 2450 2450 2450 2450 2450 A,E,N,U mm 2200 2200 2200 2200 2200	### A,E,N,U mm	### A,E,N,U mm 2450 2450 2450 2450 2200 2200 2200 2200	### A,E,N,U mm	## A,E,N,U mm 2450 2450 2450 2450 2450 2450 2450 2450	A,E,N,U mm 2450 2450 2450 2450 2450 2450 2450 2450

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

AIR / WATER CHILLERS WITH FREE COOLING

When the cooling of the room is requested throughout the year, even during the winter season, such as in modern communication centers or in industrial applications, it is a waste to consume energy to produce cooling capacity. To meet these needs, Aermec offers a range of chillers capable of exploiting, free of charge, the external cold air to cool the liquid with a considerable energy saving.

AIR / WATER CH	ILLERS WITH FREECOOLING	Air flow rate (m3/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Page
Units with scroll compres	sors				
NRG 0282-0754 F	Air-water chiller with free-cooling		58-190		622
NRG 0800-2400-F	Air-water chiller with free-cooling		224-717		627
NRG 0800-2400-B	Air-water chiller with free-cooling glycol free		224-717		634
NRB 0800-2406 F	Air-water chiller with free-cooling	-	211-680	-	641
NRB 0800-2406 B	Air-water chiller with free-cooling glycol free		211-680	-	649
NRV 0550 F	Air-water chiller with free-cooling		99,9-105,4		656
Units with screw compres	sors				
NSM 1402-9603 F	Air-water chiller with free-cooling		306-2028		660
NSM 1402-9603 B	Air-water chiller with free-cooling glycol free	-	305,8-2028,1	-	673
NSM-HWT-1402-9603-F	Air-water chiller with free-cooling	-	306-2001	-	684
NSM-HWT-1402-9603-B	Air-water chiller with free-cooling glycol free		306-1991		693
NSMI 1251-6102 F	Air-water chiller with free-cooling and Inverter screw compressors	-	286-1280	-	702
TBA 1300-3350 F	Air-water chiller with free-cooling	-	317,2-1223,6	-	707
TBG 1230-4310 F	Air-water chiller with free-cooling		238-1110		712

NRG 0282-0754 F

Air-water chiller with free-cooling

Cooling capacity 58 ÷ 190 kW

- · High efficiency also at partial loads
- Low refrigerant charge
- Compact dimensions

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

These are outdoor units with streamlined scroll compressors used with R32 gas.

Condensing coil with copper pipes and aluminium louvers, plate heat exchanger.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to 48°C external air temperature. Unit can produce chilled water up to -10 $^{\circ}\text{C}$.

For more information refer to the selection program and to to the dedicated documentation. $\label{eq:constraint}$

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Refrigerant HFC R32

The environmental impact of the units is reduced considerably owing to the last generation R32 (A2L) refrigerant.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO₂ values.

■ The leak detector is supplied as per standard.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

New condensing Coils

The whole range uses copper - aluminium condensation coils with reduced diameter rows, allowing a lower quantity of gas to be used compared to traditional coils.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode.

Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The compressors are completely shut down, if possible, leading to considerable electrical savings.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy seasonal efficiency of the unit.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation.

It is available in different configurations with storage tank or with fixed pumps also inverter.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: the function can be activated with inverter fans or
 with DCPX which allows unit operation to be optimised at any operating
 point through continuous modulation of the fan speed. In addition, the
 use of inverter fans ensures an increase in energy efficiency at partial
 loads
- Night mode: only in the non-silenced versions is it possible to set a silenced operating mode, which is useful for example at night for greater

acoustic comfort but always guarantees performance even at peak load times.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

GP: Anti-intrusion grid.

VT: Anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Model	Ver	0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
AFD40FD1	A					•	•	•	•	•	•	•
AER485P1	E	•	•	•	•	•	•	•	•	•	•	•
AERBACP	A					•	•	•	•	•	•	
ENDALY	E	•	•	•	•	•	•	•	•	•	•	•
AERLINK	A					•	•	•	•	•	•	•
	E	•	•	•	•	•	•	•	•	•	•	•
AERNET	A					•	•	•	•	•	•	•
AERINET	E	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	A					•	•	•	•	•	•	•
MIDLICTILLER-EVU	E	•	•			•		•		•		•
PGD1	A					•	•	•	•	•	•	
	E	•	•	•	•	•	•	•	•	•	•	•
SGD	E	•	•									

Remote panel

Model	Ver	0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
PR4	Α							•	•	•	•	•
PR4	F											

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Antivibration

Ver	0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
Integrated hydronic kit: 00, I3, I4, P3,	P4										
A	-	-	-	-	VT11	VT11	VT11	VT11	VT22	VT22	VT22
E	VT17	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT22	VT22	VT22
Integrated hydronic kit: 03, 04, K3, K4											
A	-	-	-	-	VT11	VT11	VT11	VT11	VT22	VT22	VT22
E	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT22	VT22	VT22

Anti-intrusion grid

Anti-intrusion griu											
Ver	0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
A	-	-	-	-	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 3 (1)			
E	GP4	GP4	GP4	GP4	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 3 (1)			

⁽¹⁾ x_i indicates the quantity to buy

The accessory cannot be fitted on the configurations indicated with -

Device for peak current reduction

Ver	0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
A	-	-	-	-	DRENRG502FC	DRENRG552FC	DRENRG554	DRENRG604	DRENRG654	DRENRG704	DRENRG754
E	DRENRG282FC	DRENRG302FC	DRENRG332FC	DRENRG352FC	DRENRG502FC	DRENRG552FC	DRENRG554	DRENRG604	DRENRG654	DRENRG704	DRENRG754

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
A	-	-	-	-	RIFNRG502FC	RIFNRG552FC	RIFNRG554	RIFNRG604	RIFNRG654	RIFNRG704	RIFNRG754
E	RIFNRG282FC	RIFNRG302FC	RIFNRG332FC	RIFNRG352FC	RIFNRG502FC	RIFNRG552FC	RIFNRG554	RIFNRG604	RIFNRG654	RIFNRG704	RIFNRG754

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Double safety valves

Ver	0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
A, E	T6NRG2										

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NRG
4,5,6,7	Size
4,3,0,7	0282, 0302, 0332, 0352, 0502, 0552, 0554, 0604, 0654, 0704, 0754
8	Operating field
X	Electronic thermostatic expansion valve
Z	Low temperature electronic thermostatic valve
9	Model
F	Free-cooling
S	Free-cooling with special 3-way valve
10	Heat recovery
D	With desuperheater
0	Without heat recovery
11	Version
A	High efficiency
E	Silenced high efficiency (1)
12	Coils / free-cooling coils
R	Copper-copper/Copper-copper
S	Copper-Tinned copper / Copper - Tinned copper
V	Copper-painted alumimium / Copper-painted alumimium
0	Copper-aluminium / Copper-aluminium
13	Fans
J	Inverter (2)
0	Standard
14	Power supply
0	400V ~ 3N 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit
00	Without hydronic kit
	Kit with storage tank and pump/s
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
	Kit with pump/s
P3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with inverter pump/s to fixed speed
13	Single high head pump + fixed speed inverter
14	Single high head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and inverter pump/s to fixed speed
K3	Single high head pump + storage tank + fixed speed inverter
K4	Storage tank and low head pump with fixed speed inverter + stand-by pump

⁽¹⁾ The size 0282-0302-0332-0352 only available in low noise versions. (2) As standard in sizes fom 0282 to 0352

PERFORMANCE SPECIFICATIONS

NRG - A

Size		0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
Cooling performance chiller operation (1)	'											
Cooling capacity	kW	-	-	-	-	100,8	111,4	116,9	134,7	148,5	168,3	190,0
Input power	kW	-	-	-	-	31,5	35,1	38,4	43,2	49,0	58,5	67,0
Cooling total input current	A	-	-	-	-	60,0	63,0	63,0	83,0	94,0	114,0	123,0
EER	W/W	-	-	-	-	3,20	3,18	3,05	3,12	3,03	2,88	2,84
Water flow rate system side	l/h	-	-	-	-	17316	19137	20081	23139	25509	28916	32647
Pressure drop system side	kPa	-	-	-	-	43	52	44	60	72	84	85
Cooling performances with free-cooling (2)												
Cooling capacity	kW	-	-	-	-	73,2	75,6	76,6	89,6	92,2	95,1	97,5
Input power	kW	-	-	-	-	3,7	3,7	3,8	5,6	5,6	5,6	5,6
Free cooling total input current	A	-	-	-	-	7,0	6,6	6,3	11,0	11,0	11,0	10,0
EER	W/W	-	-	-	-	19,94	20,59	20,14	16,15	16,62	17,14	17,56
Water flow rate system side	l/h	-	-	-	-	17316	19137	20081	23139	25509	28916	32647
Pressure drop system side	kPa	-	-	-	-	63	76	71	65	78	90	93

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C / * °C; Aria esterna 2 °C

NRG - E

	0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
kW	58,5	64,5	71,8	81,3	98,0	108,0	112,6	131,2	144,0	162,0	181,4
kW	18,7	22,1	24,7	30,4	32,0	36,0	39,7	44,1	50,1	60,7	70,5
Α	33,0	44,0	50,0	62,0	58,0	62,0	63,0	80,0	91,0	113,0	123,0
W/W	3,13	2,92	2,91	2,67	3,06	3,00	2,83	2,98	2,87	2,67	2,57
l/h	10057	11082	12338	13965	16843	18547	19341	22540	24736	27830	31164
kPa	20	24	29	28	40	49	41	57	68	78	77
kW	39,2	44,0	48,8	51,0	73,2	75,6	76,6	89,6	92,2	95,1	97,5
kW	0,8	0,8	1,1	1,1	3,7	3,7	3,8	5,6	5,6	5,6	5,6
Α	1,5	1,7	2,2	2,2	6,6	6,3	6,1	10,0	10,0	10,0	9,7
W/W	46,65	52,31	45,70	47,80	19,94	20,59	20,14	16,15	16,62	17,14	17,56
l/h	10057	11082	12338	13965	16843	18547	19341	22540	24736	27830	31164
kPa	35	31	40	41	59	71	66	61	74	84	85
	kW A W/W I/h kPa kW kW A W/W I/h	kW 58,5 kW 18,7 A 33,0 W/W 3,13 I/h 10057 kPa 20 kW 39,2 kW 0,8 A 1,5 W/W 46,65 I/h 10057	kW 58,5 64,5 kW 18,7 22,1 A 33,0 44,0 W/W 3,13 2,92 I/h 10057 11082 kPa 20 24 kW 39,2 44,0 kW 0,8 0,8 A 1,5 1,7 W/W 46,65 52,31 I/h 10057 11082	kW 58,5 64,5 71,8 kW 18,7 22,1 24,7 A 33,0 44,0 50,0 W/W 3,13 2,92 2,91 I/h 10057 11082 12338 kPa 20 24 29 kW 39,2 44,0 48,8 kW 0,8 0,8 1,1 A 1,5 1,7 2,2 W/W 46,65 52,31 45,70 I/h 10057 11082 12338	kW 58,5 64,5 71,8 81,3 kW 18,7 22,1 24,7 30,4 A 33,0 44,0 50,0 62,0 W/W 3,13 2,92 2,91 2,67 I/h 10057 11082 12338 13965 kPa 20 24 29 28 kW 39,2 44,0 48,8 51,0 kW 0,8 0,8 1,1 1,1 A 1,5 1,7 2,2 2,2 W/W 46,65 52,31 45,70 47,80 I/h 10057 11082 12338 13965	kW 58,5 64,5 71,8 81,3 98,0 kW 18,7 22,1 24,7 30,4 32,0 A 33,0 44,0 50,0 62,0 58,0 W/W 3,13 2,92 2,91 2,67 3,06 I/h 10057 11082 12338 13965 16843 kPa 20 24 29 28 40 kW 39,2 44,0 48,8 51,0 73,2 kW 0,8 0,8 1,1 1,1 3,7 A 1,5 1,7 2,2 2,2 6,6 W/W 46,65 52,31 45,70 47,80 19,94 I/h 10057 11082 12338 13965 16843	kW 58,5 64,5 71,8 81,3 98,0 108,0 kW 18,7 22,1 24,7 30,4 32,0 36,0 A 33,0 44,0 50,0 62,0 58,0 62,0 W/W 3,13 2,92 2,91 2,67 3,06 3,00 I/h 10057 11082 12338 13965 16843 18547 kPa 20 24 29 28 40 49 kW 39,2 44,0 48,8 51,0 73,2 75,6 kW 0,8 0,8 1,1 1,1 3,7 3,7 A 1,5 1,7 2,2 2,2 6,6 6,3 W/W 46,65 52,31 45,70 47,80 19,94 20,59 I/h 10057 11082 12338 13965 16843 18547	kW 58,5 64,5 71,8 81,3 98,0 108,0 112,6 kW 18,7 22,1 24,7 30,4 32,0 36,0 39,7 A 33,0 44,0 50,0 62,0 58,0 62,0 63,0 W/W 3,13 2,92 2,91 2,67 3,06 3,00 2,83 I/h 10057 11082 12338 13965 16843 18547 19341 kPa 20 24 29 28 40 49 41 kW 39,2 44,0 48,8 51,0 73,2 75,6 76,6 kW 0,8 0,8 1,1 1,1 3,7 3,7 3,8 A 1,5 1,7 2,2 2,2 6,6 6,3 6,1 W/W 46,65 52,31 45,70 47,80 19,94 20,59 20,14 I/h 10057 11082 12338 13965	kW 58,5 64,5 71,8 81,3 98,0 108,0 112,6 131,2 kW 18,7 22,1 24,7 30,4 32,0 36,0 39,7 44,1 A 33,0 44,0 50,0 62,0 58,0 62,0 63,0 80,0 W/W 3,13 2,92 2,91 2,67 3,06 3,00 2,83 2,98 I/h 10057 11082 12338 13965 16843 18547 19341 22540 kPa 20 24 29 28 40 49 41 57 kW 39,2 44,0 48,8 51,0 73,2 75,6 76,6 89,6 kW 0,8 0,8 1,1 1,1 3,7 3,7 3,8 5,6 A 1,5 1,7 2,2 2,2 6,6 6,3 6,1 10,0 W/W 46,65 52,31 45,70 47,80	kW 58,5 64,5 71,8 81,3 98,0 108,0 112,6 131,2 144,0 kW 18,7 22,1 24,7 30,4 32,0 36,0 39,7 44,1 50,1 A 33,0 44,0 50,0 62,0 58,0 62,0 63,0 80,0 91,0 W/W 3,13 2,92 2,91 2,67 3,06 3,00 2,83 2,98 2,87 I/h 10057 11082 12338 13965 16843 18547 19341 22540 24736 kPa 20 24 29 28 40 49 41 57 68 kW 39,2 44,0 48,8 51,0 73,2 75,6 76,6 89,6 92,2 kW 0,8 0,8 1,1 1,1 3,7 3,7 3,8 5,6 5,6 A 1,5 1,7 2,2 2,2 6,6 6,3	kW 58,5 64,5 71,8 81,3 98,0 108,0 112,6 131,2 144,0 162,0 kW 18,7 22,1 24,7 30,4 32,0 36,0 39,7 44,1 50,1 60,7 A 33,0 44,0 50,0 62,0 58,0 62,0 63,0 80,0 91,0 113,0 W/W 3,13 2,92 2,91 2,67 3,06 3,00 2,83 2,98 2,87 2,67 I/h 10057 11082 12338 13965 16843 18547 19341 22540 24736 27830 kPa 20 24 29 28 40 49 41 57 68 78 kW 39,2 44,0 48,8 51,0 73,2 75,6 76,6 89,6 92,2 95,1 kW 0,8 0,8 1,1 1,1 3,7 3,7 3,8 5,6 5,6 5,6

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C /* °C; Aria esterna 2 °C

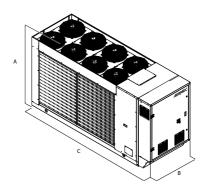
ENERGY DATA BY TYPE OF FAN

Size			0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
SEPR - (EN14825: 2018) High temperatur	e with standa	ard fans (1)											
CEDD	А	W/W	-	-	-	-	6,43	6,30	7,50	7,56	7,17	6,57	6,34
SEPR	E	W/W	7,11	6,66	6,65	6,21	6,34	6,14	7,16	7,24	7,02	6,39	6,12

⁽¹⁾ Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
Electric data													
Maximum aureant (FLA)	A	A	-	-	-	-	73,5	79,1	80,5	100,1	111,4	132,7	144,0
Maximum current (FLA)	E	Α	42,3	50,7	58,0	68,7	73,5	79,1	80,5	100,1	111,4	132,7	144,0
Deale comment (LDA)	A	A	-	-	-	-	276,8	282,5	200,8	224,2	226,7	287,7	353,0
Peak current (LRA)	E	A	162,7	174,8	173,3	223,7	276,8	282,5	200,8	224,2	226,7	287,7	353,0


[■] Data calculated without hydronic kit and accessories.

GENERAL TECHNICAL DATA

Size			0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
Compressor													
Туре	A,E	type				-	-	Scroll					
Compressor regulation	A,E	Туре						On/Off					
Number	A,E	no.	2	2	2	2	2	2	4	4	4	4	4
Circuits	A,E	no.	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E	type						R32					
System side heat exchanger													
Туре	A,E	type						Brazed plate					
Number	A,E	no.	1	1	1	1	1	1	1	1	1	1	1
System side hydraulic connections													
Sizes (in/out)	A,E	Ø						2"1/2					
Fan													
Туре	A,E	type						Axial					
Number	A	no.	-	-	-	-	2	2	2	3	3	3	3
Number	E	no.	6	6	8	8	2	2	2	3	3	3	3
A:	A	m³/h	-	-	-	-	36079	36079	36079	54481	54481	54481	54481
Air flow rate	E	m³/h	23294	22734	26915	26915	27483	27483	27483	41449	41449	41449	41449
Sound data calculated in cooling mode	e (1)												
Carried manufactual	A	dB(A)	-	-	-	-	85,1	85,6	84,2	86,4	86,4	86,4	86,4
Sound power level	E	dB(A)	73,0	73,9	74,3	74,5	81,3	82,1	76,1	77,5	77,5	77,5	77,5

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
Dimensions and weights													
Α.	A	mm	-	-	-	-	1907	1907	1907	1900	1900	1900	1900
A	E	mm	1658	1658	1658	1658	1907	1907	1907	1900	1900	1900	1900
D	A	mm	-	-	-	-	1100	1100	1100	1100	1100	1100	1100
В	E	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
,	Α	mm	-	-	-	-	3567	3567	3567	4467	4467	4467	4467
	E	mm	3317	3317	3317	3317	3567	3567	3567	4467	4467	4467	4467

NRG-0800-2400-F

Air-water chiller with free-cooling

Cooling capacity 224 ÷ 717 kW

- Microchannel coil
- Night mode
- High efficiency also at partial loads

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

These are outdoor units with streamlined scroll compressors used with R32 gas axial fan, microchannel batteries and plate exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency
E Silenced high efficiency
N Silenced very high efficiency
U Very high efficiency

FEATURES

Operating field

Operation at full load up to 49 °C external air temperature. Unit can produce chilled water up to -10,0 °C.

For more information refer to the selection program and to to the dedicated documentation. $\label{eq:constraint}$

Refrigerant HFC R32

Use refrigerant fluid R32, whose classification according to ISO 817 is A2L (non-toxic, odourless and slightly flammable refrigerant).

The environmental impact of the units is reduced considerably owing to the last generation R32 refrigerant.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO_2 values.

■ The leak detector is supplied as per standard.

Dual-circuit unit

Unit with 2 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode.

Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The compressors are completely shut down, if possible, leading to considerable electrical savings.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation.

It is available in different configurations with storage tank or with fixed pumps also inverter.

CONTROL PCO₅

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night mode: only in the non-silenced versions is it possible to set a silenced operating mode, which is useful for example at night for greater acoustic comfort but always guarantees performance even at peak load times.

CONFIGURATOR

		GURATOR
Field		Description
1,2,3	3	NRG
4,5,6	5,7	Size 0800, 0900, 1000, 1100, 1200, 1400, 1600, 1800, 2000, 2200, 2400
8		Operating field
<u> </u>	Х	Electronic thermostatic expansion valve (1)
	Z	Low temperature electronic thermostatic valve (2)
9	-	Model
	F	Free-cooling
10	-	Heat recovery
	D	With desuperheater (3)
	0	Without heat recovery
11		Version
	Α	High efficiency
	E	Silenced high efficiency
	N	Silenced very high efficiency
	U	Very high efficiency
12		Coils / free-cooling coils
	<u> </u>	Copper-aluminium / Copper-aluminium
	0	Painted alluminium microchannel / Copper painted aluminium
	R	Copper-copper/Copper-copper
	S V	Copper-Tinned copper / Copper -Tinned copper
	v •	Copper-painted alumimium / Copper-painted alumimium
13		Alluminium microchannel / Copper - aluminium Fans
13	J	Inverter
	M	Oversized with DCPX
14		Power supply
	0	400V ~ 3 50Hz with magnet circuit breakers
15,1	6	Integrated hydronic kit
	00	Without hydronic kit
		Kit with n° 1 pump
	PA	Pump A
	PB	Pump B
	PC	Pump C
	PD	Pump D
	PE	Pump E
	PF	Pump F
	PG PH	Pump G
	PI	Pump H Pump I
	FI	Pump n° 1 pump + stand-by pump
	DA	Pump A + stand-by pump
	DB	Pump B + stand-by pump
	DC	Pump C + stand-by pump
	DD	Pump D + stand-by pump
	DE	Pump E + stand-by pump
	DF	Pump F + stand-by pump
	DG	Pump G + stand-by pump
	DH	Pump H + stand-by pump
	DI	Pump I + stand-by pump
		Kit with storage tank and n° 1 pump
	AA	Storage tank and pump A (4)
	AB	Storage tank and pump B (4)
	AC	Storage tank and pump C (4)
	AD	Storage tank and pump D (4)
	AE	Storage tank and pump E (4)
	AF AG	Storage tank and pump F (4)
	AG	Storage tank and pump G (4)
	AH AI	Storage tank and pump H (4) Storage tank and pump I (4)
	ΑI	Storage tank and pump 1 (4) Kit with storage tank and n° 1 pump + stand-by pump
	BA	Storage tank with pump A + stand-by pump (4)
	-11	

Field	Description
BB	Storage tank with pump B + stand-by pump (4)
ВС	Storage tank with pump C + stand-by pump (4)
BD	Storage tank with pump D + stand-by pump (4)
BE	Storage tank with pump E + stand-by pump (4)
BF	Storage tank with pump F + stand-by pump (4)
BG	Storage tank with pump G + stand-by pump (4)
ВН	Storage tank with pump H + stand-by pump (4)
BI	Storage tank with pump I + stand-by pump (4)
	Kit with n° 1 inverter pump to fixed speed
IA	Pump A equipped with inverter device to work at fixed speed
IB	Pump B equipped with inverter device to work at fixed speed
IC	Pump C equipped with inverter device to work at fixed speedr
ID	Pump D equipped with inverter device to work at fixed speed
IE	Pump E equipped with inverter device to work at fixed speed
IF	Pump F equipped with inverter device to work at fixed speed
IG	Pump G equipped with inverter device to work at fixed speed
IH	Pump H equipped with inverter device to work at fixed speed
II	Pump I equipped with inverter device to work at fixed speed
	Kit with n° 1 inverter pump + stand-by pump to fixed speed
JA	Pump A+stand-by pump, both equipped with inverter to work at fixed speed
JB	Pump B+stand-by pump, both equipped with inverter to work at fixed speed
JC	Pump C+stand-by pump, both equipped with inverter to work at fixed speed
JD	Pump D+stand-by pump, both equipped with inverter to work at fixed speed
JE	Pump E+stand-by pump, both equipped with inverter to work at fixed speed
JF	Pump F+stand-by pump, both equipped with inverter to work at fixed speed
JG	Pump G+stand-by pump, both equipped with inverter to work at fixed speed
JH	Pump H+stand-by pump, both equipped with inverter to work at fixed speed
JI	Pump I+stand-by pump, both equipped with inverter to work at fixed speed
	Kit with storage tank and n° 1 inverter pump to fixed speed
CA	Buffer tank + pump A, equipped with inverter to work at fixed speed (4)
CB	Buffer tank + pump B, equipped with inverter to work at fixed speed (4)
	Buffer tank + pump C, equipped with inverter to work at fixed speed (4)
CD	Buffer tank + pump D, equipped with inverter to work at fixed speed (4)
EC	Buffer tank + pump E, equipped with inverter to work at fixed speed (4)
CF	Buffer tank + pump F, equipped with inverter to work at fixed speed (4)
CG	Buffer tank + pump G, equipped with inverter to work at fixed speed (4)
CH	Buffer tank + pump H, equipped with inverter to work at fixed speed (4)
CI	Buffer tank + pump I, equipped with inverter to work at fixed speed (4)
	Kit with storage tank and n° 1 pump + stand-by pump to fixed speed
KA	Buffer tank+pump A+stand-by pump, both with inverter to work at fixed speed (4)
KB	Buffer tank+pump B+stand-by pump, both with inverter to work at fixed speed
KC	(4) Buffer tank+pump C+stand-by pump, both with inverter to work at fixed speed
KD	(4) Buffer tank+pump D+stand-by pump, both with inverter to work at fixed speed
KE	(4) Buffer tank+pump E+stand-by pump, both with inverter to work at fixed speed
	(4) Buffer tank+pump F+stand-by pump, both with inverter to work at fixed speed
KF	(4) Buffer tank+pump G+stand-by pump, both with inverter to work at fixed speed
KG	(4)
KH	Buffer tank+pump H+stand-by pump, both with inverter to work at fixed speed (4)
KI	Buffer tank+pump I+stand-by pump, both with inverter to work at fixed speed (4)

⁽¹⁾ Water produced from 4 °C ÷ 20 °C
(2) Water produced from 8 °C ÷ -10 °C
(3) Warning: on the recovery side, a minimum input temperature of 35°C must always be guaranteed on the heat exchanger. For more information about the unit operating range, refer to the Magellano selection program. Desuperheater is not compatible with the hydronic kit with storage tank (AA-AI, BA-BI,CA-CI e KA-KI) on the unit 1400-2400°, 1100-1800 E/U, 0800-1600N.
(4) Additional module needed to contain the hydronic kit with "accumulation" option in sizes: 0800 A - 0900 A

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
AER485P1	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•
AERBACP	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•
AERLINK	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•
AERNET	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•
FL	A,E,N,U	•	•	•	•	•	•		•	•	•	•
MULTICHILLER-EVO	A,E,N,U	•	•	•	•	•	•		•	•	•	•
PGD1	A,E,N,U	•		•	•	•	•	•	•	•	•	•

1100

1200

1400

1600

1800

2000

2200

2400

1000

0800

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device. Antivibration

Remote panel Model

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
ntegrated hydronic kit: 00											
A	AVX1277	AVX1277	AVX1278	AVX1278	AVX1278	AVX1282	AVX1282	AVX1287	AVX1287	AVX1289	AVX1289
E, U	AVX1278	AVX1278	AVX1278	AVX1282	AVX1282	AVX1286	AVX1286	AVX1289	AVX1294	AVX1294	AVX1296
N	AVX1282	AVX1282	AVX1282	AVX1286	AVX1286	AVX1286	AVX1289	AVX1294	AVX1296	AVX1296	AVX1299
ntegrated hydronic kit: AA, AB, AC,	AD, AE, AF, AG, AH, A	I, BA, BB, BC, BI), BE, BF, BG, BI	H, BI, CA, CB, CC	, CD, CE, CF, CG,	CH, CI, KA, KB, I	KC, KD, KE, KF, K	G, KH, KI			
A	AVX1281	AVX1281	AVX1281	AVX1281	AVX1281	AVX1284	AVX1284	AVX1293	AVX1293	AVX1290	AVX1290
E, U	AVX1281	AVX1281	AVX1281	AVX1284	AVX1284	AVX1288	AVX1288	AVX1290	AVX1295	AVX1295	AVX1298
N	AVX1284	AVX1284	AVX1284	AVX1288	AVX1288	AVX1288	AVX1290	AVX1295	AVX1298	AVX1298	AVX1300
ntegrated hydronic kit: DA, DB, DC,	DD, DE, DF, DG, DH, I	DI, IA, IB, IC, ID,	IE, IF, IG, IH, II,	JA, JB, JC, JD, JE	, JF, JG, JH, JI, P	A, PB, PC, PD, P	E, PF, PG, PH, P	l			
A	AVX1277	AVX1277	AVX1279	AVX1279	AVX1279	AVX1283	AVX1283	AVX1292	AVX1292	AVX1289	AVX1289
E, U	AVX1279	AVX1279	AVX1279	AVX1282	AVX1282	AVX1286	AVX1286	AVX1289	AVX1294	AVX1294	AVX1297
N	AVX1282	AVX1282	AVX1282	AVX1286	AVX1286	AVX1286	AVX1289	AVX1294	AVX1297	AVX1297	AVX1299

Device for peak current reduction

Ver	0800	0900	1000	1100	1200	1400
A, E, N, U	DRENRG0800	DRENRG0900	DRENRG1000	DRENRG1100	DRENRG1200	DRENRG1400
A grey background indicates the accessory m	ust be assembled in the factory					
Ver	1600	1800	2000		2200	2400
A, E, N, U	DRENRG1600	DRENRG1800	DRENRG20	000	DRENRG2200	DRENRG2400

A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0800	0900	1000	1100	1200	1400
A, E, N, U	RIFNRG0800	RIFNRG0900	RIFNRG1000	RIFNRG1100	RIFNRG1200	RIFNRG1400
A grey background indicates the accessory	must be assembled in the factory					
Ver	1600	1800	2000		2200	2400
A, E, N, U	RIFNRG1600	RIFNRG1800	RIFNRG20	000	RIFNRG2200	RIFNRG2400

A grey background indicates the accessory must be assembled in the factory

Double safety valves

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
A, E, N, U	T6NRGLS1	T6NRGLS2	T6NRGLS3	T6NRGLS3	T6NRGLS3						

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
A	GP2VN	GP2VN	GP3G	GP3G	GP3G	GP4GM	GP4GM	GP5G	GP5G	GP6G	GP6G
E, U	GP3G	GP3G	GP3G	GP4GM	GP4GM	GP5GM	GP5GM	GP6G	GP7G	GP7G	GP8G
N	GP4GM	GP4GM	GP4GM	GP5GM	GP5GM	GP5GM	GP6G	GP7G	GP8G	GP8G	GP9G

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

PERFORMANCE SPECIFICATIONS

NRG - A

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Cooling performance chiller operation (1)												
Cooling capacity	kW	223,9	245,3	284,1	324,7	368,2	419,0	462,1	535,9	599,5	654,7	692,5
Input power	kW	73,0	82,9	91,3	106,0	122,2	134,8	152,7	172,3	197,6	212,9	230,2
Cooling total input current	A	129,0	146,0	160,0	184,0	209,0	229,0	254,0	293,0	337,0	356,0	381,0
EER	W/W	3,07	2,96	3,11	3,06	3,01	3,11	3,03	3,11	3,03	3,07	3,01
Water flow rate system side	l/h	38467	42143	48813	55779	63264	71985	79391	92073	103007	112479	118984
Pressure drop system side	kPa	60	72	83	101	115	80	77	98	113	88	76
Cooling performances with free-cooling (2)												
Cooling capacity	kW	136,0	137,7	198,2	202,9	206,4	269,0	273,1	337,6	343,1	406,3	409,7
Input power	kW	7,5	7,5	11,2	11,2	11,2	15,0	15,0	18,7	18,7	22,4	22,4
Free cooling total input current	A	13,0	13,0	20,0	20,0	19,0	25,0	25,0	32,0	32,0	38,0	37,0
EER	W/W	18,20	18,42	17,67	18,09	18,40	17,99	18,27	18,06	18,36	18,11	18,26
Water flow rate system side	l/h	38467	42143	48813	55779	63264	71985	79391	92073	103007	112479	118984
Pressure drop system side	kPa	109	129	123	152	178	124	138	157	187	143	137

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C / * °C; Aria esterna 2 °C

NRG - E

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Cooling performance chiller operation (1)												
Cooling capacity	kW	226,2	251,9	274,9	324,9	370,2	416,7	456,6	531,6	606,0	638,0	691,8
Input power	kW	72,4	82,1	92,0	106,0	123,9	136,5	153,7	175,2	197,7	215,9	227,8
Cooling total input current	A	122,0	139,0	156,0	176,0	201,0	220,0	245,0	284,0	319,0	346,0	363,0
EER	W/W	3,12	3,07	2,99	3,06	2,99	3,05	2,97	3,03	3,07	2,95	3,04
Water flow rate system side	I/h	38872	43273	47230	55828	63599	71601	78444	91335	104110	109612	118851
Pressure drop system side	kPa	62	65	74	103	72	65	76	92	116	66	72
Cooling performances with free-cooling (2)												
Cooling capacity	kW	158,4	161,9	164,2	214,5	219,3	269,7	273,4	326,8	379,6	383,0	434,0
Input power	kW	7,9	7,9	7,9	10,6	10,6	13,2	13,2	15,8	18,5	18,5	21,1
Free cooling total input current	A	13,0	13,0	13,0	18,0	17,0	21,0	21,0	26,0	30,0	30,0	34,0
EER	W/W	20,02	20,46	20,75	20,33	20,78	20,45	20,73	20,65	20,56	20,74	20,57
Water flow rate system side	l/h	38872	43273	47230	55828	63599	71601	78444	91335	104110	109612	118851
Pressure drop system side	kPa	89	97	112	149	129	103	121	141	170	109	115

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C / * °C; Aria esterna 2 °C

NRG - U

MNG-0												
Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Cooling performance chiller operation (1)												
Cooling capacity	kW	233,1	260,7	285,8	336,2	385,1	431,6	474,7	552,3	627,9	664,0	717,7
Input power	kW	72,7	81,3	90,2	105,2	121,2	135,0	151,0	173,5	195,9	212,0	225,5
Cooling total input current	Α	129,0	145,0	160,0	183,0	206,0	228,0	250,0	291,0	330,0	353,0	374,0
EER	W/W	3,21	3,20	3,17	3,19	3,18	3,20	3,14	3,18	3,21	3,13	3,18
Water flow rate system side	I/h	40049	44784	49102	57760	66170	74152	81560	94895	107889	114087	123303
Pressure drop system side	kPa	68	72	83	111	78	69	82	99	125	72	78
Cooling performances with free-cooling (2)												
Cooling capacity	kW	188,5	194,2	198,5	256,7	265,2	323,5	330,2	393,9	456,3	462,7	522,1
Input power	kW	11,2	11,2	11,2	15,0	15,0	18,7	18,7	22,4	26,2	26,2	29,9
Free cooling total input current	Α	20,0	20,0	20,0	26,0	25,0	32,0	31,0	38,0	44,0	44,0	50,0
EER	W/W	16,81	17,32	17,70	17,17	17,74	17,31	17,66	17,56	17,44	17,68	17,46
Water flow rate system side	l/h	40049	44784	49102	57760	66170	74152	81560	94895	107889	114087	123303
Pressure drop system side	kPa	95	104	121	159	139	110	130	152	182	118	123

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C / * °C ; Aria esterna 2 °C

NRG - N

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Cooling performance chiller operation (1)												
Cooling capacity	kW	232,6	258,9	286,6	334,6	383,1	422,5	473,7	546,9	617,8	658,1	707,5
Input power	kW	71,7	81,1	90,4	104,8	120,5	134,5	150,6	174,0	195,5	210,5	225,7
Cooling total input current	A	121,0	136,0	152,0	173,0	195,0	221,0	238,0	277,0	314,0	338,0	357,0
EER	W/W	3,24	3,19	3,17	3,19	3,18	3,14	3,14	3,14	3,16	3,13	3,14
Water flow rate system side	l/h	39959	44482	49239	57495	65813	72590	81381	93965	106146	113074	121557
Pressure drop system side	kPa	69	73	85	109	77	62	77	96	121	69	75
Cooling performances with free-cooling (2)												
Cooling capacity	kW	195,9	202,9	208,3	255,5	264,7	270,1	319,5	371,9	423,9	429,3	478,8
Input power	kW	10,6	10,6	10,6	13,2	13,2	13,2	15,8	18,5	21,1	21,1	23,7
Free cooling total input current	A	18,0	18,0	18,0	22,0	21,0	22,0	25,0	29,0	34,0	34,0	38,0
EER	W/W	18,57	19,23	19,74	19,37	20,07	20,48	20,19	20,14	20,09	20,34	20,17
Water flow rate system side	l/h	39959	44482	49239	57495	65813	72590	81381	93965	106146	113074	121557
Pressure drop system side	kPa	94	104	121	150	128	101	117	141	171	108	114

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C /* °C; Aria esterna 2 °C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Fans: J													
SEPR - (EN 14825: 2018) (1)			-				-	-				-	
	A	W/W	6,63	6,37	6,71	6,69	6,49	6,93	6,95	7,05	6,79	7,02	6,87
SEPR	E	W/W	7,12	6,91	6,90	6,94	6,79	7,41	7,34	7,24	7,19	7,28	7,30
SEPK	N	W/W	7,61	7,39	7,29	7,29	7,22	7,63	7,68	7,53	7,43	7,56	7,60
(1) Calculation performed with FIXED water	U	W/W	7,27	7,12	7,02	7,09	6,96	7,33	7,39	7,27	7,14	7,34	7,36
(1) Calculation performed with FIXED wate	r flow rate.												
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Fans: M													
SEPR - (EN 14825: 2018) (1)							-	-					
	A	W/W	6,39	6,16	6,50	6,53	6,33	6,89	6,86	6,96	6,69	6,86	6,70
CEDD	E	W/W	6,86	6,69	6,71	6,78	6,61	7,18	7,14	7,02	6,95	7,05	7,11
SEPR	N	W/W	7,38	7,16	7,09	7,12	7,04	7,39	7,47	7,30	7,18	7,33	7,40
	U	W/W	7,05	6,91	6,80	6,93	6,80	7,30	7,30	7,17	7,04	7,18	7,20

⁽¹⁾ Calculation performed with FIXED water flow rate.

ELECTRIC DATA

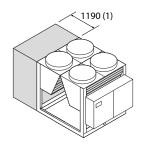
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Electric data													
	A	A	158,2	176,5	200,6	228,5	256,4	290,1	317,9	369,5	415,3	449,0	476,9
Maximum current (FLA)	E,U	Α	164,0	182,3	200,6	234,3	262,2	295,9	323,7	375,3	426,9	454,8	488,5
Maximum current (FLA)	N	A	169,8	188,1	206,4	240,1	268,0	295,9	329,5	381,1	432,7	460,6	494,3
	A	Α	361,6	417,7	436,0	685,0	718,7	746,6	774,4	826,1	871,9	899,7	933,4
DI	E	Α	361,6	417,7	441,8	690,8	718,7	752,4	780,2	831,9	877,7	911,3	939,2
eak current (LRA)	N	Α	350,0	406,1	424,4	673,4	701,3	729,2	757,0	802,9	848,7	876,5	904,4
	U	А	367.4	423.5	441.8	696.6	724.5	758.2	786.0	837.7	889,3	917.1	950.8

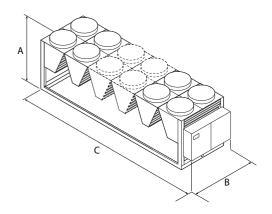
GENERAL TECHNICAL DATA

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Compressor													
Туре	A,E,N,U	type						Scroll					
Compressor regulation	A,E,N,U	Туре						Asynchronous	5				
Number	A,E,N,U	no.	4	4	4	4	4	4	4	5	6	6	6
Circuits	A,E,N,U	no.	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E,N,U	type						R32					
Potential global heating	A,E,N,U	GWP						675kgCO₂eq					
System side heat exchanger													
Туре	A,E,N,U	type	-			-		Brazed plate					
Number	A,E,N,U	no.	1	1	1	1	1	1	1	1	1	1	1
Hydraulic connections without hydronic l	dt		-			-		-			-		
Connections (in/out)	A,E,N,U	Туре						Grooved joint	S				
Cinco (in (aut)	A	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"	5"	5"
Sizes (in/out)	E,N,U	Ø	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"
Hydraulic connections with hydronic kit													
Connections (in/out)	A,E,N,U	Туре						Grooved joint	<u> </u>				
Cinco (in look)	A	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"	5"	5"
Sizes (in/out)	E,N,U	Ø	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"

In the versions without a hydronic kit, the water filter is supplied with a connection point for making the connection. In the versions with a hydronic kit, it is supplied ready-mounted.

SOUND DATA


JOURN DITTE													
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Fans: J, M													
Sound data calculated in cooling mode ((1)												
	A	dB(A)	90,5	90,5	90,5	90,8	91,1	92,1	92,3	93,1	93,4	94,2	94,3
Caused manuscriptural	E	dB(A)	84,4	84,5	84,5	85,8	86,5	87,6	88,1	88,6	89,0	89,7	90,2
Sound power level	N	dB(A)	85,3	85,4	85,4	86,9	87,6	88,1	89,0	89,4	89,8	90,5	91,0
	U	dB(A)	90,8	90,8	90,8	92,2	92,5	93,5	93,6	94,3	94,9	95,0	95,6
	А	dB(A)	58,4	58,4	58,2	58,6	58,9	59,7	59,9	60,5	60,9	61,5	61,7
Carrad massacras larvel (10 ms)	E	dB(A)	52,2	52,2	52,3	53,4	54,1	55,1	55,6	55,9	56,2	56,9	57,3
Sound pressure level (10 m)	N	dB(A)	52,9	53,0	53,0	54,4	55,0	55,6	56,3	56,6	56,9	57,6	58,0
	U	dB(A)	58,5	58,5	58,5	59,8	60,1	60,9	61,1	61,7	62,1	62,2	62,7


⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

FANS DATA

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Fans: J, M													
Fan													
Туре	A,E,N,U	type						Axial					
	A	no.	4	4	6	6	6	8	8	10	10	12	12
Number	E,U	no.	6	6	6	8	8	10	10	12	14	14	16
	N	no.	8	8	8	10	10	10	12	14	16	16	18
	A	m³/h	57976	57976	86965	86965	86965	115954	115953	144941	144941	173929	173929
Air flow rate	E	m³/h	63933	63933	63933	85244	85244	106555	106555	127866	149177	149177	170487
All How rate	N	m³/h	85244	85244	85244	106555	106555	106555	127866	149177	170488	170488	191798
	U	m³/h	86963	86963	86963	115959	115959	144934	144934	173932	202921	202921	231902

DIMENSIONS

Additional module needed to contain the hydronic kit with "accumulation" option in sizes: 0800 A-0900 A

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Integrated hydronic kit:	00, DA, DB, D	C, DD, DI	E, DF, DG,	DH, DI, I	A, IB, IC,	ID, IE, IF,	IG, IH, II	, JA, JB, J	C, JD, JE,	JF, JG, JH	I, JI, PA, I	PB, PC, PI), PE, PF
PG, PH, PI													
Dimensions and weights													
A	A,E,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	A	mm	2780	2780	3970	3970	3970	5160	5160	6350	6350	7540	7540
C	E,U	mm	3970	3970	3970	5160	5160	6350	6350	7540	8730	8730	9650
	N	mm	5160	5160	5160	6350	6350	6350	7540	8730	9650	9650	11110
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Integrated hydronic kit:	AA, AB, AC, AI	D, AE, AF	, AG, AH,	AI, BA, B	B, BC, BD	, BE, BF,	BG, BH,	BI, CA, CE	, CC, CD,	CE, CF, C	G, CH, CI,	KA, KB,	KC, KD,
KE, KF, KG, KH, KI													
Dimensions and weights													
A	A,E,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	A	mm	3970	3970	3970	3970	3970	5160	5160	6350	6350	7540	7540
C	E,U	mm	3970	3970	3970	5160	5160	6350	6350	7540	8730	8730	9650
	N	mm	5160	5160	5160	6350	6350	6350	7540	8730	9650	9650	11110
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Integrated hydronic kit:	00												
Weights													
	A	kg	2545	2550	3090	3245	3390	4135	4345	5080	5295	6000	6095
Empty weight	E,U	kg	3095	3110	3115	3890	4130	4755	4895	5630	6390	6580	7270
., .	N	kg	3720	3730	3735	4425	4680	4815	5440	6225	7000	7190	7825
	A	kg	2690	2695	3235	3390	3540	4360	4590	5355	5580	6360	6460
Weight functioning	E,U	kg	3230	3250	3260	4085	4370	5020	5165	5955	6755	6985	7720
3	N N	ka	3905	3920	3925	4645	4945	5090	5755	6585	7405	7635	8315

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRG-0800-2400-B

Air-cooled chiller with free cooling (glycol-free)

Cooling capacity 224 ÷ 717 kW

- Microchannel coil
- Night mode
- · High efficiency also at partial loads

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

These are outdoor units with streamlined scroll compressors used with R32 gas axial fan, microchannel batteries and plate exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency
E Silenced high efficiency
N Silenced very high efficiency
U Very high efficiency

FEATURES

Operating field

Operation at full load up to $49 \,^{\circ}$ C external air temperature. Unit can produce chilled water up to -10,0 $^{\circ}$ C.

For more information refer to the selection program and to to the dedicated documentation. $\label{eq:controller}$

Refrigerant HFC R32

Use refrigerant fluid R32, whose classification according to ISO 817 is A2L (non-toxic, odourless and slightly flammable refrigerant).

The environmental impact of the units is reduced considerably owing to the last generation R32 refrigerant.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO_2 values.

■ The leak detector is supplied as per standard.

Dual-circuit unit

Unit with 2 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode.

Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The compressors are completely shut down, if possible, leading to considerable electrical savings.

Free cooling with glycol water

Intermediate plate heat exchanger that creates two circuits:

- 1. Glycol hydraulic circuit (glycol is added to protect the coil from freezing).
- 2. Primary hydraulic circuit for glycol-free systems.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Option integrated hydronic kit

To obtain a solution that allows you to save money and to facilitate installation. These units can be configured with an integrated hydronic system. The kit contains the main hydraulic components, and is available in various configurations with a single pump or a standby pump too, so the customer can choose the right useful head.

CONTROL PCO₅

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

Night mode: only in the non-silenced versions is it possible to set a silenced operating mode, which is useful for example at night for greater

acoustic comfort but always guarantees performance even at peak load times

CONFIGURATOR

Field		Description
1,2,3		NRG
4,5,6		Size 0800, 0900, 1000, 1100, 1200, 1400, 1600, 1800, 2000, 2200, 2400
8		Operating field
	Χ	Electronic thermostatic expansion valve
	Z	Low temperature electronic thermostatic valve
9		Model
	В	Free-cooling glycol free
10		Heat recovery
	D	With desuperheater (1)
	0	Without heat recovery
11		Version
	Α	High efficiency
	E	Silenced high efficiency
	N	Silenced very high efficiency
	U	Very high efficiency
12		Coils / free-cooling coils
	l	Copper-aluminium / Copper-aluminium
	0	Painted alluminium microchannel / Copper painted aluminium
	R	Copper-copper/Copper-copper
	S	Copper-Tinned copper / Copper -Tinned copper
	٧	Copper-painted alumimium / Copper-painted alumimium
	0	Alluminium microchannel / Copper - aluminium
13		Fans
	J	Inverter
	М	Oversized with DCPX
14		Power supply
	0	400V ~ 3 50Hz with magnet circuit breakers
15,16	5	Integrated hydronic kit
	00	Without hydronic kit
		Kit with n° 1 pump
	PA	Pump A
	PB	Pump B
	PC	Pump C
	PD	Pump D
	PE	Pump E
	_	

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

Field	Description
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
	Kit with n° 1 inverter pump to fixed speed
IA	Pump A equipped with inverter device to work at fixed speed
IB	Pump B equipped with inverter device to work at fixed speed
IC	Pump C equipped with inverter device to work at fixed speedr
ID	Pump D equipped with inverter device to work at fixed speed
IE	Pump E equipped with inverter device to work at fixed speed
IF	Pump F equipped with inverter device to work at fixed speed
IG	Pump G equipped with inverter device to work at fixed speed
IH	Pump H equipped with inverter device to work at fixed speed
II	Pump I equipped with inverter device to work at fixed speed
	Kit with n° 1 inverter pump + stand-by pump to fixed speed
JA	Pump A+stand-by pump, both equipped with inverter to work at fixed speed
JB	Pump B+stand-by pump, both equipped with inverter to work at fixed speed
JC	Pump C+stand-by pump, both equipped with inverter to work at fixed speed
JD	Pump D+stand-by pump, both equipped with inverter to work at fixed speed
JE	Pump E+stand-by pump, both equipped with inverter to work at fixed speed
JF	Pump F+stand-by pump, both equipped with inverter to work at fixed speed
JG	Pump G+stand-by pump, both equipped with inverter to work at fixed speed
JH	Pump H+stand-by pump, both equipped with inverter to work at fixed speed
JI	Pump I+stand-by pump, both equipped with inverter to work at fixed speed

⁽¹⁾ Warning: on the recovery side, a minimum input temperature of 35°C must always be guaranteed on the heat exchanger. For more information about the unit operating range, refer to the Magellano selection program. For further information please contact the head office.

FL: Flow switch.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
AER485P1	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•
AERBACP	A,E,N,U		•	•	•	•	•	•	•	•	•	
AERLINK	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•
AERNET	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•
FL	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	A,E,N,U	•	•	•	•	•	•		•	•	•	•
PGD1	A,E,N,U	•	•	•	•		•	•		•		•

Remote panel

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
PR4	A,E,N,U	•	•	•	•	•	•	•	•	•		•

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Antivibration

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Integrated hydronic kit: 00											
A	AVX1277	AVX1277	AVX1301	AVX1301	AVX1301	AVX1303	AVX1303	AVX1308	AVX1308	AVX1307	AVX1307
E, U	AVX1301	AVX1301	AVX1301	AVX1302	AVX1303	AVX1304	AVX1304	AVX1307	AVX1310	AVX1310	AVX1311
N	AVX1302	AVX1302	AVX1302	AVX1304	AVX1304	AVX1304	AVX1307	AVX1310	AVX1311	AVX1311	AVX1313
Integrated hydronic kit: DA, DB, DC, DI), DE, DF, DG, DH, [OI, IA, IB, IC, ID,	IE, IF, IG, IH, II,	JA, JB, JC, JD, JE	, JF, JG, JH, JI, F	A, PB, PC, PD, P	E, PF, PG, PH, P	l			
A	AVX1285	AVX1285	AVX1301	AVX1301	AVX1306	AVX1303	AVX1303	AVX1309	AVX1309	AVX1307	AVX1307
E, U	AVX1301	AVX1301	AVX1301	AVX1303	AVX1303	AVX1304	AVX1304	AVX1307	AVX1310	AVX1310	AVX1312
N	AVX1302	AVX1302	AVX1302	AVX1305	AVX1304	AVX1304	AVX1307	AVX1310	AVX1312	AVX1312	AVX1313

Device for peak current reduction

Ver	0800	0900	1000	1100	1200	1400
A, E, N, U	DRENRG0800	DRENRG0900	DRENRG1000	DRENRG1100	DRENRG1200	DRENRG1400
A grey background indicates the accessory m	oust be assembled in the factory					
.,						

 Ver
 1600
 1800
 2000
 2200
 2400

 A, E, N, U
 DRENRG1600
 DRENRG1800
 DRENRG2000
 DRENRG2200
 DRENRG2400

A grey background indicates the accessory must be assembled in the factory $% \left(1\right) =\left(1\right) \left(1\right)$

Power factor correction

Ver	0800	0900	1000	1100	1200	1400
A, E, N, U	RIFNRG0800	RIFNRG0900	RIFNRG1000	RIFNRG1100	RIFNRG1200	RIFNRG1400
A grey background indicates the accessor	y must be assembled in the factory					
Ver	1600	1800	2000		2200	2400
A. F. N. U	RIFNRG1600	RIFNRG1800	RIFNRG200	0	RIFNRG2200	RIFNRG2400

A grey background indicates the accessory must be assembled in the factory

Double safety valves

-	Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
	A, E, N, U	T6NRGLS1	T6NRGLS2	T6NRGLS3	T6NRGLS3	T6NRGLS3						

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

J											
Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Integrated hydronic kit: 00											
A	GP2VN	GP2VN	GP3G	GP3G	GP3G	GP4GM	GP4GM	GP5G	GP5G	GP6G	GP6G
E, U	GP3G	GP3G	GP3G	GP4GM	GP4GM	GP5GM	GP5GM	GP6G	GP7G	GP7G	GP8G
N	GP4GM	GP4GM	GP4GM	GP5GM	GP5GM	GP5GM	GP6G	GP7G	GP8G	GP8G	GP9G
Integrated hydronic kit: DA, DB, DC,	DD, DE, DF, DG, DH, I	DI, IA, IB, IC, ID,	IE, IF, IG, IH, II,	JA, JB, JC, JD, JE	, JF, JG, JH, JI, F	A, PB, PC, PD, P	E, PF, PG, PH, PI				
A	GP2VNA	GP2VNA	GP3G	GP3G	GP3G	GP4GM	GP4GM	GP5G	GP5G	GP6G	GP6G
E, U	GP3G	GP3G	GP3G	GP4GM	GP4GM	GP5GM	GP5GM	GP6G	GP7G	GP7G	GP8G
N	GP4GM	GP4GM	GP4GM	GP5GM	GP5GM	GP5GM	GP6G	GP7G	GP8G	GP8G	GP9G

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

PERFORMANCE SPECIFICATIONS

NRG - A

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Cooling performance chiller operation (1)												
Cooling capacity	kW	223,9	245,3	284,1	324,7	368,2	419,0	462,1	535,9	599,5	654,7	692,5
Input power	kW	73,0	82,9	91,3	106,0	122,2	134,8	152,7	172,3	197,6	212,9	230,2
Cooling total input current	Α	129,0	146,0	160,0	184,0	209,0	229,0	254,0	293,0	337,0	356,0	381,0
EER	W/W	3,07	2,96	3,11	3,06	3,01	3,11	3,03	3,11	3,03	3,07	3,01
Water flow rate system side	I/h	38467	42143	48813	55779	63264	71985	79391	92073	103007	112479	118984
Pressure drop system side	kPa	70	85	99	111	116	92	88	107	125	115	105
Cooling performances with free-cooling glycol-free (2)												
Cooling capacity	kW	122,1	122,1	178,1	179,1	179,8	241,5	241,5	302,6	302,5	368,7	368,6
Input power	kW	9,9	9,9	14,4	14,4	14,5	19,3	19,3	24,5	24,4	32,3	32,3
Free cooling total input current	Α	18,0	17,0	25,0	25,0	25,0	33,0	32,0	42,0	42,0	54,0	54,0
EER	W/W	12,32	12,32	12,36	12,41	12,44	12,54	12,54	12,37	12,37	11,40	11,40
Water flow rate system side	l/h	38467	42143	48813	55779	63264	71985	79391	92073	103007	112479	118984
Pressure drop system side	kPa	70	85	99	111	116	92	88	107	125	115	105

NRG - E

MING-E												
Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Cooling performance chiller operation (1)												
Cooling capacity	kW	226,2	251,9	274,9	324,9	370,2	416,7	456,6	531,6	606,0	638,0	691,8
Input power	kW	72,4	82,1	92,0	106,0	123,9	136,5	153,7	175,2	197,7	215,9	227,8
Cooling total input current	Α	122,0	139,0	156,0	176,0	201,0	220,0	245,0	284,0	319,0	346,0	363,0
EER	W/W	3,12	3,07	2,99	3,06	2,99	3,05	2,97	3,03	3,07	2,95	3,04
Water flow rate system side	l/h	38872	43273	47230	55828	63599	71601	78444	91335	104110	109612	118851
Pressure drop system side	kPa	73	78	90	98	88	73	87	100	127	90	101
Cooling performances with free-cooling glycol-free (2)												
Cooling capacity	kW	146,6	146,6	146,6	194,7	194,8	246,0	246,0	301,6	343,8	345,9	393,2
Input power	kW	11,1	11,1	11,1	14,8	14,8	18,9	18,9	25,6	29,3	29,7	32,5
Free cooling total input current	Α	19,0	19,0	19,0	25,0	24,0	31,0	30,0	41,0	47,0	48,0	52,0
EER	W/W	13,20	13,20	13,20	13,18	13,18	13,00	13,00	11,79	11,73	11,64	12,12
Water flow rate system side	l/h	38872	43273	47230	55828	63599	71601	78444	91335	104110	109612	118851
Pressure drop system side	kPa	73	78	90	98	88	73	87	100	127	90	101

NRG - U

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Cooling performance chiller operation (1)												
Cooling capacity	kW	233,1	260,7	285,8	336,2	385,1	431,6	474,7	552,3	627,9	664,0	717,7
Input power	kW	72,7	81,3	90,2	105,2	121,2	135,0	151,0	173,5	195,9	212,0	225,5
Cooling total input current	Α	129,0	145,0	160,0	183,0	206,0	228,0	250,0	291,0	330,0	353,0	374,0
EER	W/W	3,21	3,20	3,17	3,19	3,18	3,20	3,14	3,18	3,21	3,13	3,18
Water flow rate system side	I/h	40049	44784	49102	57760	66170	74152	81560	94895	107889	114087	123303
Pressure drop system side	kPa	77	84	97	105	96	78	94	107	136	98	109
Cooling performances with free-cooling glycol-free (2)												
Cooling capacity	kW	178,1	178,1	178,1	235,6	235,8	301,9	301,8	364,5	420,7	427,1	481,5
Input power	kW	14,4	14,4	14,4	19,2	19,2	24,4	24,4	32,2	37,0	37,4	41,3
Free cooling total input current	Α	26,0	26,0	26,0	33,0	33,0	41,0	40,0	54,0	62,0	62,0	68,0
EER	W/W	12,36	12,36	12,36	12,28	12,29	12,36	12,36	11,33	11,37	11,41	11,67
Water flow rate system side	l/h	40049	44784	49102	57760	66170	74152	81560	94895	107889	114087	123303
Pressure drop system side	kPa	77	84	97	105	96	78	94	107	136	98	109

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

NRG - N

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Cooling performance chiller operation (1)												
Cooling capacity	kW	232,6	258,9	286,6	334,6	383,1	422,5	473,7	546,9	617,8	658,1	707,5
Input power	kW	71,7	81,1	90,4	104,8	120,5	134,5	150,6	174,0	195,5	210,5	225,7
Cooling total input current	Α	121,0	136,0	152,0	173,0	195,0	221,0	238,0	277,0	314,0	338,0	357,0
EER	W/W	3,24	3,19	3,17	3,19	3,18	3,14	3,14	3,14	3,16	3,13	3,14
Water flow rate system side	l/h	39959	44482	49239	57495	65813	72590	81381	93965	106146	113074	121557
Pressure drop system side	kPa	77	84	97	104	95	82	88	105	132	95	105
Cooling performances with free-cooling glycol-free (2)												
Cooling capacity	kW	193,3	193,3	193,3	241,1	241,3	245,3	301,4	343,8	390,1	393,2	439,7
Input power	kW	14,7	14,7	14,7	18,5	18,5	18,8	25,6	29,3	32,0	32,5	35,2
Free cooling total input current	Α	25,0	25,0	25,0	30,0	30,0	31,0	40,0	47,0	51,0	52,0	56,0
EER	W/W	13,14	13,14	13,14	13,03	13,03	13,03	11,80	11,73	12,18	12,12	12,51
Water flow rate system side	l/h	39959	44482	49239	57495	65813	72590	81381	93965	106146	113074	121557
Pressure drop system side	kPa	77	84	97	104	95	82	88	105	132	95	105

ENERGY INDICES (REG. 2016/2281 EU)

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Fans: J													
SEPR - (EN 14825: 2018) (1)													
	A	W/W	6,11	5,92	6,30	6,21	6,11	6,51	6,56	6,49	6,43	6,41	6,31
SEPR	E	W/W	6,39	6,28	6,20	6,22	6,10	6,56	6,54	6,35	6,30	6,31	6,44
SERK	N	W/W	6,64	6,46	6,47	6,44	6,34	6,77	6,72	6,56	6,44	6,54	6,61
	U	W/W	6,55	6,45	6,41	6,44	6,33	6,75	6,70	6,61	6,51	6,52	6,54
(1) Calculation performed with FIXED v	water flow rate.												
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Fans: M													
SEPR - (EN 14825: 2018) (1)								-					-
	A	W/W	5,90	5,74	6,12	6,07	5,96	6,48	6,48	6,41	6,34	6,27	6,18
CEDD	E	W/W	6,17	6,09	6,04	6,09	5,95	6,37	6,38	6,17	6,10	6,13	6,28
SEPR	N	W/W	6,42	6,27	6,31	6,30	6,19	6,58	6,55	6,38	6,24	6,36	6,45
	U	W/W	6,34	6,27	6,22	6,30	6,19	6,72	6,63	6,53	6,43	6,39	6,40

⁽¹⁾ Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Electric data													
	A	Α	158,2	176,5	200,6	228,5	256,4	290,1	317,9	369,5	415,3	449,0	476,9
Maximum current (FLA)	E,U	Α	164,0	182,3	200,6	234,3	262,2	295,9	323,7	375,3	426,9	454,8	488,5
	N	Α	169,8	188,1	206,4	240,1	268,0	295,9	329,5	381,1	432,7	460,6	494,3
	A	Α	361,6	417,7	436,0	685,0	718,7	746,6	774,4	826,1	871,9	899,7	933,4
Deals surrent (LDA)	E	Α	361,6	417,7	441,8	690,8	718,7	752,4	780,2	831,9	877,7	911,3	939,2
Peak current (LRA)	N	A	350,0	406,1	424,4	673,4	701,3	729,2	757,0	802,9	848,7	876,5	904,4
	U	Α	367,4	423,5	441,8	696,6	724,5	758,2	786,0	837,7	889,3	917,1	950,8

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

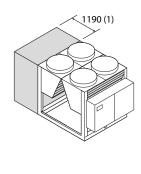
GENERAL TECHNICAL DATA

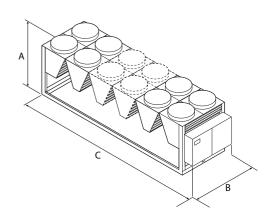
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Compressor													
Туре	A,E,N,U	type						Scroll					
Compressor regulation	A,E,N,U	Туре						Asynchronous					
Number	A,E,N,U	no.	4	4	4	4	4	4	4	5	6	6	6
Circuits	A,E,N,U	no.	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E,N,U	type						R32					
	Α	kg	11,3	10,9	11,0	15,0	15,8	18,0	21,0	20,6	24,0	24,4	26,3
Refrigerant load circuit 1 (1)	E,U	kg	15,4	15,0	16,1	19,5	19,9	24,0	23,3	25,9	28,1	33,8	30,8
	N	kg	16,0	16,0	17,3	24,2	26,3	26,3	30,8	30,0	37,5	34,1	34,1
	Α	kg	11,3	10,9	11,0	15,0	15,8	20,5	22,5	20,6	24,0	24,4	26,3
Refrigerant load circuit 2 (1)	E,U	kg	15,4	15,0	16,1	20,5	19,9	25,5	23,3	25,9	28,1	33,8	30,8
	N	kg	16,0	16,0	18,8	25,4	26,3	26,3	30,8	30,0	37,5	34,1	34,1
Potential global heating	A,E,N,U	GWP						675kgCO₂eq					
System side heat exchanger						-	-						-
Туре	A,E,N,U	type						Brazed plate					
Number	A,E,N,U	no.	1	1	1	1	1	1	1	1	1	1	1
Hydraulic connections without hydro	nic kit												
Connections (in/out)	A,E,N,U	Туре						Grooved joints	;				
Si (i (t)	A	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"	5"	5"
Sizes (in/out)	E,N,U	Ø	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"
Hydraulic connections with hydronic	kit												
Connections (in/out)	A,E,N,U	Туре						Grooved joints	;				
C:/:-/4\	A	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"	5"	5"
Sizes (in/out)	E,N,U	Ø	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

In the versions without a hydronic kit, the water filter is supplied with a connection point for making the connection. In the versions with a hydronic kit, it is supplied ready-mounted.

SOUND DATA


Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Fans: J, M		,											
Sound data calculated in cooling mode (1)												
	A	dB(A)	90,5	90,5	90,5	90,8	91,1	92,1	92,3	93,1	93,4	94,2	94,3
Cound a count level	E	dB(A)	84,4	84,5	84,5	85,8	86,5	87,6	88,1	88,6	89,0	89,7	90,2
Sound power level	N	dB(A)	85,3	85,4	85,4	86,9	87,6	88,1	89,0	89,4	89,8	90,5	91,0
	U	dB(A)	90,8	90,8	90,8	92,2	92,5	93,5	93,6	94,3	94,9	95,0	95,6
	Α	dB(A)	58,4	58,4	58,2	58,6	58,9	59,7	59,9	60,5	60,9	61,5	61,7
Cound avecause level (10 ms)	E	dB(A)	52,2	52,2	52,3	53,4	54,1	55,1	55,6	55,9	56,2	56,9	57,3
Sound pressure level (10 m)	N	dB(A)	52,9	53,0	53,0	54,4	55,0	55,6	56,3	56,6	56,9	57,6	58,0
	U	dB(A)	58.5	58.5	58.5	59.8	60.1	60.9	61.1	61.7	62.1	62.2	62.7


⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

FANS DATA

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Fans: J, M													
Fan													
Туре	A,E,N,U	type						Axial					
	A	no.	4	4	6	6	6	8	8	10	10	12	12
Number	E,U	no.	6	6	6	8	8	10	10	12	14	14	16
	N	no.	8	8	8	10	10	10	12	14	16	16	18
	A	m³/h	57976	57976	86965	86965	86965	115954	115953	144941	144941	173929	173929
A:- 0	E	m³/h	63933	63933	63933	85244	85244	106555	106555	127866	149177	149177	170487
Air flow rate	N	m³/h	85244	85244	85244	106555	106555	106555	127866	149177	170488	170488	191798
	U	m³/h	86963	86963	86963	115959	115959	144934	144934	173932	202921	202921	231902

DIMENSIONS

Key:

Additional module needed to contain the hydronic kit with "pumps" option in sizes: 0800 A- 0900 A

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Integrated hydronic ki	it: 00				1000	1100		1100		1000			
Dimensions and weights													
A	A,E,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	A	mm	2780	2780	3970	3970	3970	5160	5160	6350	6350	7540	7540
C	E,U	mm	3970	3970	3970	5160	5160	6350	6350	7540	8730	8730	9650
	N	mm	5160	5160	5160	6350	6350	6350	7540	8730	9650	9650	11110
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Integrated hydronic ki	t: DA, DB, DC, DI	D, DE, D	F, DG, DH	, DI, IA, II	B, IC, ID, I	E, IF, IG,	IH, II, JA,	JB, JC, JI), JE, JF, .	IG, JH, JI,	PA, PB, I	PC, PD, P	E, PF,
PG, PH, PI													
Dimensions and weights													
A	A,E,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	A	mm	3970	3970	3970	3970	3970	5160	5160	6350	6350	7540	7540
C	E,U	mm	3970	3970	3970	5160	5160	6350	6350	7540	8730	8730	9650
	N	mm	5160	5160	5160	6350	6350	6350	7540	8730	9650	9650	11110
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Integrated hydronic ki	it: 00												
Weights													
	A	kg	2690	2695	3250	3425	3570	4395	4605	5400	5620	6355	6445
Empty weight	E,U	kg	3250	3265	3275	4095	4340	5035	5180	5985	6760	6945	7660
	N	kg	3880	3900	3905	4655	4915	5045	5760	6595	7380	7565	8185
	A	kg	2895	2900	3460	3655	3805	4765	4990	5840	6070	6900	6995
Weight functioning	E,U	kg	3460	3475	3485	4385	4695	5445	5590	6480	7290	7530	8300
•	N	ka	4135	4160	4165	4975	5290	5430	6220	7125	7955	8200	8855

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRB 0800-2406 F

Air-water chiller with free-cooling

Cooling capacity 211 ÷ 680 kW

- Microchannel coil
- Night mode
- Operation up to 50 °C outdoor air
- · High efficiency also at partial loads

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

Outdoor units with scroll compressors, axial flow fans, micro-channel coil (source side), plate heat exchanger and thermostatic expansion valve (mechanical or electronic, depending on the model).

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to $50\,^{\circ}\text{C}$ external air temperature depending on size and version. For further details refer to the selection software/technical documentation.

Dual-circuit unit

Unit with 2 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode.

Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The compressors are completely shut down, if possible, leading to considerable electrical savings.

A "P" free-cooling plus model with the oversized water battery can be chosen for applications in which a higher free-cooling performance is required.

Electronic expansion valve

The units from size 1805 to 2406 have an electronic expansion valve as standard.

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Integrated hydronic kit

To obtain a solution that allows you to save money and to facilitate installation. These units can be configured with an integrated hydronic system. The kit contains the main hydraulic components, and is available in various configurations with a single pump or a standby pump too, so the customer can choose the right useful head.

CONTROL

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night mode: only in the non-silenced versions is it possible to set a silenced operating mode, which is useful for example at night for greater acoustic comfort but always guarantees performance even at peak load times.

CONFIGURATOR

Fiel	d	Description
1,2	_	NRB
		Size
4,5,	0,7	0800, 0900, 1000, 1100, 1200, 1400, 1600, 1805, 2006, 2206, 2406
8		Operating field
	Χ	Electronic thermostatic expansion valve (1)
	Υ	Low temperature mechanic thermostatic valve
	Z	Low temperature electronic thermostatic valve
	0	Standard mechanic thermostatic valve (2)
9		Model
	F	Free-cooling
	Р	Free-cooling plus (3)
10		Heat recovery
	D	With desuperheater (4)
	0	Without heat recovery
11		Version
	Α	High efficiency
	Е	Silenced high efficiency
	N	Silenced very high efficiency
	U	Very high efficiency
12		Coils / free-cooling coils
	T	Copper-aluminium / Copper-aluminium
	0	Painted alluminium microchannel / Copper painted aluminium
	R	Copper-copper/Copper-copper
	S	Copper-Tinned copper / Copper -Tinned copper
	V	Copper-painted alumimium / Copper-painted alumimium
	•	Alluminium microchannel / Copper - aluminium
13		Fans
	J	Inverter
	•	Standard
14		Power supply
•••	0	400 V/3/50 Hz with magnet circuit breakers
15,	16	Integrated hydronic kit
,		Without hydronic kit
	00	Without hydronic kit
	00	Kit with n° 1 pump
	PA	Pump A
	PB	Pump B
	PC	Pump C
	PD	Pump D
	PE	Pump E
	PF	<u> </u>
	71	Pump F

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FB1: Air filter to protect the micro-channel coils. Formed of a frame and a composite baffle in micro-expanded aluminium mesh, with particularly low pressure drops.

Field	Description
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J (5)
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump (5)
	Kit with storage tank and n° 1 pump
AA	Storage tank and pump A
AB	Storage tank and pump B
AC	Storage tank and pump C
AD	Storage tank and pump D
AE	Storage tank and pump E
AF	Storage tank and pump F
AG	Storage tank and pump G
AH	Storage tank and pump H
AI	Storage tank and pump l
AJ	Storage tank and pump J (5)
	Kit with storage tank and n° 1 pump + stand-by pump
BA	Storage tank with pump A + stand-by pump
BB	Storage tank with pump B + stand-by pump
BC	Storage tank with pump C + stand-by pump
BD	Storage tank with pump D + stand-by pump
BE	Storage tank with pump E + stand-by pump
BF	Storage tank with pump F + stand-by pump
BG	Storage tank with pump G + stand-by pump
BH	Storage tank with pump H + stand-by pump
BI	Storage tank with pump I + stand-by pump
BJ	Storage tank with pump J + stand-by pump (5)

- (1) Electronic thermostatic as standard from size 1805÷2406.
- (2) Water produced from 4 °C \div 18 °C (3) Free cooling Plus models "P" are compatible only with "°" and "0" coils.
- (4) The temperature of the water in the heat exchanger inlet must never drop below 35°C. (5) For all configurations including pump J please contact the factory.

FL: Flow switch.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP: Anti-intrusion grid kit

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
AER485P1	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•
AERBACP	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•
AERLINK	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•
AERNET	A,E,N,U	•		•	•	•	•	•	•	•	•	•
FB1	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•
FL	A,E,N,U	•	•	•	•	•	•		•	•	•	•
MULTICHILLER-EVO	A,E,N,U	•		•								•
PGD1	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•

Remote panel

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
PR4	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Antivibration

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Integrated hydronic kit: 00				1100	1200	1100	1000	1003			
A	AVX1066	AVX1066	AVX1068	AVX1068	AVX1068	AVX1068	AVX1072	AVX1072	AVX1074	AVX1074	AVX1052
E, U	AVX1070	AVX1070	AVX1070	AVX1072	AVX1072	AVX1072	AVX1074	AVX1052	AVX1052	AVX1054	AVX1054
N	AVX1072	AVX1072	AVX1072	AVX1074	AVX1074	AVX1074	AVX1052	AVX1054	AVX1054	AVX1057	AVX1057
Integrated hydronic kit: AA, AB, AC, AD	, AE, AF, AG, BA, B	B, BC, BD									
A	AVX1068	AVX1068	AVX1069	AVX1069	AVX1069	AVX1069	AVX1073	AVX1073	AVX1075	AVX1075	AVX1053
E, U	AVX1071	AVX1069	AVX1069	AVX1073	AVX1073	AVX1073	AVX1075	AVX1053	AVX1053	AVX1056	AVX1056
N	AVX1073	AVX1073	AVX1073	AVX1075	AVX1075	AVX1075	AVX1053	AVX1056	AVX1056	AVX1051	AVX1051
Integrated hydronic kit: AH, AI, BE, BF,	BG										
A	AVX1068	AVX1068	AVX1069	AVX1069	AVX1069	AVX1069	AVX1073	AVX1073	AVX1075	AVX1075	AVX1053
E, U	AVX1069	AVX1069	AVX1069	AVX1073	AVX1073	AVX1073	AVX1075	AVX1053	AVX1053	AVX1056	AVX1056
N	AVX1073	AVX1073	AVX1073	AVX1075	AVX1075	AVX1075	AVX1053	AVX1056	AVX1056	AVX1051	AVX1051
Integrated hydronic kit: BH, BI											
A	AVX1069	AVX1069	AVX1069	AVX1069	AVX1069	AVX1069	AVX1073	AVX1073	AVX1075	AVX1075	AVX1053
E, U	AVX1069	AVX1069	AVX1069	AVX1073	AVX1073	AVX1073	AVX1075	AVX1053	AVX1053	AVX1056	AVX1056
N	AVX1073	AVX1073	AVX1073	AVX1075	AVX1075	AVX1075	AVX1053	AVX1078	AVX1056	AVX1051	AVX1051
Integrated hydronic kit: DA, DB, DC, DD), PA, PB, PC, PD, F	PE, PF, PG									
A	AVX1066	AVX1066	AVX1068	AVX1068	AVX1068	AVX1068	AVX1072	AVX1072	AVX1074	AVX1074	AVX1052
E, U	AVX1068	AVX1068	AVX1068	AVX1072	AVX1072	AVX1072	AVX1074	AVX1052	AVX1052	AVX1054	AVX1054
N	AVX1072	AVX1072	AVX1072	AVX1074	AVX1074	AVX1074	AVX1052	AVX1054	AVX1054	AVX1050	AVX1050
Integrated hydronic kit: DE, DF, DG, PH	, PI										
A	AVX1066	AVX1066	AVX1068	AVX1068	AVX1068	AVX1068	AVX1072	AVX1072	AVX1074	AVX1074	AVX1052
E, U	AVX1068	AVX1068	AVX1068	AVX1072	AVX1072	AVX1072	AVX1076	AVX1052	AVX1052	AVX1054	AVX1054
N	AVX1072	AVX1072	AVX1072	AVX1074	AVX1074	AVX1074	AVX1052	AVX1055	AVX1054	AVX1050	AVX1050
Integrated hydronic kit: DH, DI											
A	AVX1067	AVX1067	AVX1068	AVX1068	AVX1068	AVX1068	AVX1072	AVX1072	AVX1079	AVX1076	AVX1052
E, U	AVX1068	AVX1068	AVX1068	AVX1072	AVX1072	AVX1072	AVX1076	AVX1052	AVX1052	AVX1055	AVX1055
N	AVX1072	AVX1072	AVX1072	AVX1076	AVX1076	AVX1076	AVX1052	AVX1077	AVX1055	AVX1050	AVX1050

Device for peak current reduction

Ver	0800	0900	1000	1100	1200	1400
A, E, N, U	DRENRB0800 (1)	DRENRB0900 (1)	DRENRB1000 (1)	DRENRB1100 (1)	DRENRB1200 (1)	DRENRB1400 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered.

A grey background indicates the accessory must be assembled in the factory

Ver	1600	1805	2006	2206	2406
A, E, N, U	DRENRB1600 (1)	DRENRB1805 (1)	DRENRB2006 (1)	DRENRB2206 (1)	DRENRB2406 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz, x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0800	0900	1000	1100	1200	1400
A	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1100	RIFNRB1200	RIFNRB1400
E, U	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1101	RIFNRB1201	RIFNRB1401
N	RIFNRB0801	RIFNRB0901	RIFNRB1001	RIFNRB1101	RIFNRB1201	RIFNRB1401

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Ver	1600	1805	2006	2206	2406
A	RIFNRB1601	RIFNRB1805	RIFNRB2006	RIFNRB2206	RIFNRB2416
E, N, U	RIFNRB1601	RIFNRB1815	RIFNRB2016	RIFNRB2216	RIFNRB2416

A grey background indicates the accessory must be assembled in the factory

Double safety valves

Ver	0800	0900	1000	1100	1200	1400
A	T6NRB13	T6NRB13	T6NRB14	T6NRB14	T6NRB15	T6NRB15
E, N, U	T6NRB14	T6NRB14	T6NRB14	T6NRB14	T6NRB15	T6NRB15

A grey background indicates the accessory must be assembled in the factory

Ver	1600	1805	2006	2206	2406
A	T6NRB15	T6NRB15	T6NRB15	T6NRB15	T6NRB16
E, U	T6NRB15	T6NRB17	T6NRB16	T6NRB19	T6NRB19
N	T6NRB18	T6NRB19	T6NRB19	T6NRB20	T6NRB20

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
A	GP2VN	GP2VN	GP3VNF	GP3VNF	GP3VNF	GP3VNF	GP4VN	GP4G	GP5G	GP5G	GP6V
E, U	GP3VNF	GP3VNF	GP3VNF	GP4VN	GP4VN	GP4VN	GP5VN	GP6V	GP6V	GP7V	GP7V
N	GP4VN	GP4VN	GP4VN	GP5VN	GP5VN	GP5VN	GP6V	GP7V	GP7V	GP8V	GP8V

A grey background indicates the accessory must be assembled in the factory

Units 0800A and 0900A with the optional "storage tank" are 3970 mm long and must have the GP2VNA grids installed.

PERFORMANCE SPECIFICATIONS

NRB - A

IIID A												
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: F												
Cooling performance chiller operation (1)												
Cooling capacity	kW	211,8	234,3	273,4	307,1	335,9	373,3	432,0	474,2	542,2	584,4	655,6
Input power	kW	76,0	88,0	93,9	108,9	124,8	145,6	157,1	185,1	201,0	229,4	243,7
Cooling total input current	A	133,7	152,1	165,5	189,4	215,1	248,2	269,7	316,3	347,4	394,4	423,3
EER	W/W	2,79	2,66	2,91	2,82	2,69	2,56	2,75	2,56	2,70	2,55	2,69
Water flow rate system side	l/h	36397	40249	46968	52762	57713	64138	74217	81471	93153	100403	112635
Pressure drop system side	kPa	49	50	68	76	91	99	64	68	88	96	122
Cooling performances with free-cooling (2)												
Cooling capacity	kW	139,8	142,0	203,2	208,4	211,6	214,7	280,5	284,4	350,8	354,8	421,5
Input power	kW	7,5	7,5	11,2	11,2	11,2	11,2	15,0	15,0	18,7	18,7	22,5
Free cooling total input current	A	13,2	13,0	19,8	19,6	19,4	19,2	25,7	25,6	32,4	32,2	39,1
EER	W/W	18,64	18,94	18,07	18,53	18,81	19,09	18,71	18,97	18,72	18,93	18,74
Water flow rate system side	l/h	36397	40249	46968	52762	57713	64138	74217	81471	93153	100403	112635
Pressure drop system side	kPa	88	97	101	117	139	158	112	125	144	161	188

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C / * °C; Aria esterna 2 °C

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: P												
Cooling performance chiller operation (1)												
Cooling capacity	kW	210,3	232,4	271,9	305,1	333,3	369,6	428,9	469,8	538,2	579,2	650,8
Input power	kW	76,8	89,2	94,8	110,0	126,2	147,6	158,7	187,5	203,2	232,3	246,6
Cooling total input current	A	134,8	153,7	166,7	190,9	217,2	251,0	272,1	319,8	350,6	398,7	427,3
EER	W/W	2,74	2,61	2,87	2,77	2,64	2,50	2,70	2,51	2,65	2,49	2,64
Water flow rate system side	l/h	36136	39921	46723	52411	57266	63506	73697	80717	92472	99510	111819
Pressure drop system side	kPa	48	49	67	75	89	97	63	66	87	95	120
Cooling performances with free-cooling (2)												
Cooling capacity	kW	149,8	152,0	217,8	223,3	226,6	229,5	300,5	304,3	375,9	379,8	451,6
Input power	kW	7,6	7,6	11,4	11,4	11,4	11,4	15,2	15,2	19,0	19,0	22,8
Free cooling total input current	A	13,4	13,1	20,1	19,8	19,7	19,4	26,1	26,0	32,8	32,7	39,6
EER	W/W	19,66	19,95	19,06	19,55	19,83	20,09	19,73	19,98	19,74	19,94	19,76
Water flow rate system side	l/h	36136	39921	46723	52411	57266	63506	73697	80717	92472	99510	111819
Pressure drop system side	kPa	86	95	100	116	137	155	110	123	142	158	185

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C /* °C; Aria esterna 2 °C

NRB - E

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: F												
Cooling performance chiller operation (1)												
Cooling capacity	kW	220,6	242,6	265,3	310,3	344,7	379,2	438,5	498,2	546,9	610,1	652,9
Input power	kW	73,4	84,2	95,7	106,6	122,4	142,0	155,3	174,8	199,2	219,5	244,7
Cooling total input current	A	125,5	142,4	160,1	179,2	204,6	235,8	257,7	291,8	333,0	368,2	410,5
EER	W/W	3,00	2,88	2,77	2,91	2,82	2,67	2,82	2,85	2,75	2,78	2,67
Water flow rate system side	I/h	37902	41688	45573	53310	59226	65155	75344	85588	93960	104827	112169
Pressure drop system side	kPa	44	53	57	82	90	109	58	75	85	89	102
Cooling performances with free-cooling (2)												
Cooling capacity	kW	164,6	168,5	171,5	222,5	227,6	231,2	285,4	338,9	344,8	399,2	403,7
Input power	kW	7,9	7,9	7,9	10,5	10,5	10,5	13,1	15,8	15,8	18,4	18,4
Free cooling total input current	A	13,5	13,3	13,2	17,6	17,6	17,4	21,8	26,3	26,3	30,8	30,8
EER	W/W	20,90	21,39	21,78	21,18	21,67	22,02	21,74	21,51	21,89	21,72	21,97
Water flow rate system side	l/h	37902	41688	45573	53310	59226	65155	75344	85588	93960	104827	112169
Pressure drop system side	kPa	67	80	88	120	136	165	95	114	132	139	159

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C/* °C; Aria esterna 2 °C

Size	'	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: P	'											
Cooling performance chiller operation (1)												
Cooling capacity	kW	219,4	241,1	263,2	308,4	342,1	375,8	435,2	494,7	542,4	605,4	647,1
Input power	kW	74,1	85,1	96,8	107,7	123,7	143,8	157,0	176,7	201,6	222,1	247,8
Cooling total input current	A	126,4	143,5	161,5	180,6	206,5	238,4	260,0	294,4	336,3	371,8	415,0
EER	W/W	2,96	2,83	2,72	2,86	2,76	2,61	2,77	2,80	2,69	2,73	2,61
Water flow rate system side	l/h	37695	41419	45215	52979	58785	64562	74775	84990	93195	104013	111187
Pressure drop system side	kPa	44	53	56	81	89	107	57	74	84	88	100
Cooling performances with free-cooling (2)												
Cooling capacity	kW	175,0	179,4	182,7	236,7	242,4	246,2	304,0	360,9	367,2	425,1	429,9
Input power	kW	8,0	8,0	8,0	10,7	10,7	10,7	13,3	16,0	16,0	18,6	18,6
Free cooling total input current	A	13,6	13,5	13,3	17,9	17,8	17,7	22,1	26,6	26,7	31,2	31,2
EER	W/W	21,90	22,45	22,86	22,22	22,76	23,11	22,83	22,58	22,98	22,80	23,06
Water flow rate system side	l/h	37695	41419	45215	52979	58785	64562	74775	84990	93195	104013	111187
Pressure drop system side	kPa	66	79	87	118	134	162	94	113	130	137	156

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C /* °C; Aria esterna 2 °C

NRB - L	Į
---------	---

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: F												
Cooling performance chiller operation (1)												
Cooling capacity	kW	227,3	250,9	275,8	320,4	357,9	396,3	455,4	515,9	569,2	633,7	680,9
Input power	kW	73,7	83,6	94,1	106,4	120,6	138,5	153,5	173,2	195,2	215,9	238,4
Cooling total input current	A	133,2	149,2	165,7	188,7	211,5	240,0	266,7	303,5	341,3	379,5	417,9
EER	W/W	3,08	3,00	2,93	3,01	2,97	2,86	2,97	2,98	2,92	2,94	2,86
Water flow rate system side	I/h	39046	43104	47382	55045	61497	68087	78245	88642	97793	108881	116982
Pressure drop system side	kPa	47	57	61	88	97	120	62	81	92	96	111
Cooling performances with free-cooling (2)												
Cooling capacity	kW	192,7	198,6	203,6	261,5	269,7	276,0	338,6	400,3	410,2	473,3	481,2
Input power	kW	11,2	11,2	11,2	15,0	15,0	15,0	18,7	22,5	22,5	26,2	26,2
Free cooling total input current	A	20,3	20,1	19,8	26,6	26,3	26,0	32,6	39,4	39,3	46,1	46,0
EER	W/W	17,13	17,66	18,11	17,44	17,99	18,41	18,07	17,80	18,24	18,04	18,34
Water flow rate system side	l/h	39046	43104	47382	55045	61497	68087	78245	88642	97793	108881	116982
Pressure drop system side	kPa	71	86	95	128	147	179	103	122	143	150	173

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C / * °C; Aria esterna 2 °C

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: P	'											
Cooling performance chiller operation (1)	,							-		-	-	
Cooling capacity	kW	226,2	249,6	274,2	318,8	356,0	393,8	452,9	513,3	565,9	630,2	676,8
Input power	kW	74,4	84,4	95,0	107,4	121,8	139,9	154,8	174,8	197,2	218,0	240,9
Cooling total input current	A	134,1	150,2	166,9	189,9	213,2	242,0	268,6	305,7	344,0	382,4	421,4
EER	W/W	3,04	2,96	2,89	2,97	2,92	2,82	2,93	2,94	2,87	2,89	2,81
Water flow rate system side	I/h	38871	42893	47115	54781	61158	67658	77819	88186	97229	108280	116278
Pressure drop system side	kPa	46	57	60	87	96	118	62	80	91	95	110
Cooling performances with free-cooling (2)												
Cooling capacity	kW	205,9	212,7	218,2	279,8	289,0	295,9	362,9	428,9	439,8	507,3	515,9
Input power	kW	11,4	11,4	11,4	15,2	15,2	15,2	19,0	22,8	22,8	26,7	26,7
Free cooling total input current	A	20,6	20,3	20,1	26,9	26,7	26,4	33,0	40,0	39,9	46,8	46,6
EER	W/W	18,02	18,62	19,10	18,37	18,97	19,42	19,06	18,77	19,25	19,03	19,35
Water flow rate system side	I/h	38871	42893	47115	54781	61158	67658	77819	88186	97229	108280	116278
Pressure drop system side	kPa	70	85	94	126	145	177	102	121	141	148	171

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C /* °C; Aria esterna 2 °C

NRB - N

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: F												
Cooling performance chiller operation (1)												
Cooling capacity	kW	228,3	252,4	278,0	320,3	358,3	397,2	454,4	510,9	563,3	628,5	675,3
Input power	kW	72,5	82,2	92,3	104,6	118,7	136,3	151,0	171,5	194,0	213,5	236,4
Cooling total input current	A	124,4	140,1	156,3	176,6	199,3	227,4	251,4	286,8	325,4	359,5	398,6
EER	W/W	3,15	3,07	3,01	3,06	3,02	2,91	3,01	2,98	2,90	2,94	2,86
Water flow rate system side	I/h	39222	43370	47761	55033	61559	68239	78074	87785	96785	107983	116017
Pressure drop system side	kPa	50	61	66	88	98	120	63	79	90	94	109
Cooling performances with free-cooling (2)												
Cooling capacity	kW	202,3	209,6	216,0	263,3	272,4	279,7	331,7	383,3	392,7	446,3	453,4
Input power	kW	10,5	10,5	10,5	13,1	13,1	13,1	15,8	18,4	18,4	21,0	21,0
Free cooling total input current	A	18,0	17,9	17,8	22,2	22,0	21,9	26,2	30,7	30,8	35,4	35,4
EER	W/W	19,26	19,96	20,57	20,06	20,75	21,30	21,06	20,85	21,37	21,25	21,59
Water flow rate system side	l/h	39222	43370	47761	55033	61559	68239	78074	87785	96785	107983	116017
Pressure drop system side	kPa	71	86	96	121	139	171	95	115	133	143	164

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C / * °C; Aria esterna 2 °C

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: P												
Cooling performance chiller operation (1)												
Cooling capacity	kW	227,4	251,4	276,7	318,8	356,3	394,6	451,9	508,1	559,8	624,6	670,7
Input power	kW	73,1	82,8	93,1	105,5	119,8	137,7	152,4	173,0	195,9	215,7	239,0
Cooling total input current	A	125,1	140,9	157,2	177,7	200,7	229,3	253,2	289,0	328,0	362,5	402,2
EER	W/W	3,11	3,03	2,97	3,02	2,98	2,87	2,97	2,94	2,86	2,90	2,81
Water flow rate system side	I/h	39073	43187	47536	54768	61222	67801	77644	87290	96173	107317	115226
Pressure drop system side	kPa	50	60	65	87	97	119	62	78	89	93	108
Cooling performances with free-cooling (2)												
Cooling capacity	kW	213,1	221,8	229,3	278,7	289,4	297,7	352,9	407,4	418,1	475,0	482,9
Input power	kW	10,7	10,7	10,7	13,3	13,3	13,3	16,0	18,6	18,6	21,3	21,3
Free cooling total input current	A	18,2	18,1	18,0	22,4	22,3	22,2	26,6	31,1	31,2	35,8	35,8
EER	W/W	20,00	20,82	21,53	20,93	21,73	22,36	22,08	21,85	22,43	22,30	22,66
Water flow rate system side	l/h	39073	43187	47536	54768	61222	67801	77644	87290	96173	107317	115226
Pressure drop system side	kPa	70	86	96	120	138	169	94	114	132	141	162

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C/* °C; Aria esterna 2 °C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: F													
SEPR - (EN14825: 2018) High tempera	ture with standa	ord fans (1)											
	A	W/W	6,24	5,77	6,03	6,11	5,82	5,27	6,09	5,55	5,79	5,55	5,70
SEPR	E	W/W	6,98	6,31	6,11	6,34	6,16	5,51	6,28	6,19	5,81	5,90	5,73
SEPR	N	W/W	7,33	7,13	6,84	6,84	6,70	6,12	6,70	6,57	6,21	6,29	6,07
	U	W/W	7,10	6,80	6,54	6,66	6,52	5,99	6,66	6,57	6,30	6,31	6,16
SEPR - (EN14825: 2018) High tempera	ture with invert	er fans (1)											
	A	W/W	6,24	5,77	6,03	6,11	5,82	5,27	6,09	5,55	5,79	5,55	5,70
SEPR	E	W/W	6,98	6,31	6,11	6,34	6,16	5,51	6,28	6,19	5,81	5,90	5,73
SEPK	N	W/W	7,33	7,13	6,84	6,84	6,70	6,12	6,70	6,57	6,21	6,29	6,07
	U	W/W	7,10	6,80	6,54	6,66	6,52	5,99	6,66	6,57	6,30	6,31	6,16
(1) Calculation performed with FIXED wa	ter flow rate.												
Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: P													
SEPR - (EN14825: 2018) High tempera	ture with standa	ard fans (1)											
	A	W/W	6,09	5,62	5,91	5,97	5,68	5,13	5,95	5,51	5,65	5,51	5,57
CEDD	E	W/W	6,82	6,16	5,95	6,20	6,01	5,37	6,13	6,04	5,66	5,76	5,59
SEPR	N	W/W	7,22	6,98	6,71	6,69	6,54	5,98	6,55	6,42	6,07	6,14	5,92
	U	W/W	6,98	6,64	6,39	6,51	6,39	5,86	6,51	6,42	6,16	6,17	6,03
SEPR - (EN14825: 2018) High tempera	ture with invert	er fans (1)						-					-
	A	W/W	6,09	5,62	5,91	5,97	5,68	5,13	5,95	5,51	5,65	5,51	5,57
CLUD	E	W/W	6,82	6,16	5,95	6,20	6,01	5,37	6,13	6,04	5,66	5,76	5,59
SEPR	N	W/W	7,22	6,98	6,71	6,69	6,54	5,98	6,55	6,42	6,07	6,14	5,92
	U	W/W	6,98	6.64	6.39	6,51	6,39	5.86	6.51	6,42	6.16	6.17	6,03

⁽¹⁾ Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Electric data													
	Α	Α	190,4	206,8	242,5	271,9	301,2	330,2	378,6	423,4	487,6	516,6	570,9
Maximum current (FLA)	E,U	Α	209,8	226,2	242,5	291,3	320,6	349,6	398,0	468,1	512,9	561,3	590,3
	N	Α	229,2	245,6	261,9	310,7	340,0	369,0	423,3	487,5	532,3	580,7	609,7
	A	A	379,0	434,2	469,9	522,6	551,9	664,4	712,8	757,6	821,8	850,8	905,1
Peak current (LRA)	E,U	А	398,4	453,6	469,9	542,0	571,3	683,8	732,2	802,3	847,1	895,5	924,5
	N	A	417,8	473,0	489,3	561,4	590,7	703,2	757,5	821,7	866,5	914,9	943,9

GENERAL TECHNICAL DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Compressor													
Туре	A,E,N,U	type						Scroll					
Compressor regulation	A,E,N,U	Туре						0n-0ff					
Number	A,E,N,U	no.	4	4	4	4	4	4	4	5	6	6	6
Circuits	A,E,N,U	no.	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E,N,U	type						R410A					
_	Α	kg	14,5	15,0	20,0	22,0	21,5	21,5	25,0	25,0	31,0	31,0	44,0
Refrigerant load circuit 1 (1)	E,U	kg	20,5	20,0	21,5	26,0	26,0	26,0	30,0	36,0	36,0	56,5	56,0
	N	kg	26,0	26,5	26,5	29,0	28,0	35,0	42,0	44,0	43,0	62,0	62,0
	Α	kg	14,5	15,0	20,0	22,0	23,5	21,5	27,0	30,0	38,0	34,0	44,0
Refrigerant load circuit 2 (1)	E,U	kg	20,5	20,0	21,5	27,0	27,0	27,0	32,0	39,0	40,0	56,5	56,0
_	N	kg	26,0	26,5	26,5	30,0	31,0	35,0	42,0	47,0	47,0	62,0	62,0
Potential global heating	A,E,N,U	GWP						2088kgCO₂eq					
System side heat exchanger			-								-		
Туре	A,E,N,U	type						Brazed plate					
Number	A,E,N,U	no.	1	1	1	1	1	1	1	1	1	1	1
Hydraulic connections													
Connections (in/out)	A,E,N,U	Туре						Grooved joints					
Hydraulic connections without hydronic ki	it		-				-						
Sizes (in/out)	A,E,N,U	Ø	3"	3"	3"	3"	3"	3″	4"	4"	4"	4"	4"
Hydraulic connections with hydronic kit													
Sizes (in/out)	A,E,N,U	Ø	3"	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

In the versions without a hydronic kit, the water filter is supplied with a connection point for making the connection. In the versions with a hydronic kit, it is supplied ready-mounted.

SOUND DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Sound data calculated in cooling mode (1)													
	Α	dB(A)	88,0	88,1	90,3	90,2	90,2	90,2	91,7	92,2	93,9	94,4	95,8
Cound nouser lovel	E	dB(A)	85,0	85,1	85,1	86,5	86,5	86,5	87,7	89,2	89,7	91,0	91,5
Sound power level	N	dB(A)	86,5	86,6	86,6	87,7	87,7	87,7	88,7	90,0	90,5	91,7	92,2
	U	dB(A)	90,2	90,3	90,3	91,7	91,7	91,7	92,9	94,4	94,9	96,2	96,7
	Α	dB(A)	55,9	56,0	58,0	57,9	57,9	57,9	59,3	59,8	61,3	61,8	63,2
Cound massage lovel (10 ms)	E	dB(A)	52,7	52,8	52,8	54,2	54,2	54,2	55,2	56,5	57,0	58,2	58,7
Sound pressure level (10 m)	N	dB(A)	54,2	54,3	54,3	55,2	55,2	55,2	56,0	57,2	57,7	58,8	59,3
	U	dB(A)	57,9	58,0	58,0	59,3	59,3	59,3	60,4	61,7	62,2	63,4	63,9

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

FANS DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: F													
Fan													
Туре	A,E,N,U	type						axials					
	A	no.	4	4	6	6	6	6	8	8	10	10	12
Number	E,U	no.	6	6	6	8	8	8	10	12	12	14	14
	N	no.	8	8	8	10	10	10	12	14	14	16	16
	A	m³/h	57600	57600	86400	86400	86400	86400	115200	115200	144000	144000	172800
A:	E	m³/h	64800	64800	64800	86400	86400	86400	108000	129600	129600	151200	151200
Air flow rate	N	m³/h	86400	86400	86400	108000	108000	108000	129600	151200	151200	172800	172800
	U	m³/h	86400	86400	86400	115200	115200	115200	144000	172800	172800	201600	201600
Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: P													
Fan													
Туре	A,E,N,U	type						axials					

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
	A	no.	4	4	6	6	6	6	8	8	10	10	12
Number	E,U	no.	6	6	6	8	8	8	10	12	12	14	14
	N	no.	8	8	8	10	10	10	12	14	14	16	16
	A	m³/h	54800	54800	82200	82200	82200	82200	109600	109600	137000	137000	164400
A: A	E	m³/h	61800	61800	61800	82400	82400	82400	103000	123600	123600	144200	144200
Air flow rate	N	m³/h	82400	82400	82400	103000	103000	103000	123600	144200	144200	164800	164800
	U	m³/h	82200	82200	82200	109600	109600	109600	137000	164400	164400	191800	191800

DIMENSIONS

NRB 0800-0900 A (1) NRB 1000-1400 A NRB 0800-1000 E-U NRR 0800-0900 A NRB 1600 A NRB 2406 A NRB 1100-2406 E-U NRB 0800-2406 N NRB 1805-2206 A

 $(1) Additional \ module \ needed \ to \ contain \ the \ hydronic \ kit \ with \ "accumulation" \ option \ in \ sizes:$ NRB 0800A, 0900A

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Dimensions and weights													
A	A,E,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	Α	mm	2780	2780	3970	3970	3970	3970	4760	5160	6350	6350	7140
(E,U	mm	3970	3970	3970	4760	4760	4760	5950	7140	7140	8330	8330
	N	mm	4760	4760	4760	5950	5950	5950	7140	8330	8330	9520	9520

■ Units 0800A and 0900A with the optional "storage tank" are 3970 mm long.

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Integrated hydronic kit: 00													
Free-cooling													
	Α	kg	2570	2620	3260	3330	3370	3420	4080	4290	5020	5100	5670
Empty weight	E,U	kg	3080	3130	3290	3990	4060	4080	4660	5350	5570	6330	6390
	N	kg	3760	3800	3960	4530	4610	4630	5160	5940	6160	6870	6930
Free-cooling plus													
	Α	kg	2630	2680	3350	3420	3460	3510	4200	4410	5170	5250	5850
Empty weight	E,U	kg	3170	3220	3380	4110	4180	4200	4810	5530	5750	6540	6600
_	N	kg	3880	3920	4080	4680	4760	4780	5340	6150	6370	7110	7170

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRB 0800-2406 B

Air-cooled chiller with free cooling (glycol-free)

Cooling capacity 211 ÷ 680 kW

- Microchannel coil
- Night mode
- Operation up to 50 °C outdoor air
- · High efficiency also at partial loads

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

Outdoor units with scroll compressors, axial flow fans, micro-channel coil (source side), plate heat exchanger and thermostatic expansion valve (mechanical or electronic, depending on the model).

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to $50\,^{\circ}\text{C}$ external air temperature depending on the size and vesion. For more information refer to the dedicated documentations or the selection program Magellano.

Dual-circuit unit

Unit with 2 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode.

Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The compressors are completely shut down, if possible, leading to considerable electrical savings.

If a higher output is needed in free cooling, there is also the "G" free cooling plus model with boosted water coil.

Free cooling with glycol water

Intermediate plate heat exchanger that creates two circuits:

- 1. Glycol hydraulic circuit (glycol is added to protect the coil from freezing).
- **2.** Primary hydraulic circuit for glycol-free systems.

Electronic expansion valve

The units from size 1805 to 2406 have an electronic expansion valve as standard.

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Integrated hydronic kit

To obtain a solution that allows you to save money and to facilitate installation. These units can be configured with an integrated hydronic system. The kit contains the main hydraulic components, and is available in various configurations with a single pump or a standby pump too, so the customer can choose the right useful head.

CONTROL

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night mode: only in the non-silenced versions is it possible to set a silenced operating mode, which is useful for example at night for greater acoustic comfort but always guarantees performance even at peak load times.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS platforms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FB1: Air filter to protect the micro-channel coils. Formed of a frame and a composite baffle in micro-expanded aluminium mesh, with particularly low pressure drops.

FL: Flow switch.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
AER485P1	A,E	•	•	•	•	•	•					
AEK48371	N,U	•	•	•	•	•	•	•	•	•	•	•
AERBACP	A,E	•	•	•	•	•	•					
AENDACP	N,U	•						•	•	•	•	•
AFDLINIV	A,E	•	•	•	•	•	•					
AERLINK	N,U	•			•			•	•	•	•	•
AFDNIFT	A,E	•	•	•	•	•	•					
AERNET	N,U	•	•	•	•	•	•	•	•	•	•	•
FD1	A,E	•	•	•	•	•	•					-
FB1	N,U	•	•	•	•	•	•	•	•	•	•	•
п	A,E	•	•	•	•	•	•					
FL	N,U	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	A,E	•	•	•	•	•	•					
MINITICUITTEL-EAN	N,U	•	•	•	•	•	•			•	•	•
DCD1	A,E	•	•	•	•	•	•					
PGD1	N,U	•		•	•	•	•	•	•	•		•

Remote panel

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
DD4	A,E	•	•	•	•	•	•					
PR4	N,U	•	•		•	•		•	•	•		

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

Antivibration

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Integrated hydronic kit: 00, DA, DB,	DC, DE, DF, DG, DH, D	I, DJ, PA, PB, P	C, PD, PE, PF, PG	, PH, PI, PJ							
A, E	AVX. (1)	AVX. (1)	AVX. (1)	AVX. (1)	AVX. (1)	AVX. (1)	-	-	-	-	-
N, U	AVX. (1)	AVX. (1)	AVX. (1)	AVX. (1)	AVX. (1)	AVX. (1)	AVX. (1)	AVX. (1)	AVX. (1)	AVX. (1)	AVX. (1)

(1) Contact us.

Device for peak current reduction

Ver	0800	0900	1000	1100	1200	1400
A, E, N, U	DRENRB0800 (1)	DRENRB0900 (1)	DRENRB1000 (1)	DRENRB1100 (1)	DRENRB1200 (1)	DRENRB1400 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Ver	1600	1805	2006	2206	2406
N, U	DRENRB1600 (1)	DRENRB1805 (1)	DRENRB2006 (1)	DRENRB2206 (1)	DRENRB2406 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0800	0900	1000	1100	1200	1400
A	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1100	RIFNRB1200	RIFNRB1400
E, U	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1101	RIFNRB1201	RIFNRB1401
N	RIFNRB0801	RIFNRB0901	RIFNRB1001	RIFNRB1101	RIFNRB1201	RIFNRB1401

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Ver	1600	1805	2006	2206	2406
N, U	RIFNRB1601	RIFNRB1815	RIFNRB2016	RIFNRB2216	RIFNRB2416

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
A	GP2VN	GP2VN	GP3VNF	GP3VNF	GP3VNF	GP3VNF	-	-	-	-	-
E	GP3VNF	GP3VNF	GP3VNF	GP4VN	GP4VN	GP4VN	-	-	-	-	-
N	GP4VN	GP4VN	GP4VN	GP5VN	GP5VN	GP5VN	GP6V	GP7V	GP7V	GP8V	GP8V
U	GP3VNF	GP3VNF	GP3VNF	GP4VN	GP4VN	GP4VN	GP5VN	GP6V	GP6V	GP7V	GP7V

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

CONFIGURATOR

CONFIGUR	
Field	Description
1,2,3	NRB
4,5,6,7	Size 0800, 0900, 1000, 1100, 1200, 1400, 1600, 1805, 2006, 2206, 2406
8	Operating field
X	Electronic thermostatic expansion valve
Y	Low temperature mechanic thermostatic valve
Z	Low temperature electronic thermostatic valve
	Standard mechanic thermostatic valve
9	Model
В	Free-cooling glycol free
G	Free-cooling glycol free plus (1)
10	Heat recovery
D	With desuperheater (2)
•	Without heat recovery
11	Version
A	High efficiency
E	Silenced high efficiency
N	Silenced very high efficiency
U	Very high efficiency
12	Coils / free-cooling coils
I	Copper-aluminium / Copper-aluminium
0	Painted alluminium microchannel / Copper painted aluminium
R	Copper-copper/Copper-copper
S	Copper-Tinned copper / Copper -Tinned copper
V	Copper-painted alumimium / Copper-painted alumimium
•	Alluminium microchannel / Copper - aluminium
13	Fans
J	Inverter
0	Standard
14	Power supply
•	400V~3 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit
00	Without hydronic kit
PA	Pump A
PB	Pump B
PC	Pump C
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J (3)
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump (3)

⁽¹⁾ The Free cooling Plus "G" models are only compatible with "°" and "O" coils.
(2) The temperature of the water in the heat exchanger inlet must never drop below 35°C.
(3) For all configurations including pump J please contact the factory.

PERFORMANCE SPECIFICATIONS

NRB - A

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: B												
Cooling performance chiller operation (1)												
Cooling capacity	kW	211,8	234,3	273,4	307,1	335,9	373,3	-	-	-	-	-
Input power	kW	76,0	88,0	93,9	108,9	124,8	145,6	-	-	-	-	-
Cooling total input current	Α	133,7	152,1	165,5	189,4	215,1	248,2	-	-	-	-	-
EER	W/W	2,79	2,66	2,91	2,82	2,69	2,56	-	-	-	-	-
Water flow rate system side	l/h	36397	40249	46968	52762	57713	64138	-	-	-	-	-
Pressure drop system side	kPa	53	58	66	74	88	100	-	-	-	-	-
Cooling performances with free-cooling glycol-free (2)											
Cooling capacity	kW	116,3	118,3	160,6	167,3	170,9	175,9	-	-	-	-	-
Input power	kW	9,8	9,8	14,3	14,3	14,4	14,4	-	-	-	-	-
Free cooling total input current	A	17,3	17,0	25,3	25,0	24,8	24,5	-	-	-	-	-
EER	W/W	11,84	12,04	11,21	11,66	11,89	12,22	-	-	-	-	-

(1) System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: G												
Cooling performance chiller operation (1)												
Cooling capacity	kW	210,3	232,4	271,9	305,1	333,3	369,6	-	-	-	-	-
Input power	kW	76,8	89,2	94,8	110,0	126,2	147,6	-	-	-	-	-
Cooling total input current	Α	134,8	153,7	166,7	190,9	217,2	251,0	-	-	-	-	-
EER	W/W	2,74	2,61	2,87	2,77	2,64	2,50	-	-	-	-	-
Water flow rate system side	l/h	36136	39921	46723	52411	57266	63506	-	-	-	-	-
Pressure drop system side	kPa	53	57	65	73	87	98	-	-	-	-	-
Cooling performances with free-cooling glycol-free (2)												
Cooling capacity	kW	121,7	123,8	166,9	174,2	178,1	183,6	-	-	-	-	-
Input power	kW	9,9	9,9	14,5	14,5	14,6	14,6	-	-	-	-	-
Free cooling total input current	Α	17,4	17,1	25,5	25,2	25,0	24,8	-	-	-	-	-
EER	W/W	12,24	12,45	11,51	11,99	12,24	12,60	-	-	-	-	-

(1) System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

NRB - E

1110 =												
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: B												
Cooling performance chiller operation (1)												
Cooling capacity	kW	220,6	242,6	265,3	310,3	344,7	379,2	-	-	-	-	-
Input power	kW	73,4	84,2	95,7	106,6	122,4	142,0	-	-	-	-	-
Cooling total input current	A	125,5	142,4	160,1	179,2	204,6	235,8	-	-	-	-	-
EER	W/W	3,00	2,88	2,77	2,91	2,82	2,67	-	-	-	-	-
Water flow rate system side	I/h	37902	41688	45573	53310	59226	65155	-	-	-	-	-
Pressure drop system side	kPa	48	53	61	68	84	102	-	-	-	-	-
Cooling performances with free-cooling glycol-fi	ree (2)											
Cooling capacity	kW	134,9	137,3	139,4	182,1	186,7	189,4	-	-	-	-	-
Input power	kW	11,0	11,0	11,0	14,6	14,6	14,6	-	-	-	-	-
Free cooling total input current	A	18,7	18,5	18,3	24,5	24,4	24,3	-	-	-	-	-
EER	W/W	12,31	12,53	12,72	12,50	12,78	12,97	-	-	-	-	-

(1) System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: G												
Cooling performance chiller operation (1)												
Cooling capacity	kW	219,4	241,1	263,2	308,4	342,1	375,8	-	-	-	-	-
Input power	kW	74,1	85,1	96,8	107,7	123,7	143,8	-	-	-	-	-
Cooling total input current	A	126,4	143,5	161,5	180,6	206,5	238,4	-	-	-	-	-
EER	W/W	2,96	2,83	2,72	2,86	2,76	2,61	-	-	-	-	-
Water flow rate system side	l/h	37695	41419	45215	52979	58785	64562	-	-	-	-	-
Pressure drop system side	kPa	47	52	61	67	83	100	-	-	-	-	-
Cooling performances with free-cooling glycol-free	2(2)											
Cooling capacity	kW	140,0	142,6	144,8	189,1	194,0	196,9	-	-	-	-	-
Input power	kW	11,1	11,1	11,1	14,7	14,8	14,8	-	-	-	-	-
Free cooling total input current	A	18,9	18,7	18,5	24,7	24,6	24,5	-	-	-	-	-
EER	W/W	12,64	12,88	13,08	12,85	13,14	13,34	-	-	-	-	-

(1) System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/ * °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

NRB - U

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: B												
Cooling performance chiller operation (1)												
Cooling capacity	kW	227,3	250,9	275,8	320,4	357,9	396,3	455,4	515,9	569,2	633,7	680,9
Input power	kW	73,7	83,6	94,1	106,4	120,6	138,5	153,5	173,2	195,2	215,9	238,4
Cooling total input current	A	133,2	149,2	165,7	188,7	211,5	240,0	266,7	303,5	341,3	379,5	417,9
EER	W/W	3,08	3,00	2,93	3,01	2,97	2,86	2,97	2,98	2,92	2,94	2,86
Water flow rate system side	I/h	39046	43104	47382	55045	61497	68087	78245	88642	97793	108881	116982
Pressure drop system side	kPa	51	56	66	72	90	111	75	92	112	133	126
Cooling performances with free-cooling glycol-free	(2)											
Cooling capacity	kW	154,8	158,0	160,8	209,0	215,3	219,0	275,7	335,8	350,8	397,2	401,3
Input power	kW	14,3	14,3	14,3	19,1	19,1	19,1	24,1	31,6	32,0	36,8	36,8
Free cooling total input current	A	25,9	25,6	25,2	33,8	33,5	33,1	41,8	55,3	56,0	64,6	64,4
EER	W/W	10,80	11,03	11,22	10,97	11,27	11,47	11,45	10,64	10,95	10,81	10,92

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: G												
Cooling performance chiller operation (1)												
Cooling capacity	kW	226,2	249,6	274,2	318,8	356,0	393,8	452,9	513,3	565,9	630,2	676,8
Input power	kW	74,4	84,4	95,0	107,4	121,8	139,9	154,8	174,8	197,2	218,0	240,9
Cooling total input current	Α	134,1	150,2	166,9	189,9	213,2	242,0	268,6	305,7	344,0	382,4	421,4
EER	W/W	3,04	2,96	2,89	2,97	2,92	2,82	2,93	2,94	2,87	2,89	2,81
Water flow rate system side	l/h	38871	42893	47115	54781	61158	67658	77819	88186	97229	108280	116278
Pressure drop system side	kPa	50	56	66	72	89	109	74	91	111	132	125
Cooling performances with free-cooling glycol-free (2)												
Cooling capacity	kW	160,6	164,1	167,1	216,9	223,8	227,8	287,0	350,1	367,2	414,5	419,0
Input power	kW	14,5	14,5	14,5	19,3	19,3	19,3	24,4	31,9	32,4	37,2	37,2
Free cooling total input current	A	26,2	25,8	25,5	34,1	33,8	33,5	42,3	55,8	56,5	65,2	65,0
EER	W/W	11,07	11,31	11,52	11,24	11,57	11,78	11,77	10,97	11,33	11,15	11,27

NRB - N

1200 1400 1600 1805 2006 2206 2406	00 1200	1100	1000	0900	0800		Size
							Model: B
						peration (1)	Cooling performance chiller operation (1)
358,3 397,2 454,4 510,9 563,3 628,5 675,3	0,3 358,3	320,3	278,0	252,4	228,3	kW	Cooling capacity
118,7 136,3 151,0 171,5 194,0 213,5 236,4	4,6 118,7	104,6	92,3	82,2	72,5	kW	Input power
199,3 227,4 251,4 286,8 325,4 359,5 398,6	6,6 199,3	176,6	156,3	140,1	124,4	A	Cooling total input current
3,02 2,91 3,01 2,98 2,90 2,94 2,86	06 3,02	3,06	3,01	3,07	3,15	W/W	EER
61559 68239 78074 87785 96785 107983 116017	33 61559	55033	47761	43370	39222	l/h	Water flow rate system side
91 103 71 90 110 131 124	2 91	72	60	50	46	kPa	Pressure drop system side
						ee-cooling glycol-free (2)	Cooling performances with free-cooling o
218,8 228,0 284,9 321,4 337,3 375,3 379,1	2,0 218,8	212,0	176,0	172,6	168,7	kW	Cooling capacity
18,2 18,2 24,8 28,3 28,9 31,6 31,6	,1 18,2	18,1	14,5	14,5	14,5	kW	Input power
30,5 30,4 41,3 47,3 48,5 53,2 53,3	,6 30,5	30,6	24,6	24,8	25,0	A	Free cooling total input current
12,03 12,51 11,48 11,37 11,67 11,88 12,00	,70 12,03	11,70	12,10	11,86	11,60	W/W	EER
30,5 30,4 41,3 47,3 48,5 53,2),6 30,5	30,6	24,6	24,8	25,0	A	Free cooling total input current

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: G												
Cooling performance chiller operation (1)												
Cooling capacity	kW	227,4	251,4	276,7	318,8	356,3	394,6	451,9	508,1	559,8	624,6	670,7
Input power	kW	73,1	82,8	93,1	105,5	119,8	137,7	152,4	173,0	195,9	215,7	239,0
Cooling total input current	Α	125,1	140,9	157,2	177,7	200,7	229,3	253,2	289,0	328,0	362,5	402,2
EER	W/W	3,11	3,03	2,97	3,02	2,98	2,87	2,97	2,94	2,86	2,90	2,81
Water flow rate system side	I/h	39073	43187	47536	54768	61222	67801	77644	87290	96173	107317	115226
Pressure drop system side	kPa	46	50	59	72	90	101	71	89	108	130	123
Cooling performances with free-cooling glycol-free (2)											
Cooling capacity	kW	174,6	178,8	182,6	219,5	226,9	236,7	296,4	333,9	351,1	390,3	394,4
Input power	kW	14,7	14,7	14,7	18,3	18,4	18,4	25,0	28,5	29,2	31,9	31,9
Free cooling total input current	A	25,2	25,0	24,8	30,8	30,8	30,7	41,6	47,6	48,8	53,6	53,7
EER	W/W	11,88	12,17	12,42	12,00	12,35	12,86	11,84	11,71	12,04	12,23	12,36

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

ENERGY DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: B													
SEPR - (EN14825: 2018) High temp	erature with standa	ard fans (1)											
	A	W/W	5,61	5,25	5,27	5,43	5,25	5,05	-	-	-	-	-
CEDD	E	W/W	6,07	5,58	5,44	5,59	5,50	5,13	-	-	-	-	-
SEPR	N	W/W	6,38	6,09	5,91	5,92	5,78	5,41	5,67	5,51	5,56	5,58	5,53
	U	W/W	6,22	5,87	5,69	5,84	5,71	5,56	5,73	5,52	5,60	5,58	5,53
(1) Calculation performed with FIXED	water flow rate.												
Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: G													
SEPR - (EN14825: 2018) High temp	erature with standa	ord fans (1)											-
	A	W/W	5,82	5,37	5,48	5,60	5,37	4,87	-	-	-	-	-
SEPR	E	W/W	6,42	5,83	5,62	5,85	5,69	5,10	-	-	-	-	-
	N,U	W/W	6,96	6,54	6,28	6,28	6,08	5,63	6,13	5,90	5,77	5,73	5,58

⁽¹⁾ Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Electric data													
	A	A	190,4	206,8	242,5	271,9	301,2	330,2	-	-	-	-	-
Maximous aussant (FLA)	E	Α	209,8	226,2	242,5	291,3	320,6	349,6	-	-	-	-	-
Maximum current (FLA)	N	Α	229,2	245,6	261,9	310,7	340,0	369,0	423,3	487,5	532,3	580,7	609,7
	U	Α	209,8	226,2	242,5	291,3	320,6	349,6	398,0	468,1	512,9	561,3	590,3
	A	А	379,0	434,2	469,9	522,6	551,9	664,4	-	-	-	-	-
Deals surrent (LDA)	E	Α	398,4	453,6	469,9	542,0	571,3	683,8	-	-	-	-	-
Peak current (LRA)	N	А	417,8	473,0	489,3	561,4	590,7	703,2	757,5	821,7	866,5	914,9	943,9
	U	A	398,4	453,6	469,9	542,0	571,3	683,8	732,2	802,3	847,1	895,5	924,5

GENERAL TECHNICAL DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Compressor													
Туре	A,E,N,U	type						Scroll					
Compressor regulation	A,E,N,U	Туре						On-Off					
Number	A,E,N,U	no.	4	4	4	4	4	4	4	5	6	6	6
Circuits	A,E,N,U	no.	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E,N,U	type						R410A					
	A	kg	32,0	32,0	48,0	48,0	48,0	48,0	64,0	64,0	80,0	80,0	96,0
Refrigerant charge (1)	E,U	kg	48,0	48,0	48,0	64,0	64,0	64,0	80,0	96,0	96,0	112,0	112,0
	N	kg	64,0	64,0	64,0	80,0	80,0	80,0	96,0	112,0	112,0	128,0	128,0
Hydraulic connections													
Connections (in/out)	A,E,N,U	Туре						Grooved joints	;	-			
Hydraulic connections witho	ut hydronic kit												
Sizes (in/out)	A,E,N,U	Ø	3″	3″	3"	3"	3"	3"	4"	4"	4"	4"	4"
Hydraulic connections with h	nydronic kit												
Sizes (in/out)	A,E,N,U	Ø	3"	3"	3"	3"	3"	3″	4"	4"	4"	4"	4"

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

In the versions without a hydronic kit, the water filter is supplied with a connection point for making the connection. In the versions with a hydronic kit, it is supplied ready-mounted.

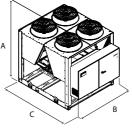
SOUND DATA

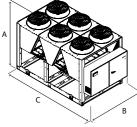
Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Sound data calculated in cooling mode (1)												
	Α	dB(A)	88,0	88,1	90,3	90,2	90,2	90,2	-	-	-	-	-
Cound nouse level	E	dB(A)	85,0	85,1	85,1	86,5	86,5	86,5	-	-	-	-	-
Sound power level -	N	dB(A)	86,5	86,6	86,6	87,7	87,7	87,7	88,7	90,0	90,5	91,7	92,2
	U	dB(A)	90,2	90,3	90,3	91,7	91,7	91,7	92,9	94,4	94,9	96,2	96,7
	A	dB(A)	55,9	56,0	58,0	57,9	57,9	57,9	-	-	-	-	-
Cound procesure level (10 m)	E	dB(A)	52,9	53,0	52,8	54,3	54,3	54,3	-	-	-	-	-
Sound pressure level (10 m)	N	dB(A)	54,4	54,5	54,4	55,4	55,4	55,4	56,3	57,6	58,0	59,2	59,6
	U	dB(A)	58,0	58,1	58,0	59,4	59,4	59,4	60,5	62,0	62,4	63,7	64,0

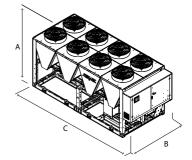
⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

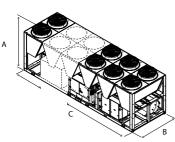
FANS DATA

Ci				2000	1000	1100	1200	1400	1/00	1005	2006	3304	3406
Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: B	, , , , , , , , , , , , , , , , , , ,					-							
Fan													
Туре	A,E	type	axials	axials	axials	axials	axials	axials	-	-	-	-	-
турс	N,U	type						axials					
	A	no.	4	4	6	6	6	6	-	-	-	-	-
Normalia and	E	no.	6	6	6	8	8	8	-	-	-	-	-
Number	N	no.	8	8	8	10	10	10	12	14	14	16	16
	U	no.	6	6	6	8	8	8	10	12	12	14	14
	A	m³/h	57600	57600	86400	86400	86400	86400	-	-	-	_	-
	E	m³/h	64800	64800	64800	86400	86400	86400	-	-	-	-	-
Air flow rate	N	m³/h	86400	86400	86400	108000	108000	108000	129600	151200	151200	172800	172800
	U	m³/h	86400	86400	86400	115200	115200	115200	144000	172800	172800	201600	201600
Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Model: G													
Fan													
T	A,E												
	n,L	type	axials	axials	axials	axials	axials	axials	-	-	-	-	-
Турс	N,U		axials	axials	axials	axials	axials	axials axials	-	-	-	-	-
Турс		type type no.	axials 4	axials 4	axials 6	axials 6	axials 6		-	-	-	-	-
	N,U	type						axials					- - -
	N,U A	type no. no.	4	4	6	6	6	axials 6	-	-		-	- - - 16
··	N,U A E	type no. no. no.	4	4	6	6	6 8	axials 6 8	- - 12	- - 14	- - 14	- - 16	- - 16 14
	N,U A E N	type no. no. no.	4 6 8 6	4 6 8 6	6 6 8 6	6 8 10 8	6 8 10 8	axials 6 8 10 8	-	-	-	-	- - - 16 14
Number	N,U A E N U A	type no. no. no. no. m³/h	4 6 8 6 57600	4 6 8 6 57600	6 6 8 6 86400	6 8 10 8 86400	6 8 10 8 86400	axials 6 8 10 8 86400	- - 12 10	- - 14 12	- - 14 12	- - 16 14	14
Number	N,U A E N U A E	type no. no. no. no. mo. mo. mo/h	4 6 8 6 57600 64800	4 6 8 6 57600 64800	6 6 8 6 86400 64800	6 8 10 8 86400 86400	6 8 10 8 86400 86400	axials 6 8 10 8 86400	- - 12 10 -	- 14 12 -	- - 14 12 -	- - 16 14 -	14 - -
Type Number Air flow rate	N,U A E N U A	type no. no. no. no. m³/h	4 6 8 6 57600	4 6 8 6 57600	6 6 8 6 86400	6 8 10 8 86400	6 8 10 8 86400	axials 6 8 10 8 86400	- - 12 10 -	- - 14 12	- - 14 12	- - 16 14 -	14


DIMENSIONS


NRB 0800-0900 A


NRB 1000-1400 A NRB 0800-1000 E-U


NRB 1100-1400 E-U NRB 0800-1000 N

NRB 1100-2406 N NRB 1600-2406 U

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
Dimensions and weights													
Λ.	A,E	mm	2450	2450	2450	2450	2450	2450	-	-	-	-	-
A	N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
D	A,E	mm	2200	2200	2200	2200	2200	2200	-	-	-	-	-
В	N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	Α	mm	2780	2780	3970	3970	3970	3970	-	-	-	-	-
	E	mm	3970	3970	3970	4760	4760	4760	-	-	-	-	-
·	N	mm	4760	4760	4760	5950	5950	5950	7140	8330	8330	9520	9520
	U	mm	3970	3970	3970	4760	4760	4760	5950	7140	7140	8330	8330

For the weights please contact the factory.

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

Air-water chiller with free-cooling

Cooling capacity 99,9 ÷ 105,4 kW

- · Easy and quick to install compact
- · Reliability and modularity
- Microchannel coils

DESCRIPTION

NRV is comprised of independent 99.9 kW modules, that can be connected together up to a power of 900 kW. Each individual module is an outdoor chiller for the production of chilled water.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to $\,46^{\circ}\!C\,$ external air temperature. Unit can produce chilled water up to $4\,^{\circ}\!C.$

Maximum yield at full load but even partial load, thanks to the partialisation steps that increase as the number of connected modules increases this ensures continuous adaptation to the actual system requirements.

Modularity

It is possible to couple up to 9 chillers designed to reduce the overall unit dimensions to a minimum.

The combination of the various chillers allows all the strengths of the individual module to be maintained.

Modularity allows you to adapt installation to the actual development needs of the system. This way the cooling capacity can be increased over time simply and affordably.

Modularity is essential when component redundancy is required, as it allows for a safer system design and increased reliability.

Microchannel coils

Microchannel heat exchanger that guarantees higher thermal exchange yield. Circuit that optimises the liquid distribution in the coil, which is arranged with V beam geometry with open angle.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode.

Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The compressors are completely shut down, if possible, leading to considerable electrical savings.

Components

Already equipped with a water filter, differential pressure switch and butterfly check valves, useful to cut off the hydraulic circuit for maintenance; for instance, to clean the filter.

In the event of variable flow rate, the motorised hydronic valves can intercept one or more modules to reduce the flow rate in low heat load conditions.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- Adjustment includes complete management of the alarms and their log.
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night mode: only in the non-silenced versions is it possible to set a silenced operating mode, which is useful for example at night for greater acoustic comfort but always guarantees performance even at peak load times.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERLINK: Aerlink is a WiFi gateway with an RS485 serial port that allows a wide range of Aermec products (heat pumps/chillers/system controllers) equipped with this interface to connect easily and securely to a Wi-Fi network. It works both as an access point (AP access point) and as a client (WiFi Station), it can be connected to a single generator or system centraliser, allowing anyone to easily integrate them into any network. Thanks to the AerApp and AerPlants apps, which can be used on Android and iOS plat-

forms, the remote management of the air conditioning systems developed by Aermec becomes intuitive and simple.

FB1: Air filter to protect the micro-channel coils. Formed of a frame and a composite baffle in micro-expanded aluminium mesh, with particularly low pressure drops.

GPNYB_BACK: kit with 1 anti-intrusion grid for the short side of the unit. **GPNYB_SIDE:** kit with 2 anti-intrusion grids for the long side of the unit. **MULTICHILLER-EVO:** Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

KNYB: Pair of caps with grooved joints assembled on the unit manifold. **KREC:** Accessory kit to remote the electric power supply input to the back **RIF:** Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0550
AER485P1	A,E	•
AERBACP	A,E	•
AERLINK	A,E	•
FB1	A,E	•
GPNYB_BACK	A,E	•
GPNYB_SIDE	A,E	•
MULTICHILLER-EVO	A,E	•
PGD1	A,E	•

DRE: electronic device for peak current reduction

_	Ver	0550
	A. E	DRE (1)

(1) Contact the factory
A grey background indicates the accessory must be assembled in the factory

KNYB: Pair of caps with grooved joints assembled on the unit manifold

Ver	0550
A, E	KNYB

A grey background indicates the accessory must be assembled in the factory

KREC: kit to remote the electric power supply input to the back

Ver	0550
A, E	KREC

A grey background indicates the accessory must be assembled in the factory

RIF: Power factor correction

Ver	0550
A, E	RIF (1)

⁽¹⁾ Contact the factory

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description							
1,2,3	NRV							
4,5,6,7	Size 0550							
8	Operating field							
X	Electronic thermostatic expansion valve							
0	Standard mechanic thermostatic valve (1)							
9	Model							
F	Free-cooling							
10	Heat recovery							
D	With desuperheater							
0	Without heat recovery							
11	Version							
A	High efficiency							
E	Silenced high efficiency							

Field	Description						
12	Coils / free-cooling coils						
0	Painted alluminium microchannel / Copper painted aluminium						
R	Copper-copper/Copper-copper						
S	Copper-Tinned copper / Copper -Tinned copper						
V	Copper-painted alumimium / Copper-painted alumimium						
0	Alluminium microchannel / Copper - aluminium						
13	Fans						
J	Inverter						
0	Standard						
14	Power supply						
0	400V ~ 3 50Hz with magnet circuit breakers						
15,16	Integrated hydronic kit						
00	Without hydronic kit						

(1) Water produced up to +4 °C

PERFORMANCE SPECIFICATIONS

NRV - FA/FE

Size			0550
Cooling performance chiller operation	(1)		
Cooling capacity	A	kW	105,4
Cooling capacity	E	kW	99,9
Innut namer	A	kW	36,6
Input power	E	kW	38,2
Cooling total input current	A,E	A	65,0
EER	A	W/W	2,88
EEN	E	W/W	2,61
Water flow rate custom side	A	l/h	18104
Water flow rate system side	E	l/h	17164
Draccura dran cuctam cida	A	kPa	31
Pressure drop system side	E	kPa	27
Cooling performances with free-coolin	ıg (2)		
Cooling capacity	A	kW	69,3
Cooling Capacity	E	kW	57,7
Innut nower	A	kW	3,7
Input power	E	kW	2,6
Francoaling total input current	A	A	6,7
Free cooling total input current	E	A	4,5
EER	A	W/W	18,48
EEN	E	W/W	21,98
Water flow rate custom side	A	l/h	18104
Water flow rate system side	E	l/h	17164
Draccura dran cuctam cida	A	kPa	73
Pressure drop system side	E	kPa	66

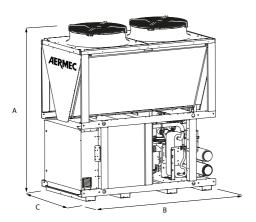
⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C /* °C; Aria esterna 2 °C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0550
SEER - 23/18 (EN14825: 2018) v	vith standard fans (1)		
Cassanal afficiency	A	%	184.2%
Seasonal efficiency	E	%	181.3%
SEER	A	W/W	4,68
DEEK	E	W/W	4,61
SEER - 23/18 (EN14825: 2018) v	vith inverter fans		
Cassanal afficiency	A	%	191.5%
Seasonal efficiency	E	%	189.2%
SEER	A	W/W	4,86
DEEK	E	W/W	4,81
SEPR - (EN14825: 2018) High te	mperature with standard fans (1)		
SEPR	A	W/W	5,94
JETN	E	W/W	5,60
SEPR - (EN14825: 2018) High te	mperature with inverter fans (1)		
SEPR	A	W/W	5,94
ברת	E	W/W	5,60

⁽¹⁾ Calculation performed with FIXED water flow rate.

ELECTRIC DATA


Size			0550
Electric data			•
Maximum current (FLA)	A,E	A	95,6
Peak current (LRA)	A,E	A	280,6

GENERAL TECHNICAL DATA

Size			0550
Compressor			
Туре	A,E	type	Scroll
Number	A,E	no.	2
Circuits	A,E	no.	1
Refrigerant	A,E	type	R410A
System side heat exchanger			
Туре	A,E	type	Brazed plate
Number	A,E	no.	1
System side hydraulic connections			
Connections (in/out)	A,E	Туре	Grooved joints
Sizes (in/out)	A,E	Ø	6"
Fan			
Туре	A,E	type	axials
Fan motor	A,E	type	Asynchronous with phase cut
Number	A,E	no.	2
Air flow rate	A	m³/h	28600
Air now rate	E	m³/h	22000
Sound data calculated in cooling m	node (1)		
Cound namer land	A	dB(A)	86,9
Sound power level	E	dB(A)	81,8
Carrad massacras larval (10 ms)	A	dB(A)	55,0
Sound pressure level (10 m)	E	dB(A)	49,9

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0550
Dimensions and weights			
A	A,E	mm	2480
В	A,E	mm	2200
(A,E	mm	1190
Empty weight	A,E	kg	1389

NSM 1402-9603 F

Air-water chiller with free-cooling

Cooling capacity 306 ÷ 2028 kW

- Microchannel coil
- Night mode
- Operation up to 50 °C outdoor air
- · High efficiency also at partial loads

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

These are outdoor units with screw compressors, axial fans, micro-channel coils, and shell and tube heat exchangers

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to 50 °C external air temperature depending on size and version. For further details refer to the selection software/technical documentation

Unit with 2/3 cooling circuits

Unit with 2/3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode.

Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The

compressors are completely shut down, if possible, leading to considerable electrical savings.

A "P" free-cooling plus model with the oversized water battery can be chosen for applications in which a higher free-cooling performance is required.

Electronic expansion valve

Electronic thermostatic as standard from size 5202 to 6402 and from 8403 to 9603.

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Integrated hydronic kit

To obtain a solution that offers economic savings and easy installation, these units can be configured with an integrated hydronic kit on both the service side and the recovery side.

The kit contains the main hydraulic components, and is available in various configurations with a single pump or a standby pump too, so the customer can choose the right useful head.

CONTROL

Units include 1 control board for each compressor.

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night mode: only in the non-silenced versions is it possible to set a silenced operating mode, which is useful for example at night for greater acoustic comfort but always guarantees performance even at peak load times
- Possibility to control two units in a Master-Slave configuration (from size 1402 to 6402)

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

660 www.aermec.com NSM-1402-9603-FC Y UN50 08

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

KRS: Electric heater for the heat exchanger

ACCESSORIES COMPATIBILITY

Model	Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
AER485P1 x no. 2	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP x no. 2	A,E,N,U		•	•		•		•	•	•	•	•	•	•	•
AERNET	A,E,N,U	•	•	•	•	•	•		•		•	•	•	•	•
MULTICHILLER-EVO	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PRV3	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Model	Ver	4202	4502	4802	5202	5602	6002	2 64	02	6503	6703	6903	7203	8403	9603
AER485P1 x no. 2	A,E,N,U	•	•	•	•	•	•		•						
	A										•	•	•	•	•
AER485P1 x no. 3	E,U									•	•	•	•		
	N									•					
AERBACP x no. 2	A,E,N,U	•	•	•	•	•	•								
	Α									•	•	•	•	•	•
AERBACP x no. 3	E,U										•	•	•		
	N									•					
	A	•	•	•	•		•					•	•	•	•
AERNET	E,U	•	•	•	•	•	•			•	•	•	•		
	N	•	•	•	•	•	•		•	•					
	A	•	•	•	•	•	•			•	•	•	•	•	•
MULTICHILLER-EVO	E,U	•	•		•	•	•			•	•	•	•		
	N	•	•	•	•		•			•					
	A	•	•	•	•	•	•			•	•	•	•	•	•
PRV3	E,U		•	•	•							•			
	N			•	•					•					

Antivibration - NSM free - cooling

Antivibration - NSM free -	cooling													
Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Integrated hydronic kit: 00														
A	AVX929	AVX929	AVX929	AVX932	AVX933	AVX933	AVX933	AVX934	AVX937	AVX937	AVX937	AVX938	AVX938	AVX942
E, U	AVX929	AVX929	AVX930	AVX933	AVX933	AVX934	AVX934	AVX935	AVX935	AVX935	AVX935	AVX939	AVX939	AVX940
N	AVX930	AVX930	AVX931	AVX931	AVX934	AVX935	AVX935	AVX936	AVX936	AVX936	AVX936	AVX940	AVX941	AVX943
Ver	4202	4502	4802	5202	5602	6002	640	02	6503	6703	6903	7203	8403	9603
Integrated hydronic kit: 00										'				
A	AVX942	AVX944	AVX944	AVX944	AVX945	AVX94	7 AVX	947 A	VX953	AVX953	AVX957	AVX954	AVX956	AVX955
E, U	AVX941	AVX945	AVX947	AVX947	AVX950	AVX95	2 AVX	948 A	VX954	AVX956	AVX956	AVX958	-	-

AVX951

AVX951

AVX955

Anti-intrusion grid

N

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
A	GP4V	GP4V	GP4V	GP4V	GP5V	GP5V	GP5V	GP6V	GP6V	GP6V	GP6V	GP7V	GP7V	GP8V
E, U	GP4V	GP4V	GP5V	GP5V	GP5V	GP6V	GP6V	GP7V	GP7V	GP7V	GP7V	GP8V	GP8V	GP9V
N	GP5V	GP5V	GP6V	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V	GP8V	GP8V	GP9V	GP10V	GP11V

AVX951

A grey background indicates the accessory must be assembled in the factory

AVX943

AVX946

AVX948

AVX949

Ver	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
A	GP8V	GP9V	GP9V	GP9V	-	GP11V	GP11V	GP4V+GP8V	GP4V+GP8V	GP9V	GP5V+GP9V	GP5V+GP10V	GP6V+GP11V
E, U	GP10V	GP10V	GP11V	GP11V	GP6V+GP6V	GP6V+GP7V	GP7V+GP7V	GP5V+GP9V	GP5V+GP10V	GP5V+GP10V	GP6V+GP11V	-	-
N	GP11V	GP6V+GP7V	GP7V+GP7V	GP7V+GP8V	GP8V+GP8V	GP8V+GP8V	GP8V	GP6V+GP11V	-	-	-	-	-

The accessory cannot be fitted on the configurations indicated with -

A grey background indicates the accessory must be assembled in the factory

Heater exchangers

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
A	KRS22	KRS22	KRS23	KRS24	KRS24	KRS24								
E, N, U	KRS23	KRS24	KRS24	KRS24										

A grey background indicates the accessory must be assembled in the factory

	Ver	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Ī	Α	KRS24	KRS24	KRS23	KRS23	KRS24	KRS24	KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24
	E, U	KRS24	KRS24	KRS23	KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	-	-

Ver	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
N	KRS24	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS24	_	-	_	-	_

A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802
A	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002Q	RIFNSM2202Q	RIFNSM2352Q	RIFNSM2502Q	RIFNSM2652Q	RIFNSM2802C
E	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002Q	RIFNSM2202Q	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C
N	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802C	RIFNSM2002Q	RIFNSM2202C	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C
U	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002C	RIFNSM2202Q	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C

A grey background indicates the accessory must be assembled in the factory

Ver	3002	3202	3402	3602	3902	4202	4502	4802	5202
A, E, U	RIFNSM3002C	RIFNSM3202C	RIFNSM3402C	RIFNSM3602C	RIFNSM3902C	RIFNSM4202C	RIFNSM4502C	RIFNSM4802C	RIFNSM5202C
N	RIFNSM3002C	RIFNSM3202C	RIFNSM3402C	RIFNSM3602C	RIFNSM3902C	RIFNSM4202C	-	-	-

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	5602	6002	6402	6503	6703	6903	7203	8403	9603
A	RIFNSM5602C	RIFNSM6002C	RIFNSM6402C	-	-	-	-	-	-

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NSM
4,5,6,7	Size 1402, 1602, 1802, 2002, 2202, 2352, 2502, 2652, 2802, 3002, 3202, 3402, 3602 3902, 4202, 4502, 4802, 5202, 5602, 6002, 6402, 6503, 6703, 6903, 7203, 8403 9603
8	Operating field
Х	Electronic thermostatic expansion valve (1)
Y	Low temperature mechanic thermostatic valve (2)
Z	Low temperature electronic thermostatic valve (2)
0	Standard mechanic thermostatic valve (3)
9	Model
F	Free-cooling
P	Free-cooling plus (4)
10	Heat recovery
D	With desuperheater
0	Without heat recovery
11	Version
Α	High efficiency
E	Silenced high efficiency
N	Silenced very high efficiency
U	Very high efficiency
12	Coils / free-cooling coils
I	Copper-aluminium / Copper-aluminium
0	Painted alluminium microchannel / Copper painted aluminium
R	Copper-copper/Copper-copper
S	Copper-Tinned copper / Copper -Tinned copper
٧	Copper-painted alumimium / Copper-painted alumimium
0	Alluminium microchannel / Copper - aluminium
13	Fans
J	Inverter
0	Standard
14	Power supply
2	230V ~ 3 50Hz with fuses (5)
4	230V ~ 3 50Hz with magnet circuit breakers (5)

Field	Description
8	$400V \sim 350Hz$ with magnet circuit breakers
•	400V ~ 3 50Hz with fuses
15,16	Integrated hydronic kit
00	Without hydronic kit
PA	Pump A
PB	Pump B
PC	Pump C
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J (6)
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump (6)
TF	Double pump F (7)
TG	Double pump G (7)
TH	Double pump H (7)
TI	Double pump I (7)
TJ	Double pump J (7)

- (1) Water produced from 4 °C ÷ 18 °C
 (2) Water produced from 4 °C ÷ -6 °C
 (3) Water produced from 4 °C ÷ -6 °C
 (4) The Free-Cooling Plus "P" models are only compatible with** ed "0"
 (5) available only for size from 1402 to 2202
 (6) For all configurations including pump J please contact the factory.
 (7) The unit from 5603 to 9603 can only have hydronic kit "TF TG TH TI TJ"

NSM-1402-9603-FC_Y_UN50_08 662 www.aermec.com

PERFORMANCE SPECIFICATIONS

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: F															
Cooling performance chiller operation (1)															
Cooling capacity	kW	306,5	350,2	396,8	450,5	505,3	522,5	556,5	600,8	649,8	678,4	726,3	813,3	872,8	954,1
Input power	kW	102,8	117,6	136,7	158,3	168,9	180,5	194,5	203,0	220,4	235,0	252,8	269,7	295,6	317,9
Cooling total input current	A	182,3	206,2	230,6	268,0	291,3	311,4	335,2	351,3	378,4	400,0	426,5	450,9	486,5	530,4
EER	W/W	2,98	2,98	2,90	2,85	2,99	2,90	2,86	2,96	2,95	2,89	2,87	3,02	2,95	3,00
Water flow rate system side	I/h	52654	60163	68174	77407	86812	89765	95621	103224	111642	116561	124785	139737	149958	163932
Pressure drop system side	kPa	45	59	54	36	45	48	54	63	67	73	65	43	50	61
Cooling performances with free-cooling (2)															
Cooling capacity	kW	347,7	362,0	373,1	381,9	468,1	471,2	476,5	560,7	569,1	573,2	578,8	671,5	677,9	770,2
Input power	kW	15,0	15,0	15,0	15,0	18,7	18,7	18,7	22,5	22,5	22,5	22,5	26,2	26,2	30,0
Free cooling total input current	A	30,4	30,4	30,4	30,4	38,0	38,0	38,0	45,6	45,6	45,6	45,6	53,2	53,2	60,8
EER	W/W	23,18	24,14	24,88	25,47	24,97	25,14	25,42	24,93	25,30	25,48	25,73	25,59	25,83	25,68
Water flow rate system side	I/h	60230	68250	77490	86910	89860	95730	103340	111770	116690	124920	139890	150120	164110	171460
Pressure drop system side	kPa	66	86	85	76	78	84	95	98	107	116	113	87	99	107
(1) System side water heat exchanger 12 °C/7 °C; l (2) Acqua scambiatore lato utenza 12 °C/* °C; Ar		C; Chiller op	eration 100	%; Free-coo	oling 0%										
-			4400			2202		2502	2452	2002			2402		2002

(2) Acqua scambiatore lato uteriza 12 C/ " C ; Aria es	terria 2 C														
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: P															
Cooling performance chiller operation (1)															
Cooling capacity	kW	305,8	349,3	395,0	447,3	502,1	519,1	552,6	597,2	645,4	674,3	721,9	807,8	865,0	946,8
Input power	kW	103,7	118,8	138,1	160,2	170,8	182,6	197,0	205,3	223,1	238,4	257,1	273,3	299,3	321,8
Cooling total input current	Α	182,3	206,2	230,6	268,0	291,3	311,4	335,2	351,3	378,4	400,0	426,5	450,9	486,5	530,4
EER	W/W	2,95	2,94	2,86	2,79	2,94	2,84	2,81	2,91	2,89	2,83	2,81	2,96	2,89	2,94
Water flow rate system side	l/h	52546	60019	67864	76853	86266	89180	94948	102598	110891	115859	124023	138789	148609	162675
Pressure drop system side	kPa	45	59	54	36	45	48	54	63	67	73	65	43	50	61
Cooling performances with free-cooling (2)															
Cooling capacity	kW	371,8	388,1	400,1	409,1	501,9	505,2	510,5	601,2	610,0	614,2	619,7	719,2	725,2	824,6
Input power	kW	15,2	15,2	15,2	15,2	19,0	19,0	19,0	22,9	22,9	22,9	22,9	26,7	26,7	30,5
Free cooling total input current	Α	30,7	30,7	30,7	30,7	38,4	38,4	38,4	46,1	46,1	46,1	46,1	53,7	53,7	61,4
EER	W/W	24,41	25,48	26,27	26,86	26,36	26,53	26,81	26,31	26,69	26,88	27,12	26,98	27,20	27,07
Water flow rate system side	l/h	52710	60230	68250	77490	86910	89860	95730	103340	111770	116690	124920	139890	150120	164110
Pressure drop system side	kPa	66	86	86	76	79	84	95	98	107	117	114	87	100	108

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C / * °C; Aria esterna 2 °C

NSM - A

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: F														
Cooling performance chiller operation (1)														
Cooling capacity	kW	996,8	1082,3	1128,3	1167,3	1222,8	1304,9	1346,7	1459,2	1501,9	1659,0	1705,0	1838,1	2028,1
Input power	kW	346,1	365,7	391,9	422,5	438,9	452,7	472,4	492,1	520,2	557,2	583,3	659,0	704,1
Cooling total input current	A	581,4	614,0	654,6	703,8	733,3	761,1	795,9	821,1	872,1	945,1	985,8	1100,0	1197,7
EER	W/W	2,88	2,96	2,88	2,76	2,79	2,88	2,85	2,97	2,89	2,98	2,92	2,79	2,88
Water flow rate system side	l/h	171269	185947	193855	200561	210092	224201	231379	250713	258050	285029	292937	315803	348457
Pressure drop system side	kPa	66	81	88	75	82	96	102	61	66	81	88	82	102
Cooling performances with free-cooling (2)														
Cooling capacity	kW	774,7	867,5	872,2	875,9	966,0	1058,3	1062,8	1158,4	1162,7	1346,7	1351,7	1449,5	1636,8
Input power	kW	30,0	33,7	33,7	33,7	37,5	41,2	41,2	45,0	45,0	52,5	52,5	56,2	63,7
Free cooling total input current	A	60,8	68,4	68,4	68,4	76,0	83,6	83,6	91,2	91,2	106,4	106,4	114,0	129,2
EER	W/W	25,83	25,71	25,85	25,96	25,77	25,66	25,77	25,75	25,85	25,66	25,75	25,78	25,68
Water flow rate system side	l/h	186150	194070	200780	210330	224450	231640	250990	258340	285350	293260	316150	348840	348457
Pressure drop system side	kPa	117	130	141	131	134	145	154	107	117	130	141	134	154

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C / * °C ; Aria esterna 2 °C

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: P														
Cooling performance chiller operation (1)														
Cooling capacity	kW	988,7	1074,2	1119,1	1156,4	1212,7	1295,2	1336,2	1447,7	1489,6	1646,9	1691,9	1822,8	2013,1
Input power	kW	350,6	370,3	397,1	428,3	444,3	458,0	478,2	498,2	527,1	564,0	590,8	667,0	712,4
Cooling total input current	A	581,4	614,0	654,6	703,8	733,3	761,1	795,9	821,1	872,1	945,1	985,8	1100,0	1197,7
EER	W/W	2,82	2,90	2,82	2,70	2,73	2,83	2,79	2,91	2,83	2,92	2,86	2,73	2,83
Water flow rate system side	l/h	169873	184553	192278	198678	208362	222522	229577	248739	255936	282961	290686	313186	345875
Pressure drop system side	kPa	66	81	88	75	82	96	102	61	66	81	88	82	102
Cooling performances with free-cooling (2)														
Cooling capacity	kW	828,9	928,7	933,1	936,5	1033,8	1133,1	1137,4	1239,8	1243,9	1442,0	1446,8	1551,1	1752,4
Input power	kW	30,5	34,3	34,3	34,3	38,1	41,9	41,9	45,7	45,7	53,3	53,3	57,1	64,7
Free cooling total input current	Α	61,4	69,1	69,1	69,1	76,8	84,5	84,5	92,1	92,1	107,5	107,5	115,2	130,5
EER	W/W	27,21	27,09	27,22	27,32	27,15	27,05	27,15	27,13	27,22	27,04	27,13	27,15	27,07
Water flow rate system side	l/h	171460	186150	194070	200780	210330	224450	231640	250990	258340	285350	293260	316150	348840
Pressure drop system side	kPa	117	130	141	131	134	146	155	108	117	130	141	134	155

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C / * °C; Aria esterna 2 °C

NSM - E

Water flow rate system side

Pressure drop system side

Free cooling total input current

Cooling capacity

Input power

EER

Cooling performances with free-cooling (2)

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: F															
Cooling performance chiller operation (1)															
Cooling capacity	kW	319,8	365,8	417,7	473,0	509,1	549,8	568,8	618,6	646,3	675,1	715,5	796,7	851,7	929,6
Input power	kW	105,5	123,3	137,5	159,4	178,3	183,3	195,5	205,2	220,4	235,9	253,5	270,8	297,1	320,1
Cooling total input current	Α	177,3	205,7	223,1	261,0	294,5	304,8	325,9	341,6	365,4	388,5	414,7	437,5	474,1	516,8
EER	W/W	3,03	2,97	3,04	2,97	2,85	3,00	2,91	3,01	2,93	2,86	2,82	2,94	2,87	2,90
Water flow rate system side	l/h	54946	62848	71763	81260	87462	94455	97732	106280	111041	115993	122937	136886	146332	159723
Pressure drop system side	kPa	33	37	32	37	43	50	54	53	58	64	64	43	49	60
Cooling performances with free-cooling (2)															
Cooling capacity	kW	308,8	317,5	389,9	399,1	403,2	476,4	479,1	552,1	556,5	560,4	564,7	643,3	648,3	727,0
Input power	kW	11,0	11,0	13,7	13,7	13,7	16,5	16,5	19,2	19,2	19,2	19,2	22,0	22,0	24,7
Free cooling total input current	A	15,9	15,9	19,9	19,9	19,9	23,9	23,9	27,9	27,9	27,9	27,9	31,8	31,8	35,8
EER	W/W	28,07	28,87	28,36	29,03	29,33	28,88	29,04	28,69	28,91	29,11	29,34	29,25	29,47	29,38
Water flow rate system side	I/h	55010	62920	71840	81350	87560	94560	97840	106400	111160	116120	123070	137040	146490	159900
Pressure drop system side	kPa	56	67	56	68	78	80	85	82	90	98	102	77	88	97
(1) System side water heat exchanger 12 °C/7 °C; Exte (2) Acqua scambiatore lato utenza 12 °C/* °C; Aria es	rnal air 35 °C sterna 2 °C	C; Chiller op	eration 100	%; Free-cod	oling 0%										
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: P															
Cooling performance chiller operation (1)															
Cooling capacity	kW	316,7	363,1	414,5	469,5	504,1	545,4	564,0	613,8	640,8	669,8	710,9	790,6	843,5	921,3
Input power	kW	106,6	124,7	138,6	161,1	181,0	185,4	197,8	207,6	223,1	239,2	257,8	274,6	301,1	324,4
Cooling total input current	A	177,3	205,7	223,1	261,0	294,5	304,8	325,9	341,6	365,4	388,5	414,7	437,5	474,1	516,8
FFD	111.011														

W/W

I/h

kPa

kW

kW

Α

W/W

2,97

54406

33

328,8

11,2

16,1

29,48

2,91

62391

37

338,7

11,2

16,1

30,36

2,99

71215

32

415,7

13,9

20,1

29,81

2,91

80666

37

425,8

13,9

20,1

30,53

2,79

86616

43

429,8

13,9

20,1

30,82

87560

78

2,94

93710

50

508,2

16,7

24,1

30,37

94560

80

2,85

96909

54

511,0

16,7

24,1

30,54

97840

86

2,96

105464

54

589,0

19,5

28,1

30,17

106400

83

2,87

110105

59

593,7

19,5

28,1

30,41

111160

90

2,80

115087

64

597,7

19,5

28,1

30,62

116120

2,76

122135

65

602,1

19,5

28,1

30,84

123070

103

2,88

135840

43

686,0

22,3

32,2

30,75

137040

77

2,80

144915

690,6

22,3

32,2

30,95

146490

2,84

158291

60

774,8

25,1

36,2

30,87

159900

98

NSM-1402-9603-FC_Y_UN50_08 664 www.aermec.com

Water flow rate system side I/h 55010 71840 62920 81350 Pressure drop system side kPa 57 57 68 67 (1) System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C/* °C; Aria esterna 2 °C

NSM - E

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: F														
Cooling performance chiller operation (1)														
Cooling capacity	kW	995,2	1051,6	1137,0	1159,2	1217,3	1279,4	1341,6	1434,0	1499,6	1598,6	1684,0	-	-
Input power	kW	339,9	370,0	389,4	418,0	436,6	448,9	461,2	491,1	510,9	568,9	588,3	-	-
Cooling total input current	A	554,8	601,5	631,6	677,8	708,4	731,9	755,4	803,9	832,3	923,9	945,4	-	-
EER	W/W	2,93	2,84	2,92	2,77	2,79	2,85	2,91	2,92	2,93	2,81	2,86	-	-
Water flow rate system side	l/h	170980	180685	195353	199172	209139	219823	230507	246385	257643	274665	289333	-	-
Pressure drop system side	kPa	68	79	73	76	67	72	82	60	68	79	73	-	-
Cooling performances with free-cooling (2)														
Cooling capacity	kW	804,0	809,4	888,6	890,5	967,2	1043,7	1119,7	1129,8	1206,8	1215,8	1295,1	-	-
Input power	kW	27,5	27,5	30,2	30,2	33,0	35,7	38,5	38,5	41,2	41,2	44,0	-	-
Free cooling total input current	А	39,8	39,8	43,8	43,8	47,8	51,7	55,7	55,7	59,7	59,7	63,7	-	-
EER	W/W	29,24	29,44	29,38	29,44	29,31	29,20	29,09	29,35	29,26	29,48	29,44	-	-
Water flow rate system side	I/h	171170	180890	195570	199390	209370	220070	230760	246660	257930	274970	289650	-	-
Pressure drop system side	kPa	104	119	113	117	107	110	119	97	104	119	113	-	-

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C / * °C; Aria esterna 2 °C

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: P														
Cooling performance chiller operation (1)														
Cooling capacity	kW	987,5	1041,9	1127,1	1148,0	1206,7	1269,3	1332,0	1421,7	1487,9	1583,2	1668,4	-	-
Input power	kW	344,2	375,3	394,8	424,0	442,2	454,4	466,6	497,6	517,4	577,4	596,8	-	-
Cooling total input current	A	554,8	601,5	631,6	677,8	708,4	731,9	755,4	803,9	832,3	923,9	945,4	-	-
EER	W/W	2,87	2,78	2,86	2,71	2,73	2,79	2,85	2,86	2,88	2,74	2,80	-	-
Water flow rate system side	l/h	169667	179011	193652	197235	207320	218083	228845	244269	255645	272005	286645	-	-
Pressure drop system side	kPa	69	80	74	76	68	72	82	60	69	80	74	-	-
Cooling performances with free-cooling (2)														
Cooling capacity	kW	857,5	862,4	947,1	948,8	1031,1	1113,1	1194,5	1204,3	1286,9	1295,0	1379,9	-	-
Input power	kW	27,9	27,9	30,7	30,7	33,5	36,3	39,0	39,0	41,8	41,8	44,6	-	-
Free cooling total input current	A	40,2	40,2	44,2	44,2	48,2	52,3	56,3	56,3	60,3	60,3	64,3	-	-
EER	W/W	30,74	30,92	30,87	30,92	30,81	30,70	30,59	30,84	30,76	30,95	30,92	-	-
Water flow rate system side	I/h	171170	180890	195570	199390	209370	220070	230760	246660	257930	274970	289650	-	-
Pressure drop system side	kPa	105	119	113	117	107	111	120	98	105	119	113	-	-

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C / * °C ; Aria esterna 2 °C

NSM - U

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: F															
Cooling performance chiller operation (1)															
Cooling capacity	kW	328,1	378,5	429,3	491,9	531,3	568,6	589,0	638,0	667,8	695,1	735,8	824,8	891,0	967,9
Input power	kW	105,3	121,3	136,2	155,8	172,9	180,0	191,0	202,4	216,1	228,4	242,4	263,0	288,2	311,5
Cooling total input current	Α	185,8	211,5	232,0	266,3	297,1	312,9	332,3	352,6	374,2	392,3	413,0	442,7	477,2	522,6
EER	W/W	3,12	3,12	3,15	3,16	3,07	3,16	3,08	3,15	3,09	3,04	3,04	3,14	3,09	3,11
Water flow rate system side	l/h	56372	65027	73755	84508	91287	97691	101204	109611	114731	119418	126414	141715	153088	166304
Pressure drop system side	kPa	35	39	34	40	46	53	57	57	62	68	68	46	53	65
Cooling performances with free-cooling (2)															
Cooling capacity	kW	356,2	369,9	451,2	466,4	473,4	555,1	559,4	641,6	648,6	654,2	661,5	753,3	763,5	854,0
Input power	kW	15,0	15,0	18,7	18,7	18,7	22,5	22,5	26,2	26,2	26,2	26,2	30,0	30,0	33,7
Free cooling total input current	Α	30,4	30,4	38,0	38,0	38,0	45,6	45,6	53,2	53,2	53,2	53,2	60,8	60,8	68,4
EER	W/W	23,76	24,67	24,07	24,88	25,26	24,68	24,87	24,45	24,71	24,93	25,21	25,12	25,46	25,31
Water flow rate system side	l/h	56430	65100	73840	84600	91390	97800	101320	109730	114860	119550	126550	141870	153260	166490
Pressure drop system side	kPa	59	71	60	73	85	85	92	88	96	104	108	82	96	105

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C /* °C; Aria esterna 2 °C

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: P															
Cooling performance chiller operation (1)															
Cooling capacity	kW	326,9	376,7	427,6	488,8	527,6	565,4	585,6	634,6	664,0	691,7	732,5	820,3	884,7	961,8
Input power	kW	106,3	122,5	137,6	157,4	174,8	181,8	193,0	204,4	218,3	231,1	245,7	266,0	291,3	314,8
Cooling total input current	Α	185,8	211,5	232,0	266,3	297,1	312,9	332,3	352,6	374,2	392,3	413,0	442,7	477,2	522,6
EER	W/W	3,08	3,07	3,11	3,10	3,02	3,11	3,03	3,10	3,04	2,99	2,98	3,08	3,04	3,06
Water flow rate system side	I/h	56168	64715	73458	83974	90642	97138	100613	109029	114089	118834	125850	140933	152002	165249
Pressure drop system side	kPa	35	40	34	40	47	54	58	57	63	68	69	46	54	65
Cooling performances with free-cooling (2)															
Cooling capacity	kW	381,5	396,7	483,5	500,0	507,4	595,1	599,9	687,8	695,4	701,6	709,4	807,7	818,0	915,4
Input power	kW	15,2	15,2	19,0	19,0	19,0	22,9	22,9	26,7	26,7	26,7	26,7	30,5	30,5	34,3
Free cooling total input current	Α	30,7	30,7	38,4	38,4	38,4	46,1	46,1	53,7	53,7	53,7	53,7	61,4	61,4	69,1
EER	W/W	25,04	26,04	25,39	26,26	26,65	26,05	26,25	25,80	26,09	26,32	26,61	26,51	26,85	26,71
Water flow rate system side	l/h	56430	65100	73840	84600	91390	97800	101320	109730	114860	119550	126550	141870	153260	166490
Pressure drop system side	kPa	60	72	60	74	85	86	92	88	96	104	109	83	96	106

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C /* °C; Aria esterna 2 °C

NSM - U

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: F														
Cooling performance chiller operation (1)														
Cooling capacity	kW	1031,1	1095,0	1181,2	1208,8	1265,8	1326,2	1386,6	1491,1	1554,3	1666,6	1752,7	-	-
Input power	kW	332,0	358,4	379,0	405,3	426,4	440,0	453,5	478,4	498,9	549,8	570,4	-	-
Cooling total input current	A	564,1	604,8	638,6	681,5	718,3	746,0	773,7	811,6	846,2	926,2	954,2	-	-
EER	W/W	3,11	3,06	3,12	2,98	2,97	3,01	3,06	3,12	3,12	3,03	3,07	-	-
Water flow rate system side	l/h	177155	188137	202935	207692	217477	227858	238239	256194	267046	286336	301135	-	-
Pressure drop system side	kPa	74	86	79	83	73	77	87	64	74	86	79	-	-
Cooling performances with free-cooling (2)														
Cooling capacity	kW	941,7	951,8	1043,5	1047,6	1134,8	1221,6	1307,8	1326,2	1413,8	1431,0	1522,9	-	-
Input power	kW	37,5	37,5	41,2	41,2	45,0	48,7	52,5	52,5	56,2	56,2	60,0	-	-
Free cooling total input current	A	76,0	76,0	83,6	83,6	91,2	98,8	106,4	106,4	114,0	114,0	121,6	-	-
EER	W/W	25,12	25,39	25,30	25,40	25,22	25,07	24,92	25,27	25,14	25,45	25,39	-	-
Water flow rate system side	l/h	177350	188350	203160	207920	217720	228110	238500	256480	267340	286650	301470	-	-
Pressure drop system side	kPa	112	129	122	127	115	119	128	105	112	129	122	-	-

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0%

(2) Acqua scambiatore lato utenza 12 °C / * °C ; Aria esterna 2 °C
--

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: P														
Cooling performance chiller operation (1)														
Cooling capacity	kW	1025,3	1088,1	1174,0	1200,9	1257,9	1318,5	1379,2	1482,0	1545,4	1655,7	1741,6	-	-
Input power	kW	335,5	362,4	383,1	409,7	430,7	444,3	457,9	483,4	504,1	556,1	576,8	-	-
Cooling total input current	Α	564,1	604,8	638,6	681,5	718,3	746,0	773,7	811,6	846,2	926,2	954,2	-	-
EER	W/W	3,06	3,00	3,06	2,93	2,92	2,97	3,01	3,07	3,07	2,98	3,02	-	-
Water flow rate system side	l/h	176150	186945	201699	206322	216119	226541	236963	254617	265517	284475	299229	-	-
Pressure drop system side	kPa	74	86	79	83	73	78	88	65	74	86	80	-	-
Cooling performances with free-cooling (2)														
Cooling capacity	kW	1009,7	1020,0	1118,5	1122,6	1216,5	1309,9	1402,4	1421,6	1515,9	1533,4	1632,1	-	-
Input power	kW	38,1	38,1	41,9	41,9	45,7	49,5	53,3	53,3	57,1	57,1	60,9	-	-
Free cooling total input current	Α	76,8	76,8	84,5	84,5	92,1	99,8	107,5	107,5	115,2	115,2	122,8	-	-
EER	W/W	26,51	26,78	26,70	26,80	26,62	26,46	26,30	26,66	26,54	26,84	26,78	-	-
Water flow rate system side	l/h	177350	188350	203160	207920	217720	228110	238500	256480	267340	286650	301470	-	-
Pressure drop system side	kPa	113	129	122	128	116	119	128	106	113	130	123	-	-

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C /* °C; Aria esterna 2 °C

NSM - N

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: F															
Cooling performance chiller operation (1)															
Cooling capacity	kW	326,0	376,5	424,5	486,3	525,3	559,6	579,7	626,1	655,1	682,6	723,4	811,7	888,8	960,7
Input power	kW	103,6	119,3	134,4	153,8	170,9	178,3	189,4	200,8	214,8	227,9	242,9	263,8	283,0	307,1
Cooling total input current	Α	174,8	199,9	218,4	252,6	283,3	297,4	316,9	335,2	357,1	376,5	398,7	426,6	452,0	496,6
EER	W/W	3,15	3,16	3,16	3,16	3,07	3,14	3,06	3,12	3,05	3,00	2,98	3,08	3,14	3,13
Water flow rate system side	I/h	56017	64687	72926	83554	90260	96150	99597	107568	112546	117285	124287	139460	152703	165051
Pressure drop system side	kPa	34	39	33	39	45	52	55	55	60	65	66	44	53	64
Cooling performances with free-cooling (2)															
Cooling capacity	kW	365,1	381,0	449,3	465,6	473,2	541,5	545,8	615,7	622,3	627,8	634,7	713,7	791,0	867,2
Input power	kW	13,7	13,7	16,5	16,5	16,5	19,2	19,2	22,0	22,0	22,0	22,0	24,7	27,5	30,2
Free cooling total input current	Α	19,9	19,9	23,9	23,9	23,9	27,9	27,9	31,8	31,8	31,8	31,8	35,8	39,8	43,8
EER	W/W	26,56	27,71	27,24	28,22	28,69	28,13	28,36	27,99	28,29	28,54	28,86	28,84	28,77	28,67
Water flow rate system side	l/h	56080	64760	73010	83650	90360	96260	99710	107690	112670	117420	124420	139610	152870	165230
Pressure drop system side	kPa	51	61	51	63	73	76	82	79	87	94	98	74	83	93

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C /* °C; Aria esterna 2 °C

<u>c:</u>		4400	4400	4000				2502	2452	2002			2402	2402	
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: P															
Cooling performance chiller operation (1)															
Cooling capacity	kW	325,1	375,2	422,9	483,6	522,0	556,8	576,7	623,1	651,8	679,6	720,3	807,0	882,8	955,1
Input power	kW	104,5	120,4	135,6	155,5	172,9	180,2	191,5	202,9	217,2	230,8	246,4	267,1	286,2	310,3
Cooling total input current	А	174,8	199,9	218,4	252,6	283,3	297,4	316,9	335,2	357,1	376,5	398,7	426,6	452,0	496,6
EER	W/W	3,11	3,12	3,12	3,11	3,02	3,09	3,01	3,07	3,00	2,94	2,92	3,02	3,09	3,08
Water flow rate system side	l/h	55859	64457	72661	83082	89692	95662	99076	107055	111979	116764	123749	138653	151682	164102
Pressure drop system side	kPa	35	39	33	39	46	52	56	55	61	66	67	45	54	64
Cooling performances with free-cooling (2)															
Cooling capacity	kW	387,5	406,1	478,1	496,6	505,0	577,5	582,4	656,5	663,9	670,1	677,6	761,7	844,0	925,5
Input power	kW	13,9	13,9	16,7	16,7	16,7	19,5	19,5	22,3	22,3	22,3	22,3	25,1	27,9	30,7
Free cooling total input current	A	20,1	20,1	24,1	24,1	24,1	28,1	28,1	32,2	32,2	32,2	32,2	36,2	40,2	44,2
EER	W/W	27,79	29,12	28,57	29,68	30,18	29,58	29,83	29,42	29,75	30,03	30,37	30,35	30,26	30,16
Water flow rate system side	I/h	56080	64760	73010	83650	90360	96260	99710	107690	112670	117420	124420	139610	152870	165230
Pressure drop system side	kPa	52	62	52	64	74	77	82	80	87	94	99	75	83	94

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C / * °C ; Aria esterna 2 °C

NSM - N

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: F		7202	1302	1002	3202	3002	- 0002	0102	0303	0703	- 0,03	7203	0103	
Cooling performance chiller operation (1)														
Cooling capacity	kW	1004,9	1098,6	1161,7	1218,0	1274,5	1318,1	1361,6	1478,4	-	-	-	-	-
Input power	kW	332,9	349,5	369,2	392,7	416,2	433,5	450,9	472,0	-	-	-	-	-
Cooling total input current	A	544,1	569,7	600,1	638,5	677,0	708,3	739,7	770,6	-	-	-	-	-
EER	W/W	3,02	3,14	3,15	3,10	3,06	3,04	3,02	3,13	-	-	-	-	-
Water flow rate system side	l/h	172652	188754	199587	209274	218966	226457	233947	254013	-	-	-	-	-
Pressure drop system side	kPa	70	71	84	88	74	78	85	64	-	-	-	-	-
Cooling performances with free-cooling (2)														
Cooling capacity	kW	874,3	1018,1	1092,1	1164,5	1236,6	1246,2	1254,9	1339,1	-	-	-	-	-
Input power	kW	30,2	35,7	38,5	41,2	44,0	44,0	44,0	46,7	-	-	-	-	-
Free cooling total input current	A	43,8	51,7	55,7	59,7	63,7	63,7	63,7	67,7	-	-	-	-	-
EER	W/W	28,91	28,48	28,37	28,24	28,11	28,33	28,52	28,65	-	-	-	-	-
Water flow rate system side	I/h	172840	188960	199810	209510	219210	226710	234210	254300	-	-	-	-	-
Pressure drop system side	kPa	102	100	114	117	103	109	118	93	-	-	-	-	-

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C /* °C; Aria esterna 2 °C

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: P														
Cooling performance chiller operation (1)														
Cooling capacity	kW	998,8	1092,7	1155,6	1211,7	1267,7	1310,9	1354,2	1470,0	-	-	-	-	-
Input power	kW	336,7	353,2	373,0	396,5	420,0	437,6	455,3	476,9	-	-	-	-	-
Cooling total input current	А	544,1	569,7	600,1	638,5	677,0	708,3	739,7	770,6	-	-	-	-	-
EER	W/W	2,97	3,09	3,10	3,06	3,02	3,00	2,97	3,08	-	-	-	-	-
Water flow rate system side	I/h	171604	187733	198553	208183	217806	225235	232663	252555	-	-	-	-	-
Pressure drop system side	kPa	70	71	85	89	75	78	85	64	-	-	-	-	-
Cooling performances with free-cooling (2)														
Cooling capacity	kW	933,0	1086,4	1165,3	1242,2	1318,7	1329,5	1339,1	1429,1	-	-	-	-	-
Input power	kW	30,7	36,3	39,0	41,8	44,6	44,6	44,6	47,4	-	-	-	-	-
Free cooling total input current	A	44,2	52,3	56,3	60,3	64,3	64,3	64,3	68,3	-	-	-	-	-
EER	W/W	30,41	29,96	29,84	29,69	29,55	29,79	30,01	30,14	-	-	-	-	-
Water flow rate system side	I/h	172840	188960	199810	209510	219210	226710	234210	254300	-	-	-	-	-
Pressure drop system side	kPa	102	101	114	118	104	109	118	94	-	-	-	-	-

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C/* °C; Aria esterna 2 °C

ENERGY INDICES	(REG. 2016/22	81 EU)														
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: F																
SEPR - (EN14825: 2018) High t	temperature with stand	ard fans (1)														
	A	W/W	7,41	7,05	6,65	6,29	6,78	6,52	6,34	6,73	6,56	6,31	6,10	6,55	6,32	6,50
SEPR	E	W/W	7,22	6,77	7,10	6,65	6,30	6,89	6,59	6,81	6,69	6,42	6,09	6,28	6,23	6,44
JLI N	N	W/W	7,68	7,36	7,56	7,20	6,78	7,10	6,94	7,15	6,90	6,67	6,45	6,78	6,94	6,93
	U	W/W	7,50	7,13	7,47	7,13	6,79	7,22	6,97	7,28	7,03	6,82	6,62	6,97	6,75	6,86
SEPR - (EN14825: 2018) High t	temperature with invert	er fans (1)														
	A	W/W	7,41	7,05	6,65	6,29	6,78	6,52	6,34	6,73	6,56	6,31	6,10	6,55	6,32	6,50
SEPR	E	W/W	7,22	6,77	7,10	6,65	6,30	6,89	6,59	6,81	6,69	6,42	6,09	6,28	6,23	6,44
JLI II	N	W/W	7,68	7,36	7,56	7,20	6,78	7,10	6,94	7,15	6,90	6,67	6,45	6,78	6,94	6,93
	U	W/W	7,50	7,13	7,47	7,13	6,79	7,22	6,97	7,28	7,03	6,82	6,62	6,97	6,75	6,86
(1) Calculation performed with	FIXED water flow rate.															
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: P																
SEPR - (EN14825: 2018) High t	temperature with stand	ard fans (1)														
	A	W/W	7,38	7,12	6,67	6,25	6,79	6,49	6,27	6,71	6,49	6,23	5,99	6,51	6,26	6,44
CEDD	E	W/W	7,25	6,73	7,15	6,60	6,20	6,83	6,51	6,84	6,61	6,31	5,99	6,46	6,22	6,34
SEPR	N	W/W	7,71	7,39	7,62	7,22	6,83	7,18	6,91	7,16	6,88	6,63	6,39	6,75	6,90	6,88
	U	W/W	7,57	7,17	7,56	7,16	6,77	7,23	6,97	7,30	7,02	6,78	6,56	6,97	6,71	6,81
SEPR - (EN14825: 2018) High t	temperature with invert	er fans (1)														
	A	W/W	7,38	7,12	6,67	6,25	6,79	6,49	6,27	6,71	6,49	6,23	5,99	6,51	6,26	6,44
CEDD	E	W/W	7,25	6,73	7,15	6,60	6,20	6,83	6,51	6,84	6,61	6,31	5,99	6,46	6,22	6,34
SEPR	N	W/W	7,71	7,39	7,62	7,22	6,83	7,18	6,91	7,16	6,88	6,63	6,39	6,75	6,90	6,88
	U	W/W	7,57	7,17	7,56	7,16	6,77	7,23	6,97	7,30	7,02	6,78	6,56	6,97	6,71	6,81
(1) Calculation performed with	FIXED water flow rate.															
Size	"		4202	4502	4802	5202	5602	600	2 64	102	6503	6703	6903	7203	8403	9603
Model: F																
SEPR - (EN14825: 2018) High t	temperature with stand	ard fans (1)			-											
	A	W/W	6,18	6,40	6,17	5,87	6,04	6,2	4 6,	,13	6,61	6,38	6,69	6,52	6,18	6,44
CEDD	E	W/W	6,52	6,28	6,63	5,98	6,02	6,1	9 6,	,49	6,72	6,84	6,22	6,46	-	-
SEPR	N	W/W	6,65	6,88	7,12	7,03	6,96	6,7	4 6,	,72	7,28	-	-	-	-	-
	U	W/W	6,92	6,60	7,04	6,52	6,54	6,6	8 6,	,83	7,17	7,22	6,87	7,00	-	-
SEPR - (EN14825: 2018) High t	temperature with invert	er fans (1)														
· · ·	A	W/W	6,18	6,40	6,17	5,87	6,04	6,2	4 6,	,13	6,61	6,38	6,69	6,52	6,18	6,44
CEDD	E	W/W	6,52	6,28	6,63	5,98	6,02	6,1	9 6,	,49	6,72	6,84	6,22	6,46	-	-
SEPR	N	W/W	6,65	6,88	7,12	7,03	6,96	6,7	4 6,	,72	7,28	-	-	-	-	-
	U	W/W	6,92	6,60	7.04	6,52	6,54				7,17	7,22	6.87	7.00	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate.

Size			4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: P															
SEPR - (EN14825: 2018) High temperatur	e with standa	ard fans (1)													
	Α	W/W	6,09	6,31	6,06	5,76	5,95	6,14	6,01	6,57	6,32	6,64	6,44	6,13	6,37
SEPR	E	W/W	6,43	6,15	6,50	5,86	5,94	6,11	6,40	6,66	6,78	6,12	6,37	-	-
SEPK	N	W/W	6,59	7,00	7,07	6,99	6,94	6,81	6,68	7,25	-	-	-	-	-
	U	W/W	6,89	6,70	6,99	6,45	6,50	6,66	6,80	7,15	7,19	6,83	6,96	-	-
SEPR - (EN14825: 2018) High temperatur	e with invert	er fans (1)													
	Α	W/W	6,09	6,31	6,06	5,76	5,95	6,14	6,01	6,57	6,32	6,64	6,44	6,13	6,37
SEPR	E	W/W	6,43	6,15	6,50	5,86	5,94	6,11	6,40	6,66	6,78	6,12	6,37	-	-
SERK	N	W/W	6,59	7,00	7,07	6,99	6,94	6,81	6,68	7,25	-	-	-	-	-
	U	W/W	6,89	6,70	6,99	6,45	6,50	6,66	6,80	7,15	7,19	6,83	6,96	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate.

ELECTRIC DATA

ELLCTRIC DATA																
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Electric data																
	Α	Α	243,9	271,9	299,1	332,5	374,4	395,7	417,0	450,2	474,9	474,9	474,9	531,4	579,4	635,9
Maximum current (FLA)	E,U	А	243,9	271,9	307,6	341,0	374,4	404,2	425,5	458,7	483,4	483,4	483,4	539,9	587,9	644,4
	N	Α	252,4	280,4	316,1	349,5	382,9	412,7	434,0	467,2	491,9	491,9	491,9	548,4	604,9	667,2
	A	A	265,5	307,3	350,2	388,2	419,8	466,8	484,0	519,5	529,4	529,4	529,4	661,9	701,8	831,3
Peak current (LRA)	E,U	A	265,5	307,3	358,7	396,7	419,8	475,3	492,5	528,0	537,9	537,9	537,9	670,4	710,3	839,8
	N	A	274,0	315,8	367,2	405,2	428,3	483,8	501,0	536,5	546,4	546,4	546,4	678,9	727,3	862,6
Size	,		4202	4502	4802	5202	5602	2 600	02 64	02	6503	6703	6903	7203	8403	9603
Electric data																
	A	A	683,9	731,4	770,4	813,4	864,9	9 913	,2 94	7,2	980,7	1028,7	1123,7	1162,7	1300,2	1419,2
Maximum current (FLA)	E,U	Α	700,9	739,9	793,2	836,2	887,	7 930	,2 97.	2,7	997,7	1054,2	1132,2	1179,7	-	-
	N	A	715,2	771,2	818,7	870,2	921,7	7 955	,7 98	9,7	1023,2	-	-	-	-	-
	A	A	858,2	930,7	953,4	1108,4	1163,	,9 129	0,2 128	37,2	1069,4	1096,3	1200,0	1222,7	1480,2	1603,2
Peak current (LRA)	E,U	A	875,2	939,2	976,2	1131,2	1186,	,7 130	7,2 131	12,7	1086,4	1121,8	1208,5	1239,7	-	-
	N	A	889,5	970.5	1001.7	1165.2	1220.	.7 133	2.7 132	29.7	1111.9	-	-	-	-	-

GENERAL TECHNICAL DATA

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Compressor																
Туре	A,E,N,U	type							Sa	rew						
Compressor regulation	A,E,N,U	Туре							0n-	-Off						
Number	A,E,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Circuits	A,E,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E,N,U	type							R1.	34a						
	A	kg	31,0	31,0	28,0	31,0	38,0	36,0	38,0	43,0	44,0	44,0	50,0	58,0	55,0	61,0
Deficience and Lond singuist 1 (1)	E	kg	28,0	30,0	45,0	39,0	38,0	46,0	46,0	54,0	54,0	54,0	59,0	66,0	61,0	65,0
Refrigerant load circuit 1 (1)	N	kg	39,0	39,0	46,0	34,0	46,0	54,0	54,0	61,0	61,0	61,0	66,0	66,0	76,0	84,0
	U	kg	31,0	30,0	35,0	34,0	32,0	46,0	46,0	54,0	54,0	54,0	59,0	66,0	61,0	65,0
	A	kg	31,0	31,0	28,0	31,0	42,0	36,0	40,0	45,0	48,0	52,0	55,0	60,0	60,0	61,0
D-6:	E	kg	30,0	30,0	45,0	39,0	42,0	46,0	46,0	54,0	54,0	59,0	59,0	61,0	61,0	77,0
Refrigerant load circuit 2 (1)	N	kg	39,0	39,0	46,0	42,0	50,0	54,0	54,0	61,0	61,0	66,0	66,0	76,0	76,0	84,0
	U	kg	31,0	30,0	35,0	42,0	32,0	46,0	46,0	54,0	54,0	59,0	59,0	61,0	61,0	77,0
System side heat exchanger																
Туре	A,E,N,U	type							Shell a	nd tube						
Number	A,E,N,U	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1

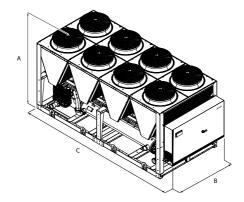
⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

Size		-	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Compressor			1202	1502	1002		3002		0.02		0,05	- 0,05	7205	0.103	
Туре	A,E,N,U	type			-				Screw						
Compressor regulation	A,E,N,U	Туре							On-Off						
	A	no.	2	2	2	2	2	2	2	3	3	3	3	3	3
Number	E,U	no.	2	2	2	2	2	2	2	3	3	3	3	-	-
	N	no.	2	2	2	2	2	2	2	3	-	-	-	-	-
	A	no.	2	2	2	2	2	2	2	3	3	3	3	3	3
Circuits	E,U	no.	2	2	2	2	2	2	2	3	3	3	3	-	-
	N	no.	2	2	2	2	2	2	2	3	-	-	-	-	-
Refrigerant	A,E,N,U	type			_				R134a						
	A	kg	64,0	70,0	68,0	69,0	76,0	84,0	84,0	61,0	61,0	72,0	69,0	78,0	84,0
Refrigerant load circuit 1 (1)	E,U	kg	76,0	75,0	84,0	76,0	91,0	91,0	106,0	65,0	76,0	76,0	84,0	-	-
	N	kg	84,0	91,0	106,0	106,0	121,0	121,0	121,0	84,0	-	-	-	-	-
	A	kg	74,0	80,0	83,0	69,0	76,0	84,0	84,0	61,0	61,0	79,0	69,0	87,0	84,0
Refrigerant load circuit 2 (1)	E,U	kg	76,0	85,0	84,0	91,0	91,0	106,0	106,0	70,0	76,0	76,0	84,0	-	-
	N	kg	84,0	106,0	106,0	121,0	121,0	121,0	121,0	84,0	-	-	-	-	-
	A	kg	-	-	-	-	-	-	-	61,0	61,0	73,0	76,0	75,0	91,0
Refrigerant load circuit 3 (1)	E,U	kg	-	-	-	-	-	-	-	70,0	76,0	76,0	76,0	-	-
	N	kg	-	-	-	-	-	-	-	91,0	-	-	-	-	
System side heat exchanger	4 = 47								ci ii · ·						
Туре	A,E,N,U	type							Shell and tube			-		-	
N 1	A	no.	1	1	1	1	1	1	1	2	2	2	2	2	2
Number	E,U	no.	1	1	1	1	2	2	2	2	2	2	2	-	
(4) The Lead 12 december 2015	N N	no.	1	2	2	2	2	2	2	2	-	-	-	-	
(1) The load indicated in the table is an estim	nated and preiii	minary value													
Size			1402	1602	1802	2002	2202	2352 2	502 265	2 2802	3002	3202	3402	3602	3902
Integrated hydronic kit: 00															
Hydraulic connections														-	
Connections (in/out)	A,E,N,U	Туре					-"		Grooved joints						
6. (1)	A	Ø	5"	5"	5"	5"	5"		5" 6"		6"	6"	6"	6"	6"
Size (in)	E,U	Ø	5"	5"	5"	5"	5"		6" 6"		6"	6"	6"	6"	6"
	N A	Ø	5"	5"	6" 5"	6" 5"	6"		6" 6"		6"	6"	6"	6"	6"
Cina (aus)	A	Ø	5"	5″ 5″		5"	5"		5" 6"		6"	6"	6"	6"	6"
Size (out)	E,UN	Ø	5″ 5″	5"	5" 6"	- 5 6"	5" 6"		6" 6" 6" 6"		6" 6"	6" 6"	6" 6"	6" 6"	6"
	. IN	U U													
Size			4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Integrated hydronic kit: 00															
Hydraulic connections															
Connections (in/out)	A,E,N,U	Туре							Grooved joints						
6 : 6 :)	A	Ø	6"	6"	6"	6"	6"	6"	6"	-	-	-	-	-	
Size (in)	E,U	Ø	6"	6"	6"	6"	-	-	-	-	-	-	-	-	-
	N A	Ø	6" 6"	- 6"	- 6"	8"	8"	8"	8"	-	-	-	-	-	-
Size (out)								δ	8		-				
Size (out)	E,UN	Ø Ø	6" 6"	6"	8"	8"			-			-	-	-	-
Module 1	IV	V	0						-						
mouule I	A	Ø		-		-				6"	6"	6"	6"	6"	6"
Size (in)	E,U	Ø	-	-		-	6"	6"	6"	6"	6"	6"	6"	-	-
JIEC (III)	N N	Ø		6"	6"	6"	6"	6"	6"	6"	-	-	-		
	A	Ø		-	-	-	-	-	-	6"	6"	6"	6"	8"	8"
Size (out)	E,U	Ø	-	-		-	6"	6"	6"	6"	6"	6"	8"	-	-
()	N	Ø	-	6"	6"	6"	6"	6"	6"	6"	-	-	-	-	
Module 2			-							-					
	A	Ø	-	-	-	-	-	-	-	5″	5"	5″	5"	5"	6"
Size (in)	E,U	Ø	-	-	-	-	6"	6"	6"	5"	5"	5"	5"	-	-
•	N	Ø	-	6"	6"	6"	6"	6"	6"	6"	-	-	-	-	-
	A	Ø	-	-	-	-	-	-	-	5"	5"	5"	5"	5"	6"
Size (out)	E,U	Ø	-	-	-	-	6"	6"	6"	5″	5"	5"	5″	-	-
	N	Ø	-	6"	6"	6"	6"	6"	6"	6"	-	-	-	-	-

SOUND DATA

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Sound data calculated in cooling mode (1)															
_	Α	dB(A)	98,0	98,0	98,0	98,0	99,0	99,0	99,0	99,7	99,7	99,7	99,7	100,4	100,4	101,1
Cound nower level	E	dB(A)	91,0	91,0	91,7	91,9	92,1	92,6	92,5	93,0	93,0	93,0	93,0	93,7	93,9	94,6
ound power level –	N	dB(A)	91,7	91,7	92,3	92,5	92,6	93,1	93,0	93,5	93,5	93,5	93,5	94,1	94,6	95,2
· .	U	dB(A)	98,0	98,0	98,9	99,0	99,0	99,7	99,7	100,4	100,4	100,4	100,4	100,9	101,0	101,5
_	Α	dB(A)	65,6	65,6	65,6	65,6	66,4	66,4	66,4	67,1	67,1	67,1	67,1	67,6	67,7	68,2
Cound procesure level (10 m)	E	dB(A)	58,6	58,6	59,2	59,4	59,5	59,9	59,9	60,3	60,3	60,3	60,3	60,8	61,0	61,6
ound pressure level (10 m)	N	dB(A)	59,2	59,2	59,7	59,9	60,0	60,3	60,3	60,6	60,6	60,6	60,6	61,1	61,5	62,0
	U	dB(A)	65,6	65,6	66,4	66,4	66,4	67,1	67,1	67,6	67,6	67,6	67,6	68,1	68,1	68,5

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).


Size			4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Sound data calculated in cooling mode (1)															
	Α	dB(A)	101,1	101,6	101,6	101,6	102,1	102,5	102,5	102,7	102,8	103,4	103,4	103,7	104,2
Causad a access laccad	E	dB(A)	95,2	95,2	95,4	95,6	96,0	96,2	96,4	96,0	96,5	96,4	96,6	-	-
Sound power level —	N	dB(A)	95,5	96,0	96,2	96,6	96,9	96,9	96,9	96,7	-	-	-	-	-
_	U	dB(A)	102,0	102,0	102,4	102,4	102,8	103,1	103,4	103,4	103,7	103,7	103,9	-	-
	Α	dB(A)	68,2	68,6	68,6	68,6	69,0	69,2	69,2	69,4	69,4	69,8	69,8	70,0	70,4
	E	dB(A)	62,1	62,0	62,2	62,3	62,7	62,8	62,9	62,5	62,8	62,8	62,8	-	-
Sound pressure level (10 m) —	N	dB(A)	62,3	62,5	62,6	62,9	63,1	63,1	63,1	62,8	-	-	-	-	-
_	U	dB(A)	68,9	68,9	69,1	69,2	69,5	69,7	69,9	69,8	70,0	70,0	70,2	-	-

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

EANS DATA

FANS DATA																
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: F																
Fan																
Туре	A,E,N,U	type							A	kial						
	A	no.	8	8	8	8	10	10	10	12	12	12	12	14	14	16
Number	E,U	no.	8	8	10	10	10	12	12	14	14	14	14	16	16	18
	N	no.	10	10	12	12	12	14	14	16	16	16	16	18	20	22
	A	m³/h	116000	116000	116000	116000	145000	145000	145000	174000	174000	174000	174000	203000	203000	232000
Air flow rate	E	m³/h	89600	89600	112000	112000	112000	134400	134400	156800	156800	156800	156800	179200	179200	201600
7.11 11011 1412	N	m³/h	112000	112000	134400	134400	134400	156800	156800	179200	179200	179200	179200	201600	224000	246400
	U	m³/h	116000	116000	145000	145000	145000	174000	174000	203000	203000	203000	203000	232000	232000	261000
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: P	'															
Fan																
Туре	A,E,N,U	type							A	kial						
	A	no.	8	8	8	8	10	10	10	12	12	12	12	14	14	16
Number	E,U	no.	8	8	10	10	10	12	12	14	14	14	14	16	16	18
	N	no.	10	10	12	12	12	14	14	16	16	16	16	18	20	22
	A	m³/h	109600	109600	109600	109600	137000	137000	137000	164400	164400	164400	164400	191800	191800	219200
Air flow rate	E	m³/h	85600	85600	107000	107000	107000	128400	128400	149800	149800	149800	149800	171200	171200	192600
All flow fate	N	m³/h	107000	107000	128400	128400	128400	149800	149800	171200	171200	171200	171200	192600	214000	235400
	U	m³/h	109600	109600	137000	137000	137000	164400	164400	191800	191800	191800	191800	219200	219200	246600
Size	,		4202	4502	4802	5202	560	2 60	02 6	402 (5503	6703	6903	7203	8403	9603
Model: F	'															
Fan																
Туре	A,E,N,U	type							A	xial						
	A	no.	16	18	18	18	20) 2	2	22	24	24	28	28	30	34
Number	E,U	no.	20	20	22	22	24	2	6	28	28	30	30	32	-	-
	N	no.	22	26	28	30	32	! 3	2	32	34	-	-	-	-	-
	A	m³/h	232000	261000	261000	26100	0 2900	00 319	000 31	9000 34	18000 3	348000	406000	406000	435000	493000
Air flow rate	E	m³/h	224000	224000	246400	24640	0 2688	00 291	200 31	3600 3	13600 3	36000	336000	358400	-	-
All flow fate	N	m³/h	246400	291200	313600	33600	0 3584	00 358	400 35	8400 38	30800	-	-	-	-	-
	U	m³/h	290000	290000	319000	31900	0 3480	00 377	000 40	6000 4	06000 4	135000	435000	464000	-	-
Size	'		4202	4502	4802	5202	560	2 60	02 6	402 (5503	6703	6903	7203	8403	9603
Model: P	·															
Fan																
Туре	A,E,N,U	type							A	xial						
	A	no.	16	18	18	18	20	2	2	22	24	24	28	28	30	34
Number	E,U	no.	20	20	22	22	24	2	6	28	28	30	30	32	-	-
	N	no.	22	26	28	30	32	. 3	2	32	34	-	-	-	-	-
	A	m³/h	219200	246600	246600	24660	0 2740	00 301	400 30	1400 32	28800 3	328800	383600	383600	411000	465800
Air flour rate	E	m³/h	214000	214000	235400	23540	0 2568	00 278	200 29	9600 2	99600 3	321000	321000	342400	-	-
Air flow rate	E N	m³/h m³/h	214000 235400	214000 278200	235400 299600						99600 3 63800	321000	321000	342400	-	-

DIMENSIONS

<u>c'</u>			1402	1603	1003	2002	2202	2252	2502	3453	2002	3003	2202	3403	3603	
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Dimensions and weights																
A	A,E,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	A	mm	5160	5160	5160	5160	6350	6350	6350	7140	7140	7140	7140	8330	8330	9520
(E,U	mm	5160	5160	6350	6350	6350	7140	7140	8330	8330	8330	8330	9520	9520	10710
	N	mm	6350	6350	7140	7140	7140	8330	8330	9520	9520	9520	9520	10710	11900	13090
Size			4202	4502	4802	5202	5602	. 600)2 6	402	6503	6703	6903	7203	8403	9603
Dimensions and weights	'															
	A	mm	2450	2450	2450	2450	2450	245	50 2	2450	2450	2450	2450	2450	2450	2450
A	E,U	mm	2450	2450	2450	2450	2450	245	50 2	2450	2450	2450	2450	2450	-	-
	N	mm	2450	2450	2450	2450	2450	245	50 2	2450	2450	-	-	-	-	-
	A	mm	2200	2200	2200	2200	2200	220	00 2	2200	2200	2200	2200	2200	2200	2200
В	E,U	mm	2200	2200	2200	2200	2200	220	00 2	200	2200	2200	2200	2200	-	-
	N	mm	2200	2200	2200	2200	2200	220	00 2	200	2200	-	-	-	-	-
	A	mm	9520	10710	10710	10710	11900) 130	90 1	3090	14280	14280	16660	16660	17850	20230
(E,U	mm	11900	11900	13090	13090	14280) 154	70 1	6660	16660	17850	17850	19040	-	-
	N	mm	13090	15470	16660	17850	19040) 190	40 1	9040	20230	-	-	-	-	-

For transport reasons, the units with the depth of more than 13090 mm are shipped separately. For more information, please refer to the technical manual and / or installation.

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: F																
Single module unit																
	A	kg	4695	4730	4870	5200	6065	6080	6285	6950	7145	7200	7300	8500	8975	9590
Empty weight	E,U	kg	4855	4875	5435	6025	6380	7025	7045	7625	7715	7785	7880	9145	9605	10475
	N	kg	5370	5390	6065	6655	7010	7560	7585	8175	8265	8340	8430	9930	10905	11630
Size			4202	4502	4802	5202	5602	600)2 6	402	6503	6703	6903	7203	8403	9603
Model: F			'									'				
Single module unit																
	A	kg	9655	10475	10525	10945	11580	122	65 12	305	-	-	-	-	-	-
Empty weight	E,U	kg	11070	11130	12135	12260	-	-		-	-	-	-	-	-	-
	N	kg	11700	-	-	-	-	-		-	-	-	-	-	-	-
Bimodule unit					-											
	Α	kg	-	-	-	-	-	-		-	9590	9655	10475	10525	11580	12305
Empty weight module 1	E,U	kg	-	-	-	-	6630	663	30 7	170	10475	11070	11130	12135	-	-
	N	kg	-	6210	6995	6995	7730	773	30 7	775	11630	-	-	-	-	-
	A	kg	-	-	-	-	-	-		-	5225	5225	5765	5765	5930	6590
Empty weight module 2	E,U	kg	-	-	-	-	6630	717	0 7	170	5755	5755	5810	5820	-	-
• • •	N	kg	-	6995	6995	7730	7730	777	5 7	775	6455	-	-	-	-	-

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577

www.aermec.com

NSM 1402-9603 B

Air-cooled chiller with free cooling (glycol-free)

Cooling capacity 305,8 ÷ 2028,1 kW

- Microchannel coil
- Night mode
- Operation up to 50 °C outdoor air
- · High efficiency also at partial loads

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

These are outdoor units with screw compressors, axial fans, micro-channel coils, and shell and tube heat exchangers

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to $50\,^{\circ}\text{C}$ external air temperature depending on the size and vesion. For more information refer to the dedicated documentations or the selection program Magellano.

Unit with 2/3 cooling circuits

Unit with 2/3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode.

Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The

compressors are completely shut down, if possible, leading to considerable electrical savings.

Free cooling with glycol water

Intermediate plate heat exchanger that creates two circuits:

- 1. Glycol hydraulic circuit (glycol is added to protect the coil from freezing).
- 2. Primary hydraulic circuit for glycol-free systems.

Electronic expansion valve

Electronic thermostatic as standard from size 5202 to 6402 and from 8403 to 9603.

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

CONTROL

Units include 1 control board for each compressor.

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night mode: only in the non-silenced versions is it possible to set a silenced operating mode, which is useful for example at night for greater acoustic comfort but always guarantees performance even at peak load times.
- Possibility to control two units in a Master-Slave configuration (from size 1402 to 6402)

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save

673

a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

KRS: Electric heater for the heat exchanger

AK: Acoustic kit that lowers the noise level even further, thanks to the special coating on the panelling or on those components that produce the most noise in the unit. Available for the low noise version only.

KDI: Double thickness evaporator insulation. Provides stand-still protection down to -20°C. Must be ordered in conjunction with options KRS.

ACCESSORIES COMPATIBILITY

Model	Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
AER485P1 x no. 2	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP x no. 2	A,E,N,U		•	•		•	•	•	•	•	•	•			•
AERNET	A,E,N,U	•	•	•	•	•	•		•	•	•	•	•	•	•
MULTICHILLER-EVO	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PRV3	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	
Model	Ver	4202	4502	4802	5202	5602	6002	. 64	102	6503	6703	6903	7203	8403	9603
AER485P1 x no. 2	A,E,N,U	•	•	•	•	•	•								
	A									•	•	•	•	•	•
AER485P1 x no. 3	E,U										•	•	•		
	N									•					
AERBACP x no. 2	A,E,N,U	•	•	•	•	•	•		•						
	A										•	•	•	•	
AERBACP x no. 3	E,U									•	•	•	•		
	N														
	A	•	•	•	•	•	•		•	•	•	•	•	•	•
AERNET	E,U	•	•	•	•	•	•		•	•	•	•	•		
	N	•	•		•	•			•	•					-
	A	•	•	•	•	•	•			•	•	•	•	•	•
MULTICHILLER-EVO	E,U	•	•	•	•	•	•		•	•	•	•	•		
	N	•	•	•	•	•	•			•					
	A			•	•	•					•	•	•	•	
PRV3	E,U														

Antivibration

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Α	AVX929	AVX929	AVX929	AVX932	AVX933	AVX933	AVX933	AVX934	AVX937	AVX937	AVX937	AVX938	AVX938	AVX942
E, U	AVX929	AVX929	AVX930	AVX933	AVX933	AVX934	AVX934	AVX935	AVX935	AVX935	AVX935	AVX939	AVX939	AVX940
N	AVX930	AVX930	AVX931	AVX931	AVX934	AVX935	AVX935	AVX936	AVX936	AVX936	AVX936	AVX940	AVX941	AVX943
Ver	4202	4502	4802	5202	5602	6002	640)2 6	503	6703	6903	7203	8403	9603
Ver A	4202 AVX942	4502 AVX944	4802 AVX944	5202 AVX944	5602 AVX945					6703 AVX953	6903 AVX957	7203 AVX954	8403 AVX956	9603 AVX955
Ver A E, U						AVX94	7 AVXS	947 AV						

The accessory cannot be fitted on the configurations indicated with -

Power factor correction

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802
A	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002Q	RIFNSM2202Q	RIFNSM2352Q	RIFNSM2502Q	RIFNSM2652Q	RIFNSM2802C
E	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002Q	RIFNSM2202Q	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C
N	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802C	RIFNSM2002Q	RIFNSM2202C	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C
U	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002C	RIFNSM2202Q	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C

A grey background indicates the accessory must be assembled in the factory

Ver	3002	3202	3402	3602	3902	4202	4502	4802	5202
A, E, U	RIFNSM3002C	RIFNSM3202C	RIFNSM3402C	RIFNSM3602C	RIFNSM3902C	RIFNSM4202C	RIFNSM4502C	RIFNSM4802C	RIFNSM5202C
N	RIFNSM3002C	RIFNSM3202C	RIFNSM3402C	RIFNSM3602C	RIFNSM3902C	RIFNSM4202C	-	-	-

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	5602	6002	6402	6503	6703	6903	7203	8403	9603
A	RIFNSM5602C	RIFNSM6002C	RIFNSM6402C	-	-	-	-	-	-

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Α	GP4V	GP4V	GP4V	GP4V	GP5V	GP5V	GP5V	GP6V	GP6V	GP6V	GP6V	GP7V	GP7V	GP8V
E, U	GP4V	GP4V	GP5V	GP5V	GP5V	GP6V	GP6V	GP7V	GP7V	GP7V	GP7V	GP8V	GP8V	GP9V
N	GP5V	GP5V	GP6V	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V	GP8V	GP8V	GP9V	GP10V	GP11V

A grey background indicates the accessory must be assembled in the factory

Ver	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
A	GP8V	GP9V	GP9V	GP9V	GP10V	GP11V	GP11V	GP4V+GP8V	GP4V+GP8V	GP5V+GP9V	GP5V+GP9V	GP5V+GP10V	GP6V+GP11V
E, U	GP10V	GP10V	GP11V	GP11V	GP6V+GP6V	GP6V+GP7V	GP7V+GP7V	GP5V+GP9V	GP5V+GP10V	GP5V+GP10V	GP6V+GP11V	-	-
N	GP11V	GP6V+GP7V	GP7V+GP7V	GP7V+GP8V	GP8V+GP8V	GP8V+GP8V	GP8V+GP8V	GP6V+GP11V	-	-	-	-	-

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Heater exchangers

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802
A	KRS22	KRS22	KRS23						
E. N. U	KRS23								

A grey background indicates the accessory must be assembled in the factory

Ver	3002	3202	3402	3602	3902	4202	4502	4802	5202
A, E, U	KRS23	KRS23	KRS24	KRS24	KRS24	KRS24	KRS24	KRS24	KRS24
N	KRS23	KRS23	KRS24	KRS24	KRS24	KRS24	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23

A grey background indicates the accessory must be assembled in the factory

Ver	5602	6002	6402	6503	6703	6903	7203	8403	9603
A	KRS24	KRS24	KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24
E, U	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	-	-
N	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS24	-	-	-	-	-

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Acoustic kit

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
E, N	AK (1)													

(1) Available only in low noise version A grey background indicates the accessory must be assembled in the factory

Ver	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
E, N	AK (1)												

⁽¹⁾ Available only in low noise version

Double thickness evaporator insulation

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
A, E, N, U	KDI (1)													

(1) Contact us.

À grey background indicates the accessory must be assembled in the factory

<u> </u>			,										
Ver	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
AFNII	KDI (1)												

CONFIGURATOR

Field	Description
1,2,3	NSM
4,5,6,7	Size 1402, 1602, 1802, 2002, 2202, 2352, 2502, 2652, 2802, 3002, 3202, 3402, 3602, 3902, 4202, 4502, 4802, 5202, 5602, 6002, 6402, 6503, 6703, 6903, 7203, 8403, 9603
8	Operating field
Х	Electronic thermostatic expansion valve (1)
Υ	Low temperature mechanic thermostatic valve (2)
Z	Low temperature electronic thermostatic valve (2)
0	Standard mechanic thermostatic valve (3)
9	Model
B	Free-cooling glycol free
G	Free-cooling glycol free plus (4)
10	Heat recovery
D	Desuperheater
۰	Without heat recovery
11	Version
Α	High efficiency
E	Silenced high efficiency
N	Silenced very high efficiency
U	Very high efficiency

Field	Description
12	Coils / free-cooling coils
0	Painted alluminium microchannel / Copper painted aluminium
R	Copper-copper/Copper-copper
S	Copper-Tinned copper / Copper -Tinned copper
٧	Copper-painted alumimium / Copper-painted alumimium
0	Alluminium microchannel / Copper - aluminium
13	Fans
J	Inverter
0	Standard
14	Power supply
2	230V ~ 3 50Hz with fuses (5)
4	230V ~ 3 50Hz with magnet circuit breakers (5)
8	400V ~ 3 50Hz with magnet circuit breakers
0	400V ~ 3 50Hz with fuses
15,16	Integrated hydronic kit
00	Without hydronic kit

- (1) Water produced up to +4 °C (2) Water produced from +4 °C ÷ -6 °C (3) Water produced up to +4 °C. (4) The Free cooling Plus "G" models are only compatible with "°" and "0" coils. (5) Available only for size from 1402 to 2202

A grey background indicates the accessory must be assembled in the factory

⁽¹⁾ Contact us.
A grey background indicates the accessory must be assembled in the factory

PERFORMANCE SPECIFICATIONS

NSM - A															
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: B															
Cooling performance chiller operation (1)															
Cooling capacity	kW	306,5	350,2	396,8	450,5	505,3	522,5	556,5	600,8	649,8	678,4	726,3	813,3	872,8	954,1
Input power	kW	102,8	117,6	136,7	158,3	168,9	180,5	194,5	203,0	220,4	235,0	252,8	269,7	295,6	317,9
Cooling total input current	А	182,0	206,0	231,0	268,0	291,0	311,0	335,0	351,0	378,0	400,0	427,0	451,0	487,0	530,0
EER	W/W	2,98	2,98	2,90	2,85	2,99	2,90	2,86	2,96	2,95	2,89	2,87	3,02	2,95	3,00
Water flow rate system side	I/h	52653	60163	68174	77407	86812	89765	95621	103224	111642	116561	124785	139737	149957	163932
Pressure drop system side	kPa	73	94	100	72	90	96	108	107	117	100	94	81	93	112
Cooling performances with free-cooling glycol-fre	e (2)														
Cooling capacity	kW	201,2	207,2	212,6	221,0	271,8	273,9	277,4	334,0	337,2	352,7	355,8	414,1	417,7	460,7
Input power	kW	18,5	18,5	18,5	18,5	24,6	24,6	24,6	32,7	32,7	32,9	32,9	38,1	38,1	42,0
Free cooling total input current	А	33,0	32,0	31,0	31,0	42,0	42,0	42,0	57,0	56,0	56,0	56,0	64,0	63,0	70,0
EER	W/W	10,87	11,19	11,48	11,92	11,06	11,14	11,28	10,20	10,30	10,71	10,81	10,86	10,95	10,97
(1) System side water heat exchanger 12 °C/7 °C; Exte						1	1 100/								
(2) System side water heat exchanger 12 °C / * °C; Ex	ternai air 2 °	C; glycol nyc	iraulic circu	it 30%; prir	nary nyara	ulic circuit g	јусој 0%.								
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: G															
Cooling performance chiller operation (1)															
Cooling capacity	kW	305,8	349,3	395,0	447,3	502,1	519,1	552,6	597,2	645,4	674,3	721,9	807,8	865,0	946,8
Input power	kW	103,7	118,8	138,1	160,2	170,8	182,6	197,0	205,3	223,1	238,4	257,1	273,3	299,3	321,8
Cooling total input current	A	184,0	208,0	233,0	271,0	294,0	315,0	339,0	355,0	382,0	405,0	433,0	456,0	492,0	536,0
EER	W/W	2,95	2,94	2,86	2,79	2,94	2,84	2,81	2,91	2,89	2,83	2,81	2,96	2,89	2,94
Water flow rate system side	l/h	52546	60019	67864	76853	86266	89180	94948	102598	110891	115859	124023	138789	148609	162675
Pressure drop system side	kPa	48	64	74	62	78	84	95	70	74	81	74	86	98	68
Cooling performances with free-cooling glycol-free	e (2)														
Cooling capacity	kW	213,5	220,0	226,6	237,8	288,8	291,7	294,5	353,1	360,2	374,3	378,1	439,1	443,5	495,5
Input power	kW	18,3	18,3	18,3	18,3	24,2	24,2	24,2	32,1	32,1	32,3	32,3	37,4	37,4	41,3
Free cooling total input current	Α	32,0	32,0	31,0	31,0	42,0	42,0	42,0	55,0	55,0	55,0	54,0	62,0	61,0	69,0
EER	W/W	11,68	12,03	12,39	12,99	11,92	12,04	12,16	11,00	11,22	11,59	11,71	11,74	11,86	12,00

NSM - A

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: B														
Cooling performance chiller operation (1)														
Cooling capacity	kW	996,8	1082,3	1128,3	1167,3	1222,8	1304,9	1346,7	1459,2	1501,9	1659,0	1705,0	1838,1	2028,1
Input power	kW	346,1	365,7	391,9	422,5	438,9	452,7	472,4	492,1	520,2	557,2	583,3	659,0	704,1
Cooling total input current	A	581,0	614,0	655,0	704,0	733,0	761,0	796,0	821,0	872,0	945,0	986,0	1100,0	1198,0
EER	W/W	2,88	2,96	2,88	2,76	2,79	2,88	2,85	2,97	2,89	2,98	2,92	2,79	2,88
Water flow rate system side	l/h	171269	185947	193855	200561	210092	224201	231379	250713	258050	285029	292937	315803	348457
Pressure drop system side	kPa	122	132	143	116	109	125	133	112	127	132	143	108	135
Cooling performances with free-cooling glycol-fre	e (2)													
Cooling capacity	kW	464,4	522,4	524,0	526,5	571,2	612,5	614,9	684,4	688,1	798,8	801,4	867,6	965,2
Input power	kW	42,0	46,2	46,2	46,2	50,1	53,8	53,9	60,5	60,5	70,7	70,8	78,9	86,8
Free cooling total input current	A	71,0	77,0	77,0	77,0	84,0	91,0	91,0	101,0	101,0	120,0	120,0	132,0	148,0
EER	W/W	11.06	11,32	11.35	11,41	11.41	11.38	11,41	11,31	11.37	11.29	11,32	10,99	11,12

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: G														
Cooling performance chiller operation (1)														
Cooling capacity	kW	988,7	1074,2	1119,1	1156,4	1212,7	1295,2	1336,2	1447,7	1489,6	1646,9	1691,9	1822,8	2013,1
Input power	kW	350,6	370,3	397,1	428,3	444,3	458,0	478,2	498,2	527,1	564,0	590,8	667,1	712,4
Cooling total input current	Α	588,0	621,0	663,0	713,0	741,0	769,0	805,0	830,0	882,0	956,0	998,0	1112,0	1211,0
EER	W/W	2,82	2,90	2,82	2,70	2,73	2,83	2,79	2,91	2,83	2,92	2,86	2,73	2,83
Water flow rate system side	l/h	169873	184553	192278	198678	208362	222522	229577	248739	255937	282961	290686	313186	345875
Pressure drop system side	kPa	74	91	98	86	95	109	116	84	84	110	110	101	116
Cooling performances with free-cooling glycol-fre	e (2)													
Cooling capacity	kW	500,3	559,0	564,4	569,9	610,4	656,1	662,5	737,9	742,7	856,4	861,8	926,6	1037,6
Input power	kW	41,3	45,5	45,5	45,5	49,3	53,1	53,1	59,6	59,6	69,7	69,7	77,6	85,4
Free cooling total input current	A	69,0	76,0	76,0	76,0	82,0	89,0	89,0	99,0	100,0	118,0	118,0	129,0	145,0
EER	W/W	12,12	12,30	12,42	12,54	12,38	12,36	12,48	12,38	12,46	12,29	12,37	11,95	12,15

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-coling 0% (2) System side water heat exchanger 12 °C/7 °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

NSM - E

INDINI - E															
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: B															
Cooling performance chiller operation (1)															
Cooling capacity	kW	319,8	365,8	417,7	473,0	509,1	549,8	568,8	618,6	646,3	675,1	715,5	796,7	851,7	929,6
Input power	kW	105,5	123,3	137,5	159,4	178,3	183,3	195,5	205,2	220,4	235,9	253,5	270,8	297,1	320,1
Cooling total input current	Α	177,0	206,0	223,0	261,0	295,0	305,0	326,0	342,0	365,0	389,0	415,0	438,0	474,0	517,0
EER	W/W	3,03	2,97	3,04	2,97	2,85	3,00	2,91	3,01	2,93	2,86	2,82	2,94	2,87	2,90
Water flow rate system side	I/h	54946	62848	71763	81260	87462	94455	97732	106280	111042	115993	122937	136886	146332	159723
Pressure drop system side	kPa	62	76	84	78	90	88	94	100	109	91	94	80	92	110
Cooling performances with free-cooling glycol-fr	ee (2)														
Cooling capacity	kW	186,6	192,0	231,5	241,7	246,1	294,5	297,3	334,0	337,2	351,6	354,9	403,7	407,3	448,1
Input power	kW	15,5	15,5	19,5	19,6	19,6	26,8	26,8	30,6	30,6	31,0	31,0	34,0	34,0	36,8
Free cooling total input current	Α	26,0	26,0	32,0	32,0	32,0	44,0	45,0	51,0	51,0	51,0	51,0	55,0	54,0	59,0
EER	W/W	12,01	12,36	11,89	12,34	12,57	11,01	11,11	10,92	11,03	11,35	11,45	11,88	11,98	12,18
(1) System side water heat exchanger 12 °C/7 °C; Ext (2) System side water heat exchanger 12 °C/* °C; Ex						ulic circuit g	ılycol 0%.								
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: G															
Cooling performance chiller operation (1)															
Cooling capacity	kW	316,7	363,1	414,5	469,5	504,1	545,4	564,0	613,8	640,8	669,8	710,9	790,6	843,5	921,3
Input power	kW	106,6	124,7	138,6	161,1	181,0	185,4	197,8	207,6	223,1	239,2	257,8	274,6	301,1	324,4
Cooling total input current	Α	179,0	208,0	225,0	263,0	298,0	308,0	329,0	345,0	369,0	393,0	421,0	443,0	480,0	523,0
EER	W/W	2,97	2,91	2,99	2,91	2,79	2,94	2,85	2,96	2,87	2,80	2,76	2,88	2,80	2,84
Water flow rate system side	I/h	54406	62391	71215	80666	86616	93710	96910	105465	110105	115087	122135	135840	144915	158291
Pressure drop system side	kPa	36	42	54	66	76	54	58	59	65	71	73	47	54	66
Cooling performances with free-cooling glycol-fr	ee (2)														
Cooling capacity	kW	197,2	203,1	242,3	255,6	258,0	307,4	310,5	349,3	352,8	266,5	373,6	421,8	425,7	470,1
Input power	kW	15,2	15,2	19,1	19,2	19,2	26,1	26,1	29,9	29,9	30,3	30,3	33,3	33,3	36,1

W/W

26,0

12,94

25,0

13,32

31,0

12,67

31,0

13,29

32,0

13,42

43,0

11,76

44,0

11,88

50,0

11,68

50,0

11,79

50,0

12,11

49,0

12,35

54,0

12,68

53,0

12,80

58,0

13,02

NSM - E

EER

Free cooling total input current

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: B														
Cooling performance chiller operation (1)														
Cooling capacity	kW	995,2	1051,6	1137,0	1159,2	1217,3	1279,4	1341,6	1434,0	1499,6	1598,6	1684,0	-	-
Input power	kW	339,9	370,0	389,4	418,0	436,6	448,9	461,2	491,1	510,9	568,9	588,3	-	-
Cooling total input current	A	555,0	601,0	632,0	678,0	708,0	732,0	755,0	804,0	832,0	924,0	945,0	-	-
EER	W/W	2,93	2,84	2,92	2,77	2,79	2,85	2,91	2,92	2,93	2,81	2,86	-	-
Water flow rate system side	l/h	170980	180685	195353	199172	209139	219823	230507	246385	257643	274665	289333	-	-
Pressure drop system side	kPa	125	128	130	135	84	115	112	110	121	121	130	-	-
Cooling performances with free-cooling glycol-fro	ee (2)													
Cooling capacity	kW	495,6	509,3	549,8	551,2	600,1	640,5	682,5	692,0	739,5	761,7	802,2	-	-
Input power	kW	44,0	44,2	46,9	47,0	53,5	57,3	61,5	56,4	63,5	65,6	68,4	-	-
Free cooling total input current	A	72,0	72,0	76,0	76,0	87,0	93,0	100,0	92,0	104,0	107,0	110,0	-	-
EER	W/W	11,27	11,54	11,72	11,73	11,22	11,17	11,14	12,27	11,64	11,60	11,72	-	-
,														

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: G														
Cooling performance chiller operation (1)														
Cooling capacity	kW	987,5	1041,9	1127,1	1148,0	1206,7	1269,3	1332,0	1421,7	1487,9	1583,2	1668,4	-	-
Input power	kW	344,2	375,3	394,8	424,0	442,2	454,4	466,6	497,6	517,4	577,4	596,9	-	-
Cooling total input current	Α	561,0	609,0	640,0	687,0	717,0	740,0	763,0	814,0	842,0	937,0	957,0	-	-
EER	W/W	2,87	2,78	2,86	2,71	2,73	2,79	2,85	2,86	2,88	2,74	2,80	-	-
Water flow rate system side	l/h	169667	179011	193651	197235	207320	218083	228846	244269	255645	272005	286645	-	-
Pressure drop system side	kPa	76	87	83	86	58	70	70	86	86	100	100	-	-
Cooling performances with free-cooling glycol-free	(2)													
Cooling capacity	kW	523,4	531,6	576,1	581,5	627,1	669,8	712,5	728,1	781,4	795,8	840,2	-	-
Input power	kW	43,0	43,1	46,0	46,0	52,3	56,1	59,8	55,3	62,2	64,2	67,0	-	-
Free cooling total input current	A	70,0	70,0	74,0	74,0	85,0	91,0	98,0	91,0	101,0	104,0	107,0	-	-
EER	W/W	12,17	12,32	12,53	12,65	11,99	11,95	11,91	13,16	12,55	12,40	12,54	-	-

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

NSWI - U															
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: B															
Cooling performance chiller operation (1)															
Cooling capacity	kW	328,1	378,5	429,3	491,9	531,3	568,6	589,0	638,0	667,8	695,1	735,8	824,8	891,0	967,9
Input power	kW	105,3	121,3	136,2	155,8	172,9	180,0	191,0	202,4	216,1	228,4	242,4	263,0	288,2	311,5
Cooling total input current	Α	186,0	212,0	232,0	266,0	297,0	313,0	332,0	353,0	374,0	392,0	413,0	443,0	477,0	523,0
EER	W/W	3,12	3,12	3,15	3,16	3,07	3,16	3,08	3,15	3,09	3,04	3,04	3,14	3,09	3,11
Water flow rate system side	l/h	56372	65027	73755	84508	91287	97691	101204	109611	114731	119419	126414	141715	153088	166304
Pressure drop system side	kPa	66	81	88	83	96	93	99	106	88	95	87	85	99	117
Cooling performances with free-cooling glycol-f	ree (2)														
Cooling capacity	kW	207,3	213,5	254,5	275,3	278,0	330,7	333,2	373,6	391,6	395,4	406,8	452,9	456,9	499,3
Input power	kW	19,5	19,5	24,5	26,5	26,5	32,7	32,8	37,6	38,0	38,0	38,1	42,0	42,0	45,8
Free cooling total input current	А	34,0	34,0	42,0	45,0	46,0	57,0	57,0	65,0	66,0	65,0	65,0	71,0	70,0	77,0
EER	W/W	10,62	10,94	10,40	10,40	10,49	10,10	10,17	9,94	10,31	10,41	10,67	10,79	10,88	10,90
(1) System side water heat exchanger 12 °C/7 °C; Ex (2) System side water heat exchanger 12 °C/* °C; Ex						ulic circuit g	ılycol 0%.								
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: G															
Cooling performance chiller operation (1)															
Cooling capacity	kW	326,9	376,7	427,6	488,8	527,6	565,4	585,6	634,6	664,0	691,7	732,5	820,3	884,7	961,8
Input power	kW	106,3	122,5	137,6	157,4	174,8	181,8	193,0	204,4	218,3	231,1	245,7	266,0	291,3	314,8
Cooling total input current	А	187,0	213,0	234,0	269,0	300,0	316,0	335,0	356,0	377,0	396,0	418,0	447,0	482,0	528,0
EER	W/W	3,08	3,07	3,11	3,10	3,02	3,11	3,03	3,10	3,04	2,99	2,98	3,08	3,04	3,06
Water flow rate system side	l/h	56168	64715	73458	83974	90643	97138	100613	109029	114089	118834	125850	140933	152003	165249
Pressure drop system side	kPa	39	45	58	72	84	59	63	64	70	76	78	51	59	72
Cooling performances with free-cooling glycol-f	ree (2)														
Cooling capacity	kW	219,8	228,8	272,7	291,1	297,0	349,6	353,1	394,9	414,0	418,2	430,6	479,9	489,3	530,2
Input power	kW	19,2	19,2	24,1	26,0	26,0	32,1	32,1	36,9	37,3	37,3	37,4	41,3	41,3	45,1
Free cooling total input current	A	34,0	33,0	41,0	44,0	45,0	56,0	56,0	64,0	64,0	64,0	64,0	69,0	68,0	75,0

11,43

11,90

W/W

NSM - U

EER

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: B														
Cooling performance chiller operation (1)														
Cooling capacity	kW	1031,1	1095,0	1181,2	1208,8	1265,8	1326,2	1386,6	1491,1	1554,3	1666,6	1752,7	-	-
Input power	kW	332,0	358,4	379,0	405,3	426,4	440,0	453,5	478,4	498,9	549,8	570,4	-	-
Cooling total input current	Α	564,0	605,0	639,0	682,0	718,0	746,0	774,0	812,0	846,0	926,0	954,0	-	-
EER	W/W	3,11	3,06	3,12	2,98	2,97	3,01	3,06	3,12	3,12	3,03	3,07	-	-
Water flow rate system side	l/h	177155	188137	202935	207692	217477	227858	238239	256194	267046	286336	301135	-	-
Pressure drop system side	kPa	119	137	138	145	104	124	113	117	119	137	138	-	-
Cooling performances with free-cooling glycol-free	2(2)													
Cooling capacity	kW	565,8	570,9	615,3	617,2	681,2	721,6	762,0	777,2	843,7	865,6	910,0	-	-
Input power	kW	54,1	54,1	57,9	58,0	67,5	71,3	75,2	72,3	80,6	83,9	87,7	-	-
Free cooling total input current	A	92,0	91,0	98,0	97,0	114,0	121,0	128,0	123,0	137,0	141,0	147,0	-	-
EER	W/W	10,46	10,55	10,62	10,65	10,10	10,12	10,14	10,75	10,47	10,32	10,38	-	-

11,20

11,42

10,89

11,00

10,71

11,11

11,22

11,51

11,63

11,86

11,77

11,30

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: G														
Cooling performance chiller operation (1)														
Cooling capacity	kW	1025,3	1088,1	1174,0	1200,9	1257,9	1318,5	1379,2	1482,0	1545,4	1655,7	1741,6	-	-
Input power	kW	335,5	362,4	383,1	409,7	430,7	444,3	457,9	483,4	504,1	556,1	576,8	-	-
Cooling total input current	Α	569,0	611,0	645,0	688,0	725,0	752,0	780,0	819,0	854,0	936,0	963,0	-	-
EER	W/W	3,06	3,00	3,06	2,93	2,92	2,97	3,01	3,07	3,07	2,98	3,02	-	-
Water flow rate system side	l/h	176150	186945	201699	206322	216119	226541	236963	254617	265517	284475	299229	-	-
Pressure drop system side	kPa	81	94	90	94	63	70	75	85	92	103	113	-	-
Cooling performances with free-cooling glycol-free	(2)													
Cooling capacity	kW	600,3	606,3	654,1	660,5	720,3	764,2	808,1	827,1	897,3	920,4	968,2	-	-
Input power	kW	53,1	53,1	57,0	57,0	66,1	69,9	73,8	71,0	79,1	82,2	86,0	-	-
Free cooling total input current	A	90,0	90,0	96,0	96,0	111,0	118,0	126,0	120,0	134,0	138,0	144,0	-	-
EER	W/W	11,30	11,41	11,48	11,60	10,90	10,93	10,95	11,64	11,34	11,20	11,25	-	-

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

NSM - N

INDINI - IN															
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: B															
Cooling performance chiller operation (1)															
Cooling capacity	kW	326,0	376,5	424,5	486,3	525,3	559,6	579,7	626,1	655,1	682,6	723,4	811,7	888,8	960,7
Input power	kW	103,6	119,3	134,4	153,8	170,9	178,3	189,4	200,8	214,8	227,9	242,9	263,8	283,0	307,1
Cooling total input current	Α	175,0	200,0	218,0	253,0	283,0	297,0	317,0	335,0	357,0	376,0	399,0	427,0	452,0	497,0
EER	W/W	3,15	3,16	3,16	3,16	3,07	3,14	3,06	3,12	3,05	3,00	2,98	3,08	3,14	3,13
Water flow rate system side	I/h	56017	64687	72926	83554	90260	96150	99597	107568	112546	117285	124287	139460	152704	165051
Pressure drop system side	kPa	54	65	67	83	96	92	98	79	86	93	86	84	100	106
Cooling performances with free-cooling glycol-fr	ee (2)														
Cooling capacity	kW	220,8	232,6	273,9	282,2	286,3	327,6	330,8	378,1	381,7	385,4	396,5	442,9	482,6	528,7
Input power	kW	18,3	19,6	26,5	26,5	27,4	30,6	30,6	33,8	33,8	33,8	34,0	40,8	43,6	46,5
Free cooling total input current	Α	31,0	33,0	43,0	44,0	45,0	51,0	51,0	56,0	56,0	56,0	56,0	66,0	70,0	75,0
EER	W/W	12,04	11,88	10,32	10,63	10,44	10,71	10,82	11,17	11,28	11,39	11,66	10,86	11,07	11,37
 (1) System side water heat exchanger 12 °C/7 °C; Ext (2) System side water heat exchanger 12 °C/* °C; Ex 						ulic circuit g	lycol 0%.								
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: G															
Cooling performance chiller operation (1)															
Cooling capacity	kW	325,1	375,2	422,9	483,6	522,0	556,8	576,7	623,1	651,8	679,6	720,3	807,0	882,8	955,1
Input power	kW	104,5	120,4	135,6	155,5	172,9	180,2	191,5	202,9	217,2	230,8	246,4	267,1	286,2	310,3
Cooling total input current	Α	176,0	201,0	220,0	255,0	286,0	300,0	320,0	338,0	360,0	381,0	404,0	431,0	457,0	501,0
EER	W/W	3,11	3,12	3,12	3,11	3,02	3,09	3,01	3,07	3,00	2,94	2,92	3,02	3,09	3,08
Water flow rate system side	I/h	55859	64457	72661	83082	89692	95662	99076	107055	111979	116764	123748	138653	151682	164102
Pressure drop system side	kPa	39	46	36	44	51	58	62	40	43	47	46	50	60	72
Cooling performances with free-cooling glycol-fr	ee (2)														
Cooling capacity	kW	230,8	243,4	284,6	294,0	301,4	342,3	345,8	395,2	403,2	407,2	414,7	463,0	509,0	554,0
Input power	kW	18,0	19,2	25,6	25,9	26,7	29,9	29,9	33,1	33,1	33,1	33,3	39,8	42,6	45,6

W/W

30,0

12,79

32,0

12,66

42,0

10,98

43,0

11,34

44,0

11,27

50,0

11,44

50,0

11,56

55,0

11,93

55,0

12,17

55,0

12,29

55,0

12,46

64,0

11,62

68,0

11,94

74,0

12,15

NSM - N

EER

Free cooling total input current

	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
													-
kW	1004,9	1098,6	1161,7	1218,0	1274,5	1318,1	1361,7	1478,4	-	-	-	-	-
kW	332,9	349,5	369,2	392,7	416,2	433,5	450,9	472,0	-	-	-	-	-
Α	544,0	570,0	600,0	639,0	677,0	708,0	740,0	771,0	-	-	-	-	-
W/W	3,02	3,14	3,15	3,10	3,06	3,04	3,02	3,13	-	-	-	-	-
l/h	172652	188754	199587	209274	218966	226456	233947	254013	-	-	-	-	-
kPa	116	112	104	109	72	78	81	105	-	-	-	-	-
e (2)													
kW	533,7	625,3	661,6	712,1	756,1	767,1	770,8	815,0	-	-	-	-	-
kW	46,5	57,3	61,2	64,4	67,7	67,7	67,7	73,9	-	-	-	-	-
A	76,0	93,0	99,0	105,0	110,0	111,0	111,0	121,0	-	-	-	-	-
W/W	11,47	10,91	10,82	11,05	11,17	11,34	11,39	11,03	-	-	-	-	-
	kW A W/W I/h kPa ee (2) kW kW A	kW 1004,9 kW 332,9 A 544,0 W/W 3,02 I/h 172652 kPa 116 ee(2) kW 533,7 kW 46,5 A 76,0	kW 1004,9 1098,6 kW 332,9 349,5 A 544,0 570,0 W/W 3,02 3,14 I/h 172652 188754 kPa 116 112 ee(2) kW 533,7 625,3 kW 46,5 57,3 A 76,0 93,0	kW 1004,9 1098,6 1161,7 kW 332,9 349,5 369,2 A 544,0 570,0 600,0 W/W 3,02 3,14 3,15 I/h 172652 188754 199587 kPa 116 112 104 ee(2) kW 533,7 625,3 661,6 kW 46,5 57,3 61,2 A 76,0 93,0 99,0	kW 1004,9 1098,6 1161,7 1218,0 kW 332,9 349,5 369,2 392,7 A 544,0 570,0 600,0 639,0 W/W 3,02 3,14 3,15 3,10 I/h 172652 188754 199587 209274 kPa 116 112 104 109 ee(2) kW 533,7 625,3 661,6 712,1 kW 46,5 57,3 61,2 64,4 A 76,0 93,0 99,0 105,0	kW 1004,9 1098,6 1161,7 1218,0 1274,5 kW 332,9 349,5 369,2 392,7 416,2 A 544,0 570,0 600,0 639,0 677,0 W/W 3,02 3,14 3,15 3,10 3,06 l/h 172652 188754 199587 209274 218966 kPa 116 112 104 109 72 ete(2) kW 533,7 625,3 661,6 712,1 756,1 kW 46,5 57,3 61,2 64,4 67,7 A 76,0 93,0 99,0 105,0 110,0	kW 1004,9 1098,6 1161,7 1218,0 1274,5 1318,1 kW 332,9 349,5 369,2 392,7 416,2 433,5 A 544,0 570,0 600,0 639,0 677,0 708,0 W/W 3,02 3,14 3,15 3,10 3,06 3,04 l/h 172652 188754 199587 209274 218966 226456 kPa 116 112 104 109 72 78 re(2) kW 533,7 625,3 661,6 712,1 756,1 767,1 kW 46,5 57,3 61,2 64,4 67,7 67,7 A 76,0 93,0 99,0 105,0 110,0 111,0	kW 1004,9 1098,6 1161,7 1218,0 1274,5 1318,1 1361,7 kW 332,9 349,5 369,2 392,7 416,2 433,5 450,9 A 544,0 570,0 600,0 639,0 677,0 708,0 740,0 W/W 3,02 3,14 3,15 3,10 3,06 3,04 3,02 l/h 172652 188754 199587 209274 218966 226456 233947 kPa 116 112 104 109 72 78 81 ee(2) kW 533,7 625,3 661,6 712,1 756,1 767,1 770,8 kW 46,5 57,3 61,2 64,4 67,7 67,7 67,7 A 76,0 93,0 99,0 105,0 110,0 111,0 111,0	kW 1004,9 1098,6 1161,7 1218,0 1274,5 1318,1 1361,7 1478,4 kW 332,9 349,5 369,2 392,7 416,2 433,5 450,9 472,0 A 544,0 570,0 600,0 639,0 677,0 708,0 740,0 771,0 W/W 3,02 3,14 3,15 3,10 3,06 3,04 3,02 3,13 1/h 172652 188754 199587 209274 218966 226456 233947 254013 kPa 116 112 104 109 72 78 81 105 te(2) kW 533,7 625,3 661,6 712,1 756,1 767,1 770,8 815,0 kW 46,5 57,3 61,2 64,4 67,7 67,7 67,7 73,9 A 76,0 93,0 99,0 105,0 110,0 111,0 111,0 121,0	kW 1004,9 1098,6 1161,7 1218,0 1274,5 1318,1 1361,7 1478,4 - kW 332,9 349,5 369,2 392,7 416,2 433,5 450,9 472,0 - A 544,0 570,0 600,0 639,0 677,0 708,0 740,0 771,0 - W/W 3,02 3,14 3,15 3,10 3,06 3,04 3,02 3,13 - I/h 172652 188754 199587 209274 218966 226456 233947 254013 - kPa 116 112 104 109 72 78 81 105 - ete(2) kW 533,7 625,3 661,6 712,1 756,1 767,1 770,8 815,0 - kW 46,5 57,3 61,2 64,4 67,7 67,7 67,7 73,9 - A 76,0 93,0 <t< td=""><td>kW 1004,9 1098,6 1161,7 1218,0 1274,5 1318,1 1361,7 1478,4 - - kW 332,9 349,5 369,2 392,7 416,2 433,5 450,9 472,0 - - A 544,0 570,0 600,0 639,0 677,0 708,0 740,0 771,0 - - W/W 3,02 3,14 3,15 3,10 3,06 3,04 3,02 3,13 - - I/h 172652 188754 199587 209274 218966 226456 233947 254013 - - kPa 116 112 104 109 72 78 81 105 - - ete(2) kW 533,7 625,3 661,6 712,1 756,1 767,1 770,8 815,0 - - kW 46,5 57,3 61,2 64,4 67,7 67,7 67,7</td><td>kW 1004,9 1098,6 1161,7 1218,0 1274,5 1318,1 1361,7 1478,4 - - - kW 332,9 349,5 369,2 392,7 416,2 433,5 450,9 472,0 - - - A 544,0 570,0 600,0 639,0 677,0 708,0 740,0 771,0 - - - W/W 3,02 3,14 3,15 3,10 3,06 3,04 3,02 3,13 - - - I/h 172652 188754 199587 209274 218966 226456 233947 254013 - - - kPa 116 112 104 109 72 78 81 105 - - - etQ2 kW 533,7 625,3 661,6 712,1 756,1 767,1 770,8 815,0 - - - kW 46,5</td><td>kW 1004,9 1098,6 1161,7 1218,0 1274,5 1318,1 1361,7 1478,4 - - - kW 332,9 349,5 369,2 392,7 416,2 433,5 450,9 472,0 - - - - A 544,0 570,0 600,0 639,0 677,0 708,0 740,0 771,0 - - - - W/W 3,02 3,14 3,15 3,10 3,06 3,04 3,02 3,13 - - - - kPa 116 112 104 109 72 78 81 105 - - - Ee(2) kW 533,7 625,3 661,6 712,1 756,1 767,1 770,8 815,0 - - - kW 46,5 57,3 61,2 64,4 67,7 67,7 67,7 73,9 - - - A 76,0 93,0 99,0 105,0 110,0 111,0 111,0 121,0 - - -</td></t<>	kW 1004,9 1098,6 1161,7 1218,0 1274,5 1318,1 1361,7 1478,4 - - kW 332,9 349,5 369,2 392,7 416,2 433,5 450,9 472,0 - - A 544,0 570,0 600,0 639,0 677,0 708,0 740,0 771,0 - - W/W 3,02 3,14 3,15 3,10 3,06 3,04 3,02 3,13 - - I/h 172652 188754 199587 209274 218966 226456 233947 254013 - - kPa 116 112 104 109 72 78 81 105 - - ete(2) kW 533,7 625,3 661,6 712,1 756,1 767,1 770,8 815,0 - - kW 46,5 57,3 61,2 64,4 67,7 67,7 67,7	kW 1004,9 1098,6 1161,7 1218,0 1274,5 1318,1 1361,7 1478,4 - - - kW 332,9 349,5 369,2 392,7 416,2 433,5 450,9 472,0 - - - A 544,0 570,0 600,0 639,0 677,0 708,0 740,0 771,0 - - - W/W 3,02 3,14 3,15 3,10 3,06 3,04 3,02 3,13 - - - I/h 172652 188754 199587 209274 218966 226456 233947 254013 - - - kPa 116 112 104 109 72 78 81 105 - - - etQ2 kW 533,7 625,3 661,6 712,1 756,1 767,1 770,8 815,0 - - - kW 46,5	kW 1004,9 1098,6 1161,7 1218,0 1274,5 1318,1 1361,7 1478,4 - - - kW 332,9 349,5 369,2 392,7 416,2 433,5 450,9 472,0 - - - - A 544,0 570,0 600,0 639,0 677,0 708,0 740,0 771,0 - - - - W/W 3,02 3,14 3,15 3,10 3,06 3,04 3,02 3,13 - - - - kPa 116 112 104 109 72 78 81 105 - - - Ee(2) kW 533,7 625,3 661,6 712,1 756,1 767,1 770,8 815,0 - - - kW 46,5 57,3 61,2 64,4 67,7 67,7 67,7 73,9 - - - A 76,0 93,0 99,0 105,0 110,0 111,0 111,0 121,0 - - -

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: G														
Cooling performance chiller operation (1)														
Cooling capacity	kW	998,8	1092,7	1155,6	1211,7	1267,7	1310,9	1354,2	1470,0	-	-	-	-	-
Input power	kW	336,7	353,2	373,0	396,5	420,0	437,6	455,3	476,9	-	-	-	-	-
Cooling total input current	Α	550,0	575,0	606,0	644,0	682,0	714,0	746,0	778,0	-	-	-	-	-
EER	W/W	2,97	3,09	3,10	3,06	3,02	3,00	2,97	3,08	-	-	-	-	-
Water flow rate system side	l/h	171604	187733	198553	208183	217806	225235	232663	252555	-	-	-	-	-
Pressure drop system side	kPa	79	67	76	76	41	44	47	72	-	-	-	-	-
Cooling performances with free-cooling glycol-free	(2)													
Cooling capacity	kW	559,3	653,2	691,6	748,6	798,5	804,6	806,4	852,3	-	-	-	-	-
Input power	kW	45,6	56,1	59,8	63,1	66,3	66,2	66,3	72,3	-	-	-	-	-
Free cooling total input current	Α	74,0	91,0	97,0	102,0	108,0	108,0	109,0	118,0	-	-	-	-	-
EER	W/W	12,27	11,65	11,56	11,87	12,05	12,15	12,17	11,79	-	-	-	-	-

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

ENERGY INDICES (REG. 2016/2281 EU)

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: B																
SEPR - (EN14825: 2018) High temperatu	ıre with stand	ard fans (1)														
	A	W/W	6,16	5,97	5,71	5,54	5,80	5,60	5,52	5,67	5,57	5,55	5,52	5,72	5,57	5,66
SEPR	E	W/W	6,18	5,87	6,03	5,79	5,54	5,86	5,65	5,80	5,67	5,56	5,51	5,72	5,57	5,64
JEI II	N	W/W	6,43	6,20	6,09	5,96	5,71	5,94	5,78	6,01	5,85	5,70	5,61	5,76	5,86	5,88
	U	W/W	6,20	6,02	6,11	6,09	5,85	6,00	5,84	5,96	5,92	5,78	5,71	5,96	5,82	5,86
SEPR - (EN14825: 2018) High temperatu	ıre with invert	ter fans (1)														
	A	W/W	6,16	5,97	5,71	5,54	5,80	5,60	5,52	5,67	5,57	5,55	5,52	5,72	5,57	5,66
SEPR	E	W/W	6,18	5,87	6,03	5,79	5,54	5,86	5,65	5,80	5,67	5,56	5,51	5,72	5,57	5,64
JLI II	N	W/W	6,43	6,20	6,09	5,96	5,71	5,94	5,78	6,01	5,85	5,70	5,61	5,76	5,86	5,88
	U	W/W	6,20	6,02	6,11	6,09	5,85	6,00	5,84	5,96	5,92	5,78	5,71	5,96	5,82	5,86
(1) Calculation performed with FIXED wate	r flow rate.															
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: G																
SEPR - (EN14825: 2018) High temperatu	ire with stand	ard fans (1)														
	A	W/W	6,24	6,04	5,75	5,52	5,79	5,58	5,51	5,71	5,62	5,53	5,51	5,64	5,54	5,71
CEDD	E	W/W	6,21	5,91	6,07	5,76	5,51	5,87	5,66	5,84	5,71	5,53	5,51	5,71	5,56	5,66
SEPR	N	W/W	6,46	6,23	6,14	6,02	5,77	5,99	5,82	6,08	5,93	5,77	5,64	5,78	5,91	5,91
	U	W/W	6,27	6,11	6,19	6,07	5,83	6,05	5,89	6,04	5,93	5,78	5,68	6,01	5,88	5,92
SEPR - (EN14825: 2018) High temperatu	ıre with invert	ter fans (1)														
	A	W/W	6,24	6,04	5,75	5,52	5,79	5,58	5,51	5,71	5,62	5,53	5,51	5,64	5,54	5,71
CEDD	E	W/W	6,21	5,91	6,07	5,76	5,51	5,87	5,66	5,84	5,71	5,53	5,51	5,71	5,56	5,66
SEPR	N	W/W	6,46	6,23	6,14	6,02	5,77	5,99	5,82	6,08	5,93	5,77	5,64	5,78	5,91	5,91
	U	W/W	6,27	6,11	6,19	6,07	5,83	6,05	5,89	6,04	5,93	5,78	5,68	6,01	5,88	5,92
(1) Calculation performed with FIXED wate	r flow rate															
(·/	i now rute.															
· · · · · · · · · · · · · · · · · · ·	. now rate.		4202	4502	4802	5202	5602	. 60	02 64	402	6503	6703	6903	7203	8403	9603
Size	. How race.		4202	4502	4802	5202	5602	. 60	02 64	402	6503	6703	6903	7203	8403	9603
Size		ard fans (1)	4202	4502	4802	5202	5602	. 60	02 64	402	6503	6703	6903	7203	8403	9603
Size Model: B		ard fans (1)	4202 5,52	4502 5,60	4802 5,53	5202 5,53	5602				5,73	6703 5,60	6903 5,77	7203 5,64	8403 5,52	9603 5,58
Size Model: B SEPR - (EN14825: 2018) High temperatu	re with stand							5,5	52 5,	,51						
Size Model: B SEPR - (EN14825: 2018) High temperatu	re with stand	W/W	5,52	5,60	5,53	5,53	5,52	5,5 5,5	52 5, 51 5,	,51 ,60	5,73	5,60	5,77	5,64	5,52	5,58
Size Model: B SEPR - (EN14825: 2018) High temperatu	re with standa	W/W W/W	5,52 5,61	5,60 5,52	5,53 5,59	5,53 5,54	5,52 5,52	5,5 5,5 5,8	52 5, 51 5, 37 5,	,51 ,60 ,81	5,73 5,83	5,60 5,85	5,77 5,55	5,64 5,61	5,52	5,58
Size Model: B SEPR - (EN14825: 2018) High temperatu SEPR	re with standa A E N U	W/W W/W W/W	5,52 5,61 5,69	5,60 5,52 5,85	5,53 5,59 5,82	5,53 5,54 5,93	5,52 5,52 5,94	5,5 5,5 5,8	52 5, 51 5, 37 5,	,51 ,60 ,81	5,73 5,83 6,05	5,60 5,85 -	5,77 5,55 -	5,64 5,61 -	5,52 - -	5,58 - -
Size Model: B SEPR - (EN14825: 2018) High temperatu SEPR	re with standa A E N U	W/W W/W W/W	5,52 5,61 5,69	5,60 5,52 5,85	5,53 5,59 5,82	5,53 5,54 5,93	5,52 5,52 5,94	5,5 5,5 5,8 5,6	52 5, 51 5, 87 5, 63 5,	,51 ,60 ,81 ,77	5,73 5,83 6,05	5,60 5,85 -	5,77 5,55 -	5,64 5,61 -	5,52 - -	5,58 - -
Size Model: B SEPR - (EN14825: 2018) High temperatu SEPR SEPR - (EN14825: 2018) High temperatu	re with standa A E N U	W/W W/W W/W W/W	5,52 5,61 5,69 5,86	5,60 5,52 5,85 5,72	5,53 5,59 5,82 5,81	5,53 5,54 5,93 5,66	5,52 5,52 5,94 5,62	5,5 5,5 5,6 5,6	52 5, 51 5, 37 5, 53 5,	,51 ,60 ,81 ,77	5,73 5,83 6,05 6,04	5,60 5,85 - 6,05	5,77 5,55 - 5,78	5,64 5,61 - 5,85	5,52 - - -	5,58 - - -
Size Model: B SEPR - (EN14825: 2018) High temperatu SEPR SEPR - (EN14825: 2018) High temperatu	re with standa A E N U re with invert	W/W W/W W/W W/W ter fans (1)	5,52 5,61 5,69 5,86 5,52	5,60 5,52 5,85 5,72 5,60	5,53 5,59 5,82 5,81 5,53	5,53 5,54 5,93 5,66 5,53	5,52 5,52 5,94 5,62 5,52	5,2 5,5 5,6 5,6 5,5	52 5, 51 5, 537 5, 533 5, 52 5, 51 5,	,51 ,60 ,81 ,77	5,73 5,83 6,05 6,04	5,60 5,85 - 6,05	5,77 5,55 - 5,78	5,64 5,61 - 5,85	5,52 - - - - 5,52	5,58 - - - - 5,58
Size Model: B SEPR - (EN14825: 2018) High temperatu SEPR SEPR - (EN14825: 2018) High temperatu	Ire with standa A E N U Ire with invert A	W/W W/W W/W W/W ter fans (1) W/W	5,52 5,61 5,69 5,86 5,52 5,61	5,60 5,52 5,85 5,72 5,60 5,52	5,53 5,59 5,82 5,81 5,53 5,53	5,53 5,54 5,93 5,66 5,53 5,54	5,52 5,52 5,94 5,62 5,52 5,52	5,2 5,5 5,6 5,6 5,5	52 5, 51 5, 53 5, 53 5, 52 5, 51 5, 53 5,	,51 ,60 ,81 ,77 ,51 ,60	5,73 5,83 6,05 6,04 5,73 5,83	5,60 5,85 - 6,05 5,60 5,85	5,77 5,55 - 5,78 5,77 5,55	5,64 5,61 - 5,85 5,64 5,61	5,52 - - - - 5,52	5,58 - - - - 5,58
Size Model: B SEPR - (EN14825: 2018) High temperatu SEPR SEPR - (EN14825: 2018) High temperatu	Ire with stands A E N U Ire with invert A E N U	W/W W/W W/W W/W ter fans (1) W/W W/W	5,52 5,61 5,69 5,86 5,52 5,61 5,69	5,60 5,52 5,85 5,72 5,60 5,52 5,85	5,53 5,59 5,82 5,81 5,53 5,59 5,82	5,53 5,54 5,93 5,66 5,53 5,54 5,93	5,52 5,52 5,94 5,62 5,52 5,52 5,94	5,5 5,5 5,6 5,6 5,5 5,5	52 5, 51 5, 53 5, 53 5, 52 5, 51 5, 53 5,	,51 ,60 ,81 ,77 ,51 ,60	5,73 5,83 6,05 6,04 5,73 5,83 6,05	5,60 5,85 - 6,05 5,60 5,85	5,77 5,55 - 5,78 5,77 5,55	5,64 5,61 - 5,85 5,64 5,61	5,52 - - - 5,52 -	5,58 - - - - 5,58 -
Size Model: B SEPR - (EN14825: 2018) High temperatu SEPR SEPR - (EN14825: 2018) High temperatu SEPR (1) Calculation performed with FIXED wate	Ire with stands A E N U Ire with invert A E N U	W/W W/W W/W W/W ter fans (1) W/W W/W	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66	5,52 5,52 5,94 5,62 5,52 5,52 5,94 5,62	5,5 5,6 5,6 5,6 5,5 5,5 5,6	52 5, 51 5, 87 5, 53 5, 52 5, 51 5, 53 5,	,51 ,60 ,81 ,77 ,51 ,60 ,81	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,04	5,60 5,85 - 6,05 5,60 5,85 - 6,05	5,77 5,55 - 5,78 5,77 5,55 - 5,78	5,64 5,61 - 5,85 5,64 5,61 - 5,85	5,52 - - - - 5,52 - -	5,58 - - - - 5,58 - -
Size Model: B SEPR - (EN14825: 2018) High temperatu SEPR SEPR - (EN14825: 2018) High temperatu SEPR (1) Calculation performed with FIXED wate Size	Ire with stands A E N U Ire with invert A E N U	W/W W/W W/W W/W ter fans (1) W/W W/W	5,52 5,61 5,69 5,86 5,52 5,61 5,69	5,60 5,52 5,85 5,72 5,60 5,52 5,85	5,53 5,59 5,82 5,81 5,53 5,59 5,82	5,53 5,54 5,93 5,66 5,53 5,54 5,93	5,52 5,52 5,94 5,62 5,52 5,52 5,94	5,5 5,6 5,6 5,6 5,5 5,5 5,6	52 5, 51 5, 87 5, 53 5, 52 5, 51 5, 53 5,	,51 ,60 ,81 ,77 ,51 ,60 ,81	5,73 5,83 6,05 6,04 5,73 5,83 6,05	5,60 5,85 - 6,05 5,60 5,85	5,77 5,55 - 5,78 5,77 5,55	5,64 5,61 - 5,85 5,64 5,61	5,52 - - - 5,52 -	5,58 - - - - 5,58 -
Size Model: B SEPR - (EN14825: 2018) High temperatu SEPR SEPR - (EN14825: 2018) High temperatu SEPR (1) Calculation performed with FIXED wate Size Model: G	A E N U Irre with invert A E N U U Irre with invert A E N U U Irre with invert A E N U U Irre with Irre wi	W/W W/W W/W W/W Ser fans (1) W/W W/W W/W	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66	5,52 5,52 5,94 5,62 5,52 5,52 5,94 5,62	5,5 5,6 5,6 5,6 5,5 5,5 5,6	52 5, 51 5, 87 5, 53 5, 52 5, 51 5, 53 5,	,51 ,60 ,81 ,77 ,51 ,60 ,81	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,04	5,60 5,85 - 6,05 5,60 5,85 - 6,05	5,77 5,55 - 5,78 5,77 5,55 - 5,78	5,64 5,61 - 5,85 5,64 5,61 - 5,85	5,52 - - - - 5,52 - -	5,58 - - - - 5,58 - -
Size Model: B SEPR - (EN14825: 2018) High temperatu SEPR SEPR - (EN14825: 2018) High temperatu SEPR (1) Calculation performed with FIXED wate Size	A E N U ure with invert A E N U U ure with invert A E N U U ure flow rate.	W/W W/W W/W W/W er fans (1) W/W W/W W/W	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66	5,52 5,52 5,94 5,62 5,52 5,52 5,94 5,62	5,5 5,5 5,6 5,6 5,5 5,5 5,6	52 5, 51 5, 537 5, 533 5, 52 5, 51 5, 537 5, 533 5,	,51 ,60 ,81 ,77 ,51 ,60 ,81 ,77	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,04	5,60 5,85 - 6,05 5,60 5,85 - 6,05	5,77 5,55 - 5,78 5,77 5,55 - 5,78 6903	5,64 5,61 - 5,85 5,64 5,61 - 5,85	5,52 - - - 5,52 - - -	5,58 - - - - 5,58 - - -
Size Model: B SEPR - (EN14825: 2018) High temperatu SEPR SEPR - (EN14825: 2018) High temperatu SEPR (1) Calculation performed with FIXED wate Size Model: G SEPR - (EN14825: 2018) High temperatu	A A B N U Ire with invert A B N U Ire with invert A A A	W/W W/W W/W W/W ter fans (1) W/W W/W W/W W/W W/W W/W W/W	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72 4502	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81 4802	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66 5202	5,52 5,52 5,94 5,62 5,52 5,52 5,94 5,62 5602	5,5 5,6 5,6 5,5 5,5 5,6 5,6 5,6	52 5, 51 5, 53 5, 52 5, 53 5, 53 5, 53 5, 50 64	,51 ,60 ,81 ,77 ,51 ,60 ,81 ,77	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,04 6503	5,60 5,85 - 6,05 5,60 5,85 - 6,05	5,77 5,55 - 5,78 5,77 5,55 - 5,78 6903	5,64 5,61 - 5,85 5,64 5,61 - 5,85 7203	5,52 - - - - 5,52 - -	5,58 - - - - 5,58 - -
Size Model: B SEPR - (EN14825: 2018) High temperatu SEPR SEPR - (EN14825: 2018) High temperatu SEPR (1) Calculation performed with FIXED wate Size Model: G SEPR - (EN14825: 2018) High temperatu	Ire with standa A E N U Ire with invert A E N U Ire with standa A E	W/W W/W W/W W/W ter fans (1) W/W W/W W/W W/W W/W W/W W/W W/W W/W	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86 4202	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72 4502	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81 4802	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66 5202	5,52 5,52 5,94 5,62 5,52 5,52 5,94 5,62 5,62	5,5 5,8 5,6 5,5 5,5 5,6 5,6 5,6	52 5,51 5,53 5,55 5,55 5,55 5,55 5,55 5,55	,51 ,60 ,81 ,77 ,51 ,60 ,81 ,77 402	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,04 6503	5,60 5,85 - 6,05 5,60 5,85 - 6,05 6703	5,77 5,55 - 5,78 5,77 5,55 - 5,78 6903	5,64 5,61 - 5,85 5,64 5,61 - 5,85 7203	5,52 - - - 5,52 - - - - 8403	5,58 - - - - 5,58 - - -
Size Model: B SEPR - (EN14825: 2018) High temperatu SEPR SEPR - (EN14825: 2018) High temperatu SEPR (1) Calculation performed with FIXED wate Size Model: G SEPR - (EN14825: 2018) High temperatu	A E N U Ire with invert A E N U or flow rate. Ire with standa A E N	W/W	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86 4202	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72 4502 5,64 5,52 5,90	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81 4802	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66 5202 5,53 5,55 5,55	5,52 5,52 5,94 5,62 5,52 5,52 5,94 5,62 5,62 5,51 5,49 5,99	5,5 5,6 5,6 5,6 5,5 5,5 5,6 5,6 5,6 5,6	52 5, 51 5, 53 5, 54 5, 55 5,	,51 ,60 ,81 ,77 ,51 ,60 ,81 ,77 402	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,04 6503	5,60 5,85 - 6,05 5,60 5,85 - 6,05 6703	5,77 5,55 - 5,78 5,77 5,55 - 5,78 6903	5,64 5,61 - 5,85 5,64 5,61 - 5,85 7203	5,52 - - - 5,52 - - -	5,58 - - - 5,58 - - - - - - -
Size Model: B SEPR - (EN14825: 2018) High temperatu SEPR - (EN14825: 2018) High temperatu SEPR (1) Calculation performed with FIXED wate Size Model: G SEPR - (EN14825: 2018) High temperatu SEPR	A E N U Ire with invert A E N U or flow rate. Ire with standa A E N U U U U U U U U U U U U U U U U U U	W/W W/W W/W W/W ter fans (1) W/W W/W W/W W/W W/W W/W W/W W/W W/W W/	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86 4202	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72 4502	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81 4802	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66 5202	5,52 5,52 5,94 5,62 5,52 5,52 5,94 5,62 5,62	5,5 5,6 5,6 5,6 5,5 5,5 5,6 5,6 5,6 5,6	52 5, 51 5, 53 5, 54 5, 55 5,	,51 ,60 ,81 ,77 ,51 ,60 ,81 ,77 402	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,04 6503	5,60 5,85 - 6,05 5,60 5,85 - 6,05 6703	5,77 5,55 - 5,78 5,77 5,55 - 5,78 6903	5,64 5,61 - 5,85 5,64 5,61 - 5,85 7203	5,52 - - - 5,52 - - - - 8403	5,58 - - - 5,58 - - - - - -
Size Model: B SEPR - (EN14825: 2018) High temperatu SEPR - (EN14825: 2018) High temperatu SEPR (1) Calculation performed with FIXED wate Size Model: G SEPR - (EN14825: 2018) High temperatu SEPR	Ire with standa A E N U Ire with invert A E N U Ire with standa A E N U Ire with standa Ire with standa Ire with standa	W/W W/W W/W W/W ter fans (1) W/W W/W W/W W/W W/W W/W W/W W/W W/W W/	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86 4202 5,57 5,65 5,72 5,91	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72 4502 5,64 5,52 5,90 5,76	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81 4802	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66 5202 5,53 5,55 5,55 5,57 5,73	5,52 5,52 5,62 5,62 5,52 5,52 5,62 5,62	5,2,5,6 5,6,6 5,6,6 5,6 5,6 5,6 5,6 5,7	52 5, 51 5, 53 5, 54 5, 55 5,	,51 ,60 ,81 ,77 ,51 ,60 ,81 ,77 402	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,04 6503 5,75 5,81 6,08 6,09	5,60 5,85 - 6,05 5,60 5,85 - 6,05 6703 5,64 5,87 - 6,09	5,77 5,55 - 5,78 5,77 5,55 - 5,78 6903 5,77 5,51 - 5,81	5,64 5,61 - 5,85 5,64 5,61 - 5,85 7203 5,66 5,58 - 5,87	5,52 - - - 5,52 - - - - 8403	5,58 - - - 5,58 - - - 9603
Size Model: B SEPR - (EN14825: 2018) High temperatu SEPR SEPR - (EN14825: 2018) High temperatu SEPR (1) Calculation performed with FIXED wate Size Model: G SEPR - (EN14825: 2018) High temperatu SEPR	Ire with standa E N U Ire with invert A E N U or flow rate. Ire with standa A E N U ure with invert A	W/W	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86 4202 5,57 5,65 5,72 5,91	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72 4502 5,64 5,52 5,90 5,76	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81 4802	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66 5202 5,53 5,55 5,55 5,57 5,73	5,52 5,52 5,62 5,62 5,52 5,52 5,62 5,62	5,5,5,6 5,6,6 5,6,6 5,6,6 5,6,6 5,7,6 5,7,7	52 5, 51 5, 53 5, 54 5, 55 5,	,51 ,60 ,81 ,77 ,51 ,60 ,81 ,77 402 ,51 ,62 ,84 ,82	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,04 6503 5,75 5,81 6,08 6,09 5,75	5,60 5,85 - 6,05 5,60 5,85 - 6,05 6703 5,64 5,87 - 6,09	5,77 5,55 - 5,78 5,77 5,55 - 5,78 6903 5,77 5,51 - 5,81	5,64 5,61 - 5,85 5,64 5,61 - 5,85 7203 5,66 5,58 - 5,87	5,52 - - - 5,52 - - - - 8403	5,58 - - - 5,58 - - - - - - - - - - - - - - - - - - -
Size Model: B SEPR - (EN14825: 2018) High temperatu SEPR SEPR - (EN14825: 2018) High temperatu SEPR (1) Calculation performed with FIXED wate Size Model: G	Ire with standa A E N U Ire with invert A E N U Ire with standa A E N U Ire with standa Ire with standa Ire with standa	W/W W/W W/W W/W ter fans (1) W/W W/W W/W W/W W/W W/W W/W W/W W/W W/	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86 4202 5,57 5,65 5,72 5,91	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72 4502 5,64 5,52 5,90 5,76	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81 4802	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66 5202 5,53 5,55 5,55 5,57 5,73	5,52 5,52 5,62 5,62 5,52 5,52 5,62 5,62	5,5,5,6 5,6,6 5,6,6 5,6,6 5,6,6 5,7 5,7 5,7 5,7 5,7	52 5, 51 5, 53 5, 53 5, 54 5, 55 5,	,51 ,60 ,81 ,77 ,51 ,60 ,81 ,77 402 ,51 ,62 ,84 ,82	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,04 6503 5,75 5,81 6,08 6,09	5,60 5,85 - 6,05 5,60 5,85 - 6,05 6703 5,64 5,87 - 6,09	5,77 5,55 - 5,78 5,77 5,55 - 5,78 6903 5,77 5,51 - 5,81	5,64 5,61 - 5,85 5,64 5,61 - 5,85 7203 5,66 5,58 - 5,87	5,52 - - - 5,52 - - - - 8403	5,58 - - - 5,58 - - - - - -

⁽¹⁾ Calculation performed with FIXED water flow rate.

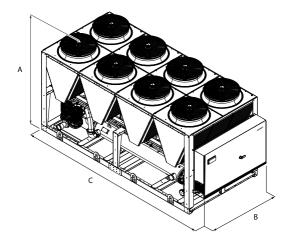
ELECTRIC DATA

ELECTRIC DATA																
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Electric data																
	Α	Α	243,9	271,9	299,1	332,5	374,4	395,7	417,0	450,2	474,9	474,9	474,9	531,4	579,4	635,9
Maximum current (FLA)	E,U	Α	243,9	271,9	307,6	341,0	374,4	404,2	425,5	458,7	483,4	483,4	483,4	539,9	587,9	644,4
	N	Α	252,4	280,4	316,1	349,5	382,9	412,7	434,0	467,2	491,9	491,9	491,9	548,4	604,9	667,2
	Α	Α	265,5	307,3	350,2	388,2	419,8	466,8	484,0	519,5	529,4	529,4	529,4	661,9	701,8	831,3
Peak current (LRA)	E,U	Α	265,5	307,3	358,7	396,7	419,8	475,3	492,5	528,0	537,9	537,9	537,9	670,4	710,3	839,8
	N	A	274,0	315,8	367,2	405,2	428,3	483,8	501,0	536,5	546,4	546,4	546,4	678,9	727,3	862,6

680 www.aermec.com NSM-1402-9603-GF_Y_UN50_08

Size			4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Electric data															
	A	Α	683,9	731,4	770,4	813,4	864,9	913,2	947,2	980,7	1028,7	1123,7	1162,7	1300,2	1419,2
Maximum current (FLA)	E,U	Α	700,9	739,9	793,2	836,2	887,7	930,2	972,7	997,7	1054,2	1132,2	1179,7	-	-
	N	Α	715,2	771,2	818,7	870,2	921,7	955,7	989,7	1023,2	-	-	-	-	-
	A	Α	858,2	930,7	953,4	1108,4	1163,9	1290,2	1287,2	1069,4	1096,3	1200,0	1222,7	1480,2	1603,2
Peak current (LRA)	E,U	A	875,2	939,2	976,2	1131,2	1186,7	1307,2	1312,7	1086,4	1121,8	1208,5	1239,7	-	-
	N	A	889,5	970,5	1001,7	1165,2	1220,7	1332,7	1329,7	1111,9	-	-	-	-	-

GENERAL TECHNICAL DATA


GENERAL TECHNICAL D	AIA		4402	4400	4000					2452		2002		2407	2402	
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Compressor																
Туре	A,E,N,U	type							Bi-							
Compressor regulation	A,E,N,U	Туре							On-	-Off						
Number	A,E,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Circuits	A,E,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E,N,U	type							R1:	34a						
System side heat exchanger																
Туре	A,E,N,U	type							Shell a	nd tube						
Number	A,E,N,U	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	A,E,N,U	Туре							Groove	d joints						
Fan																
Туре	A,E,N,U	type							Ax	ial						
	Α	no.	8	8	8	8	10	10	10	12	12	12	12	14	14	16
Number	E,U	no.	8	8	10	10	10	12	12	14	14	14	14	16	16	18
	N	no.	10	10	12	12	12	14	14	16	16	16	16	18	20	22
	Α	m³/h	116000	116000	116000	116000	145000	145000	145000	174000	174000	174000	174000	203000	203000	232000
Air flow rate	E	m³/h	89600	89600	112000	112000	112000	134400	134400	156800	156800	156800	156800	179200	179200	201600
All flow face	N	m³/h	112000	112000	134400	134400	134400	156800	156800	179200	179200	179200	179200	201600	224000	246400
	U	m³/h	116000	116000	145000	145000	145000	174000	174000	203000	203000	203000	203000	232000	232000	261000
Sound data calculated in cooling mode	(1)															
	A	dB(A)	98,0	98,0	98,0	98,0	99,0	99,0	99,0	99,7	99,7	99,7	99,7	100,4	100,4	101,1
Country of the country of	E	dB(A)	91,0	91,0	91,7	91,9	92,1	92,6	92,5	93,0	93,0	93,0	93,0	93,7	93,9	94,6
Sound power level	N	dB(A)	91,7	91,7	92,3	92,5	92,6	93,1	93,0	93,5	93,5	93,5	93,5	94,1	94,6	95,2
	U	dB(A)	98,0	98,0	98,9	99,0	99,0	99,7	99,7	100,4	100,4	100,4	100,4	100,9	101,0	101,5
	A	dB(A)	65,6	65,6	65,6	65,6	66,4	66,4	66,4	67,1	67,1	67,1	67,1	67,6	67,7	68,2
6 1 1/40)	E	dB(A)	58,6	58,6	59,2	59,4	59,5	59,9	59,9	60,3	60,3	60,3	60,3	60,8	61,0	61,6
Sound pressure level (10 m)	N	dB(A)	59,2	59,2	59,7	59,9	60,0	60,3	60,3	60,6	60,6	60,6	60,6	61,1	61,5	62,0
	U	dB(A)	65,6	65,6	66,4	66,4	66,4	67,1	67,1	67,6	67,6	67,6	67,6	68,1	68,1	68,5

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Size			4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Compressor															
Туре	A,E,N,U	type							Bi-vite						
Compressor regulation	A,E,N,U	Туре							On-Off						
	A	no.	2	2	2	2	2	2	2	3	3	3	3	3	3
Number	E,U	no.	2	2	2	2	2	2	2	3	3	3	3	-	-
	N	no.	2	2	2	2	2	2	2	3	-	-	-	-	-
	А	no.	2	2	2	2	2	2	2	3	3	3	3	3	3
Circuits	E,U	no.	2	2	2	2	2	2	2	3	3	3	3	-	-
	N	no.	2	2	2	2	2	2	2	3	-	-	-	-	-
Refrigerant	A,E,N,U	type							R134a						
System side heat exchanger															
Туре	A,E,N,U	type						S	hell and tub	e					
	Α	no.	1	1	1	1	1	1	1	2	2	2	2	2	2
Number	E,U	no.	1	1	1	1	2	2	2	2	2	2	2	-	-
	N	no.	1	2	2	2	2	2	2	2	-	-	-	-	-
Connections (in/out)	A,E,N,U	Туре						(rooved join	ts					
Fan															
Туре	A,E,N,U	type							Axial						
	Α	no.	16	18	18	18	20	22	22	24	24	28	28	30	34
Number	E,U	no.	20	20	22	22	24	26	28	28	30	30	32	-	-
	N	no.	22	26	28	30	32	32	32	34	-	-	-	-	-
	Α	m³/h	232000	261000	261000	261000	290000	319000	319000	348000	348000	406000	406000	435000	493000
Air flow rate	E	m³/h	224000	224000	246400	246400	268800	291200	313600	313600	336000	336000	358400	-	-
AIT HOW Fale	N	m³/h	246400	291200	313600	336000	358400	358400	358400	380800	-	-	-	-	-
	U	m³/h	290000	290000	319000	319000	348000	377000	406000	406000	435000	435000	464000	-	-
Sound data calculated in cooling mode (1)														
	Α	dB(A)	101,1	101,6	101,6	101,6	102,1	102,5	102,5	102,7	102,8	103,4	103,4	103,7	104,2
Cound notice land	E	dB(A)	95,2	95,2	95,4	95,6	96,0	96,2	96,4	96,0	96,5	96,4	96,6	-	-
Sound power level	N	dB(A)	95,5	96,0	96,2	96,6	96,9	96,9	96,9	96,7	-	-	-	-	-
	U	dB(A)	102,0	102,0	102,4	102,4	102,8	103,1	103,4	103,4	103,7	103,7	103,9	-	-
	Α	dB(A)	68,2	68,6	68,6	68,6	69,0	69,2	69,2	69,4	69,4	69,8	69,8	70,0	70,4
Cound proceure lovel (10 m)	E	dB(A)	62,1	62,0	62,2	62,3	62,7	62,8	62,9	62,5	62,8	62,8	62,8	-	-
Sound pressure level (10 m)	N	dB(A)	62,3	62,5	62,6	62,9	63,1	63,1	63,1	62,8	-	-	-	-	-
	U	dB(A)	68,9	68,9	69,1	69,2	69,5	69,7	69,9	69,8	70,0	70,0	70,2	-	-

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

c :			4400	4400	4000	2002	2202		2502	2452		2002		2402		
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Dimensions and weights																
A	A,E,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	A	mm	5160	5160	5160	5160	6350	6350	6350	7140	7140	7140	7140	8330	8330	9520
C	E,U	mm	5160	5160	6350	6350	6350	7140	7140	8330	8330	8330	8330	9520	9520	10710
	N	mm	6350	6350	7140	7140	7140	8330	8330	9520	9520	9520	9520	10710	11900	13090
Size			4202	4502	4802	5202	5602	600)2 (5402	6503	6703	6903	7203	8403	9603
Dimensions and weights																
	Α	mm	2450	2450	2450	2450	2450	245	0 :	2450	2450	2450	2450	2450	2450	2450
A	E,U	mm	2450	2450	2450	2450	2450	245	0	2450	2450	2450	2450	2450	-	-
	N	mm	2450	2450	2450	2450	2450	245	0 :	2450	2450	-	-	-	-	-
	A	mm	2200	2200	2200	2200	2200	220	0 :	2200	2200	2200	2200	2200	2200	2200
В	E,U	mm	2200	2200	2200	2200	2200	220	0 2	2200	2200	2200	2200	2200	-	-
	N	mm	2200	2200	2200	2200	2200	220	0 2	2200	2200	-	-	-	-	-
	A	mm	9520	10710	10710	10710	11900	130	90 1	3090	14280	14280	16660	16660	17850	20230
C	E,U	mm	11900	11900	13090	13090	14280	154	70 1	6660	16660	17850	17850	19040	-	-
	N	mm	13090	15470	16660	17850	19040	1904	40 1	9040	20230	-	-	-	-	-

For transport reasons, the units with the depth of more than 13090 mm are shipped separately. For more information, please refer to the technical manual and / or installation.

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NSM HWT F

Air-water chiller with free-cooling

Cooling capacity 306 ÷ 2001 kW

- · High efficiency also at partial loads
- Microchannel coils
- Suitable for Data Center applications
- Water produced up to 30 °C
- Night mode

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

These are outdoor units with screw compressors, axial fans, micro-channel coils, and shell and tube heat exchangers

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

These are flexible and reliable units which adapt to the most diverse load conditions thanks to the precise design and the use of steady speed compressors together with inverter-controlled variable speed compressors guaranteeing a high energy efficiency level both at full and partial load.

VERSIONS

A High efficiency

E Silenced high efficiency

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Water produced from 5 °C \div 30 °C.

Unit with 2/3 cooling circuits

Unit with 2/3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode. Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The compressors are completely shut down, if possible, leading to considerable electrical savings.

A "P" free-cooling plus model with the oversized water battery can be chosen for applications in which a higher free-cooling performance is required.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Integrated hydronic kit

To obtain a solution that allows you to save money and to facilitate installation. These units can be configured with an integrated hydronic system. The kit contains the main hydraulic components, and is available in various configurations with a single pump or a standby pump too, so the customer can choose the right useful head.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night Mode: it is possible to set a silenced operation profile. Perfect for night operation since it guarantees greater acoustic comfort in the evenings, and a high efficiency in the time of greater load.

ACCESSORIES

AER485P1 x n° 2: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AER485P1 x n° 3: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured

as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FB1: Air filter to protect the micro-channel coils. Formed of a frame and a composite baffle in micro-expanded aluminium mesh, with particularly low pressure drops.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

KRS: Electric heater for the heat exchanger

AK: Acoustic kit that lowers the noise level even further, thanks to the special coating on the panelling or on those components that produce the most noise in the unit. Available for the low noise version only.

SORIES		

Model	Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
AER485P1 x n° 2 (1)	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•
FB1	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•
PRV3	A,E,N,U	•		•	•	•	•	•	•		•	•		•
Model	Ver	3902	4202	4502	4802	5202	560)2 6	002	6402	6903	7203	8403	9603
AER485P1 x n° 2 (1)	A,E,N,U	•	•	•	•	•	•		•	•				
AER485P1 x n° 3 (1)	A,E,N,U												•	•
AERNET	A,E,N,U	•	•	•	•	•	•		•	•	•	•	•	•
FB1	A,E,N,U	•	•	•	•	•	•		•	•	•	•	•	•
MULTICHILLER-EVO	A,E,N,U		•	•	•	•				•	•	•	•	•
PRV3	A,E,N,U		•	•	•	•	•		•	•	•	•	•	•

(1) x Indicates the quantity of accessories to match.

Antivibration

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
A, E, N, U	AVX. (1)												
(1) Contact us.													

Ver	3902	4202	4502	4802	5202	5602	6002	6402	6903	7203	8403	9603
A, E, N, U	AVX. (1)											

(1) Contact us.

Anti-intrusion grid

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
A, E, N, U	GP. (1)												

(1) Contact the factory A grey background indicates the accessory must be assembled in the factory

Ver	3902	4202	4502	4802	5202	5602	6002	6402	6903	7203	8403	9603
A, E, N, U	GP. (1)											

(1) Contact the factory
A grey background indicates the accessory must be assembled in the factory

Heater exchangers

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
A, E, N, U	KRS (1)												

(1) Contact the factory
A grey background indicates the accessory must be assembled in the factory

Ver	3902	4202	4502	4802	5202	5602	6002	6402	6903	7203	8403	9603
A, E, N, U	KRS (1)											

(1) Contact the factory
A grey background indicates the accessory must be assembled in the factory

Acoustic kit

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
A, E, N, U	AK (1)												

(1) Available only in low noise version

A grey background indicates the accessory must be assembled in the factory

Ver	3902	4202	4502	4802	5202	5602	6002	6402	6903	7203	8403	9603
A, E, N, U	AK (1)											

(1) Available only in low noise version

A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802
A	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002Q	RIFNSM2202Q	RIFNSM2352Q	RIFNSM2502Q	RIFNSM2652Q	RIFNSM2802C
E	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002Q	RIFNSM2202Q	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C
N	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802C	RIFNSM2002Q	RIFNSM2202C	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C
U	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002C	RIFNSM2202Q	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C

A grey background indicates the accessory must be assembled in the factory

Ver	3002	3202	3402	3602	3902	4202	4502	4802	5202
A, E, U	RIFNSM3002C	RIFNSM3202C	RIFNSM3402C	RIFNSM3602C	RIFNSM3902C	RIFNSM4202C	RIFNSM4502C	RIFNSM4802C	RIFNSM5202C
N	RIFNSM3002C	RIFNSM3202C	RIFNSM3402C	RIFNSM3602C	RIFNSM3902C	RIFNSM4202C	-	-	-

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	5602	6002	6402	6503	6703	6903	7203	8403	9603
A	RIFNSM5602C	RIFNSM6002C	RIFNSM6402C	-	-	-	-	-	-

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NSM
4,5,6,7	Size 1402, 1602, 1802, 2002, 2202, 2352, 2502, 2652, 2802, 3002, 3202, 3402, 3602 3902, 4202, 4502, 4802, 5202, 5602, 6002, 6402, 6903, 7203, 8403, 9603
8	Operating field (1)
W	Electronic thermostatic expansion valve
9	Model
F	Free-cooling
P	Free-cooling plus (2)
10	Heat recovery
0	Without heat recovery
11	Version
A	High efficiency
E	Silenced high efficiency
N	Silenced very high efficiency
U	Very high efficiency
12	Coils / free-cooling coils
0	Painted alluminium microchannel / Copper painted aluminium
R	Copper-copper/Copper-copper (2)
S	Copper-Tinned copper / Copper -Tinned copper (2)
V	Copper-painted alumimium / Copper-painted alumimium (2)
0	Alluminium microchannel / Copper - aluminium
13	Fans
J	Inverter
14	Power supply
0	400V ~ 3 50Hz
15,16	Integrated hydronic kit
	Without hydronic kit
00	Without hydronic kit
	Kit with n° 1 pump

Field	Description
PA	Pump A
PB	Pump B
PC	Pump C
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J (3)
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump (3)
	Kit with 2 pumps
TF	Double pump F
TG	Double pump G
TH	Double pump H
TI	Double pump I
TJ	Double pump J (3)

- (1) Water produced from 5 °C \div 30 °C (2) The Free-Cooling Plus "P" models are only compatible with" o" ed "0" (3) For all configurations including pump J please contact the factory.

PERFORMANCE SPECIFICATIONS

NSM HWT FA-PA

<u>c:</u>			4400	4000	2002	2222	22.52	2502	2452	2002	2002		2402	
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Model: F														
Cooling performance chiller operation														
Cooling capacity	kW	306,0	351,0	400,0	441,0	479,0	505,0	546,0	589,0	638,0	653,0	687,0	753,0	792,0
Input power	kW	82,0	95,0	109,0	118,0	125,0	135,0	147,0	155,0	167,0	172,0	179,0	192,0	205,0
Cooling total input current	А	146,0	166,0	187,0	200,0	208,0	224,0	242,0	258,0	277,0	290,0	306,0	327,0	348,0
EER	W/W	3,75	3,69	3,69	3,73	3,83	3,73	3,71	3,79	3,81	3,80	3,84	3,92	3,86
Water flow rate system side	l/h	52650	60360	68820	75940	82440	86790	93850	101330	109680	112330	118100	129500	136230
Pressure drop system side	kPa	60	80	95	76	89	99	116	85	91	96	84	93	103
Cooling performances with free-cooling					,,,				- 05					100
Cooling capacity	kW	336,0	351,0	363,0	370,0	449,0	454,0	462,0	542,0	551,0	554,0	559,0	644,0	651,0
3 1 7	kW	19,3	19,3	19,3	19,3	24,1	24,1	24,1	28,9	28,9	28,9	28,9	33,7	33,7
Input power														
Free cooling total input current	A	30,0	30,0	30,0	30,0	37,6	37,6	37,6	45,1	45,1	45,1	45,1	52,6	52,6
EER	W/W	17,43	18,20	18,82	19,20	18,63	18,86	19,16	18,74	19,06	19,15	19,32	19,11	19,29
Water flow rate system side	l/h	52650	60360	68820	75940		86790	93850	101330	109680	112330	118100	129500	136230
Pressure drop system side	kPa	87	115	139	129	133	147	171	128	141	147	141	146	161
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Model: P														
Cooling performance chiller operation														
Cooling capacity	kW	305,0	349,0	300 U	130 U	477,0	502,0	543,0	587,0	635,0	650,0	683,0	749,0	788,0
3 1 7				398,0	439,0									
Input power	kW	82,0	96,0	109,0	120,0	126,0	136,0	148,0	157,0	169,0	174,0	181,0	194,0	207,0
Cooling total input current	A	147,0	167,0	188,0	201,0	210,0	226,0	244,0	260,0	279,0	292,0	308,0	330,0	351,0
EER	W/W	3,70	3,64	3,64	3,68	3,78	3,68	3,66	3,74	3,76	3,74	3,78	3,86	3,80
Water flow rate system side	I/h	52410	60090	68480	75580	82100	86410	93420	100950	109190	111820	117510	128910	135580
Pressure drop system side	kPa	59	79	94	75	89	98	115	84	90	95	83	92	102
Cooling performances with free-cooling														
Cooling capacity	kW	361,0	378,0	391,0	399,0	484,0	490,0	497,0	584,0	594,0	597,0	602,0	694,0	701,0
Input power	kW	19,7	19,7	19,7	19,7	24,6	24,6	24,6	29,5	29,5	29,5	29,5	34,4	34,4
Free cooling total input current	A	30,6	30,6	30,6	30,6	38,2	38,2	38,2	45,9	45,9	45,9	45,9	53,5	53,5
EER	W/W	18,35	19,22	19,89	20,29	19,69	19,93	20,25	19,81	20,15	20,24	20,41	20,19	20,38
Water flow rate system side	I/h	52410	60090	68480	75580		86410	93420	100950	109190	111820	117510	128910	135580
Pressure drop system side	kPa	86	114	138	128	131	145	169	127	139	146	139	145	160
riessule diop system side	KFd	- 00	114	130	120	131	143	109	127	137	140	137	143	100
NSM HWT FA-DA														
NSM HWT FA-PA		3003	4202	4503	4003	5202			102	(402	(003	7202	0403	0(0)
Size		3902	4202	4502	4802	5202	5602	2 60	002	6402	6903	7203	8403	9603
Size Model: F		3902	4202	4502	4802	5202	5602	2 60	002	6402	6903	7203	8403	9603
Size Model: F Cooling performance chiller operation														
Size Model: F Cooling performance chiller operation Cooling capacity	kW	853,0	882,0	959,0	1014,0	1082,0) 1169,	,0 12	62,0	1327,0	1476,0	1531,0	1758,0	2001,0
Size Model: F Cooling performance chiller operation Cooling capacity Input power	kW) 1169,	,0 12 0 31	62,0 9,0	1327,0 343,0	1476,0 373,0	1531,0 388,0	1758,0 442,0	
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current	kW A	853,0 216,0 362,0	882,0 228,0 377,0	959,0 244,0 416,0	1014,0 260,0 453,0	1082,0) 1169, 295,	,0 12 0 31 0 53	62,0 9,0 1,0	1327,0 343,0 567,0	1476,0 373,0 646,0	1531,0 388,0 683,0	1758,0	2001,0
Size Model: F Cooling performance chiller operation Cooling capacity Input power	kW	853,0 216,0	882,0 228,0	959,0 244,0	1014,0 260,0	1082,0) 1169, 295,	,0 12 0 31 0 53	62,0 9,0	1327,0 343,0	1476,0 373,0	1531,0 388,0	1758,0 442,0	2001,0 512,0
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current	kW A	853,0 216,0 362,0	882,0 228,0 377,0	959,0 244,0 416,0	1014,0 260,0 453,0 3,90	1082,0 281,0 478,0 3,86) 1169, 295, 494, 3,97	0 12 0 31 0 53	62,0 9,0 1,0	1327,0 343,0 567,0 3,87	1476,0 373,0 646,0	1531,0 388,0 683,0	1758,0 442,0 740,0	2001,0 512,0 854,0
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER	kW A W/W	853,0 216,0 362,0 3,95	882,0 228,0 377,0 3,87	959,0 244,0 416,0 3,92	1014,0 260,0 453,0 3,90	1082,0 281,0 478,0 3,86) 1169, 295, 494, 3,97	0 12 0 31 0 53 7 3	62,0 9,0 1,0	1327,0 343,0 567,0 3,87	1476,0 373,0 646,0 3,96	1531,0 388,0 683,0 3,94	1758,0 442,0 740,0 3,97	2001,0 512,0 854,0 3,91
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W I/h	853,0 216,0 362,0 3,95 146650	882,0 228,0 377,0 3,87 151620	959,0 244,0 416,0 3,92 165010	1014,0 260,0 453,0 3,90 174350	1082,0 281,0 478,0 3,86 0 186190	0 1169, 295, 494, 3,97 0 20115	0 12 0 31 0 53 7 3	62,0 9,0 1,0 95	1327,0 343,0 567,0 3,87 228220	1476,0 373,0 646,0 3,96 253930	1531,0 388,0 683,0 3,94 263260	1758,0 442,0 740,0 3,97 302310	2001,0 512,0 854,0 3,91 344170
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling	kW A W/W I/h kPa	853,0 216,0 362,0 3,95 146650 69	882,0 228,0 377,0 3,87 151620 74	959,0 244,0 416,0 3,92 165010 91	1014,0 260,0 453,0 3,90 174350 101	1082,0 281,0 478,0 3,86 186190 94	0 1169, 295, 494, 3,97 0 20115	30 31 30 31 31 31 31 31 31 31 31 31 31 31 31 31 3	62,0 9,0 1,0 95 7040	1327,0 343,0 567,0 3,87 228220 144	1476,0 373,0 646,0 3,96 253930 116	1531,0 388,0 683,0 3,94 263260 116	1758,0 442,0 740,0 3,97 302310 117	2001,0 512,0 854,0 3,91 344170 138
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity	kW A W/W I/h kPa	853,0 216,0 362,0 3,95 146650 69	882,0 228,0 377,0 3,87 151620 74	959,0 244,0 416,0 3,92 165010 91	1014,0 260,0 453,0 3,90 174350 101	1082,0 281,0 478,0 3,86 0 186190 94	1169, 295, 494, 3,97 0 20115 110	0 12 0 31 0 53 0 53 7 3 1 1	62,0 9,0 1,0 95 7040 30	1327,0 343,0 567,0 3,87 228220 144	1476,0 373,0 646,0 3,96 253930 116	1531,0 388,0 683,0 3,94 263260 116	1758,0 442,0 740,0 3,97 302310 117	2001,0 512,0 854,0 3,91 344170 138
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power	kW A W/W I/h kPa kW	853,0 216,0 362,0 3,95 146650 69 735,0 38,5	882,0 228,0 377,0 3,87 151620 74 740,0 38,5	959,0 244,0 416,0 3,92 165010 91 827,0 43,4	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4	1082,0 281,0 478,0 3,86 0 186190 94 845,0 43,4) 1169, 295, 494, 3,97 0 20115 110	00 12 00 31 00 53 00 53 00 21 1 1 00 10.0	62,0 9,0 11,0 95 7040 30	1327,0 343,0 567,0 3,87 228220 144	1476,0 373,0 646,0 3,96 253930 116	1531,0 388,0 683,0 3,94 263260 116	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3	2001,0 512,0 854,0 3,91 344170 138
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6	1082,0 281,0 478,0 3,86 0 186190 94 845,0 43,4 67,6	1169, 295, 494, 3,97 0 20115 110 935, 48,2 75,1	00 12 00 31 00 53 7 3 50 21 1 00 10 8	62,0 9,0 11,0 95 7040 330 225,0 3,0	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6	281,0 281,0 478,0 3,86 0 186190 94 845,0 43,4 67,6	295, 494, 3,97 0 20115 110 935, 48,2 75,1	00 12 00 31 00 53 00 53 00 21 1 1 00 10 1 00 10 1 1 1 1 1 1 1 1 1 1	62,0 9,0 1,0 95 7040 30 25,0 3,0 2,6	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07 146650	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19 151620	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6 19,07	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6 19,27 174350	1 1082,0 281,0 478,0 3,86 0 186190 94 845,0 43,4 67,6 19,48	935,d 48,2 75,1 19,39 0 20115 110	0 12 0 31 0 53 0 53 0 21 1 1 0 10 0 10 1 5. 8 8 9 19	62,0 9,0 11,0 95 7040 30 225,0 3,0 2,6 ,33	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49 228220	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03 253930	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17 263260	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40 302310	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42 344170
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6	281,0 281,0 478,0 3,86 0 186190 94 845,0 43,4 67,6	295, 494, 3,97 0 20115 110 935, 48,2 75,1	0 12 0 31 0 53 0 53 0 21 1 1 0 10 0 10 1 5. 8 8 9 19	62,0 9,0 1,0 95 7040 30 25,0 3,0 2,6	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07 146650	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19 151620	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6 19,07	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6 19,27 174350	1 1082,0 281,0 478,0 3,86 0 186190 94 845,0 43,4 67,6 19,48	935,4 48,2 75,1 935,7 110 935,6 48,2 75,1 19,33 173	0 12 0 31 0 53 7 3 10 21 10 10 0 1	62,0 9,0 11,0 95 7040 30 225,0 3,0 2,6 ,33	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49 228220	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03 253930	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17 263260	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40 302310	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42 344170
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W I/h	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07 146650 119	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19 151620 127	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6 19,07 165010	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6 19,27 174350 158	1082,0 281,0 478,0 3,86 186190 94 845,0 43,4 67,6 19,48 186190 159	935,4 48,2 75,1 935,7 110 935,6 48,2 75,1 19,33 173	0 12 0 31 0 53 7 3 10 21 10 10 0 1	62,0 9,0 11,0 95 7040 330 25,0 3,0 2,6 3,33 7040	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49 228220 213	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03 253930 165	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17 263260 165	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40 302310 179	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42 344170 207
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P	kW A W/W I/h kPa kW kW A W/W I/h	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07 146650 119	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19 151620 127	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6 19,07 165010	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6 19,27 174350 158	1082,0 281,0 478,0 3,86 186190 94 845,0 43,4 67,6 19,48 186190 159	935,4 48,2 75,1 935,7 110 935,6 48,2 75,1 19,33 173	0 12 0 31 0 53 7 3 10 21 10 10 0 1	62,0 9,0 11,0 95 7040 330 25,0 3,0 2,6 3,33 7040	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49 228220 213	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03 253930 165	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17 263260 165	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40 302310 179	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42 344170 207
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation	kW A W/W I/h kPa kW kW A W/W I/h kPa	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07 146650 119 3902	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19 151620 127	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6 19,07 165010 142 4502	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6 19,27 174350 158	1082,0 281,0 478,0 3,86 0 186190 94 845,0 43,4 67,6 19,48 0 186190 159	935,0 935,0 935,0 935,0 48,2 75,1 19,39 173	0.0 12 0.0 31 0.0 53 0.0 53 0.1 33 1.1 33 1.1 35 1.1 35	62,0 9,0 11,0 95 7040 30 225,0 3,0 2,6 3,33 7040 94	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49 228220 213 6402	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03 253930 165 6903	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17 263260 165 7203	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40 302310 179 8403	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42 344170 207
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07 146650 119 3902	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19 151620 127 4202	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6 19,07 165010 142 4502	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6 19,27 174350 158 4802	1082,0 281,0 478,0 3,86 0 186190 94 845,0 43,4 67,6 19,48 0 186190 159 5202	935,0 935,0 935,0 935,0 48,2 75,1 19,33 5602	0.0 12 0.0 31 0.0 53 0.0 53 1.1 3.1 10 0.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	62,0 9,0 11,0 95 7040 30 225,0 3,0 2,6 3,33 7040 94 1002	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49 228220 213 6402	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03 253930 165 6903	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17 263260 165 7203	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40 302310 179 8403	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42 344170 207 9603
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07 146650 119 3902	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19 151620 127 4202	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6 19,07 165010 142 4502	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6 19,27 174350 158 4802	1082,0 281,0 478,0 3,86 0 186190 94 845,0 43,4 67,6 19,48 159 5202	935,0 935,0 935,0 935,0 48,2 75,1 19,39 173 5603	00 120 310 310 530 530 530 54 550 217 550 217 550 217 1 1 2 66	62,0 9,0 11,0 95 7040 30 25,0 3,0 2,6 3,33 7040 94 202	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49 228220 213 6402	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03 253930 165 6903	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17 263260 165 7203	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40 302310 179 8403	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42 344170 207 9603
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07 146650 119 3902	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19 151620 127 4202	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6 19,07 165010 142 4502	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6 19,27 174350 158 4802	1082,0 281,0 478,0 3,86 0 186190 94 845,0 43,4 67,6 19,48 159 5202	935,4 48,2 75,1 19,3 10 20115 110 935,4 48,2 75,1 19,3 173 560 1164, 298,4 498,4	00 120 00 31 00 31 1 3, 1 3, 1 5, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	62,0 9,0 11,0 95 7040 30 25,0 3,0 2,6 3,33 7040 94 2002	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49 228220 213 6402 1320,0 346,0 571,0	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03 253930 165 6903	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17 263260 165 7203	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40 302310 179 8403	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42 344170 207 9603
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07 146650 119 3902 849,0 218,0 365,0 3,90	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19 151620 127 4202 878,0 230,0 381,0	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6 19,07 165010 142 4502 955,0 247,0 420,0 3,87	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6 19,27 174350 158 4802	1082,0 281,0 478,0 3,86 186190 94 845,0 43,4 67,6 19,48 186190 159 5202	935,4 48,2 75,1 19,3 10 20115 110 935,4 48,2 75,1 19,3 173 560 1164, 298,4 498,4 3,91	0 12 0 31 0 31 3 3 5 3 1 3 5 0 21 1 1 0 10 1 5 8 8 9 19 5 0 21 1 1 2 66	62,0 9,0 11,0 95 7040 30 25,0 3,0 2,6 3,33 7040 94 202 56,0 90 6,0 90	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49 228220 213 6402 1320,0 346,0 571,0 3,81	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03 253930 165 6903 1470,0 377,0 652,0 3,90	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17 263260 165 7203 1524,0 392,0 688,0 3,89	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40 302310 179 8403 1749,0 447,0 747,0 3,91	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42 344170 207 9603
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07 146650 119 3902 849,0 218,0 365,0 3,90	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19 151620 127 4202 878,0 230,0 381,0 3,81	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6 19,07 165010 142 4502 955,0 247,0 420,0 3,87 164290	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6 19,27 174350 158 4802	1082,0 281,0 478,0 3,86 186190 94 845,0 43,4 67,6 19,48 186190 159 5202 1077,0 284,0 482,0 3,80	935,4 48,2 75,1 110 935,6 48,2 75,1 19,39 0 20115 173 5603 0 1164, 298,4 498,4 3,91 0 20012	0 12 0 31 0 31 1 3 1 3 1 3 1 5 1 1 0 10 1 5 8 8 9 19 1 5 1 2 66 1 1 2 66 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	62,0 9,0 11,0 95 7040 330 25,0 3,0 2,6 333 7040 94 1002	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49 228220 213 6402 1320,0 346,0 571,0 3,81 227050	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03 253930 165 6903 1470,0 377,0 652,0 3,90 252860	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17 263260 165 7203 1524,0 392,0 688,0 3,89 262120	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40 302310 179 8403 1749,0 447,0 747,0 3,91 300800	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42 344170 207 9603
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07 146650 119 3902 849,0 218,0 365,0 3,90	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19 151620 127 4202 878,0 230,0 381,0	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6 19,07 165010 142 4502 955,0 247,0 420,0 3,87	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6 19,27 174350 158 4802	1082,0 281,0 478,0 3,86 186190 94 845,0 43,4 67,6 19,48 186190 159 5202	935,4 48,2 75,1 19,3 10 20115 110 935,4 48,2 75,1 19,3 173 560 1164, 298,4 498,4 3,91	0 12 0 31 0 31 1 3 1 3 1 3 1 5 1 1 0 10 1 5 8 8 9 19 1 5 1 2 66 1 1 2 66 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	62,0 9,0 11,0 95 7040 30 25,0 3,0 2,6 3,33 7040 94 202 56,0 90 6,0 90	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49 228220 213 6402 1320,0 346,0 571,0 3,81	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03 253930 165 6903 1470,0 377,0 652,0 3,90	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17 263260 165 7203 1524,0 392,0 688,0 3,89	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40 302310 179 8403 1749,0 447,0 747,0 3,91	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42 344170 207 9603
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07 146650 119 3902 849,0 218,0 365,0 3,90	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19 151620 127 4202 878,0 230,0 381,0 3,81	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6 19,07 165010 142 4502 955,0 247,0 420,0 3,87 164290	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6 19,27 174350 158 4802	1082,0 281,0 478,0 3,86 186190 94 845,0 43,4 67,6 19,48 186190 159 5202 1077,0 284,0 482,0 3,80	935,4 48,2 75,1 110 935,6 48,2 75,1 19,39 0 20115 173 5603 0 1164, 298,4 498,4 3,91 0 20012	0 12 0 31 0 31 1 3 1 3 1 3 1 5 1 1 0 10 1 5 8 8 9 19 1 5 1 2 66 1 1 2 66 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	62,0 9,0 11,0 95 7040 330 25,0 3,0 2,6 333 7040 94 1002	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49 228220 213 6402 1320,0 346,0 571,0 3,81 227050	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03 253930 165 6903 1470,0 377,0 652,0 3,90 252860	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17 263260 165 7203 1524,0 392,0 688,0 3,89 262120	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40 302310 179 8403 1749,0 447,0 747,0 3,91 300800	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42 344170 207 9603
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07 146650 119 3902 849,0 218,0 365,0 3,90	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19 151620 127 4202 878,0 230,0 381,0 3,81	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6 19,07 165010 142 4502 955,0 247,0 420,0 3,87 164290	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6 19,27 174350 158 4802	1082,0 281,0 478,0 3,86 186190 94 845,0 43,4 67,6 19,48 186190 159 5202 1077,0 284,0 482,0 3,80	935,4 48,2 75,1 19,3 10 20115 110 935,4 48,2 75,1 19,3 10 20115 173 560,2 1164,298,4 498,4 3,91 0 20012 109	0 12 0 31 0 53 1 3, 50 21; 1 1 0 10, 1 5. 8 8 8 9 19 9 19 2 66 1 1 2 66 1 1 2 60 1 2 1 2 1 3 3 3 3 3 3 2 0 21; 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	62,0 9,0 11,0 95 7040 30 25,0 3,0 2,6 ,33 7040 94 1002 1002 1002 1003	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49 228220 213 6402 1320,0 346,0 571,0 3,81 227050	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03 253930 165 6903 1470,0 377,0 652,0 3,90 252860	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17 263260 165 7203 1524,0 392,0 688,0 3,89 262120	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40 302310 179 8403 1749,0 447,0 747,0 3,91 300800	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42 344170 207 9603
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with free-cooling	kW A W/W I/h kPa kW kW A W/W I/h kPa	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07 146650 119 3902 849,0 218,0 365,0 3,90 146000	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19 151620 127 4202 878,0 230,0 381,0 3,81 150930 73	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6 19,07 165010 142 4502 955,0 247,0 420,0 3,87 164290 90	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6 19,27 174350 158 4802 1009,0 262,0 456,0 3,84 173550 100	1082,0 281,0 478,0 3,86 186190 94 845,0 43,4 67,6 19,48 186190 159 5202 1077,0 284,0 482,0 3,80 185230 93	935,4 48,2 75,1 19,3 10 20115 110 935,4 48,2 75,1 19,3 10 20115 173 560,2 1164,298,4 498,4 3,91 0 20012 109	0 12 0 31 0 53 1 3, 50 21; 1 1 0 10, 1 5. 8 8 8 9 19 9 19 2 66 1 1 2 66 1 1 2 60 1 2 1 2 1 3 3 3 3 3 3 2 0 21; 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	62,0 9,0 11,0 95 7040 30 25,0 3,0 2,6 33 7040 94 1002 56,0 100 100 100 100 100 100 100 1	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49 228220 213 6402 1320,0 346,0 571,0 3,81 227050 142	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03 253930 165 6903 1470,0 377,0 652,0 3,90 252860 115	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17 263260 165 7203 1524,0 392,0 688,0 3,89 262120 115	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40 302310 179 8403 1749,0 447,0 747,0 3,91 300800 115	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42 344170 207 9603
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Fressure drop system side Cooling performance chiller operation Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling performances with free-cooling Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07 146650 119 3902 849,0 218,0 365,0 3,90 146000 69	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19 151620 127 4202 878,0 230,0 381,0 3,81 150930 73	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6 19,07 165010 142 4502 955,0 247,0 420,0 3,87 164290 90	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6 19,27 174350 158 4802	1082,0 281,0 478,0 3,86 186190 94 845,0 43,4 67,6 19,48 186190 159 5202 1077,0 284,0 482,0 3,80 185230 93	935,4 48,2 75,1 19,3 10 20115 110 935,6 48,2 75,1 19,3 10 20115 173 560,2 1164,298,6 498,6 3,91 1097,0	0 12 0 31 0 53 1 3, 50 21 1 1 0 10, 1 5, 8 8, 9 19 1 2 66 1 2 66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	62,0 9,0 11,0 95 7040 30 25,0 3,0 2,6 ,33 7040 94 1002 1002 1002 1003	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49 228220 213 6402 1320,0 346,0 571,0 3,81 227050 142	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03 253930 165 6903 1470,0 377,0 652,0 3,90 252860 115	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17 263260 165 7203 1524,0 392,0 688,0 3,89 262120 115	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40 302310 179 8403 1749,0 447,0 747,0 3,91 300800 115	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42 344170 207 9603
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performance chiller operation Cooling performance with free-cooling capacity Input power Cooling performances with free-cooling Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa kW KW A W/W I/h kPa kW kW A W/W KW KW A W/W KW	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07 146650 119 3902 849,0 218,0 365,0 3,90 146000 69	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19 151620 127 4202 878,0 230,0 381,0 3,81 150930 73 797,0 39,3 61,2	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6 19,07 165010 142 4502 955,0 247,0 420,0 3,87 164290 90	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6 19,27 174350 158 4802 1009,0 262,0 456,0 3,84 173550 100	1082,0 281,0 478,0 3,86 186190 94 845,0 43,4 67,6 19,48 186190 159 5202 1077,0 284,0 482,0 3,80 185230 93	1169, 295, 494, 494, 3,97 100 20115 173 173 1660, 3,91 1007, 49,1 1007, 49,1 76,5	0 12 0 31 0 53 1 3, 50 21; 0 10, 1 5. 8 8, 9 19 10 22 66 10 32 10 32	62,0 9,0 11,0 95 7040 30 25,0 3,0 2,6 ,33 7040 94 1002 1002 1002 1003	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49 228220 213 6402 1320,0 346,0 571,0 3,81 227050 142 1113,0 54,0 84,1	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03 253930 165 6903 1470,0 377,0 652,0 3,90 252860 115 1384,0 68,8 107,0	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17 263260 165 7203 1524,0 392,0 688,0 3,89 262120 115 1393,0 68,8 107,0	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40 302310 179 8403 1749,0 447,0 747,0 3,91 300800 115 1510,0 73,7 114,7	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42 344170 207 9603 1991,0 517,0 861,0 3,85 342450 136
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performance chiller operation Cooling performance with free-cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A kPa	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07 146650 119 3902 849,0 218,0 365,0 3,90 146000 69 792,0 39,3 61,2 20,16	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19 151620 127 4202 878,0 230,0 381,0 3,81 150930 73 797,0 39,3 61,2 20,28	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6 19,07 165010 142 4502 955,0 247,0 420,0 3,87 164290 90 891,0 44,2 68,8 20,16	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6 19,27 174350 158 4802 1009,0 262,0 456,0 3,84 173550 100	1082,0 281,0 478,0 3,86 186190 94 845,0 43,4 67,6 19,48 186190 159 5202 1077,0 284,0 482,0 3,80 185230 93 910,0 44,2 68,8 20,58	1169, 295, 494, 494, 110 110 110 110 110 110 110 110 110 11	0 12 0 31 0 53 0 53 0 53 0 53 0 53 0 53 0 53	62,0 9,0 11,0 95 7040 30 25,0 3,0 2,6 ,33 7040 94 1002 1002 1002 1003	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49 228220 213 6402 1320,0 346,0 571,0 3,81 227050 142 1113,0 54,0 84,1 20,59	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03 253930 165 6903 1470,0 377,0 652,0 3,90 252860 115 1384,0 68,8 107,0 20,12	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17 263260 165 7203 1524,0 392,0 688,0 3,89 262120 115 1393,0 68,8 107,0 20,25	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40 302310 179 8403 1749,0 447,0 747,0 3,91 300800 115 1510,0 73,7 114,7 20,49	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42 344170 207 9603 1991,0 517,0 861,0 3,85 342450 136
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performance chiller operation Cooling performance with free-cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW KW A W/W I/h kPa kW KW A W/W I/h kPa	853,0 216,0 362,0 3,95 146650 69 735,0 38,5 60,1 19,07 146650 119 3902 849,0 218,0 365,0 3,90 146000 69	882,0 228,0 377,0 3,87 151620 74 740,0 38,5 60,1 19,19 151620 127 4202 878,0 230,0 381,0 3,81 150930 73 797,0 39,3 61,2	959,0 244,0 416,0 3,92 165010 91 827,0 43,4 67,6 19,07 165010 142 4502 955,0 247,0 420,0 3,87 164290 90	1014,0 260,0 453,0 3,90 174350 101 836,0 43,4 67,6 19,27 174350 158 4802 1009,0 262,0 456,0 3,84 173550 100	1082,0 281,0 478,0 3,86 186190 94 845,0 43,4 67,6 19,48 186190 159 5202 1077,0 284,0 482,0 3,80 185230 93 910,0 44,2 68,8 20,58	1169, 295, 494, 494, 1100 1100 1100 1100 1100 1100 1100 11	0 12 0 31 0 53 0 53 0 53 0 53 0 53 0 53 0 53	62,0 9,0 11,0 95 7040 30 25,0 3,0 2,6 ,33 7040 94 1002 1002 1002 1003	1327,0 343,0 567,0 3,87 228220 144 1033,0 53,0 82,6 19,49 228220 213 6402 1320,0 3,81 227050 142 1113,0 54,0 84,1 20,59	1476,0 373,0 646,0 3,96 253930 116 1284,0 67,5 105,1 19,03 253930 165 6903 1470,0 377,0 652,0 3,90 252860 115 1384,0 68,8 107,0 20,12	1531,0 388,0 683,0 3,94 263260 116 1293,0 67,5 105,1 19,17 263260 165 7203 1524,0 392,0 688,0 3,89 262120 115 1393,0 68,8 107,0	1758,0 442,0 740,0 3,97 302310 117 1402,0 72,3 112,7 19,40 302310 179 8403 1749,0 447,0 747,0 3,91 300800 115 1510,0 73,7 114,7	2001,0 512,0 854,0 3,91 344170 138 1590,0 81,9 127,7 19,42 344170 207 9603 1991,0 517,0 861,0 3,85 342450 136

Cooling performance chiller operation: System side water heat exchanger 25 °C/20 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0%

NSM	HWT	FE-PE

NSM HWT FE-PE														
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Model: F														
Cooling performance chiller operation														
Cooling capacity	kW	315,0	362,0	415,0	456,0		524,0	551,0	599,0	626,0	641,0	667,0	735,0	772,0
Input power	kW	75,0	91,0	101,0	112,0		127,0	138,0	145,0	156,0	161,0	169,0	178,0	192,0
Cooling total input current	A	134,0	158,0	175,0	189,0		210,0	227,0	240,0	258,0	272,0	288,0	303,0	325,0
EER	W/W	4,19	3,97	4,09	4,07		4,13	4,00	4,12	4,02	3,97	3,95	4,13	4,03
Water flow rate system side	I/h	54220	62220	71300	78430		90170	94830	102950	107680	110230	114670	126390	132800
Pressure drop system side	kPa	42	49	64	76	85	61	66	68	74	79	80	51	58
Cooling performances with free-cooling	LAM	267.0	272.0	227.0	242.0	244.0	400 A	411.0	474.0	470 A	470.0	402 A	E40 0	EE1 0
Cooling capacity	kW	267,0	273,0	337,0	342,0		408,0	411,0	474,0	478,0	479,0	482,0	548,0	551,0
Input power	kW	6,4	6,4	7,9	7,9	7,9	9,5	9,5	11,1	11,1	11,1	11,1	12,7	12,7
Free cooling total input current EER	M/W	9,4 41,99	9,4 43,01	11,8 42,41	11,8 43,05		14,1 42,79	14,1	16,5 42,64	16,5 42,94	16,5 43,08	16,5 43,29	18,8	18,8 43,35
	I/h	54220	62220	71300	78430		42,79 90170	43,10 94830		107680	110230	114670	43,10 126390	132800
Water flow rate system side	kPa	71		97			95		102950				89	
Pressure drop system side	KPd		86	9/	115	127	95	104	102	112	118	122		99
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Model: P														
Cooling performance chiller operation														
Cooling capacity	kW	314,0	360,0	412,0	453,0		521,0	548,0	595,0	622,0	637,0	662,0	730,0	767,0
Input power	kW	76,0	92,0	102,0	113,0		128,0	139,0	147,0	157,0	163,0	170,0	180,0	194,0
Cooling total input current	A	134,0	159,0	176,0	190,0		211,0	229,0	242,0	260,0	274,0	291,0	306,0	328,0
EER	W/W	4,14	3,92	4,03	4,00		4,07	3,93	4,06	3,96	3,90	3,88	4,06	3,95
Water flow rate system side	I/h	53990	61890	70890	77860		89640	94230	102360	107020	109540	113890	125570	131860
Pressure drop system side	kPa	42	49	63	75	83	60	65	67	73	78	79	51	57
Cooling performances with free-cooling														
Cooling capacity	kW	285,0	292,0	360,0	365,0	367,0	435,0	438,0	506,0	509,0	511,0	513,0	584,0	587,0
Input power	kW	6,5	6,5	8,1	8,1	8,1	9,7	9,7	11,3	11,3	11,3	11,3	12,9	12,9
Free cooling total input current	A	9,6	9,6	11,9	11,9	11,9	14,3	14,3	16,7	16,7	16,7	16,7	19,1	19,1
EER	W/W	44,05	45,10	44,49	45,14	45,38	44,88	45,19	44,73	45,03	45,17	45,36	45,18	45,42
Water flow rate system side	l/h	53990	61890	70890	77860		89640	94230	102360	107020	109540	113890	125570	131860
Pressure drop system side	kPa	70	86	96	113	125	94	102	101	110	116	120	88	98
NCM LIWT FF DF														
NSM HWT FE-PE														
Size		3902	4202	4502	4802	5202	56	502 (6002	6402	6903	7203	8403	9603
Size Model: F		3902	4202	4502	4802	5202	56	502	6002	6402	6903	7203	8403	9603
Size Model: F Cooling performance chiller operation	I.W.													9603
Size Model: F Cooling performance chiller operation Cooling capacity	kW	823,0	870,0	932,0	1011,0	1070,0	115	52,0 1	226,0	1300,0	1423,0	1502,0	8403	9603
Size Model: F Cooling performance chiller operation Cooling capacity Input power	kW	823,0 202,0	870,0 210,0	932,0 228,0	1011,0 241,0	1070,0 260,0	115	52,0 1 '5,0 2	226,0 296,0	1300,0 318,0	1423,0 350,0	1502,0 364,0	-	-
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current	kW A	823,0 202,0 339,0	870,0 210,0 348,0	932,0 228,0 388,0	1011,0 241,0 421,0	1070,0 260,0 443,0	115 27 46	52,0 1 75,0 2	226,0 296,0 493,0	1300,0 318,0 526,0	1423,0 350,0 601,0	1502,0 364,0 631,0		- - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER	kW A W/W	823,0 202,0 339,0 4,07	870,0 210,0 348,0 4,15	932,0 228,0 388,0 4,09	1011,0 241,0 421,0 4,19	1070,0 260,0 443,0 4,12	115 27 46 4,	52,0 1 75,0 2 10,0 4	226,0 296,0 493,0 4,14	1300,0 318,0 526,0 4,09	1423,0 350,0 601,0 4,07	1502,0 364,0 631,0 4,13	-	-
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h	823,0 202,0 339,0 4,07 141610	870,0 210,0 348,0 4,15 149590	932,0 228,0 388,0 4,09 160240	1011,0 241,0 421,0 4,19 173870	1070,0 260,0 443,0 4,12 184060	115 27 46 4,	52,0 1 75,0 2 60,0 4 19	226,0 296,0 493,0 4,14 10870	1300,0 318,0 526,0 4,09	1423,0 350,0 601,0 4,07 244770	1502,0 364,0 631,0 4,13 258380		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W	823,0 202,0 339,0 4,07	870,0 210,0 348,0 4,15	932,0 228,0 388,0 4,09	1011,0 241,0 421,0 4,19	1070,0 260,0 443,0 4,12	115 27 46 4,	52,0 1 75,0 2 10,0 4	226,0 296,0 493,0 4,14	1300,0 318,0 526,0 4,09	1423,0 350,0 601,0 4,07	1502,0 364,0 631,0 4,13		- - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling	kW A W/W I/h kPa	823,0 202,0 339,0 4,07 141610 69	870,0 210,0 348,0 4,15 149590 78	932,0 228,0 388,0 4,09 160240 91	1011,0 241,0 421,0 4,19 173870 86	1070,0 260,0 443,0 4,12 184060 94	115 27 46 4, 198	52,0 1 75,0 2 60,0 4 ,19 8120 2	226,0 296,0 493,0 4,14 10870 2	1300,0 318,0 526,0 4,09 223620 81	1423,0 350,0 601,0 4,07 244770 105	1502,0 364,0 631,0 4,13 258380 105	- - - -	
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity	kW A W/W I/h kPa	823,0 202,0 339,0 4,07 141610 69	870,0 210,0 348,0 4,15 149590 78	932,0 228,0 388,0 4,09 160240 91	1011,0 241,0 421,0 4,19 173870 86	1070,0 260,0 443,0 4,12 184060 94	115 27 46 4, 198 6	1552,0 1 155,0 2 100,0 4 1,19 1 110 2 155 1 166,0 8	226,0 296,0 493,0 4,14 10870 2 81	1300,0 318,0 526,0 4,09 223620 81	1423,0 350,0 601,0 4,07 244770 105	1502,0 364,0 631,0 4,13 258380 105	- - - -	
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power	kW A W/W I/h kPa kW	823,0 202,0 339,0 4,07 141610 69 616,0	870,0 210,0 348,0 4,15 149590 78 680,0 15,9	932,0 228,0 388,0 4,09 160240 91 686,0 15,9	1011,0 241,0 421,0 4,19 173870 86 753,0	1070,0 260,0 443,0 4,12 184060 94 759,0	115 27 46 4, 198 6	552,0 1 75,0 2 700,0 4 19 8120 2 555	226,0 296,0 493,0 4,14 10870 81 81 393,0 20,7	1300,0 318,0 526,0 4,09 223620 81 960,0 22,3	1423,0 350,0 601,0 4,07 244770 105	1502,0 364,0 631,0 4,13 258380 105		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9	115 27 46 4, 198 6	552,0 1 15,0 2 10,0 4 19 3120 2 55 66,0 8 9,1	226,0 296,0 493,0 4,14 10870 2 81 393,0 20,7 30,6	1300,0 318,0 526,0 4,09 223620 81 960,0 22,3 32,9	1423,0 350,0 601,0 4,07 2244770 105	1502,0 364,0 631,0 4,13 258380 105		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39	115 27 46 4, 198 6 82 19 28 43,	552,0 1 155,0 2 160,0 4 19 8 1120 2 166,0 8 19,1 8 18,2 4 132,32 4	226,0 296,0 493,0 4,14 110870 20,7 30,6 43,24	1300,0 318,0 526,0 4,09 123620 81 960,0 22,3 32,9 43,16	1423,0 350,0 601,0 4,07 2244770 105 1031,0 23,8 35,3 43,27	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07 141610	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76 149590	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17 160240	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39	115 27 46 4, 198 6 82 19 28 43,	552,0 1 55,0 2 55,0 2 50,0 4 19 8120 2 55 66,0 8 66,0 8 79,1 8 8,2 2 8120 2	226,0 296,0 493,0 4,14 110870 2 81 393,0 20,7 30,6 43,24 110870 2	1300,0 318,0 526,0 4,09 223620 81 960,0 22,3 32,9 43,16 223620	1423,0 350,0 601,0 4,07 244770 105 1031,0 23,8 35,3 43,27 244770	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21 258380		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07 141610	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76 149590 114	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17 160240	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10 173870	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39 184060 140	115 27 46 4, 198 6 82 19 28 43,	52,0 1 55,0 2 100,0 4 19 8120 2 555 89,1 88,2 332 4 8120 2	226,0 296,0 493,0 4,14 10870 20,7 30,6 43,24 10870 2	1300,0 318,0 526,0 4,09 223620 81 960,0 22,3 32,9 43,16 223620 121	1423,0 350,0 601,0 4,07 244770 105 1031,0 23,8 35,3 43,27 244770 150	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21 258380 150		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size	kW A W/W I/h kPa kW kW A W/W I/h	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07 141610	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76 149590	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17 160240	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39	115 27 46 4, 198 6 82: 19 28 43, 198	52,0 1 55,0 2 100,0 4 19 8120 2 555 89,1 88,2 332 4 8120 2	226,0 296,0 493,0 4,14 10870 20,7 30,6 43,24 10870 2	1300,0 318,0 526,0 4,09 223620 81 960,0 22,3 32,9 43,16 223620	1423,0 350,0 601,0 4,07 244770 105 1031,0 23,8 35,3 43,27 244770	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21 258380		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P	kW A W/W I/h kPa kW kW A W/W I/h	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07 141610	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76 149590 114	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17 160240	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10 173870	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39 184060 140	115 27 46 4, 198 6 82 19 28 43, 198	52,0 1 55,0 2 100,0 4 19 8120 2 555 89,1 88,2 332 4 8120 2	226,0 296,0 493,0 4,14 10870 20,7 30,6 43,24 10870 2	1300,0 318,0 526,0 4,09 223620 81 960,0 22,3 32,9 43,16 223620 121	1423,0 350,0 601,0 4,07 244770 105 1031,0 23,8 35,3 43,27 244770 150	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21 258380 150		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation	kW A W/W I/h kPa kW kW A W/W I/h kPa	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07 141610 107	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76 149590 114	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17 160240 133	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10 173870	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39 184060 140	115 27 46 4, 198 6 82 19 28 43, 198	52,0 1 55,0 2 100,0 4 19 8120 2 555 89,1 88,2 332 4 8120 2	226,0 296,0 493,0 4,14 10870 20,7 30,6 43,24 10870 2121	1300,0 318,0 526,0 4,09 223620 81 960,0 22,3 32,9 43,16 223620 121 6402	1423,0 350,0 601,0 4,07 244770 105 1031,0 23,8 35,3 43,27 244770 150	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21 258380 150		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P	kW A W/W I/h kPa kW kW A W/W I/h kPa	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07 141610 107 3902	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76 149590 114 4202	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17 160240 133 4502	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10 173870	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39 184060 140	115 277 466 4, 4, 1988 6 82 155 198 198 10 566	552,0 1 155,0 2 160,0 4 19 8 120 2 1555 166,0 8 19,1 8 18,2 4 13120 2 1600	226,0 296,0 493,0 4,14 10870 20,7 30,6 43,24 10870 2121	1300,0 318,0 526,0 4,09 223620 81 960,0 22,3 32,9 43,16 223620 121 6402	1423,0 350,0 601,0 4,07 244770 105 1031,0 23,8 35,3 43,27 244770 150 6903	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21 258380 150 7203		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07 141610 107 3902	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76 149590 114 4202	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17 160240 133	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10 128 4802	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39 184060 140	115 277 466 4, 4, 1988 6 82 155 198 198 10 566	552,0 1 155,0 2 160,0 4 19 8 119 8 120 2 155 166,0 8 19,1 8 18,2 4 18,32 4 18,2 2 18,32 4 18,0 1 18,0 1	226,0 296,0 493,0 4,14 10870 20,7 30,6 43,24 10870 2111 6002	1300,0 318,0 526,0 4,09 223620 81 960,0 22,3 32,9 43,16 223620 121 6402	1423,0 350,0 601,0 4,07 244770 105 1031,0 23,8 35,3 43,27 244770 150	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21 258380 150 7203	- - - - - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07 141610 107 3902	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76 149590 114 4202	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17 160240 133 4502	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10 128 4802	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39 184060 140 5202	115 277 466 4, 4, 1988 82 288 288 159 110 110 566	552,0 1 155,0 2 160,0 4 19 18120 2 1555 166,0 8 19,1 8 18,2 3 18,2 2 18120 2 18120 2 18120 2 18120 2 18120 3 18120	226,0 296,0 493,0 4,14 10870 20,7 30,6 13,24 10870 2111 6002	1300,0 318,0 526,0 4,09 223620 81 960,0 22,3 32,9 43,16 223620 121 6402	1423,0 350,0 601,0 4,07 244770 105 1031,0 23,8 35,3 43,27 244770 150 6903	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21 258380 150 7203	- - - - - - - - - - 8403	- - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW KW A W/W I/h kPa	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07 141610 107 3902 818,0 204,0 4,00	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76 149590 114 4202	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17 160240 133 4502	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10 128 4802 1005,0 244,0 425,0 4,12	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39 184060 140 5202	115 277 466 4, 1988 822 15 28 43, 198 10 114 27 46 46 4,	52,0 1 15,0 2 160,0 4 19 18120 2 155 166,0 8 19,1 8 18,2 3 18,2 2 18120 2 18120 2 18120 2 18120 2 18120 2 18120 2 18120 2 18120 2 18120 2	226,0 296,0 493,0 4,14 10870 20,7 30,6 13,24 10870 211,0 6002 218,0 300,0 497,0 4,07	1300,0 318,0 526,0 4,09 223620 81 960,0 22,3 32,9 43,16 223620 121 6402	1423,0 350,0 601,0 4,07 244770 105 1031,0 23,8 35,3 43,27 244770 150 6903 1414,0 354,0 607,0 3,99	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21 258380 150 7203	- - - - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW KW A W/W I/h kPa	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07 141610 107 3902	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76 149590 114 4202 865,0 212,0 351,0 4,08	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17 160240 133 4502	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10 173870 128 4802	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39 184060 140 5202	115 277 466 4, 1988 822 15 28 43, 198 10 114 27 46 46 4,	52,0 1 15,0 2 160,0 4 19 18120 2 155 166,0 8 19,1 8 18,2 3 18,2 2 18120 2 18120 2 18120 2 18120 2 18120 2 18120 2 18120 2 18120 2 18120 2	226,0 296,0 493,0 4,14 10870 20,7 30,6 13,24 10870 211,0 6002 218,0 300,0 497,0 4,07	1300,0 318,0 526,0 4,09 223620 81 960,0 22,3 32,9 43,16 223620 121 6402	1423,0 350,0 601,0 4,07 244770 105 1031,0 23,8 35,3 43,27 244770 150 6903 1414,0 354,0 607,0 3,99	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21 258380 150 7203	- - - - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Fresure drop system side Pressure drop system side	kW A W/W I/h kPa kW KW A W/W I/h kPa	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07 141610 107 3902 818,0 204,0 4,00	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76 149590 114 4202	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17 160240 133 4502	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10 128 4802 1005,0 244,0 425,0 4,12	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39 184060 140 5202	115 27 46 4, 1988 82 28 43, 198 10 56 44 44, 44, 46 46 47 46 46 47 46 46 47 46 46 47 46 47 47 47 47 48 47 48 47 48 47 48 47 48 48 48 48 48 48 48 48 48 48 48 48 48	52,0 1 15,0 2 160,0 4 19 18120 2 155 166,0 8 19,1 8 18,2 3 18,2 2 18120 2 18120 2 18120 2 18120 2 18120 2 18120 2 18120 2 18120 2 18120 2	226,0 296,0 493,0 4,14 10870 20,7 30,6 43,24 10870 2121 66002 218,0 300,0 497,0 4,07	1300,0 318,0 526,0 4,09 223620 81 960,0 22,3 32,9 43,16 223620 121 6402	1423,0 350,0 601,0 4,07 244770 105 1031,0 23,8 35,3 43,27 244770 150 6903 1414,0 354,0 607,0 3,99	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21 258380 150 7203	- - - - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with free-cooling	kW A W/W I/h kPa kW kW A W/W I/h kPa	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07 141610 107 3902 818,0 204,0 4,00 140680	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76 149590 114 4202 865,0 212,0 351,0 4,08 148750 77	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17 160240 133 4502	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10 173870 128 4802	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39 184060 140 5202	115 27 46 4, 1988 82 28 43, 198 10 56 44 44, 44, 46 46 47 46 46 47 46 46 47 46 46 47 46 47 47 47 47 48 47 48 47 48 47 48 47 48 48 48 48 48 48 48 48 48 48 48 48 48	52,0 1 15,0 2 160,0 4 19 3 120 2 155 166,0 8 19,1 3 18,2 3 18,2 2 18,32 4 18,0 3 144,0 1 18,0 4 144,0 4 12 3 144,0 4 12 3 14 4 16 4 17 4 18 4	226,0 296,0 493,0 4,14 10870 20,7 30,6 13,24 10870 211 5002 218,0 300,0 497,0 4,07 99470 28	1300,0 318,0 526,0 4,09 223620 81 960,0 22,3 32,9 43,16 223620 121 6402 1292,0 321,0 531,0 4,02 222190 80	1423,0 350,0 601,0 4,07 244770 105 1031,0 23,8 35,3 43,27 244770 150 6903 1414,0 354,0 607,0 3,99 243180	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21 258380 150 7203 1493,0 368,0 636,0 4,06 256800	- - - - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Fressure drop system side Cooling performance chiller operation Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling performances with free-cooling Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07 141610 107 3902 818,0 204,0 4,00 140680	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76 149590 114 4202 865,0 212,0 351,0 4,08	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17 160240 133 4502	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10 173870 128 4802	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39 184060 140 5202	112 27 46 4, 1988 6 6 8 228 43, 198 10 5 5 6 6 11 2 7 4 6 6 6 7 198 198 198 198 198 198 198 198 198 198	52,0 1 15,0 2 160,0 4 19 3 120 2 155 166,0 8 19,1 3 18,2 3 18,2 2 18,32 4 18,0 3 144,0 1 18,0 4 144,0 4 12 3 144,0 4 12 3 14 4 16 4 17 4 18 4	226,0 296,0 493,0 4,14 10870 20,7 30,6 13,24 10870 211 5002 218,0 300,0 497,0 4,07 99470 28	1300,0 318,0 526,0 4,09 223620 81 960,0 22,3 32,9 43,16 223620 121 6402 1292,0 321,0 531,0 4,02 222190	1423,0 350,0 601,0 4,07 244770 105 1031,0 23,8 35,3 43,27 244770 150 6903 1414,0 354,0 607,0 3,99 243180	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21 258380 150 7203 1493,0 368,0 636,0 4,06 256800	- - - - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with free-cooling	kW A W/W I/h kPa kW kW A W/W I/h kPa	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07 141610 107 3902 818,0 204,0 4,00 140680 68	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76 149590 114 4202 865,0 212,0 351,0 4,08 148750 77	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17 160240 133 4502 926,0 230,0 392,0 4,02 159230 90	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10 173870 128 4802 1005,0 244,0 425,0 4,12	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39 184060 140 5202	115 27 46 4, 1988 6 6 8 8 2 8 8 2 8 10 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	52,0 1 15,0 2 160,0 4 19 3 120 2 155 166,0 8 19,1 8 18,2 3 18,2 2 18,32 4 18,120 2 18,0 3 144,0 4 12,12 4 144,0 4 14,0 4 14,0 4 16,0 4 16,0 4 16,0 6 16,0 8 16,0	226,0 296,0 493,0 4,14 10870 20,7 30,6 13,24 10870 211,0 5002 218,0 300,0 497,0 4,07 99470 20,7 30,6 30,6 30,6 30,6 30,6 30,6 30,6 30,7 30,6 30,6 30,7 30,6 30,7 30,6 30,7 30,6 30,7 30,6 30,7 30,6 30,7 30,6 30,7 30,6 30,7 30,7 30,6 30,7 3	1300,0 318,0 526,0 4,09 223620 81 960,0 22,3 32,9 43,16 223620 121 6402 1292,0 321,0 531,0 4,02 222190 80	1423,0 350,0 601,0 4,07 244770 105 1031,0 23,8 35,3 43,27 244770 150 6903 1414,0 354,0 607,0 3,99 243180 104	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21 258380 150 7203 1493,0 368,0 636,0 4,06 256800 104		- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Fressure drop system side Cooling performance chiller operation Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling performances with free-cooling Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07 141610 107 3902 818,0 204,0 342,0 4,00 140680 68	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76 149590 114 4202 865,0 212,0 351,0 4,08 148750 77	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17 160240 133 4502 926,0 230,0 392,0 4,02 159230 90	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10 173870 128 4802 1005,0 244,0 425,0 4,12 172870 85	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39 184060 140 5202	115 27 46 4, 1988 6 6 8 8 2 8 8 2 8 10 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	52,0 1 15,0 2 160,0 4 19 3 120 2 155 166,0 8 19,1 3 18,2 3 18,2 2 18,32 4 18,120 2 18,0 3 144,0 4 12 3 144,0 4 12 3 14 4,0 4 16 4 17 4 18 4 19 4 1	226,0 296,0 493,0 4,14 10870 20,7 30,6 13,24 10870 211,0 218,0 300,0 497,0 4,07 99470 21,0	1300,0 318,0 526,0 4,09 223620 81 960,0 22,3 32,9 43,16 223620 121 6402 1292,0 321,0 531,0 4,02 222190 80	1423,0 350,0 601,0 4,07 244770 105 1031,0 23,8 35,3 43,27 244770 150 6903 1414,0 354,0 607,0 3,99 243180 104	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21 258380 150 7203 1493,0 368,0 636,0 4,06 256800 104		- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07 141610 107 3902 818,0 204,0 342,0 4,00 140680 68	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76 149590 114 4202 865,0 212,0 351,0 4,08 148750 77	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17 160240 133 4502 926,0 230,0 392,0 4,02 159230 90	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10 173870 128 4802 1005,0 244,0 425,0 4,12 172870 85	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39 184060 140 5202 1063,0 448,0 4,04 182790 93	115 27 46 4, 1988 66 6 82 28 43, 198 10 11 27 46 46 6 6 6 6 8 15 15 15 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	52,0 1 15,0 2 160,0 4 19 18120 2 155 166,0 8 19,1 8 18,2 3 18,2 2 18,32 4 18,0 3 18,0 4 144,0 4 12,750 2 164,0 4 17,750 2 18,0 3 18,0 3 18,0 3 18,0 4 18,0 3 18,0 4 18,0 3 18,0 4 18,0 4 18,	226,0 296,0 493,0 4,14 10870 20,7 30,6 13,24 10870 2121 5002 218,0 300,0 497,0 4,07 709470 21,0 31,0 15,32	1300,0 318,0 526,0 4,09 123620 81 960,0 22,3 32,9 43,16 123620 121 6402 1292,0 321,0 531,0 4,02 122190 80 1024,0 22,6 33,4 45,24	1423,0 350,0 601,0 4,07 244770 105 1031,0 23,8 35,3 43,27 244770 150 6903 1414,0 354,0 607,0 3,99 243180 104	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21 258380 150 7203 1493,0 368,0 636,0 4,06 256800 104		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Fixe Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling capacity Input power Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07 141610 107 3902 818,0 204,0 342,0 4,00 140680 68	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76 149590 114 4202 865,0 212,0 351,0 4,08 148750 77	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17 160240 133 4502 926,0 230,0 392,0 4,02 159230 90	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10 173870 128 4802 1005,0 244,0 425,0 4,12 172870 85	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39 184060 140 5202 1063,0 448,0 4,04 182790 93 808,0 17,8 26,3 45,45	115 27 46 4, 1988 6 6 8 8 15 15 28 43, 198 10 11 27 46 4, 4, 4, 198 10 10 10 10 10 10 10 10 10 10 10 10 10	52,0 1 15,0 2 160,0 4 19 18120 2 155 166,0 8 19,1 8 18,2 3 18,2 2 18,32 4 18,0 3 18,0 4 144,0 4 12,750 2 164,0 4 17,750 2 18,0 3 18,0 3 18,0 3 18,0 4 18,0 3 18,0 4 18,0 3 18,0 4 18,0 4 18,	226,0 296,0 493,0 4,14 10870 20,7 30,6 13,24 10870 2121 5002 218,0 300,0 497,0 4,07 709470 21,0 31,0 15,32	1300,0 318,0 526,0 4,09 123620 81 960,0 22,3 32,9 43,16 123620 121 6402 1292,0 321,0 531,0 4,02 122190 80	1423,0 350,0 601,0 4,07 244770 105 1031,0 23,8 35,3 43,27 244770 150 6903 1414,0 354,0 607,0 3,99 243180 104 1099,0 24,2 35,8 45,35	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21 258380 150 7203 1493,0 368,0 636,0 4,06 256800 104 1171,0 25,9 38,2		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa	823,0 202,0 339,0 4,07 141610 69 616,0 14,3 21,2 43,07 141610 107 3902 818,0 204,0 342,0 4,00 140680 68 657,0 14,5 21,5 45,16	870,0 210,0 348,0 4,15 149590 78 680,0 15,9 23,5 42,76 149590 114 4202 865,0 212,0 351,0 4,08 148750 77 725,0 16,2 23,9 44,85	932,0 228,0 388,0 4,09 160240 91 686,0 15,9 23,5 43,17 160240 133 4502 926,0 230,0 392,0 4,02 159230 90 732,0 16,2 23,9 45,26	1011,0 241,0 421,0 4,19 173870 86 753,0 17,5 25,9 43,10 173870 128 4802 1005,0 4,12 172870 85 803,0 17,8 6,3 45,19	1070,0 260,0 443,0 4,12 184060 94 759,0 17,5 25,9 43,39 184060 140 5202 1063,0 448,0 4,04 182790 93 808,0 17,8 26,3 45,45	115 27 46 4, 1988 6 6 8 8 15 15 28 4 3, 198 10 4 4 4, 4, 198 4 4 3, 198 4 4 4, 198 10 10 10 10 10 10 10 10 10 10 10 10 10	52,0 1 15,0 2 160,0 4 19 18120 2 155 166,0 8 19,1 8 18,2 3 18,2 2 18120 2 18120 2 184,0 4 184,0 4	226,0 296,0 493,0 4,14 10870 20,7 30,6 13,24 10870 2121 5002 218,0 300,0 497,0 4,07 709470 21,0 31,0 15,32	1300,0 318,0 526,0 4,09 123620 81 960,0 22,3 32,9 43,16 123620 121 6402 1292,0 321,0 531,0 4,02 122190 80 1024,0 22,6 33,4 45,24	1423,0 350,0 601,0 4,07 244770 105 1031,0 23,8 35,3 43,27 244770 150 6903 1414,0 354,0 607,0 3,99 243180 104 1099,0 24,2 35,8 45,35	1502,0 364,0 631,0 4,13 258380 105 1099,0 25,4 37,6 43,21 258380 150 7203 1493,0 368,0 636,0 4,06 256800 104 1171,0 25,9 38,2 45,30		- - - - - - - - - - - - - - - - - - -

Cooling performance chiller operation: System side water heat exchanger 25 °C/20 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0%

NSM HWT FU-PU

NSM HW I FU-PU														
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Model: F														
Cooling performance chiller operation														
Cooling capacity	kW	328,0	381,0	435,0	482,0	506,0	550,0	580,0	627,0	657,0	674,0	703,0	772,0	814,0
Input power	kW	84,0	98,0	112,0	121,0	128,0	138,0	148,0	159,0	168,0	172,0	178,0	191,0	203,0
Cooling total input current	A	148,0	170,0	192,0	204,0	212,0	229,0	244,0	263,0	279,0	291,0	305,0	326,0	345,0
EER	W/W	3,93	3,90	3,89	3,99	3,97	3,99	3,92	3,94	3,91	3,91	3,95	4,05	4,02
Water flow rate system side	l/h	56440	65570	74810	82890	87080	94670	99780	107790	113080	115880	120880	132770	139960
Pressure drop system side	kPa	46	54	71	84	94	66	72	74	81	86	87	56	64
Cooling performances with free-cooling														
Cooling capacity	kW	344,0	359,0	437,0	450,0	455,0	533,0	540,0	617,0	625,0	629,0	635,0	719,0	728,0
Input power	kW	19,3	19,3	24,1	24,1		28,9	28,9	33,7	33,7	33,7	33,7	38,5	38,5
Free cooling total input current	A	30,0	30,0	37,6	37,6	37,6	45,1	45,1	52,6	52,6	52,6	52,6	60,1	60,1
EER	W/W	17,84	18,61	18,16	18,66		18,43	18,67	18,31	18,54	18,65	18,84	18,66	18,89
Water flow rate system side	I/h	56440	65570	74810	82890		94670	99780	107790	113080	115880	120880	132770	139960
Pressure drop system side	kPa	77	95	107	127	142	104	114	111	122	129	134	97	109
Tressure drop system side	NI a			107										
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Model: P														
Cooling performance chiller operation														
Cooling capacity	kW	327,0	380,0	433,0	480,0	504,0	548,0	578,0	624,0	655,0	671,0	700,0	769,0	810,0
Input power	kW	84,0	99,0	113,0	122,0	129,0	139,0	149,0	160,0	170,0	174,0	180,0	192,0	205,0
Cooling total input current	A	-	-	-	-	-	-	-	-	-	-	-	-	-
EER	W/W	3,88	3,84	3,84	3,93	3,91	3,94	3,87	3,89	3,86	3,86	3,89	4,00	3,96
Water flow rate system side	I/h	56250	65300	74510	82510		94290	99370	107380	112630	115420	120380	132250	139380
Pressure drop system side	kPa	46	54	70	83	93	66	72	73	80	85	86	55	63
Cooling performances with free-cooling	NI U	10	31	70	- 03			,,_	,,,	- 00	- 03			- 05
Cooling capacity	kW	370,0	386,0	471,0	484,0	490,0	574,0	582,0	665,0	674,0	678,0	685,0	775,0	785,0
• •	kW	19,7	19,7	24,6	24,6	24,6	29,5	29,5	34,4	34,4	34,4	34,4	39,3	39,3
Input power										34,4		34,4		- 27,2
Free cooling total input current	A	- 10.03	- 10.66	- 10.17	- 10.72	- 10.04	- 10.47	- 10.72	- 10.24		- 10.71		- 10.72	
EER	W/W	18,82	19,66	19,17	19,72		19,47	19,73	19,34	19,59	19,71	19,91	19,72	19,97
Water flow rate system side	I/h	56250	65300	74510	82510		94290	99370	107380	112630	115420	120380	132250	139380
Pressure drop system side	kPa	77	94	106	126	140	103	113	111	121	128	133	96	108
NCM HWT EILDII														
NSM HWT FU-PU		3003	4202	4502	4003			03 /	.003	(403	(003	7202	0403	0603
Size		3902	4202	4502	4802	5202	56	i02 (5002	6402	6903	7203	8403	9603
Size Model: F		3902	4202	4502	4802	5202	56	602	5002	6402	6903	7203	8403	9603
Size Model: F Cooling performance chiller operation													8403	9603
Size Model: F Cooling performance chiller operation Cooling capacity	kW	864,0	909,0	978,0	1059,0	1127,0	121	13,0 1	289,0	1365,0	1495,0	1576,0	-	-
Size Model: F Cooling performance chiller operation Cooling capacity Input power	kW	864,0 216,0	909,0 228,0	978,0 243,0	1059,0 260,0	1127,0 276,0	121	13,0 1 3,0 3	289,0 117,0	1365,0 341,0	1495,0 372,0	1576,0 388,0	-	-
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current	kW A	864,0 216,0 363,0	909,0 228,0 378,0	978,0 243,0 414,0	1059,0 260,0 454,0	1127,0 276,0 472,0	121 29: 49:	13,0 1 3,0 3 3,0 5	289,0 317,0 529,0	1365,0 341,0 566,0	1495,0 372,0 639,0	1576,0 388,0 677,0	-	-
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER	kW A W/W	864,0 216,0 363,0 3,99	909,0 228,0 378,0 3,99	978,0 243,0 414,0 4,02	1059,0 260,0 454,0 4,08	1127,0 276,0 472,0 4,09	121 29 49 4,	13,0 1 3,0 3 3,0 5	289,0 317,0 529,0 4,06	1365,0 341,0 566,0 4,00	1495,0 372,0 639,0 4,02	1576,0 388,0 677,0 4,06	-	-
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h	864,0 216,0 363,0 3,99 148610	909,0 228,0 378,0 3,99 156340	978,0 243,0 414,0 4,02 168140	1059,0 260,0 454,0 4,08 182140	1127,0 276,0 472,0 4,09 193790	121 29: 49: 4,	13,0 1 3,0 3 3,0 5 14 4	289,0 117,0 529,0 4,06 21670	1365,0 341,0 566,0 4,00 234730	1495,0 372,0 639,0 4,02 257070	1576,0 388,0 677,0 4,06 271060	-	-
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W	864,0 216,0 363,0 3,99	909,0 228,0 378,0 3,99	978,0 243,0 414,0 4,02	1059,0 260,0 454,0 4,08	1127,0 276,0 472,0 4,09	121 29 49 4,	13,0 1 3,0 3 3,0 5 14 4	289,0 317,0 529,0 4,06	1365,0 341,0 566,0 4,00	1495,0 372,0 639,0 4,02	1576,0 388,0 677,0 4,06		- - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h	864,0 216,0 363,0 3,99 148610	909,0 228,0 378,0 3,99 156340	978,0 243,0 414,0 4,02 168140	1059,0 260,0 454,0 4,08 182140	1127,0 276,0 472,0 4,09 193790	121 29: 49: 4,	13,0 1 3,0 3 3,0 5 14 4	289,0 117,0 529,0 4,06 21670	1365,0 341,0 566,0 4,00 234730	1495,0 372,0 639,0 4,02 257070	1576,0 388,0 677,0 4,06 271060		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W I/h kPa	864,0 216,0 363,0 3,99 148610 75	909,0 228,0 378,0 3,99 156340 84	978,0 243,0 414,0 4,02 168140 99	1059,0 260,0 454,0 4,08 182140 94	1127,0 276,0 472,0 4,09 193790 103	121 299 490 4, 109	13,0 1 33,0 3 33,0 5 14	289,0 117,0 129,0 4,06 21670 88	1365,0 341,0 566,0 4,00 234730 88	1495,0 372,0 639,0 4,02 257070 116	1576,0 388,0 677,0 4,06 271060 116		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power	kW A W/W I/h kPa kW	864,0 216,0 363,0 3,99 148610 75	909,0 228,0 378,0 3,99 156340 84 886,0 48,2	978,0 243,0 414,0 4,02 168140 99 902,0 48,2	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0	1127,0 276,0 472,0 4,09 193790 103 1003,0 53,0	121 299 490 4, 109 109 57	13,0 1 33,0 3 33,0 5 114 6610 27 11 1	289,0 117,0 129,0 4,06 21670 88	1365,0 341,0 566,0 4,00 234730 88	1495,0 372,0 639,0 4,02 257070 116	1576,0 388,0 677,0 4,06 271060 116		- - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A	864,0 216,0 363,0 3,99 148610 75	909,0 228,0 378,0 3,99 156340 84	978,0 243,0 414,0 4,02 168140 99	1059,0 260,0 454,0 4,08 182140 94	1127,0 276,0 472,0 4,09 193790 103	121 299 490 4, 109	13,0 1 33,0 3 33,0 5 114 6610 27 11 1	289,0 117,0 129,0 4,06 21670 88	1365,0 341,0 566,0 4,00 234730 88	1495,0 372,0 639,0 4,02 257070 116	1576,0 388,0 677,0 4,06 271060 116		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power	kW A W/W I/h kPa kW	864,0 216,0 363,0 3,99 148610 75	909,0 228,0 378,0 3,99 156340 84 886,0 48,2	978,0 243,0 414,0 4,02 168140 99 902,0 48,2	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0	1127,0 276,0 472,0 4,09 193790 103 1003,0 53,0	121 299 490 4, 109 109 57	13,0 1 33,0 3 33,0 5 14 6610 22 11 1 11,0 1 77,8 6	2289,0 617,0 529,0 4,06 21670 888 1177,0 62,6	1365,0 341,0 566,0 4,00 234730 88	1495,0 372,0 639,0 4,02 257070 116	1576,0 388,0 677,0 4,06 271060 116		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65	1127,0 276,0 472,0 4,09 193790 103 1003,0 53,0 82,6 18,92	121 29: 49: 4, 208 7 109 57 90	13,0 1 33,0 3 33,0 5 14 2 1610 22 11 17,8 (7,8 (7,8 (7,8 (7,8 (7,8 (7,8 (7,8 (289,0 117,0 129,0 4,06 21670 88 177,0 62,6 97,6 8,78	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7	1576,0 388,0 677,0 4,06 271060 116		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6 18,64	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1 18,38	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1 18,72	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65	1127,0 276,0 472,0 4,09 193790 103 1003,0 53,0 82,6 18,92	121 299 49, 4, 208 7 109 57, 90 18,	13,0 1 33,0 3 33,0 5 14	289,0 117,0 129,0 4,06 21670 88 177,0 62,6 97,6 8,78	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7 18,80	1576,0 388,0 677,0 4,06 271060 116 1446,0 77,1 120,2 18,75		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W I/h	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6 18,64 148610	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1 18,38 156340 124	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1 18,72 168140 145	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65 182140	1127,0 276,0 472,0 4,09 193790 103 1003,0 53,0 82,6 18,92 193790	121 299 499 4, 109 57 90 18, 208 11	13,0 1 3,0 3 3,0 5 14 2 11 21,0 1 7,8 0 0,1 5 86 1 1610 22	289,0 117,0 129,0 4,06 21670 88 1177,0 622,6 97,6 8,78 21670	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71 234730 132	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7 18,80 257070 166	1576,0 388,0 677,0 4,06 271060 116 1446,0 77,1 120,2 18,75 271060 165		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size	kW A W/W I/h kPa kW kW A W/W I/h	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6 18,64	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1 18,38 156340	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1 18,72 168140	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65	1127,0 276,0 472,0 4,09 193790 103,0 53,0 82,6 18,92	121 299 499 4, 109 57 90 18, 208 11	13,0 1 3,0 3 3,0 5 14 2 11 21,0 1 7,8 0 0,1 5 86 1 1610 22	289,0 117,0 129,0 4,06 21670 88 1177,0 622,6 97,6 8,78 21670	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71 234730	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7 18,80 257070	1576,0 388,0 677,0 4,06 271060 116 1446,0 77,1 120,2 18,75 271060		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P	kW A W/W I/h kPa kW kW A W/W I/h	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6 18,64 148610	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1 18,38 156340 124	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1 18,72 168140 145	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65 182140	1127,0 276,0 472,0 4,09 193790 103 1003,0 53,0 82,6 18,92 193790	121 299 499 4, 109 57 90 18, 208 11	13,0 1 3,0 3 3,0 5 14 2 11 21,0 1 7,8 0 0,1 5 86 1 1610 22	289,0 117,0 129,0 4,06 21670 88 1177,0 622,6 97,6 8,78 21670	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71 234730 132	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7 18,80 257070 166	1576,0 388,0 677,0 4,06 271060 116 1446,0 77,1 120,2 18,75 271060 165		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation	kW A W/W I/h kPa kW kW A W/W I/h kPa	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6 18,64 148610 117 3902	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1 18,38 156340 124	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1 18,72 168140 145	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65 182140 140	1127,0 276,0 472,0 4,09 193790 103 1003,0 53,0 82,6 18,92 193790 154	121 299 498 4, 4, 4, 109 57 790 118, 208 111	13,0 1 33,0 3 33,0 5 14	289,0 117,0 129,0 4,06 21670 88 1177,0 62,6 97,6 8,78 21670 132	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71 234730 132 6402	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7 18,80 257070 166 6903	1576,0 388,0 677,0 4,06 271060 116 1446,0 77,1 120,2 18,75 271060 165 7203	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6 18,64 148610 117 3902	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1 18,38 156340 124 4202	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1 18,72 168140 145 4502	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65 182140 140 4802	1127,0 276,0 472,0 4,09 193790 103,0 53,0 82,6 18,92 193790 154	121 29 49, 4, 4, 7 7 1099 577 900 18, 111 566	13,0 1 3,0 3 3,0 3 3,0 5 14	289,0 117,0 129,0 4,06 21670 88 1177,0 62,6 97,6 8,78 21670 132 5002	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71 234730 132 6402	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7 18,80 257070 166 6903	1576,0 388,0 677,0 4,06 271060 116 1446,0 77,1 120,2 18,75 271060 165 7203	- - - - - - - - - - 8403	- - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6 18,64 148610 117 3902	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1 18,38 156340 124 4202	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1 18,72 168140 145 4502	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65 182140 140 4802	1127,0 276,0 472,0 4,09 193790 103,0 53,0 82,6 18,92 193790 154 5202	121 29, 49, 44, 4, 77 1099 577 900 18, 2088 111 566	13,0 1 3,0 3 3,0 3 3,0 5 14	289,0 117,0 129,0 4,06 21670 88 1177,0 62,6 97,6 8,78 21670 132 6002	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71 234730 132 6402	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7 18,80 257070 166 6903	1576,0 388,0 677,0 4,06 271060 116 1446,0 77,1 120,2 18,75 271060 165 7203	- - - - - - - - - 8403	- - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6 18,64 148610 117 3902	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1 18,38 156340 124 4202	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1 18,72 168140 145 4502	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65 182140 140 4802	1127,0 276,0 472,0 4,09 193790 103,0 53,0 82,6 18,92 193790 154 5202	121 29, 49, 4, 4, 7, 7 1099 57, 900 18, 2088 111 566	13,0 1 3,0 3 3,0 3 3,0 5 14	289,0 117,0 129,0 4,06 21670 88 177,0 62,6 97,6 8,78 21670 132 5002 284,0 120,0 133,0	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71 234730 132 6402	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7 18,80 257070 166 6903 1489,0 375,0 644,0	1576,0 388,0 677,0 4,06 271060 116 1446,0 77,1 120,2 18,75 271060 165 7203	- - - - - - - - - - 8403	- - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6 18,64 148610 117 3902 861,0 218,0 366,0 3,94	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1 18,38 156340 124 4202 906,0 230,0 381,0 3,94	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1 18,72 168140 145 4502	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65 182140 4802 1055,0 262,0 4,03	1127,0 276,0 472,0 4,09 193790 103 1003,0 53,0 82,6 18,92 193790 154 5202	121 29, 49, 4, 7, 7 1099 57, 900 18, 208 111 566	13,0 1 3,0 3 3,0 3 3,0 5 14	289,0 117,0 129,0 4,06 21670 88 177,0 62,6 97,6 8,78 21670 132 5002 284,0 120,0 133,0 4,01	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71 234730 132 6402 1359,0 344,0 570,0 3,95	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7 18,80 257070 166 6903 1489,0 375,0 644,0 3,97	1576,0 388,0 677,0 4,06 271060 116 1446,0 77,1 120,2 18,75 271060 165 7203 1570,0 392,0 682,0 4,01	- - - - - - - - - 8403	- - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6 18,64 148610 117 3902	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1 18,38 156340 124 4202 906,0 230,0 381,0 3,94 155780	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1 18,72 168140 145 4502	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65 182140 140 4802	1127,0 276,0 472,0 4,09 193790 103 1003,0 53,0 82,6 18,92 193790 154 5202	121 29, 49, 4, 109 57 90 118, 208 111 566	13,0 1 3,0 3 3,0 3 3,0 5 14	289,0 117,0 129,0 4,06 21670 88 177,0 62,6 97,6 8,78 21670 132 5002 284,0 120,0 133,0 4,01 20780	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71 234730 132 6402 1359,0 344,0 570,0 3,95 233810	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7 18,80 257070 166 6903 1489,0 375,0 644,0 3,97 256070	1576,0 388,0 677,0 4,06 271060 116 1446,0 77,1 120,2 18,75 271060 165 7203	- - - - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6 18,64 148610 117 3902 861,0 218,0 366,0 3,94	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1 18,38 156340 124 4202 906,0 230,0 381,0 3,94	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1 18,72 168140 145 4502	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65 182140 4802 1055,0 262,0 4,03	1127,0 276,0 472,0 4,09 193790 103 1003,0 53,0 82,6 18,92 193790 154 5202	121 29, 49, 4, 109 57 90 118, 208 111 566	13,0 1 3,0 3 3,0 3 3,0 5 14	289,0 117,0 129,0 4,06 21670 88 177,0 62,6 97,6 8,78 21670 132 5002 284,0 120,0 133,0 4,01	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71 234730 132 6402 1359,0 344,0 570,0 3,95	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7 18,80 257070 166 6903 1489,0 375,0 644,0 3,97	1576,0 388,0 677,0 4,06 271060 116 1446,0 77,1 120,2 18,75 271060 165 7203 1570,0 392,0 682,0 4,01	- - - - - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6 18,64 148610 117 3902 861,0 218,0 366,0 3,94	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1 18,38 156340 124 4202 906,0 230,0 381,0 3,94 155780	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1 18,72 168140 145 4502	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65 182140 4802 1055,0 4,03 181460	1127,0 276,0 472,0 4,09 193790 103 1003,0 53,0 82,6 18,92 193790 154 5202	121 29, 49, 4, 109 57 90 118, 208 111 566	13,0 1 3,0 3 3,0 3 3,0 5 14	289,0 117,0 129,0 4,06 21670 88 177,0 62,6 97,6 8,78 21670 132 5002 284,0 120,0 133,0 4,01 20780	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71 234730 132 6402 1359,0 344,0 570,0 3,95 233810	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7 18,80 257070 166 6903 1489,0 375,0 644,0 3,97 256070	1576,0 388,0 677,0 4,06 271060 116 1446,0 77,1 120,2 18,75 271060 165 7203 1570,0 392,0 682,0 4,01 270020		- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Fresure drop system side Cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6 18,64 148610 117 3902 861,0 218,0 366,0 3,94	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1 18,38 156340 124 4202 906,0 230,0 381,0 3,94 155780	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1 18,72 168140 145 4502	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65 182140 4802 1055,0 4,03 181460	1127,0 276,0 472,0 4,09 193790 103 1003,0 53,0 82,6 18,92 193790 154 5202	121 29, 49, 4, 109 57 90 118, 208 111 566	13,0 1 3,0 3 3,0 3 3,0 5 14	289,0 117,0 129,0 4,06 21670 88 177,0 62,6 97,6 8,78 21670 132 5002 284,0 120,0 133,0 4,01 20780 87	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71 234730 132 6402 1359,0 344,0 570,0 3,95 233810	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7 18,80 257070 166 6903 1489,0 375,0 644,0 3,97 256070	1576,0 388,0 677,0 4,06 271060 116 1446,0 77,1 120,2 18,75 271060 165 7203 1570,0 392,0 682,0 4,01 270020		- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Fresure drop system side Cooling performance chiller operation Cooling performance with free-cooling	kW A W/W I/h kPa kW kW A W/W I/h kPa	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6 18,64 148610 117 3902 861,0 218,0 366,0 3,94 148030 75	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1 18,38 156340 124 4202 906,0 230,0 381,0 3,94 155780 84	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1 18,72 168140 145 4502 974,0 245,0 418,0 3,97 167500 99	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65 182140 140 4802 1055,0 262,0 457,0 4,03 181460 93	1127,0 276,0 472,0 4,09 193790 103 1003,0 53,0 82,6 18,92 193790 154 5202 1122,0 278,0 475,0 4,03 193010 102	121 29, 49, 4, 109 57 90 18, 208 11 120 29, 49, 4, 4, 1, 207 7	13,0 1 3,0 3 3,0 3 3,0 5 14	289,0 117,0 129,0 4,06 21670 88 177,0 62,6 97,6 8,78 21670 132 5002 284,0 120,0 133,0 4,01 20780 87	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71 234730 132 6402 1359,0 344,0 570,0 3,95 233810 87	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7 18,80 257070 166 6903 1489,0 375,0 644,0 3,97 256070 115	1576,0 388,0 677,0 4,06 271060 116 1446,0 77,1 120,2 18,75 271060 165 7203 1570,0 392,0 682,0 4,01 270020 115		- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performance with free-cooling Cooling performances with free-cooling Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa kW KPa	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6 18,64 148610 117 3902 861,0 218,0 366,0 3,94 148030 75	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1 18,38 156340 124 4202 906,0 230,0 381,0 3,94 155780 84	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1 18,72 168140 145 4502 974,0 245,0 418,0 3,97 167500 99	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65 182140 4802 1055,0 262,0 457,0 4,03 181460 93	1127,0 276,0 472,0 4,09 193790 103 1003,0 53,0 82,6 18,92 193790 154 5202 1122,0 278,0 4,03 193010 102	121 29, 49, 44, 109, 57, 900 118, 208, 111 120, 29, 49, 40, 120, 7, 7	13,0 1 3,0 3 3,0 3 3,0 5 14	289,0 117,0 129,0 4,06 21670 88 177,0 62,6 97,6 8,78 21670 132 5002 2284,0 120,0 133,0 4,01 20780 87	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71 234730 132 6402 1359,0 344,0 570,0 3,95 233810 87	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7 18,80 257070 166 6903 1489,0 375,0 644,0 3,97 256070 115	1576,0 388,0 677,0 4,06 271060 116 1446,0 77,1 120,2 18,75 271060 165 7203 1570,0 392,0 682,0 4,01 270020 115 1558,0 78,6		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Fresure drop system side Cooling performance with free-cooling Cooling performances with free-cooling Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa kW KW A W/W I/h kPa kW kW A W/W KW KW KW KW KW KW KW KW	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6 18,64 148610 117 3902 861,0 218,0 366,0 3,94 148030 75	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1 18,38 156340 124 4202 906,0 230,0 381,0 3,94 155780 84	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1 18,72 168140 145 4502 974,0 245,0 418,0 3,97 167500 99	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65 182140 4802 1055,0 262,0 457,0 4,03 181460 93	1127,0 276,0 472,0 4,09 193790 103 1003,0 53,0 82,6 18,92 193790 154 5202 1122,0 475,0 4,03 193010 102 1081,0 54,0	121 29, 49, 4, 1099 57, 7 1099 118, 111 566 120 29, 49, 4, 117, 7, 7	13,0 1 3,0 3 3,0 3 3,0 5 14	289,0 117,0 129,0 4,06 21670 88 177,0 62,6 97,6 8,78 21670 132 5002 284,0 132,0 133,0 4,01 20780 87 268,0 63,9 99,4	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71 234730 132 6402 1359,0 344,0 570,0 3,95 233810 87	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7 18,80 257070 166 6903 1489,0 375,0 644,0 3,97 256070 115 1465,0 73,7 114,7	1576,0 388,0 677,0 4,06 271060 116 1446,0 77,1 120,2 18,75 271060 165 7203 1570,0 392,0 682,0 4,01 270020 115 1558,0 78,6 122,3		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performance with free-cooling Cooling performances with free-cooling Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A kPa kW kW A W/W	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6 18,64 148610 117 3902 861,0 218,0 366,0 3,94 148030 75 871,0 44,2 68,8 19,70	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1 18,38 156340 124 4202 906,0 230,0 381,0 3,94 155780 84	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1 18,72 168140 145 4502 974,0 245,0 418,0 3,97 167500 99 972,0 49,1 76,5	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65 182140 4802 1055,0 262,0 457,0 4,03 181460 93	1127,0 276,0 472,0 4,09 193790 103 1003,0 53,0 82,6 18,92 193790 154 5202 1122,0 278,0 4,03 193010 102 1081,0 54,0 84,1 20,00	121 29, 49, 4, 1099 57, 7 1099 118, 111 566 120 29, 49, 4, 117, 7, 7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	13,0 1 3,0 3 3,0 3 3,0 5 14 610 2: 11 7,8 7,8 7,8 7,8 7,8 7,8 7,8 7,8 7,8 7,8	289,0 117,0 129,0 4,06 21670 88 177,0 62,6 97,6 8,78 21670 132 5002 2284,0 132,0 133,0 4,01 20780 87 268,0 63,9 99,4 9,85	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71 234730 132 6402 1359,0 344,0 570,0 3,95 233810 87 1360,0 68,8 107,0 19,77	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7 18,80 257070 166 6903 1489,0 375,0 644,0 3,97 256070 115 1465,0 73,7 114,7 19,88	1576,0 388,0 677,0 4,06 271060 116 1446,0 77,1 120,2 18,75 271060 165 7203 1570,0 392,0 682,0 4,01 270020 115 1558,0 78,6 122,3 19,82		
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A kPa	864,0 216,0 363,0 3,99 148610 75 808,0 43,4 67,6 18,64 148610 117 3902 861,0 218,0 366,0 3,94 148030 75	909,0 228,0 378,0 3,99 156340 84 886,0 48,2 75,1 18,38 156340 124 4202 906,0 230,0 381,0 3,94 155780 84	978,0 243,0 414,0 4,02 168140 99 902,0 48,2 75,1 18,72 168140 145 4502 974,0 245,0 418,0 3,97 167500 99	1059,0 260,0 454,0 4,08 182140 94 989,0 53,0 82,6 18,65 182140 4802 1055,0 262,0 457,0 4,03 181460 93	1127,0 276,0 472,0 4,09 193790 103 1003,0 53,0 82,6 18,92 193790 154 5202 1122,0 278,0 4,03 193010 102 1081,0 54,0 84,1 20,00	121 29, 49, 4, 1099 57, 900 18, 111 566 120 29, 49, 4, 117, 59, 911 19, 19, 207	13,0 1 3,0 3 3,0 3 3,0 5 14 21 1610 22 11 21,0 1 17,8 1 10,1,0 1 17,8 1 10,1,0 1 11 2 16,0 1 16,0 3 16,0 3 17,0 5 18,0 1 18,0 1 18,0 1 19,0	289,0 117,0 129,0 4,06 21670 88 177,0 62,6 97,6 8,78 21670 132 5002 2284,0 132,0 133,0 4,01 20780 87 268,0 63,9 99,4 9,85	1365,0 341,0 566,0 4,00 234730 88 1262,0 67,5 105,1 18,71 234730 132 6402 1359,0 344,0 570,0 3,95 233810 87 1360,0 68,8 107,0 19,77	1495,0 372,0 639,0 4,02 257070 116 1359,0 72,3 112,7 18,80 257070 166 6903 1489,0 375,0 644,0 3,97 256070 115 1465,0 73,7 114,7	1576,0 388,0 677,0 4,06 271060 116 1446,0 77,1 120,2 18,75 271060 165 7203 1570,0 392,0 682,0 4,01 270020 115 1558,0 78,6 122,3		

Cooling performance chiller operation: System side water heat exchanger 25 °C/20 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0%

NSM	HV	VT	E١	1_1	D١	ı

NSM HWT FN-PN														
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Model: F														
Cooling performance chiller operation														
Cooling capacity	kW	324,0	376,0	428,0	473,0		538,0	567,0	614,0	643,0	659,0	687,0	751,0	803,0
Input power	kW	74,0	88,0	99,0	109,0		124,0	134,0	142,0	152,0	157,0	163,0	174,0	184,0
Cooling total input current	A	132,0	154,0	172,0	184,0		206,0	222,0	235,0	252,0	265,0	280,0	297,0	313,0
EER	W/W	4,41	4,27	4,31	4,35		4,33	4,21	4,32	4,24	4,21	4,22	4,32	4,38
Water flow rate system side	I/h	55800	64730	73570	81410		92510	97450	105570	110670	113400	118220	129100	138190
Pressure drop system side	kPa	46	54	42	49	56	65	71	45	49	53	51	54	64
Cooling performances with free-cooling	LAM	210 0	220.0	201.0	401.0	404.0	16E 0	470.0	E21 0	F26 0	E20.0	E42.0	607.0	670.0
Cooling capacity	kW kW	318,0 7,9	330,0 7,9	391,0 9,5	401,0 9,5		465,0	470,0	531,0 12,7	536,0	539,0 12,7	543,0 12,7	607,0 14,3	670,0 15,9
Input power							11,1	11,1		12,7				
Free cooling total input current EER	M/W	12,0 39,96	12,0 41,57	14,0 41,02	14,0 42,00	14,0	16,0 41,76	16,0 42,22	19,0 41,75	19,0 42,17	19,0 42,36	19,0 42,67	21,0 42,46	24,0 42,16
	I/h		64730		81410		92510	97450	105570	110670		118220		
Water flow rate system side	kPa	55800 67	81	73570	78	87			72	79	113400 84	84	129100 87	138190 95
Pressure drop system side	KPd			66			93	102						
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Model: P														
Cooling performance chiller operation														
Cooling capacity	kW	323,0	374,0	426,0	471,0		535,0	564,0	611,0	640,0	656,0	683,0	746,0	799,0
Input power	kW	74,0	89,0	100,0	110,0		125,0	136,0	143,0	153,0	158,0	164,0	175,0	185,0
Cooling total input current	A	132,0	155,0	173,0	185,0		207,0	224,0	237,0	254,0	267,0	282,0	300,0	316,0
EER	W/W	4,36	4,22	4,26	4,29		4,27	4,15	4,26	4,18	4,15	4,16	4,26	4,32
Water flow rate system side	l/h	55590	64410	73210	80970		92040	96930	105040	110080	112780	117540	128400	137510
Pressure drop system side	kPa	45	53	42	49	55	64	70	44	49	52	50	54	63
Cooling performances with free-cooling														
Cooling capacity	kW	337,0	352,0	417,0	427,0		495,0	501,0	566,0	572,0	575,0	579,0	648,0	715,0
Input power	kW	8,1	8,1	9,7	9,7		11,3	11,3	12,9	12,9	12,9	12,9	14,5	16,2
Free cooling total input current	A	12,0	12,0	14,0	14,0		17,0	17,0	19,0	19,0	19,0	19,0	21,0	24,0
EER	W/W	41,76	43,58	42,96	44,05		43,79	44,29	43,78	44,23	44,44	44,76	44,54	44,22
Water flow rate system side	l/h	55590	64410	73210	80970		92040	96930	105040	110080	112780	117540	128400	137510
Pressure drop system side	kPa	66	80	65	77	86	92	101	71	78	83	83	86	94
NSM HWT FN-PN														
NSM HWT FN-PN		3002	4202	4502	4802	5202	561	02 6	5002	6402	6003	7202	8403	0603
Size		3902	4202	4502	4802	5202	560	02 6	6002	6402	6903	7203	8403	9603
Size Model: F		3902	4202	4502	4802	5202	560	02 6	5002	6402	6903	7203	8403	9603
Size Model: F Cooling performance chiller operation	kW												8403	9603
Size Model: F Cooling performance chiller operation Cooling capacity	kW kW	852,0	881,0	969,0	1033,0	1115,0	119	8,0 12	263,0	1329,0	6903	7203		9603
Size Model: F Cooling performance chiller operation Cooling capacity Input power	kW	852,0 195,0	881,0 207,0	969,0 218,0	1033,0 232,0	1115,0 249,0	119	8,0 12 5,0 2	263,0 88,0	1329,0 311,0				9603
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current	kW A	852,0 195,0 328,0	881,0 207,0 343,0	969,0 218,0 374,0	1033,0 232,0 408,0	1115,0 249,0 427,0	119 265 447	8,0 12 5,0 2 7,0 4	263,0 88,0 81,0	1329,0 311,0 516,0	-	-	-	-
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER	kW A W/W	852,0 195,0 328,0 4,37	881,0 207,0 343,0 4,26	969,0 218,0 374,0 4,44	1033,0 232,0 408,0 4,46	1115,0 249,0 427,0 4,49	119 265 447 4,5	8,0 12 5,0 2 7,0 4	263,0 88,0 81,0 4,38	1329,0 311,0 516,0 4,27		- -	- -	- - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h	852,0 195,0 328,0 4,37 146560	881,0 207,0 343,0 4,26 151590	969,0 218,0 374,0 4,44 166730	1033,0 232,0 408,0 4,46 177640	1115,0 249,0 427,0 4,49 191820	119 265 447 4,5 2060	8,0 12 5,0 2 7,0 4 51 4	263,0 88,0 81,0 4,38	1329,0 311,0 516,0 4,27 228590	-	- - -	- -	- - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W	852,0 195,0 328,0 4,37	881,0 207,0 343,0 4,26	969,0 218,0 374,0 4,44	1033,0 232,0 408,0 4,46	1115,0 249,0 427,0 4,49	119 265 447 4,5	8,0 12 5,0 2 7,0 4 51 4	263,0 88,0 81,0 4,38	1329,0 311,0 516,0 4,27	- - - -			
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling	kW A W/W I/h kPa	852,0 195,0 328,0 4,37 146560 75	881,0 207,0 343,0 4,26 151590 81	969,0 218,0 374,0 4,44 166730 80	1033,0 232,0 408,0 4,46 177640 80	1115,0 249,0 427,0 4,49 191820 80	119 265 447 4,5 2060 45	8,0 12 5,0 2 7,0 4 51 4 010 21	263,0 88,0 81,0 4,38 17280 2	1329,0 311,0 516,0 4,27 228590 53	- - - -			
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity	kW A W/W I/h kPa	852,0 195,0 328,0 4,37 146560 75	881,0 207,0 343,0 4,26 151590 81	969,0 218,0 374,0 4,44 166730 80	1033,0 232,0 408,0 4,46 177640 80	1115,0 249,0 427,0 4,49 191820 80	119 265 447 4,5 2066 42	8,0 1: 5,0 2 7,0 4 51 4 010 21	263,0 188,0 181,0 4,38 17280 253 268,0	1329,0 311,0 516,0 4,27 228590 53	- - - -			
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power	kW A W/W I/h kPa kW	852,0 195,0 328,0 4,37 146560 75 731,0	881,0 207,0 343,0 4,26 151590 81 737,0	969,0 218,0 374,0 4,44 166730 80 857,0 20,7	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3	1115,0 249,0 427,0 4,49 191820 80 988,0 23,8	119. 265. 447. 4,5. 2060. 45.	8,0 1.5,0 2.7,0 4.51 4.51 4.55 5.5 5.5 1.6,0 10,44 2.4	263,0 888,0 881,0 44,38 77280 2 53 068,0 225,4	1329,0 311,0 516,0 4,27 228590 53				
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0	1115,0 249,0 427,0 4,49 1 191820 80 988,0 23,8 35,0	119. 265. 447. 4,5. 2060. 45. 1050. 25,	8,0 1: 5,0 2 7,0 4 51 4 1010 21 55	263,0 288,0 881,0 44,38 17280 2 53 25,4 488,0	1329,0 311,0 516,0 4,27 228590 53 1079,0 25,4 38,0				
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0 41,84	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0 42,13	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0 41,48	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0 41,37	1115,0 249,0 427,0 4,49 191820 80 988,0 23,8 35,0 41,45	119 265 447 4,5 2060 45 105 25, 38, 41,	8,0 12 5,0 2 7,0 4 51 4 1010 21 5 5 10,0 3 10,0 3	263,0 88,0 81,0 4,38 17280 2 53 268,0 25,4 88,0 2,01	1329,0 311,0 516,0 4,27 228590 53 1079,0 25,4 38,0 42,42				
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0 41,37	1115,0 249,0 427,0 4,49 191820 80 988,0 23,8 35,0 41,45	119. 265. 447. 4,5. 2060. 45. 1050. 25,	8,0 1: 5,0 2 7,0 4 51 4 010 21 55 6,0 10 4,4 2 0,0 3 552 4	263,0 88,0 81,0 4,38 17280 2 53 268,0 25,4 88,0 2,01	1329,0 311,0 516,0 4,27 228590 53 1079,0 25,4 38,0				
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0 41,84 146560 105	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0 42,13 151590 113	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0 41,48 166730 106	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0 41,37 177640	1115,0 249,0 427,0 4,49 191820 80 988,0 23,8 35,0 41,45 191820 106	1199 265 447 4,5 2060 45 1050 25, 38, 41,, 2060 71	8,0 1: 5,0 2 7,0 4 51 4 51 21 55 5 66,0 10 4 2 7,0 3 7	263,0 888,0 81,0 4,38 17280 2 53 068,0 25,4 88,0 2,01 17280 2	1329,0 311,0 516,0 4,27 228590 53 1079,0 25,4 38,0 42,42 228590 84				
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size	kW A W/W I/h kPa kW kW A W/W I/h	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0 41,84 146560	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0 42,13 151590	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0 41,48 166730	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0 41,37	1115,0 249,0 427,0 4,49 191820 80 988,0 23,8 35,0 41,45	119, 265, 447, 4,5 2060, 45, 25, 38, 41, 2060	8,0 1: 5,0 2 7,0 4 51 4 51 21 55 5 66,0 10 4 2 7,0 3 7	263,0 888,0 81,0 4,38 17280 2 53 068,0 25,4 88,0 2,01 17280 2	1329,0 311,0 516,0 4,27 228590 53 1079,0 25,4 38,0 42,42 228590				
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P	kW A W/W I/h kPa kW kW A W/W I/h	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0 41,84 146560 105	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0 42,13 151590 113	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0 41,48 166730 106	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0 41,37 177640	1115,0 249,0 427,0 4,49 191820 80 988,0 23,8 35,0 41,45 191820 106	1199 265 447 4,5 2060 45 1050 25, 38, 41,, 2060 71	8,0 1: 5,0 2 7,0 4 51 4 51 21 55 5 66,0 10 4 2 7,0 3 7	263,0 888,0 81,0 4,38 17280 2 53 068,0 25,4 88,0 2,01 17280 2	1329,0 311,0 516,0 4,27 228590 53 1079,0 25,4 38,0 42,42 228590 84				
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation	kW A W/W I/h kPa kW kW A W/W I/h kPa	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0 41,84 146560 105	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0 42,13 151590 113	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0 41,48 166730 106	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0 41,37 177640 106	1115,0 249,0 427,0 4,49 191820 80 988,0 23,8 35,0 41,45 191820 106	1199 2659 447 4,5 2060 45 1050 25, 38, 41,4 2060 71	88,0 1: 5,0 2 7,0 4 51 4 51 2 55 2 66,0 10 6,0 3 6,0 3 6,0 3 10 2 10 2 1	263,0 888,0 881,0 44,38 17280 2 53 2553 2554 888,0 22,01 77280 2 84 66002	1329,0 311,0 516,0 4,27 228590 53 1079,0 25,4 38,0 42,42 228590 84 6402	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0 41,84 146560 105 3902	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0 42,13 151590 113 4202	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0 41,48 166730 106 4502	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0 41,37 177640 106 4802	1115,0 249,0 427,0 4,49 191820 80 988,0 23,8 35,0 41,45 191820 106 5202	1199 2639 447 4,5,2660 44: 1050 38, 41,71 5666	88,0 1: 5,0 2 7,0 4 51 4 51 2 55 2 66,0 10 6,4 2 7,0 3 52 4 100 2 11 2 100	263,0 88,0 81,0 4,38 17280 2 53 25,4 88,0 2,01 77280 2 84 6002	1329,0 311,0 516,0 4,27 228590 53 1079,0 25,4 38,0 42,42 228590 84 6402	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - -		- - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0 41,84 146560 105 3902	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0 42,13 151590 113 4202	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0 41,48 166730 106 4502	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0 41,37 177640 106 4802	1115,0 249,0 427,0 4,49 191820 80 988,0 23,8 35,0 41,45 191820 106 5202	1199 2632 447 4,20600 1055 38, 41,1 20600 711 1199 268	8,0 1: 5,0 2 7,0 4 51 4 1010 21 55 66,0 10 4,4 2 100 21 11 11 12 12 13 14 15 16 16 16 16 16 16 16 16 16 16	263,0 888,0 81,0 4,38 17280 2 53 253 254 388,0 2,01 77280 2 84 257,0 991,0	1329,0 311,0 516,0 4,27 228590 53 1079,0 25,4 38,0 42,42 1228590 84 6402	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0 41,84 146560 105 3902	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0 42,13 151590 113 4202	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0 41,48 166730 106 4502	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0 41,37 177640 106 4802	1115,0 249,0 427,0 4,49 191820 80 988,0 23,8 35,0 41,45 191820 106 5202	1199 2632 447 4,20600 10502 38, 41,20600 71 1199 268 450	8,0 1: 5,0 2 7,0 4 51 4 51 4 51 5 55 66,0 10 4 2 7,0 3 55 4 1 7,0 3 7,0 3 7,0 4 7,0 3 7,0 4 7,0 6 7,0 6 7,0 6 7,0 6 7,0 6 7,0 6 7,0 7,0 6 7,0 7,0 7 7,	263,0 888,0 81,0 43,38 17280 2 53 25,4 388,0 2,01 77280 2 84 257,0 991,0 85,0	1329,0 311,0 516,0 4,27 228590 53 1079,0 25,4 38,0 42,42 1228590 84 6402	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW KW A W/W I/h kPa	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0 41,84 146560 105 3902	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0 42,13 151590 113 4202 877,0 209,0 346,0 4,20	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0 41,48 166730 106 4502	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0 41,37 177640 106 4802	1115,0 249,0 427,0 4,49 191820 80 23,8 35,0 41,45 191820 106 5202 1110,0 430,0 4,43	1199 2632 447 4,20600 1055 38, 41,1 560 71 1199 268 450 4,4,4	8,0 1: 5,0 2 7,0 4 51 4 51 4 51 5 55 66,0 10 4,4 2 7,0 3 552 4 6010 21 1 02 6 22,0 1: 8,0 2 455 4	263,0 888,0 81,0 41,38 17280 2 53 25,4 388,0 2,01 77280 2 84 6002	1329,0 311,0 516,0 4,27 228590 53 1079,0 25,4 38,0 42,42 1228590 84 6402	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0 41,84 146560 105 3902 848,0 197,0 330,0 4,31 145850	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0 42,13 151590 113 4202 877,0 209,0 346,0 4,20 150820	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0 41,48 166730 106 4502 965,0 220,0 377,0 4,38 165970	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0 41,37 177640 106 4802 1028,0 234,0 411,0 4,40	1115,0 249,0 427,0 4,49 191820 80 23,8 35,0 41,45 191820 106 5202 1110,0 251,0 430,0 4,43	1199 2658 4477 4,206000 1055 38,3 41,1 20600 711 1199 2688 4500 4,4,4,2	8,0 1: 5,0 2 7,0 4 51 4 51 4 51 5 55 66,0 10 4 7 7,0 3	263,0 888,0 81,0 43,38 17280 2 53 25,4 838,0 2,01 77280 2 84 257,0 91,0 85,0 4,32 166210 2 2	1329,0 311,0 516,0 4,27 228590 53 1079,0 25,4 38,0 42,42 1228590 84 6402	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Size Model: P Cooling performance chiller operation Cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW KW A W/W I/h kPa	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0 41,84 146560 105 3902	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0 42,13 151590 113 4202 877,0 209,0 346,0 4,20	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0 41,48 166730 106 4502	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0 41,37 177640 106 4802	1115,0 249,0 427,0 4,49 191820 80 23,8 35,0 41,45 191820 106 5202 1110,0 430,0 4,43	1199 2632 447 4,20600 1055 38, 41,1 560 71 1199 268 450 4,4,4	8,0 1: 5,0 2 7,0 4 51 4 51 4 51 5 55 66,0 10 4 7 7,0 3	263,0 888,0 81,0 41,38 17280 2 53 25,4 388,0 2,01 77280 2 84 6002	1329,0 311,0 516,0 4,27 228590 53 1079,0 25,4 38,0 42,42 1228590 84 6402	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with free-cooling	kW A W/W I/h kPa kW kW A W/W I/h kPa	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0 41,84 146560 105 3902 848,0 197,0 330,0 4,31 145850 74	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0 42,13 151590 113 4202 877,0 209,0 346,0 4,20 150820 80	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0 41,48 166730 106 4502 965,0 220,0 377,0 4,38 165970 79	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0 41,37 177640 106 4802 1028,0 234,0 411,0 4,40 176870 79	1115,0 249,0 427,0 4,49 191820 80 988,0 23,8 35,0 41,45 191820 106 5202 1110,0 251,0 430,0 4,43 190950 79	1199 2658 4477 4,206000 1055 38,3 41,1 20600 711 1199 2688 4500 4,4,4 4.5 20500 4.5	8,0 1: 5,0 2 7,0 4 51 4 51 4 51 5 55 66,0 10 4,4 5 552 4 610 21 1 62,0 1: 8,0 2 64 652 66 66,0 10 66 67 68 68 68 69 69 69 69 69 69 69 69 69 69 69 69 69	263,0	1329,0 311,0 516,0 4,27 228590 53 1079,0 25,4 38,0 42,42 1228590 84 6402 1322,0 314,0 520,0 4,21 1227390 53	- - - - - - - - - - - - - - - - - - -			- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Fressure drop system side Cooling performance chiller operation Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling performances with free-cooling	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0 41,84 146560 105 3902 848,0 197,0 330,0 4,31 145850 74	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0 42,13 151590 113 4202 877,0 209,0 346,0 4,20 150820 80	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0 41,48 166730 106 4502 965,0 220,0 377,0 4,38 165970 79	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0 41,37 177640 106 4802 1028,0 234,0 411,0 79	1115,0 249,0 427,0 4,49 191820 80 988,0 23,8 35,0 41,45 191820 106 5202 1110,0 430,0 4,43 190950 79	1199 2658 4477 4,20600 1055 38,8 41,2 20600 711 1199 2688 4500 4,4,4 451 451 451 451 451 451 451 451 451 45	8,0 1: 5,0 2 7,0 4 51 4 51 4 51 5 66,0 10 4 7 7,0 3 7,0 3 7,0 3 7,0 3 7,0 3 7,0 3 7,0 3 7,0 3 7,0 3 7,0 3 7,0 3 7,0 3 7,0 3 7,0 4 7,0 3 7,	263,0 888,0 81,0 44,38 17280 2 53 25,4 38,0 2,01 77280 2 84 6002 257,0 191,0 185,0 4,32 16210 2 53	1329,0 311,0 516,0 4,27 1228590 53 1079,0 25,4 38,0 42,42 1228590 84 6402 1322,0 314,0 520,0 4,21 1227390 53	- - - - - - - - - - - - - - - - - - -			- - - - - - - - - - - - - - - - - - -
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Fressure drop system side Cooling performance chiller operation Cooling performance with free-cooling capacity Input power Cooling performances with free-cooling Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa kW KW A W/W I/h kPa kW KW A W/W KW	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0 41,84 146560 105 3902 848,0 197,0 330,0 4,31 145850 74	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0 42,13 151590 113 4202 877,0 209,0 346,0 4,20 150820 80	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0 41,48 166730 106 4502 965,0 220,0 377,0 4,38 165970 79	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0 41,37 177640 106 4802 1028,0 234,0 411,0 79 981,0 22,6	1115,0 249,0 427,0 4,49 191820 80 988,0 23,8 35,0 41,45 191820 106 5202 1110,0 430,0 4,43 190950 79	1199 2658 4477 4,20600 1055 38,8 41,2 20600 711 1199 2688 4500 4,4,4 451 451 451 451 451 451 451 451 451 45	8,0 1: 5,0 2 7,0 4 51 4 51 4 51 5 66,0 10 4 7 7,0 3 7,0 3 7,0 4 7,0 3 7,0 3 7,0 3 7,0 3 7,0 4 7,0 3 7,0 3 7,0 4 7,0 3 7,0 4 7,0 3 7,	263,0 888,0 81,0 44,38 17280 2 53 25,4 38,0 2,01 77280 2 84 6002 257,0 91,0 85,0 4,32 16210 2 53	1329,0 311,0 516,0 4,27 228590 53 1079,0 25,4 38,0 42,42 228590 84 6402 1322,0 314,0 520,0 4,21 227390 53	- - - - - - - - - - - - - - - - - - -			
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Fressure drop system side Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0 41,84 146560 105 3902 848,0 197,0 330,0 4,31 145850 74	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0 42,13 151590 113 4202 877,0 209,0 346,0 4,20 150820 80 786,0 17,8 26,0	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0 41,48 166730 220,0 377,0 4,38 165970 79	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0 41,37 177640 4802 1028,0 234,0 411,0 79 981,0 22,6 33,0	1115,0 249,0 427,0 4,49 191820 80 988,0 23,8 35,0 41,45 191820 106 5202 1110,0 430,0 4,43 190950 79 1053,0 24,2 36,0	1199 2658 4477 4,2,20600 44: 1055 5660 45: 1122 25,3 38,3 38,3 38,4 3,2,4 3,2,4 3,2,4 3,2,4 45: 1122 25,3 38,3 38,3 38,3 38,3 38,3 38,3 38,3 3	8,0 1: 5,0 2 7,0 4 51 4 51 4 51 5 66,0 10 4 7 7,0 3 7,0 3 7,0 4 7,0 3 7,	263,0 888,0 81,0 44,38 17280 2 53 25,4 38,0 2,01 77280 2 84 6002 257,0 91,0 85,0 44,32 16210 2 53 139,0 225,9 38,0	1329,0 311,0 516,0 4,27 228590 53 1079,0 25,4 38,0 42,42 228590 84 6402 1322,0 314,0 520,0 4,21 227390 53 1151,0 25,9 38,0	- - - - - - - - - - - - - - - - - - -			
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0 41,84 146560 105 3902 848,0 197,0 330,0 4,31 145850 74	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0 42,13 151590 113 4202 877,0 209,0 346,0 4,20 150820 80 786,0 17,8 26,0 44,20 44,20 44,20 44,20 44,20 44,20 44,20	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0 41,48 166730 220,0 377,0 4,38 165970 79 914,0 21,0 31,0 43,48	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0 41,37 177640 106 4802 1028,0 234,0 411,0 79 981,0 22,6 33,0 43,37	1115,0 249,0 427,0 4,49 191820 80 988,0 23,8 35,0 41,45 191820 106 5202 1110,0 430,0 4,43 190950 79 1053,0 24,2 36,0 43,45	1199 2655 4447 4,2,2060 44: 1055 255,38,841,2,2060 711 1199 2686 450 4,4,4,4,2050 41: 112: 255,38,8,43,44,44,44,45	8,0 1: 5,0 2 7,0 4 51 4 51 4 51 5 55 4 510 21 55 4 510 21 55 4 55 4 55 4 55 4 55 5 5 55 6 6,0 10 6,4 5 6,0 3 6,4 6 7,0 3 7,0 4 7,0 3 7,0 3 7,0 4 7,0 3	263,0 888,0 81,0 4,38 17280 2 53 25,4 38,0 2,01 77280 2 84 6002 257,0 91,0 885,0 4,32 16210 2 53 139,0 225,9 38,0 4,06	1329,0 311,0 516,0 4,27 228590 53 1079,0 25,4 38,0 42,42 228590 84 6402 1322,0 314,0 520,0 4,21 227390 53 1151,0 25,9 38,0 44,51	- - - - - - - - - - - - - - - - - - -			
Size Model: F Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Size Model: P Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Fressure drop system side Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa	852,0 195,0 328,0 4,37 146560 75 731,0 17,5 26,0 41,84 146560 105 3902 848,0 197,0 330,0 4,31 145850 74	881,0 207,0 343,0 4,26 151590 81 737,0 17,5 26,0 42,13 151590 113 4202 877,0 209,0 346,0 4,20 150820 80 786,0 17,8 26,0	969,0 218,0 374,0 4,44 166730 80 857,0 20,7 31,0 41,48 166730 220,0 377,0 4,38 165970 79	1033,0 232,0 408,0 4,46 177640 80 921,0 22,3 33,0 41,37 177640 106 4802 1028,0 234,0 411,0 79 981,0 22,6 33,0 43,37	1115,0 249,0 427,0 4,49 191820 80 988,0 23,8 35,0 41,45 191820 106 5202 1110,0 430,0 4,43 190950 79 1053,0 24,2 36,0 43,45	1199 2658 4477 4,2,20600 44: 1055 5660 45: 1122 25,3 38,3 38,3 38,4 3,2,4 3,2,4 3,2,4 3,2,4 45: 1122 25,3 38,3 38,3 38,3 38,3 38,3 38,3 38,3 3	8,0 1: 5,0 2 7,0 4 51 4 51 4 51 5 50 5 66,0 10 6,4 2 7,0 3 7,0 4 7,0 3 7,0 3 7,0 4 7,0 3 7,0 4 7,0 3 7,0 3 7,0 4 7,0 3 7,0 4 7,0 3 7	263,0 888,0 81,0 4,38 17280 2 53 25,4 38,0 2,01 77280 2 84 6002 257,0 91,0 885,0 4,32 16210 2 53 139,0 225,9 38,0 4,06	1329,0 311,0 516,0 4,27 228590 53 1079,0 25,4 38,0 42,42 228590 84 6402 1322,0 314,0 520,0 4,21 227390 53 1151,0 25,9 38,0	- - - - - - - - - - - - - - - - - - -			

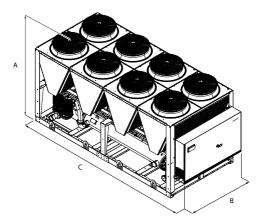
Cooling performance chiller operation: System side water heat exchanger 25 °C/20 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0%

ELECTRIC DATA

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Electric data															
	A	Α	204,0	226,0	251,0	257,0	273,0	290,0	306,0	335,0	355,0	380,0	405,0	428,0	440,0
Maximum current (FLA)	E,U	Α	204,0	226,0	261,0	267,0	273,0	299,0	316,0	345,0	364,0	390,0	415,0	437,0	450,0
	N	Α	214,0	236,0	270,0	277,0	283,0	309,0	325,0	354,0	374,0	399,0	425,0	447,0	469,0
	A	Α	277,0	285,0	299,0	336,0	350,0	346,0	359,0	439,0	451,0	515,0	568,0	622,0	592,0
Peak current (LRA)	E,U	Α	277,0	285,0	308,0	345,0	350,0	356,0	368,0	449,0	461,0	525,0	578,0	632,0	601,0
	N	Α	287,0	295,0	318,0	355,0	360,0	366,0	378,0	458,0	471,0	535,0	588,0	641,0	621,0
Size			3902	4202	4502	4802	5202	56	i02 6	5002	6402	6903	7203	8403	9603
Electric data															
	A	A	473,0	497,0	538,0	570,0	590,0	62	0,0 6	668,0	701,0	831,0	863,0	933,0	1051,0
Maximum current (FLA)	A E,U	A A	473,0 483,0	497,0 516,0	538,0 548,0	570,0 595,0	590,0 615,0			668,0 688,0	701,0 730,0	831,0 841,0	863,0 882,0	933,0	1051,0
	A N							64	5,0 6						1051,0
		A	483,0	516,0	548,0	595,0	615,0	64 68	5,0 6 3,0 7	588,0	730,0	841,0	882,0	-	-
		A A	483,0 508,0	516,0 531,0	548,0 583,0	595,0 624,0	615,0 654,0	64 68 88	5,0 6 3,0 7 6,0 9	588,0 '16,0	730,0 749,0	841,0	882,0	-	-

Data calculated without hydronic kit and accessories.

GENERAL TECHNICAL DATA


Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Compressor															
Туре	A,E,N,U	type							Screw						
Compressor regulation	A,E,N,U	Туре							On-Off						
Number	A,E,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2
Circuits	A,E,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E,N,U	type							R134a						
System side heat exchanger															
Туре	A,E,N,U	type						9	hell and tub	e					
Number	A,E,N,U	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Inverter fan															
Туре	A,E,N,U	type							Axial						
	A	no.	8	8	8	8	10	10	10	12	12	12	12	14	14
Number	E,U	no.	8	8	10	10	10	12	12	14	14	14	14	16	16
	N	no.	10	10	12	12	12	14	14	16	16	16	16	18	20
Sound data calculated in cooling mode (1)														
	A	dB(A)	97,0	97,0	97,0	97,0	98,0	98,0	98,0	98,0	98,0	99,0	99,0	100,0	101,0
Cound namer lavel	E	dB(A)	93,0	93,0	93,0	94,0	94,0	93,0	93,0	93,0	93,0	95,0	96,0	98,0	98,0
Sound power level	N	dB(A)	93,0	93,0	94,0	94,0	94,0	94,0	93,0	93,0	93,0	94,0	96,0	98,0	99,0
	U	dB(A)	97,0	97,0	98,0	98,0	98,0	99,0	99,0	99,0	99,0	99,0	100,0	101,0	102,0

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Size			3902	4202	4502	4802	5202	5602	6002	6402	6903	7203	8403	9603
Compressor														
Туре	A,E,N,U	type						Sc	rew					
Compressor regulation	A,E,N,U	Туре						0n	-Off					
	A	no.	2	2	2	2	2	2	2	2	3	3	3	3
Number	E,U	no.	2	2	2	2	2	2	2	2	3	3	-	-
	N	no.	2	2	2	2	2	2	2	2	-	-	-	-
	A	no.	2	2	2	2	2	2	2	2	3	3	3	3
Circuits	E,U	no.	2	2	2	2	2	2	2	2	3	3	-	-
	N	no.	2	2	2	2	2	2	2	2	-	-	-	-
Refrigerant	A,E,N,U	type						R1	34a					
System side heat exchanger														
Туре	A,E,N,U	type						Shell a	nd tube					
	Α	no.	1	1	1	1	1	1	1	1	2	2	2	2
Number	E	no.	1	1	1	1	1	1	1	1	2	2	-	-
number	N	no.	1	1	2	2	2	2	2	2	-	-	-	-
	U	no.	1	1	1	1	1	2	2	2	2	2	-	-
Inverter fan														
Туре	A,E,N,U	type						A	cial					
	A	no.	16	16	18	18	18	20	22	22	28	28	30	34
Number	E,U	no.	18	20	20	22	22	24	26	28	30	32	-	-
	N	no.	22	22	26	28	30	32	32	32	-	-	-	-
Sound data calculated in cooling mode (1)		-				-							
	A	dB(A)	101,0	100,0	101,0	101,0	101,0	102,0	102,0	102,0	104,0	104,0	105,0	105,0
Carrad manusar larval	E	dB(A)	98,0	96,0	97,0	97,0	99,0	100,0	100,0	99,0	99,0	99,0	-	-
Sound power level	N	dB(A)	98,0	97,0	97,0	97,0	99,0	100,0	100,0	99,0	-	-	-	-
	U	dB(A)	101,0	101,0	101,0	102,0	102,0	103,0	103,0	103,0	104,0	104,0	-	-

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Dimensions and weights															
A	A,E,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	А	mm	5160	5160	5160	5160	6350	6350	6350	7140	7140	7140	7140	8330	8330
C	E,U	mm	5160	5160	6350	6350	6350	7140	7140	8330	8330	8330	8330	9520	9520
	N	mm	6350	6350	7140	7140	7140	8330	8330	9520	9520	9520	9520	10710	11900
Size	'		3902	4202	4502	4802	5202	50	602	6002	6402	6903	7203	8403	9603
Dimensions and weights															
	A	mm	2450	2450	2450	2450	2450	2	450	2450	2450	2450	2450	2450	2450
A	E,U	mm	2450	2450	2450	2450	2450	2	450	2450	2450	2450	2450	-	-
	N	mm	2450	2450	2450	2450	2450	2	450	2450	2450	-	-	-	-
	A	mm	2200	2200	2200	2200	2200	2	200	2200	2200	2200	2200	2200	2200
В	E,U	mm	2200	2200	2200	2200	2200	2	200	2200	2200	2200	2200	-	-
	N	mm	2200	2200	2200	2200	2200	2	200	2200	2200	-	-	-	-
	A	mm	9520	9520	10710	10710	10710	11	1900	13090	13090	16660	16660	17850	20230
C	E,U	mm	10710	11900	11900	13090	13090	14	1280	15470	16660	17850	19040	-	-
	N	mm	13090	13090	15470	16660	17850	19	9040	19040	19040	-	-	-	-

For transport reasons, the units with the depth of more than 13090 mm are shipped separately.

NSM HWT B

Air-cooled chiller with free cooling (glycol-free)

Cooling capacity 306 ÷ 1991 kW

- · High efficiency also at partial loads
- Microchannel coils
- Suitable for Data Center applications
- Water produced up to 30 °C
- Night mode

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

These are outdoor units with screw compressors, axial fans, micro-channel coils, and shell and tube heat exchangers

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

These are flexible and reliable units which adapt to the most diverse load conditions thanks to the precise design and the use of steady speed compressors together with inverter-controlled variable speed compressors guaranteeing a high energy efficiency level both at full and partial load.

VERSIONS

A High efficiency

E Silenced high efficiency

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Water produced from 5 °C \div 30 °C.

Unit with 2/3 cooling circuits

Unit with 2/3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode. Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The compressors are completely shut down, if possible, leading to considerable electrical savings.

Free cooling with glycol water

Intermediate plate heat exchanger that creates two circuits:

- 1. Glycol hydraulic circuit (glycol is added to protect the coil from freezing).
- **2.** Primary hydraulic circuit for glycol-free systems.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night Mode: it is possible to set a silenced operation profile. Perfect
 for night operation since it guarantees greater acoustic comfort in the
 evenings, and a high efficiency in the time of greater load.

ACCESSORIES

AER485P1 x n° 2: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AER485P1 x n° 3: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FB1: Air filter to protect the micro-channel coils. Formed of a frame and a composite baffle in micro-expanded aluminium mesh, with particularly low pressure drops.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

KRS: Electric heater for the heat exchanger

AK: Acoustic kit that lowers the noise level even further, thanks to the special coating on the panelling or on those components that produce the most noise in the unit. Available for the low noise version only.

ACCESSORIES COMPATIBILITY

Model	Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
AER485P1 x n° 2 (1)	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET	A,E,N,U	•	•	•	•	•	•	•	•		•	•	•	•
FB1	A,E,N,U	•	•		•	•	•	•	•		•	•		•
MULTICHILLER-EVO	A,E,N,U	•	•	•	•	•	•	•	•		•	•		•
PRV3	A,E,N,U	•	•	•	•	•	•	•	<u> </u>	•	•	•	•	•
Model	Ver	3902	4202	4502	4802	5202	5602	2 60	002	6402	6903	7203	8403	9603
AER485P1 x n° 2 (1)	A,E,N,U	•	•	•	•	•	•		•	•				
AER485P1 x n° 3 (1)	A,E,N,U										•	•	•	•
AERNET	A,E,N,U	•	•	•	•	•	•		•	•	•	•	•	•
FB1	A,E,N,U	•	•	•	•	•	•		•	•	•	•	•	•
MULTICHILLER-EVO	A,E,N,U	•	•	•	•	•	•		•	•	•	•	•	•
PRV3	A,E,N,U	•	•	•	•	•	•		•	•	•	•	•	•

(1) x Indicates the quantity of accessories to match.

Antivibration

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
A, E, N, U	AVX. (1)												
(1) Contact us.													
Ver	3902	4202	4502	4802	5202	5602	2 60	02	6402	6903	7203	8403	9603

AVX. (1)

(1) Contact us.

Power factor correction

A, E, N, U

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802
A	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002Q	RIFNSM2202Q	RIFNSM2352Q	RIFNSM2502Q	RIFNSM2652Q	RIFNSM2802C
E	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002Q	RIFNSM2202Q	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C
N	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802C	RIFNSM2002Q	RIFNSM2202C	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C
U	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002C	RIFNSM2202Q	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C

A grey background indicates the accessory must be assembled in the factory

AVX. (1)

AVX. (1)

AVX. (1)

AVX. (1)

Ver	3002	3202	3402	3602	3902	4202	4502	4802	5202
A, E, U	RIFNSM3002C	RIFNSM3202C	RIFNSM3402C	RIFNSM3602C	RIFNSM3902C	RIFNSM4202C	RIFNSM4502C	RIFNSM4802C	RIFNSM5202C
N	RIFNSM3002C	RIFNSM3202C	RIFNSM3402C	RIFNSM3602C	RIFNSM3902C	RIFNSM4202C	-	-	-

The accessory cannot be fitted on the configurations indicated with -

A grey background indicates the accessory must be assembled in the factory

Ver	5602	6002	6402	6503	6703	6903	7203	8403	9603
A	RIFNSM5602C	RIFNSM6002C	RIFNSM6402C	-	-	-	-	-	-

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
A, E, N, U	GP. (1)												

(1) Contact the factory

A grey background indicates the accessory must be assembled in the factory

Ver	3902	4202	4502	4802	5202	5602	6002	6402	6903	7203	8403	9603
A, E, N, U	GP. (1)											

(1) Contact the factory
A grey background indicates the accessory must be assembled in the factory

Heater exchangers

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
A, E, N, U	KRS (1)												

(1) Contact the factory A grey background indicates the accessory must be assembled in the factory

Ver	3902	4202	4502	4802	5202	5602	6002	6402	6903	7203	8403	9603
A. F. N. U	KRS (1)											

(1) Contact the factory
A grey background indicates the accessory must be assembled in the factory

Acoustic kit

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
A, E, N, U	AK (1)												

(1) Available only in low noise version
A grey background indicates the accessory must be assembled in the factory

Ver	3902	4202	4502	4802	5202	5602	6002	6402	6903	7203	8403	9603
A, E, N, U	AK (1)											

(1) Available only in low noise version
A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

_		GURATUR
Fiel	d	Description
1,2,	3	NSM
4,5,	6,7	Size 1402, 1602, 1802, 2002, 2202, 2352, 2502, 2652, 2802, 3002, 3202, 3402, 3602, 3902, 4202, 4502, 4802, 5202, 5602, 6002, 6402, 6903, 7203, 8403, 9603
8		Operating field (1)
	W	Electronic thermostatic expansion valve
9		Model
	В	Free-cooling glycol free
	G	Free-cooling glycol free plus (2)
10		Heat recovery
	0	Without heat recovery
11		Version
	Α	High efficiency
	Ε	Silenced high efficiency
	N	Silenced very high efficiency
	U	Very high efficiency
12		Coils / free-cooling coils
	0	Painted alluminium microchannel / Copper painted aluminium
	R	Copper-copper/Copper-copper (2)
	S	Copper-Tinned copper / Copper -Tinned copper (2)
	٧	Copper-painted alumimium / Copper-painted alumimium (2)
	0	Alluminium microchannel / Copper - aluminium
13		Fans
	J	Inverter
14		Power supply
	0	400V ~ 3 50Hz
15,1	16	Integrated hydronic kit
		Without hydronic kit
	00	Without hydronic kit

⁽¹⁾ Water produced from 5 °C \div 30 °C (2) The Free-Cooling Plus "P" models are only compatible with" ed "0"

PERFORMANCE SPECIFICATIONS

NSM HWT BA-GA

Cooling performance chiller operation Start Star	erformance chiller operation		1702	1002	1002	2002	LLVL	2332	2302					3402	3602
Cooling performance chiller operation Cooling performance chiller operation Name	erformance chiller operation														
Cooling gazadry															
Imput power Name	nacity	kW	306.0	351.0	400 O	441 0	479 N	505.0	546.0	589 0	638.0	653.0	687.0	753,0	792,0
Cooling total input current	'													192,0	205,0
Mater flow rate systems side														327,0	348,0
Water flow rate system side Vih 52824 60556 69042 76187 82709 87074 94164 101663 110040 112699 118488 17 Pressure drop system side Vih 91 107 118 139 135 152 133 130 13	tai input current													3,92	3,86
Pressure drop system side NFa 91 120 119 91 107 118 139 135 132 133 130	rata system sida													129925	136678
Cooling performance with free-cooling glycol-free Cooling apacity My 23,0 236,0 226,0 226,0 226,0 226,0 226,0 227,0 297,0 297,0 297,0 38,6 38,6 38,7 38,7 18,7														99	110
Cooling gapacity MW 303,0 276,0 281,0 292,0 360,0 363,0 367,0 437,0 441,0 454,0 456,0 456,0 10put power MW 22.6 22.6 22.6 22.6 22.6 27,9 29,7 29,7 29,7 28,6 38.6 38.6 38,7 38,7 38,7 28,7 28,8 2		NI a	71	120	117	71	107	110	137	133	132	133	130	77	110
Imput power NW 22,6 22,6 22,6 22,6 22,6 22,7 29,7 29,7 29,7 38,6 38,6 38,7 38,7 Free cooling total input current A 36,1 36,1 36,1 36,1 47,0 47,0 47,0 61,5 61,5 61,5 61,7		LW	202.0	276.0	201 N	202.0	260.0	262.0	267.0	/27 N	441.0	454.0	456 D	541,0	542,0
Free cooling total input current A 36,1 36,1 36,1 36,1 36,1 47,0 47,0 47,0 47,0 61,5 61,5 61,7 61,7 17,7 18,7 18,7 19,7 18,7 19,7 18,7 19,7 19,7 19,7 19,7 19,7 19,7 19,7 19														44,8	44,8
Figure My 13,43 12,22 12,46 12,93 12,14 12,23 12,36 11,32 11,43 11,73 11,79 11,79														71,2	71,2
Size 1402 1602 1802 2002 2202 2352 2502 2652 2802 3002 3202 2002	ig total input current														12,11
Model: G Cooling performance chiller operation No. State Stat		VV/VV	13,43	12,22	12,40	12,93	12,14	12,23	12,30	11,32	11,43	11,/3	11,/9	12,07	12,11
Cooling capacity			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Cooling capacity kW 305,0 349,0 398,0 439,0 477,0 502,0 543,0 587,0 635,0 650,0 683,0 Input power kW 82,0 96,0 1090,0 120,0 126,0 136,0 148,0 157,0 169,0 174,0 181,0 Cooling total input current A 147,0 167,0 188,0 201,0 220,0 224,0 260,0 229,0 292,0 308,0 EER W/W 3,70 3,64 3,64 3,68 3,78 3,66 3,74 3,74 3,78 Water flow rate system side I/h 52588 60291 68707 75829 82367 86693 93725 101283 109546 112184 117898 119 Pressure drop system side kPa 90 119 118 90 106 117 137 134 151 132 129 Cooling gradity kW 314,0 287,0 293,0 305,0 <td></td>															
Input power KW 82,0 96,0 109,0 120,0 126,0 136,0 148,0 157,0 169,0 174,0 181	erformance chiller operation														
Cooling total input current A 147,0 167,0 188,0 201,0 210,0 226,0 244,0 200,0 279,0 292,0 308,0 EER W/W 3,70 3,64 3,64 3,68 3,78 3,68 3,68 3,66 3,74 3,76 3,74 3,78 Water flow rate system side W/h 52588 60291 68707 75829 82367 86693 93725 101283 109546 112184 117698 1 Pressure drop system side W/h 52588 60291 18870 75829 82367 86693 93725 101283 109546 112184 117698 1 Pressure drop system side W/h 52588 60291 68707 75829 82367 86693 93725 101283 109546 112184 117698 1 Pressure drop system side W/h 314,0 287,0 293,0 305,0 377,0 380,0 384,0 459,0 463,0 478,0 481,0 Input power R/W 23,0 22,9 22,9 23,0 30,1 30,1 30,1 30,1 39,2 39,2 39,3 39,3 Free cooling total input current A 36,6 36,6 36,6 36,6 47,7 47,7 47,7 47,7 62,3 62,3 62,3 62,5 62,5 EER W/W 13,67 12,52 12,77 13,30 12,51 12,60 12,74 11,72 11,84 12,18 12,25 NSM HWT BA-GA Size 3902 4202 4502 4802 5202 5602 6002 6402 6903 7203 8 Model: B Cooling performance chiller operation Cooling capacity	pacity	kW	305,0	349,0	398,0	439,0	477,0	502,0	543,0	587,0	635,0	650,0	683,0	749,0	788,0
EER W/W 3,70 3,64 3,64 3,68 3,78 3,68 3,76 3,74 3,76 3,74 3,78 3,78 75829 82367 86693 93725 101283 109546 112184 117898 17898	er	kW	82,0	96,0	109,0	120,0	126,0	136,0	148,0	157,0	169,0	174,0	181,0	194,0	207,0
Water flow rate system side I/h 52588 60291 68707 75829 82367 86693 93725 101283 109546 112184 117898 1 Pressure drop system side kPa 90 119 118 90 106 117 137 134 151 132 129 Cooling performances with free-cooling glycol-free Cooling capacity kW 23,0 22,9 22,9 22,9 23,0 30,1 30,1 30,1 39,2 39,2 39,3 39,2 39,2 39,3 39,3 39,3 39,2 29,2 23,0 30,1 30,1 30,1 30,1 30,1 30,1 30,1 30,1 30,1 30,1 30,1 30,1 30,1 30,1 30,1	tal input current	Α	147,0	167,0	188,0	201,0	210,0	226,0	244,0	260,0	279,0	292,0	308,0	330,0	351,0
Pressure drop system side KPa 90 119 118 90 106 117 137 134 151 132 129		W/W	3,70	3,64	3,64	3,68	3,78	3,68	3,66	3,74	3,76	3,74	3,78	3,86	3,80
Cooling performances with free-cooling glycol-free Cooling capacity kW 314,0 287,0 293,0 305,0 377,0 380,0 384,0 459,0 463,0 478,0 481,0 Input power kW 23,0 22,9 22,9 23,0 30,1 30,1 30,1 30,1 39,2 39,2 39,3 39,3 Free cooling total input current A 36,6 36,6 36,6 36,6 47,7 47,7 47,7 62,3 62,3 62,5 62,5 62,5 EER W/W 13,67 12,52 12,77 13,30 12,51 12,60 12,74 11,72 11,84 12,18 12,25 NSM HWT BA-GA Size 3902 4202 4502 4802 5202 5602 6002 6402 6903 7203 8 Model: B Cooling performance chiller operation Cooling capacity kW 853,0 882,0 959,0 1014,0 1082,0 1169,0 1262,0 1327,0 1476,0 1531,0 17 Input power kW 216,0 228,0 244,0 260,0 281,0 295,0 319,0 343,0 373,0 388,0 4 Gooling total input current A 362,0 377,0 416,0 453,0 478,0 494,0 531,0 567,0 646,0 683,0 7 EER W/W 3,95 3,87 3,92 3,90 3,86 3,97 3,95 3,87 3,96 3,94 3 Water flow rate system side l/h 147129 152124 165550 174920 186802 201811 217758 228975 254763 264131 30 Pressure drop systems side kPa 128 137 148 165 155 146 171 190 126 141 171 Input power Cooling performances with free-cooling glycol-free Cooling performances with free-cooling glycol-free Cooling performances with free-cooling glycol-free kW 49,8 49,8 55,0 55,0 55,0 60,0 64,9 64,9 64,9 84,7 84,7 9 Free cooling total input current A 78,9 78,9 87,1 87,1 87,1 95,0 102,6 102,6 102,6 134,1 134,1 134,1 15	rate system side	l/h	52588	60291	68707	75829	82367	86693	93725	101283	109546	112184	117898	129336	136024
Cooling capacity kW 314,0 287,0 293,0 305,0 377,0 380,0 384,0 459,0 463,0 478,0 481,0 Input power kW 23,0 22,9 22,9 23,0 30,1 30,1 39,2 39,2 39,3 39,3 Free cooling total input current A 36,6 36,6 36,6 36,6 47,7 47,7 47,7 62,3 62,3 62,5 62,5 EER NSM HWT BA-GA Size 3902 4202 4502 4802 5202 5602 6002 6402 6903 7203 8 Model: B Cooling performance chiller operation Cooling capacity kW 853,0 882,0 959,0 1014,0 1082,0 1169,0 1262,0 1327,0 1476,0 1531,0 17 Input power kW 216,0 228,0 244,0 260,0 281,0 295,0 319,0 343,0 <t< td=""><td>rop system side</td><td>kPa</td><td>90</td><td>119</td><td>118</td><td>90</td><td>106</td><td>117</td><td>137</td><td>134</td><td>151</td><td>132</td><td>129</td><td>98</td><td>108</td></t<>	rop system side	kPa	90	119	118	90	106	117	137	134	151	132	129	98	108
Cooling capacity kW 314,0 287,0 293,0 305,0 377,0 380,0 384,0 459,0 463,0 478,0 481,0 Input power kW 23,0 22,9 22,9 23,0 30,1 30,1 39,2 39,2 39,3 39,3 Free cooling total input current A 36,6 36,6 36,6 36,6 47,7 47,7 47,7 62,3 62,3 62,5 62,5 EER NSM HWT BA-GA Size 3902 4202 4502 4802 5202 5602 6002 6402 6903 7203 8 Model: B Cooling performance chiller operation Cooling capacity kW 853,0 882,0 959,0 1014,0 1082,0 1169,0 1262,0 1327,0 1476,0 1531,0 17 Input power kW 216,0 228,0 244,0 260,0 281,0 295,0 319,0 343,0 <t< td=""><td>erformances with free-cooling glycol-free</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	erformances with free-cooling glycol-free														
Input power KW 23,0 22,9 22,9 23,0 30,1 30,1 30,1 30,1 39,2 39,2 39,3 39,3 39,3 Free cooling total input current A 36,6 36,6 36,6 36,6 47,7 47,7 47,7 47,7 62,3 62,3 62,5		kW	314,0	287,0	293,0	305,0	377,0	380,0	384,0	459,0	463,0	478,0	481,0	570,0	572,0
Free cooling total input current		kW	23,0	22,9		23,0		30,1	30,1	39,2		39,3	39,3	45,5	45,5
NSM HWT BA-GA Size 3902 4202 4502 4802 5202 5602 6002 6402 6903 7203 88 Model: B Size Siz		A	36,6	36,6	36,6	36,6	47,7	47,7	47,7	62,3	62,3	62,5	62,5	72,1	72,1
NSM HWT BA-GA Size 3902 4202 4502 4802 5202 5602 6002 6402 6903 7203 8 Model: B Cooling performance chiller operation Cooling capacity kW 853,0 882,0 959,0 1014,0 1082,0 1169,0 1262,0 1327,0 1476,0 1531,0 17 Input power kW 216,0 228,0 244,0 260,0 281,0 295,0 319,0 343,0 373,0 388,0 4 Cooling total input current A 362,0 377,0 416,0 453,0 478,0 494,0 531,0 567,0 646,0 683,0 77 EER W/W 3,95 3,87 3,92 3,90 3,86 3,97 3,95 3,87 3,96 3,94 3 Water flow rate system side l/h 147129 152124 165550 174920 186802 201811 217758 228975 254763 264131 30 Pressure drop system side kPa 128 137 148 165 155 146 171 190 126 141 17 Cooling performances with free-cooling glycol-free Cooling capacity kW 598,0 599,0 674,0 675,0 675,0 748,0 802,0 807,0 1038,0 1039,0 11 Input power kW 49,8 49,8 55,0 55,0 55,0 60,0 64,9 64,9 84,7 84,7 9 Free cooling total input current A 78,9 78,9 87,1 87,1 87,1 95,0 102,6 102,6 134,1 134,1 144	J													12,53	12,58
Model: B Cooling performance chiller operation Cooling capacity kW 853,0 882,0 959,0 1014,0 1082,0 1169,0 1262,0 1327,0 1476,0 1531,0 17 Input power kW 216,0 228,0 244,0 260,0 281,0 295,0 319,0 343,0 373,0 388,0 4 Cooling total input current A 362,0 377,0 416,0 453,0 478,0 494,0 531,0 567,0 646,0 683,0 7 EER W/W 3,95 3,87 3,92 3,90 3,86 3,97 3,95 3,87 3,96 3,94 3 Water flow rate system side I/h 147129 152124 165550 174920 186802 201811 217758 228975 254763 264131 30 Pressure drop system side kPa 128 137 148 165 155 146 171 190 126	WT BA-GA														
Cooling performance chiller operation Cooling capacity kW 853,0 882,0 959,0 1014,0 1082,0 1169,0 1262,0 1327,0 1476,0 1531,0 17 Input power kW 216,0 228,0 244,0 260,0 281,0 295,0 319,0 343,0 373,0 388,0 4 Cooling total input current A 362,0 377,0 416,0 453,0 478,0 494,0 531,0 567,0 646,0 683,0 7 EER W/W 3,95 3,87 3,92 3,90 3,86 3,97 3,95 3,87 3,96 3,94 3 Water flow rate system side I/h 147129 152124 165550 174920 186802 201811 217758 228975 254763 264131 30 Pressure drop system side kPa 128 137 148 165 155 146 171 190 126 141 126			3902	4202	4502	4802	5202	56	602 6	002	6402	6903	7203	8403	9603
Cooling capacity kW 853,0 882,0 959,0 1014,0 1082,0 1169,0 1262,0 1327,0 1476,0 1531,0 17 Input power kW 216,0 228,0 244,0 260,0 281,0 295,0 319,0 343,0 373,0 388,0 4 Cooling total input current A 362,0 377,0 416,0 453,0 478,0 494,0 531,0 567,0 646,0 683,0 7 EER W/W 3,95 3,87 3,92 3,90 3,86 3,97 3,95 3,87 3,94 3 Water flow rate system side I/h 147129 152124 165550 174920 186802 201811 217758 228975 254763 264131 30 Pressure drop system side kPa 128 137 148 165 155 146 171 190 126 141 1 1 Cooling performances with free-cooling glycol-free	:B														
Input power kW 216,0 228,0 244,0 260,0 281,0 295,0 319,0 343,0 373,0 388,0 4	erformance chiller operation														
Cooling total input current A 362,0 377,0 416,0 453,0 478,0 494,0 531,0 567,0 646,0 683,0 7 EER W/W 3,95 3,87 3,92 3,90 3,86 3,97 3,95 3,87 3,96 3,94 3 Water flow rate system side I/h 147129 152124 165550 174920 186802 201811 217758 228975 254763 264131 30 Pressure drop system side kPa 128 137 148 165 155 146 171 190 126 141 17 Cooling performances with free-cooling glycol-free Cooling capacity kW 598,0 599,0 674,0 675,0 675,0 748,0 802,0 807,0 1038,0 1039,0 11 Input power kW 49,8 49,8 55,0 55,0 55,0 60,0 64,9 84,7 84,7 9 Free cooling total input	pacity	kW	853,0	882,0	959,0	1014,0	1082,0) 116	69,0 12	262,0	1327,0	1476,0	1531,0	1758,0	2001,0
EER W/W 3,95 3,87 3,92 3,90 3,86 3,97 3,95 3,87 3,96 3,94 3 Water flow rate system side I/h 147129 152124 165550 174920 186802 201811 217758 228975 254763 264131 30 Pressure drop system side kPa 128 137 148 165 155 146 171 190 126 141 17 kW 598,0 599,0 674,0 675,0 675,0 748,0 802,0 807,0 1038,0 1039,0 11 Input power kW 49,8 49,8 55,0 55,0 55,0 60,0 64,9 64,9 84,7 84,7 9 Free cooling total input current A 78,9 78,9 87,1 87,1 87,1 95,0 102,6 134,1 134,1 14	er	kW	216,0	228,0	244,0	260,0	281,0	29	5,0 3	19,0	343,0	373,0	388,0	442,0	512,0
Water flow rate system side I/h 147129 152124 165550 174920 186802 201811 217758 228975 234763 264131 30 Pressure drop system side kPa 128 137 148 165 155 146 171 190 126 141 17 Cooling performances with free-cooling glycol-free Cooling capacity kW 598,0 599,0 674,0 675,0 675,0 748,0 802,0 807,0 1038,0 1039,0 11 Input power kW 49,8 49,8 55,0 55,0 55,0 60,0 64,9 64,9 84,7 84,7 9 Free cooling total input current A 78,9 78,9 87,1 87,1 87,1 95,0 102,6 134,1 134,1 14	tal input current	Α	362,0	377,0	416,0	453,0	478,0	49	4,0 5	31,0	567,0	646,0	683,0	740,0	854,0
Pressure drop system side kPa 128 137 148 165 155 146 171 190 126 141 1 Cooling performances with free-cooling glycol-free Cooling capacity kW 598,0 599,0 674,0 675,0 675,0 748,0 802,0 807,0 1038,0 1039,0 11 Input power kW 49,8 49,8 55,0 55,0 55,0 60,0 64,9 64,9 84,7 84,7 9 Free cooling total input current A 78,9 78,9 87,1 87,1 87,1 95,0 102,6 134,1 134,1 14		W/W	3,95	3,87	3,92	3,90	3,86	3,	97 3	3,95	3,87	3,96	3,94	3,97	3,91
Cooling performances with free-cooling glycol-free Cooling capacity kW 598,0 599,0 674,0 675,0 675,0 748,0 802,0 807,0 1038,0 1039,0 11 Input power kW 49,8 49,8 55,0 55,0 55,0 60,0 64,9 64,9 84,7 84,7 9 Free cooling total input current A 78,9 78,9 87,1 87,1 87,1 95,0 102,6 102,6 134,1 134,1 14	rate system side	l/h	147129	152124	165550	174920	18680	2 201	811 21	7758	228975	254763	264131	303311	345300
Cooling capacity kW 598,0 599,0 674,0 675,0 675,0 748,0 802,0 807,0 1038,0 1039,0 11 Input power kW 49,8 49,8 55,0 55,0 55,0 60,0 64,9 64,9 84,7 84,7 9 Free cooling total input current A 78,9 78,9 87,1 87,1 87,1 95,0 102,6 134,1 134,1 14	rop system side	kPa	128	137	148	165	155	14	46	171	190	126	141	111	144
Cooling capacity kW 598,0 599,0 674,0 675,0 675,0 748,0 802,0 807,0 1038,0 1039,0 11 Input power kW 49,8 49,8 55,0 55,0 55,0 60,0 64,9 64,9 84,7 84,7 9 Free cooling total input current A 78,9 78,9 87,1 87,1 87,1 95,0 102,6 134,1 134,1 14	erformances with free-cooling glycol-free		-												
Free cooling total input current A 78,9 78,9 87,1 87,1 95,0 102,6 102,6 134,1 134,1 1-		kW	598,0	599,0	674,0	675,0	675,0	74	8,0 8	02,0	807,0	1038,0	1039,0	1134,0	1263,0
	er	kW	49,8	49,8	55,0	55,0	55,0	60	0,0 6	64,9	64,9	84,7	84,7	93,7	103,6
FFR W/W 12.03 12.04 12.26 12.28 12.28 12.46 12.46 12.46 12.47 12.77 12.	g total input current	Α	78,9	78,9	87,1	87,1	87,1	95	5,0 1	02,6	102,6	134,1	134,1	148,7	164,3
LEN 11/10 14/10 14/20 14/20 14/20 14/20 14/20 14/40 14/30 14/40 14/40 14/40 14/40 14/40 14/40 14/40 14/40 14/40	.	W/W	12,03	12,04	12,26	12,28	12,28	12	,46 1.	2,36	12,43	12,26	12,27	12,10	12,18
Size 3902 4202 4502 4802 5202 5602 6002 6402 6903 7203 8			2002	4202	4502	4002	5202		:02 6	002	6402	6002	7202	0402	0603
<u>Size</u> 3902 4202 4502 4802 5202 5602 6002 6402 6903 7203 8 Model: G	· •		3902	4202	4302	4802	3202		002 0	002	0402	0903	/203	8403	9603
Cooling performance chiller operation	<u> </u>	LAM	040.0	070.0	055.0	1000.0	1077 (11/	(40 1	NFC 0	1220.0	1470.0	1524.0	1740.0	1001.0
														1749,0	1991,0
														447,0	517,0
	lai input current													747,0	861,0
														3,91	3,85
<u> </u>	,													301787	343582
	. ,	kPa	127	136	147	164	153	14	44	1/0	188	125	140	110	143
Cooling performances with free-cooling glycol-free										20.0	0440				
Cooling performances with free-cooling glycol-free Cooling capacity kW 628,0 629,0 708,0 709,0 785,0 839,0 844,0 1089,0 1090,0 11	pacity													1192,0	1325,0
Cooling performances with free-cooling glycol-free Cooling capacity kW 628,0 629,0 708,0 709,0 709,0 785,0 839,0 844,0 1089,0 1090,0 11 Input power kW 50,5 50,5 55,8 55,8 55,8 61,0 66,0 66,0 86,0 86,0 9	pacity er	kW	50,5	50,5	55,8	55,8	55,8	61	1,0 6	66,0	66,0	86,0	86,0	95,1	105,2
Cooling performances with free-cooling glycol-free Cooling capacity kW 628,0 629,0 708,0 709,0 709,0 785,0 839,0 844,0 1089,0 1090,0 11 Input power kW 50,5 50,5 55,8 55,8 55,8 61,0 66,0 66,0 86,0 86,0 9 Free cooling total input current A 80,0 80,0 88,3 88,3 96,4 104,1 104,1 136,0 136,0 12	pacity er	kW A	50,5 80,0	50,5 80,0	55,8 88,3	55,8 88,3	55,8 88,3	61 96	1,0 6 5,4 1	56,0 04,1	66,0 104,1	86,0 136,0	86,0 136,0		

Cooling performance chiller operation: System side water heat exchanger 25 °C/20 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0%

NSM HWT BE-GE

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Model: B														
Cooling performance chiller operation														
Cooling capacity	kW	315,0	362,0	415,0	456,0	478,0	524,0	551,0	599,0	626,0	641,0	667,0	735,0	772,0
Input power	kW	75,0	91,0	101,0	112,0	120,0	127,0	138,0	145,0	156,0	161,0	169,0	178,0	192,0
Cooling total input current	Α	134,0	158,0	175,0	189,0	199,0	210,0	227,0	240,0	258,0	272,0	288,0	303,0	325,0
EER	W/W	4,19	3,97	4,09	4,07	3,98	4,13	4,00	4,12	4,02	3,97	3,95	4,13	4,03
Water flow rate system side	l/h	54400	62421	71530	78692	82506	90469	95144	103288	108035	110595	115049	126808	133234
Pressure drop system side	kPa	81	100	101	95	104	105	116	127	139	121	125	96	106
Cooling performances with free-cooling glycol-free														
Cooling capacity	kW	260,0	228,0	276,0	285,0	287,0	343,0	345,0	389,0	391,0	402,0	403,0	469,0	471,0
Input power	kW	10,6	10,6	13,4	13,5	13,5	19,2	19,2	21,9	21,9	22,1	22,1	23,9	23,9
Free cooling total input current	A	16,7	16,6	21,0	21,2	21,2	30,5	30,5	34,5	34,5	34,9	34,9	37,6	37,6
EER	W/W	24,39	21,44	20,58	21,09	21,21	17,84	17,94	17,79	17,87	18,15	18,22	19,61	19,67
	.,,.,													
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Model: G														-
Cooling performance chiller operation														
Cooling capacity	kW	314,0	360,0	412,0			521,0	548,0	595,0	622,0	637,0	662,0	730,0	767,0
Input power	kW	76,0	92,0	102,0	113,0		128,0	139,0	147,0	157,0	163,0	170,0	180,0	194,0
Cooling total input current	A	134,0	159,0	176,0			211,0	229,0	242,0	260,0	274,0	291,0	306,0	328,0
EER	W/W	4,14	3,92	4,03	4,00	3,90	4,07	3,93	4,06	3,96	3,90	3,88	4,06	3,95
Water flow rate system side	l/h	54167	62091	71121		81864	89932	94544	102700	107375	109898	114268	125980	132294
Pressure drop system side	kPa	81	99	99	94	103	103	114	126	138	119	123	94	104
Cooling performances with free-cooling glycol-free														
Cooling capacity	kW	270,0	237,0	288,0	298,0	300,0	358,0	360,0	406,0	408,0	419,0	421,0	491,0	492,0
Input power	kW	10,8	10,7	13,5	13,7	13,7	19,4	19,4	22,1	22,1	22,3	22,3	24,1	24,1
Free cooling total input current	Α	16,8	16,8	21,2	21,4	21,4	30,8	30,8	34,8	34,8	35,2	35,2	37,9	37,9
EER	W/W	25,10	22,15	21,24	21,80	21,93	18,48	18,59	18,39	18,48	18,80	18,87	20,33	20,39
NSM HWT BE-GE					,	,								
Size		3902	4202	4502	4802	5202	56	i02 (5002	6402	6903	7203	8403	9603
Size Model: B		3902	4202	4502	4802	5202	56	i02 6	5002	6402	6903	7203	8403	9603
Size Model: B Cooling performance chiller operation													8403	9603
Size Model: B	kW	3902 823,0	4202 870,0	4502 932,0	4802	5202				6402 1300,0	6903 1423,0	7203 1502,0	8403	9603
Size Model: B Cooling performance chiller operation Cooling capacity Input power	kW kW	823,0 202,0						52,0 1.						
Size Model: B Cooling performance chiller operation Cooling capacity		823,0 202,0 339,0	870,0	932,0	1011,0	1070,0	27:	52,0 1. 5,0 2	226,0	1300,0	1423,0	1502,0	-	-
Size Model: B Cooling performance chiller operation Cooling capacity Input power	kW	823,0 202,0	870,0 210,0	932,0 228,0	1011,0 241,0	1070,0 260,0	115 27: 46	52,0 1. 5,0 2 0,0 4	226,0	1300,0 318,0	1423,0 350,0	1502,0 364,0	-	-
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current	kW A	823,0 202,0 339,0	870,0 210,0 348,0	932,0 228,0 388,0	1011,0 241,0 421,0	1070,0 260,0 443,0	115 27: 46: 4,	52,0 1. 5,0 2 0,0 4	226,0 296,0 193,0 4,14	1300,0 318,0 526,0 4,09	1423,0 350,0 601,0	1502,0 364,0 631,0		
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W	823,0 202,0 339,0 4,07	870,0 210,0 348,0 4,15	932,0 228,0 388,0 4,09	1011,0 241,0 421,0 4,19	1070,0 260,0 443,0 4,12	115 27: 46: 4,	52,0 1: 5,0 2 0,0 4 19 4	226,0 296,0 193,0 4,14	1300,0 318,0 526,0 4,09	1423,0 350,0 601,0 4,07	1502,0 364,0 631,0 4,13		
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W I/h	823,0 202,0 339,0 4,07 142081	870,0 210,0 348,0 4,15 150081	932,0 228,0 388,0 4,09 160772	1011,0 241,0 421,0 4,19 174443	1070,0 260,0 443,0 4,12 184665	115 27: 46: 4, 5 198	52,0 1: 5,0 2 0,0 4 19 4	226,0 196,0 193,0 4,14	1300,0 318,0 526,0 4,09 224359	1423,0 350,0 601,0 4,07 245581	1502,0 364,0 631,0 4,13 259231		
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h	823,0 202,0 339,0 4,07 142081	870,0 210,0 348,0 4,15 150081	932,0 228,0 388,0 4,09 160772	1011,0 241,0 421,0 4,19 174443	1070,0 260,0 443,0 4,12 184665	115 27: 46: 4, 5 198	52,0 1: 5,0 2 0,0 4 19 4 1768 21	226,0 196,0 193,0 4,14	1300,0 318,0 526,0 4,09 224359	1423,0 350,0 601,0 4,07 245581	1502,0 364,0 631,0 4,13 259231		
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free	kW A W/W I/h kPa	823,0 202,0 339,0 4,07 142081 121	870,0 210,0 348,0 4,15 150081	932,0 228,0 388,0 4,09 160772 142	1011,0 241,0 421,0 4,19 174443 152	1070,0 260,0 443,0 4,12 184665 170	115 27: 46i 4,5 198 8	552,0 1: 5,0 2 0,0 4 19 4 1768 21	226,0 296,0 193,0 4,14 11564	1300,0 318,0 526,0 4,09 224359	1423,0 350,0 601,0 4,07 245581 119	1502,0 364,0 631,0 4,13 259231 123	- - - -	- - - -
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity	kW A W/W I/h kPa	823,0 202,0 339,0 4,07 142081 121	870,0 210,0 348,0 4,15 150081 135	932,0 228,0 388,0 4,09 160772 142	1011,0 241,0 421,0 4,19 174443 152	1070,0 260,0 443,0 4,12 184665 170	115 27: 460 4, 5 198 8	52,0 1: 55,0 2 0,0 4 119 4 1768 21 11	226,0 196,0 193,0 4,14 11564 128	1300,0 318,0 526,0 4,09 224359 110	1423,0 350,0 601,0 4,07 245581 119	1502,0 364,0 631,0 4,13 259231 123	- - - -	- - - -
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power	kW A W/W I/h kPa kW kW	823,0 202,0 339,0 4,07 142081 121 515,0 25,6	870,0 210,0 348,0 4,15 150081 135 578,0 31,3	932,0 228,0 388,0 4,09 160772 142 588,0 31,5	1011,0 241,0 421,0 4,19 174443 152 633,0 33,1	1070,0 260,0 443,0 4,12 184665 170 634,0 33,1	115 27: 46i 4, 5 198 8	52,0 1: 5,0 2 0,0 4 19 4 168 21 11 3,0 7 3,4 4	226,0 196,0 193,0 4,14 11564 128	1300,0 318,0 526,0 4,09 2224359 110 788,0 43,7	1423,0 350,0 601,0 4,07 245581 119 880,0 46,8	1502,0 364,0 631,0 4,13 259231 123 924,0 48,5		
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A	823,0 202,0 339,0 4,07 142081 121 515,0 25,6 40,1 20,11	870,0 210,0 348,0 4,15 150081 135 578,0 31,3 48,8 18,44	932,0 228,0 388,0 4,09 160772 142 588,0 31,5 49,1 18,68	1011,0 241,0 421,0 4,19 174443 152 633,0 33,1 51,6	1070,0 260,0 443,0 4,12 184665 170 634,0 33,1 51,6	115 27: 46i 4, 4, 5 198 8 8 69: 38 61 18,	52,0 1: 5,0 2 0,0 4 19 4 17,768 21 11 11 11 11 11 11 11 11 11	2226,0 199,0 193,0 4,14 11564 1128 142,0 41,1 65,0 8,06	1300,0 318,0 526,0 4,09 2224359 110 788,0 43,7 69,0 18,01	1423,0 350,0 601,0 4,07 245581 119 880,0 46,8 73,4 18,79	1502,0 364,0 631,0 4,13 259231 123 924,0 48,5 75,9 19,06		
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size	kW A W/W I/h kPa kW kW A	823,0 202,0 339,0 4,07 142081 121 515,0 25,6 40,1	870,0 210,0 348,0 4,15 150081 135 578,0 31,3 48,8	932,0 228,0 388,0 4,09 160772 142 588,0 31,5 49,1	1011,0 241,0 421,0 4,19 174443 152 633,0 33,1 51,6	1070,0 260,0 443,0 4,12 184665 170 634,0 33,1 51,6	27: 27: 46: 4, 5 198 8 69: 38 61:	52,0 1: 5,0 2 0,0 4 19 4 17,768 21 11 11 11 11 11 11 11 11 11	226,0 196,0 193,0 4,14 11564 128 142,0 41,1	1300,0 318,0 526,0 4,09 224359 110 788,0 43,7 69,0	1423,0 350,0 601,0 4,07 245581 119 880,0 46,8 73,4	1502,0 364,0 631,0 4,13 259231 123 924,0 48,5 75,9		
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size Model: G	kW A W/W I/h kPa kW kW A	823,0 202,0 339,0 4,07 142081 121 515,0 25,6 40,1 20,11	870,0 210,0 348,0 4,15 150081 135 578,0 31,3 48,8 18,44	932,0 228,0 388,0 4,09 160772 142 588,0 31,5 49,1 18,68	1011,0 241,0 421,0 4,19 174443 152 633,0 33,1 51,6	1070,0 260,0 443,0 4,12 184665 170 634,0 33,1 51,6	115 27: 46i 4, 4, 5 198 8 8 69: 38 61 18,	52,0 1: 5,0 2 0,0 4 19 4 17,768 21 11 11 11 11 11 11 11 11 11	2226,0 199,0 193,0 4,14 11564 1128 142,0 41,1 65,0 8,06	1300,0 318,0 526,0 4,09 2224359 110 788,0 43,7 69,0 18,01	1423,0 350,0 601,0 4,07 245581 119 880,0 46,8 73,4 18,79	1502,0 364,0 631,0 4,13 259231 123 924,0 48,5 75,9 19,06		-
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size Model: G Cooling performance chiller operation	kW A W/W I/h kPa kW kW A W/W	823,0 202,0 339,0 4,07 142081 121 515,0 25,6 40,1 20,11 3902	870,0 210,0 348,0 4,15 150081 135 578,0 31,3 48,8 18,44	932,0 228,0 388,0 4,09 160772 142 588,0 31,5 49,1 18,68	1011,0 241,0 421,0 4,19 174443 152 633,0 33,1 51,6 19,09	1070,0 260,0 443,0 4,12 184665 170 634,0 33,1 51,6 19,12	115 27: 460 4, 5 198 8 69: 38 61 18,	52,0 1: 5,0 2 0,0 4 19 4 11 11 11 13,0 7 8,4 4 1,1 6 102 6	2226,0 1996,0 193,0 14,14 11564 128 142,0 41,1 65,0 8,06	1300,0 318,0 526,0 4,09 224359 110 788,0 43,7 69,0 18,01	1423,0 350,0 601,0 4,07 245581 119 880,0 46,8 73,4 18,79 6903	1502,0 364,0 631,0 4,13 259231 123 924,0 48,5 75,9 19,06	- - - - - - - - - 8403	- - - - - - - - - - - - - - -
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size Model: G Cooling performance chiller operation Cooling capacity	kW A W/W I/h kPa kW kW A W/W	823,0 202,0 339,0 4,07 142081 121 515,0 25,6 40,1 20,11 3902	870,0 210,0 348,0 4,15 150081 135 578,0 31,3 48,8 18,44 4202	932,0 228,0 388,0 4,09 160772 142 588,0 31,5 49,1 18,68 4502	1011,0 241,0 421,0 4,19 174443 152 633,0 33,1 51,6 19,09 4802	1070,0 260,0 443,0 4,12 184665 170 634,0 33,1 51,6 19,12 5202	115 27: 460 4,5 5 198 8 69: 38 61 18,	52,0 1: 5,0 2 0,0 4 19 4 1768 21 11 11 11 11 11 11 11 11 11	226,0 196,0 193,0 14,14 11564 128 742,0 41,1 65,0 8,06 6002	1300,0 318,0 526,0 4,09 224359 110 788,0 43,7 69,0 18,01 6402	1423,0 350,0 601,0 4,07 245581 119 880,0 46,8 73,4 18,79 6903	1502,0 364,0 631,0 4,13 259231 123 924,0 48,5 75,9 19,06 7203	- - - - - - - - 8403	- - - - - - - - 9603
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size Model: G Cooling performance chiller operation Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W	823,0 202,0 339,0 4,07 142081 121 515,0 25,6 40,1 20,11 3902	870,0 210,0 348,0 4,15 150081 135 578,0 31,3 48,8 18,44 4202	932,0 228,0 388,0 4,09 160772 142 588,0 31,5 49,1 18,68 4502	1011,0 241,0 421,0 4,19 174443 152 633,0 33,1 51,6 19,09 4802	1070,0 260,0 443,0 4,12 184665 170 634,0 33,1 51,6 19,12 5202	115 27: 46i 4, 5 198 8 69: 38 61 18, 56	52,0 1: 5,0 2 0,0 4 19 4 17,768 21 11 11 11 11 11 11 11 11 11	2226,0 1996,0 193,0 14,14 11564 128 142,0 41,1 655,0 8,06 6002	1300,0 318,0 526,0 4,09 224359 110 788,0 43,7 69,0 18,01 6402	1423,0 350,0 601,0 4,07 245581 119 880,0 46,8 73,4 18,79 6903	1502,0 364,0 631,0 4,13 259231 123 924,0 48,5 75,9 19,06 7203	- - - - - - - - 8403	- - - - - - - 9603
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size Model: G Cooling performance chiller operation Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW kW A W/W A W/W	823,0 202,0 339,0 4,07 142081 121 515,0 25,6 40,1 20,11 3902	870,0 210,0 348,0 4,15 150081 135 578,0 31,3 48,8 18,44 4202	932,0 228,0 388,0 4,09 160772 142 588,0 31,5 49,1 18,68 4502	1011,0 241,0 421,0 4,19 174443 152 633,0 33,1 51,6 19,09 4802	1070,0 260,0 443,0 4,12 184665 170 634,0 33,1 51,6 19,12 5202	115 277 466 44, 4, 4, 5 198 8 8 8 611 18, 566	52,0 1: 5,0 2 0,0 4 19 4 19 4 110 111 111 111 111 111 111 11	226,0 196,0 193,0 14,14 11564 1128 242,0 41,1 655,0 8,06 5002	1300,0 318,0 526,0 4,09 224359 110 788,0 43,7 69,0 18,01 6402 1292,0 321,0 531,0	1423,0 350,0 601,0 4,07 245581 119 880,0 46,8 73,4 18,79 6903	1502,0 364,0 631,0 4,13 259231 123 924,0 48,5 75,9 19,06 7203 1493,0 368,0 636,0	- - - - - - - 8403	- - - - - - - 9603
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size Model: G Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER	kW A W/W I/h kPa kW kW A W/W A W/W	823,0 202,0 339,0 4,07 142081 121 515,0 25,6 40,1 20,11 3902 818,0 204,0 4,00	870,0 210,0 348,0 4,15 150081 135 578,0 31,3 48,8 18,44 4202	932,0 228,0 388,0 4,09 160772 142 588,0 31,5 49,1 18,68 4502	1011,0 241,0 421,0 4,19 174443 152 633,0 33,1 51,6 19,09 4802	1070,0 260,0 443,0 4,12 184665 170 634,0 33,1 51,6 19,12 5202	115 277 466 44, 4, 4, 114 277 466 44, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	52,0 1: 5,0 2 0,0 4 19 4 1768 21 11 11 11 11 11 11 11 11 11	226,0 196,0 193,0 14,14 11564 1128 128 142,0 141,1 155,0 18,06 15002 18,00 197,0 197,0 197,0 197,0	1300,0 318,0 526,0 4,09 224359 110 788,0 43,7 69,0 18,01 6402 1292,0 321,0 531,0 4,02	1423,0 350,0 601,0 4,07 245581 119 880,0 46,8 73,4 18,79 6903	1502,0 364,0 631,0 4,13 259231 123 924,0 48,5 75,9 19,06 7203 1493,0 368,0 636,0 4,06	- - - - - - - 8403	- - - - - - - 9603
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size Model: G Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Size Model: G Cooling total input current EER Cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W KW A W/W	823,0 202,0 339,0 4,07 142081 121 515,0 25,6 40,1 20,11 3902 818,0 204,0 342,0 4,00 141148	870,0 210,0 348,0 4,15 150081 135 578,0 31,3 48,8 18,44 4202 865,0 212,0 351,0 4,08 149240	932,0 228,0 388,0 4,09 160772 142 588,0 31,5 49,1 18,68 4502 926,0 230,0 392,0 4,02 159755	1011,0 241,0 421,0 4,19 174443 152 633,0 33,1 51,6 19,09 4802	1070,0 260,0 443,0 4,12 184665 170 634,0 33,1 51,6 19,12 5202	115 277 466 44, 4, 4, 197 466 44, 4, 197 466 44, 4, 197 47 486 44, 4, 197 486 44, 4, 4, 197 486 486 487 487 487 487 487 487 487 487 487 487	52,0 1: 5,0 2 0,0 4 19 4 1768 21 11 11 33,0 7 8,4 4 1,1 6 102 6 14,0 1: 8,0 3 4,0 4 112 4 12 4 13398 21	226,0 196,0 193,0 193,0 14,14 11564 1128 128 142,0 141,1 155,0 18,06 16002 17,0 197,0	1300,0 318,0 526,0 4,09 224359 110 788,0 43,7 69,0 18,01 6402 1292,0 321,0 531,0 4,02 2222920	1423,0 350,0 601,0 4,07 245581 119 880,0 46,8 73,4 18,79 6903 1414,0 354,0 607,0 3,99 243982	1502,0 364,0 631,0 4,13 259231 123 924,0 48,5 75,9 19,06 7203 1493,0 368,0 636,0 4,06 257648	- - - - - - - 8403	- - - - - - - 9603
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size Model: G Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Size Model: G Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W A W/W	823,0 202,0 339,0 4,07 142081 121 515,0 25,6 40,1 20,11 3902 818,0 204,0 4,00	870,0 210,0 348,0 4,15 150081 135 578,0 31,3 48,8 18,44 4202	932,0 228,0 388,0 4,09 160772 142 588,0 31,5 49,1 18,68 4502	1011,0 241,0 421,0 4,19 174443 152 633,0 33,1 51,6 19,09 4802	1070,0 260,0 443,0 4,12 184665 170 634,0 33,1 51,6 19,12 5202	115 277 466 44, 4, 4, 114 277 466 44, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	52,0 1: 5,0 2 0,0 4 19 4 1768 21 11 11 33,0 7 8,4 4 1,1 6 102 6 14,0 1: 8,0 3 4,0 4 112 4 12 4 13398 21	226,0 196,0 193,0 14,14 11564 1128 128 142,0 141,1 155,0 18,06 15002 18,00 197,0 197,0 197,0 197,0	1300,0 318,0 526,0 4,09 224359 110 788,0 43,7 69,0 18,01 6402 1292,0 321,0 531,0 4,02	1423,0 350,0 601,0 4,07 245581 119 880,0 46,8 73,4 18,79 6903	1502,0 364,0 631,0 4,13 259231 123 924,0 48,5 75,9 19,06 7203 1493,0 368,0 636,0 4,06	- - - - - - - 8403	- - - - - - - 9603
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size Model: G Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Size Model: G Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling performances with free-cooling glycol-free	kW A W/W I/h kPa kW kW A W/W kW L/h kPa	823,0 202,0 339,0 4,07 142081 121 515,0 25,6 40,1 20,11 3902 818,0 204,0 342,0 4,00 141148 120	870,0 210,0 348,0 4,15 150081 135 578,0 31,3 48,8 18,44 4202 865,0 212,0 351,0 4,08 149240	932,0 228,0 388,0 4,09 160772 142 588,0 31,5 49,1 18,68 4502 926,0 230,0 392,0 4,02 159755	1011,0 241,0 421,0 4,19 174443 152 633,0 33,1 51,6 19,09 4802 1005,0 244,0 425,0 4,12 173439 150	1070,0 260,0 443,0 4,12 184665 170 634,0 33,1 51,6 19,12 5202 1063,0 263,0 448,0 4,04 183394 168	115 277 466 44, 4, 4, 1277 466 44, 4, 4, 1977 88	52,0 1: 55,0 2 0,0 4 19 4 168 21 11 11 11 11 11 11 11 11 11	226,0 196,0 193,0 4,14 11564 1128 128 142,0 41,1 65,0 8,06 6002 218,0 190,0 197,0 4,07 10159 127	1300,0 318,0 526,0 4,09 224359 110 788,0 43,7 69,0 18,01 6402 1292,0 321,0 531,0 4,02 2222920 109	1423,0 350,0 601,0 4,07 245581 119 880,0 46,8 73,4 18,79 6903 1414,0 354,0 607,0 3,99 243982 118	1502,0 364,0 631,0 4,13 259231 123 924,0 48,5 75,9 19,06 7203 1493,0 368,0 636,0 4,06 257648 122	- - - - - - - 8403	- - - - - - - 9603
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size Model: G Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Size Model: G Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa kW	823,0 202,0 339,0 4,07 142081 121 515,0 25,6 40,1 20,11 3902 818,0 204,0 342,0 4,00 141148 120	870,0 210,0 348,0 4,15 150081 135 578,0 31,3 48,8 18,44 4202 865,0 212,0 351,0 4,08 149240 134	932,0 228,0 388,0 4,09 160772 142 588,0 31,5 49,1 18,68 4502 926,0 230,0 392,0 4,02 159755 140	1011,0 241,0 421,0 4,19 174443 152 633,0 33,1 51,6 19,09 4802 1005,0 244,0 425,0 4,12 173439 150	1070,0 260,0 443,0 4,12 184665 170 634,0 33,1 51,6 19,12 5202 1063,0 263,0 448,0 4,04 183394 168	115 277 466 44, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	52,0 1: 55,0 2 0,0 4 19 4 168 21 11 11 11 11 11 11 11 11 11	226,0 196,0 193,0 4,14 11564 1128 128 142,0 41,1 65,0 8,06 6002 218,0 190,0 197,0 4,07 10159 127	1300,0 318,0 526,0 4,09 224359 110 788,0 43,7 69,0 18,01 6402 1292,0 321,0 531,0 4,02 2222920 109	1423,0 350,0 601,0 4,07 245581 119 880,0 46,8 73,4 18,79 6903 1414,0 354,0 607,0 3,99 243982 118	1502,0 364,0 631,0 4,13 259231 123 924,0 48,5 75,9 19,06 7203 1493,0 368,0 636,0 4,06 257648 122	- - - - - - - 8403	- - - - - - - 9603
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size Model: G Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Size Model: G Cooling performance chiller operation Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W kW	823,0 202,0 339,0 4,07 142081 121 515,0 25,6 40,1 20,11 3902 818,0 204,0 342,0 4,00 141148 120	870,0 210,0 348,0 4,15 150081 135 578,0 31,3 48,8 18,44 4202 865,0 212,0 351,0 4,08 149240	932,0 228,0 388,0 4,09 160772 142 588,0 31,5 49,1 18,68 4502 926,0 230,0 392,0 4,02 159755	1011,0 241,0 421,0 4,19 174443 152 633,0 33,1 51,6 19,09 4802 1005,0 244,0 425,0 4,12 173439 150	1070,0 260,0 443,0 4,12 184665 170 634,0 33,1 51,6 19,12 5202 1063,0 263,0 448,0 4,04 183394 168	115 115 277 466 44, 4, 4, 197 466 44, 4, 4, 197 8 8	52,0 1: 5,0 2 0,0 4 19 4 1768 21 11 13,0 7 18,4 4 11,1 0 102 6 14,0 1: 13398 21 10 14,0 7 18,8,8 4	226,0 196,0 193,0 4,14 11564 1128 128 142,0 41,1 65,0 8,06 6002 218,0 190,0 197,0 4,07 10159 127	1300,0 318,0 526,0 4,09 224359 110 788,0 43,7 69,0 18,01 6402 1292,0 321,0 531,0 4,02 2222920 109	1423,0 350,0 601,0 4,07 245581 119 880,0 46,8 73,4 18,79 6903 1414,0 354,0 607,0 3,99 243982 118 920,0 46,8	1502,0 364,0 631,0 4,13 259231 123 924,0 48,5 75,9 19,06 7203 1493,0 368,0 636,0 4,06 257648 122 966,0 48,9	- - - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size Model: G Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Size Model: G Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa kW	823,0 202,0 339,0 4,07 142081 121 515,0 25,6 40,1 20,11 3902 818,0 204,0 342,0 4,00 141148 120	870,0 210,0 348,0 4,15 150081 135 578,0 31,3 48,8 18,44 4202 865,0 212,0 351,0 4,08 149240 134	932,0 228,0 388,0 4,09 160772 142 588,0 31,5 49,1 18,68 4502 926,0 230,0 392,0 4,02 159755 140	1011,0 241,0 421,0 4,19 174443 152 633,0 33,1 51,6 19,09 4802 1005,0 244,0 425,0 4,12 173439 150	1070,0 260,0 443,0 4,12 184665 170 634,0 33,1 51,6 19,12 5202 1063,0 263,0 448,0 4,04 183394 168	115 277 466 44, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	52,0 1: 5,0 2 0,0 4 19 4 1768 21 11 13,0 7 8,4 4 1,1 0 102 6 144,0 1: 1398 21 100 144,0 7 8,8 4 1,5 00	226,0 196,0 193,0 4,14 11564 1128 128 142,0 41,1 65,0 8,06 6002 218,0 190,0 197,0 4,07 10159 127	1300,0 318,0 526,0 4,09 224359 110 788,0 43,7 69,0 18,01 6402 1292,0 321,0 531,0 4,02 2222920 109	1423,0 350,0 601,0 4,07 245581 119 880,0 46,8 73,4 18,79 6903 1414,0 354,0 607,0 3,99 243982 118	1502,0 364,0 631,0 4,13 259231 123 924,0 48,5 75,9 19,06 7203 1493,0 368,0 636,0 4,06 257648 122	- - - - - - - - 8403	

Cooling performance chiller operation: System side water heat exchanger 25 °C/20 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0%

HWT	

		4400	4400	4000	2002	2242		2542	2452	2002	2002	2242	2402	3403
Size Model: B		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Cooling performance chiller operation													-	
Cooling capacity	kW	328,0	381,0	435,0	482,0	506,0	550,0	580,0	627,0	657,0	674,0	703,0	772,0	814,0
Input power	kW	84,0	98,0	112,0	121,0		138,0	148,0	159,0	168,0	172,0	178,0	191,0	203,0
Cooling total input current	A	148,0	170,0	192,0			229,0	244,0	263,0	279,0	291,0	305,0	326,0	345,0
EER	W/W	3,93	3,90	3,89	3,99		3,99	3,92	3,94	3,91	3,91	3,95	4,05	4,02
Water flow rate system side	I/h	56622	65790	75056			94979	100110	108143	113452	116262	121282	133207	14041
Pressure drop system side	kPa	88	112	111	106		115	128	139	127	134	130	106	117
Cooling performances with free-cooling glycol-free	KFd	00	112	111	100	11/	נוו	120	137	127	134	130	100	117
Cooling capacity	kW	319,0	287,0	345,0	367,0	369,0	433,0	436,0	488,0	506,0	507,0	538,0	595,0	597,0
Input power	kW	23,6	23,5	29,6	31,5		38,6	38,6	44,5	44,7	44,7	44,8	49,8	49,8
Free cooling total input current	A	37,3	37,3	46,8	50,1		61,5	61,5	70,6	71,0	71,0	71,2	78,9	78,9
EER	W/W	13,52	12,20	11,67	11,64		11,22	11,30	10,96	11,31	11,35	12,01	11,96	12,00
	¥¥/¥¥													
Size		1402	1602	1802	2002	2202 2	2352	2502	2652	2802	3002	3202	3402	3602
Model: G														
Cooling performance chiller operation														
Cooling capacity	kW	327,0	380,0	433,0	480,0		548,0	578,0	624,0	655,0	671,0	700,0	769,0	810,0
Input power	kW	84,0	99,0	113,0	122,0		139,0	149,0	160,0	170,0	174,0	180,0	192,0	205,0
Cooling total input current	A	149,0	171,0	194,0	205,0		231,0	246,0	265,0	281,0	294,0	308,0	328,0	347,0
EER	W/W	3,88	3,84	3,84	3,93		3,94	3,87	3,89	3,86	3,86	3,89	4,00	3,96
Water flow rate system side	I/h	56434	65512	74759			94601	99699	107739	113006	115799	120780	132683	139835
Pressure drop system side	kPa	87	111	110	105	116	115	127	138	126	132	129	105	116
Cooling performances with free-cooling glycol-free														
Cooling capacity	kW	331,0	300,0	360,0	385,0		155,0	458,0	510,0	531,0	533,0	567,0	624,0	626,0
Input power	kW	23,9	23,9	30,0	32,0		39,2	39,2	45,1	45,4	45,4	45,5	50,5	50,5
Free cooling total input current	A	37,9	37,8	47,5	50,8		62,3	62,3	71,6	72,0	72,0	72,1	80,0	80,0
EER	W/W	13,81	12,56	11,98	12,04	12,13	11,61	11,69	11,30	11,70	11,73	12,47	12,36	12,40
NSM HWT RILGII														
NSM HWT BU-GU		2002	4202	4503	4002	5202	F 6 0	12 6	002	6402	6003	7202	0402	0603
Size		3902	4202	4502	4802	5202	560)2 6	002	6402	6903	7203	8403	9603
Size Model: B		3902	4202	4502	4802	5202	560)2 6	002	6402	6903	7203	8403	9603
Size Model: B Cooling performance chiller operation	LAM												8403	9603
Size Model: B Cooling performance chiller operation Cooling capacity	kW	864,0	909,0	978,0	1059,0	1127,0	1213	3,0 12	89,0	1365,0	1495,0	1576,0	-	-
Size Model: B Cooling performance chiller operation Cooling capacity Input power	kW	864,0 216,0	909,0 228,0	978,0 243,0	1059,0 260,0	1127,0 276,0	1213 293	3,0 12 ,0 3	89,0 17,0	1365,0 341,0	1495,0 372,0	1576,0 388,0	-	-
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current	kW A	864,0 216,0 363,0	909,0 228,0 378,0	978,0 243,0 414,0	1059,0 260,0 454,0	1127,0 276,0 472,0	1213 293 493	3,0 12 ,0 3°	89,0 17,0 29,0	1365,0 341,0 566,0	1495,0 372,0 639,0	1576,0 388,0 677,0	- - -	-
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER	kW A W/W	864,0 216,0 363,0 3,99	909,0 228,0 378,0 3,99	978,0 243,0 414,0 4,02	1059,0 260,0 454,0 4,08	1127,0 276,0 472,0 4,09	1213 293 493 4,1	3,0 12 ,0 3° ,0 5° 4 4	89,0 17,0 29,0	1365,0 341,0 566,0 4,00	1495,0 372,0 639,0 4,02	1576,0 388,0 677,0 4,06	- - -	-
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h	864,0 216,0 363,0 3,99 149099	909,0 228,0 378,0 3,99 156852	978,0 243,0 414,0 4,02 168696	1059,0 260,0 454,0 4,08 182745	1127,0 276,0 472,0 4,09 194431	1213 293 493 4,1 2092	3,0 12 ,0 3 ,0 5 4 4 198 22	89,0 17,0 29,0 ,06 2401 2	1365,0 341,0 566,0 4,00 235505	1495,0 372,0 639,0 4,02 257918	1576,0 388,0 677,0 4,06 271953	- - - -	-
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W	864,0 216,0 363,0 3,99	909,0 228,0 378,0 3,99	978,0 243,0 414,0 4,02	1059,0 260,0 454,0 4,08	1127,0 276,0 472,0 4,09	1213 293 493 4,1	3,0 12 ,0 3 ,0 5 4 4 198 22	89,0 17,0 29,0	1365,0 341,0 566,0 4,00	1495,0 372,0 639,0 4,02	1576,0 388,0 677,0 4,06	- - -	-
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free	kW A W/W I/h kPa	864,0 216,0 363,0 3,99 149099 134	909,0 228,0 378,0 3,99 156852 133	978,0 243,0 414,0 4,02 168696 156	1059,0 260,0 454,0 4,08 182745 166	1127,0 276,0 472,0 4,09 194431 188	1213 293 493 4,1 2092	3; ,0 3; ,0 5; 4 4 498 22 2 1	89,0 17,0 29,0 ,06 2401 2	1365,0 341,0 566,0 4,00 235505	1495,0 372,0 639,0 4,02 257918	1576,0 388,0 677,0 4,06 271953	- - - -	-
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity	kW A W/W I/h kPa	864,0 216,0 363,0 3,99 149099 134	909,0 228,0 378,0 3,99 156852 133	978,0 243,0 414,0 4,02 168696 156	1059,0 260,0 454,0 4,08 182745 166	1127,0 276,0 472,0 4,09 194431 188	1213 293 493 4,1 2092 112	8,0 122 ,0 3',0 5: ,0 5: 4 4 4 4 998 22 2 1	89,0 17,0 29,0 ,06 2401 2	1365,0 341,0 566,0 4,00 235505 128	1495,0 372,0 639,0 4,02 257918 131	1576,0 388,0 677,0 4,06 271953 135	- - - -	-
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power	kW A W/W I/h kPa kW kW	864,0 216,0 363,0 3,99 149099 134 647,0 54,7	909,0 228,0 378,0 3,99 156852 133 743,0	978,0 243,0 414,0 4,02 168696 156 746,0 63,8	1059,0 260,0 454,0 4,08 182745 166 796,0 68,7	1127,0 276,0 472,0 4,09 194431 188 797,0 68,7	1213 293 493 4,1 2092 11. 885,	8,0 12 ,0 3: ,0 5: 4 4 4 98 22 2 1 ,0 9: 0 8	89,0 17,0 29,0 ,06 2401 2 42 38,0	1365,0 341,0 566,0 4,00 235505 128 990,0 89,0	1495,0 372,0 639,0 4,02 257918 131 1126,0 98,2	1576,0 388,0 677,0 4,06 271953 135	- - - -	-
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A	864,0 216,0 363,0 3,99 149099 134 647,0 54,7 86,6	909,0 228,0 378,0 3,99 156852 133 743,0 63,8 100,7	978,0 243,0 414,0 4,02 168696 156 746,0 63,8 100,7	1059,0 260,0 454,0 4,08 182745 166 796,0 68,7 108,3	1127,0 276,0 472,0 4,09 194431 188 797,0 68,7	1213 293 493 4,1- 2092 112 885, 79,	8,0 12,00 3:0,0 5:	89,0 17,0 29,0 ,06 2401 2 42 38,0 4,0	1365,0 341,0 566,0 4,00 235505 128 990,0 89,0 141,2	1495,0 372,0 639,0 4,02 257918 131 1126,0 98,2 155,6	1576,0 388,0 677,0 4,06 271953 135 1177,0 103,1 163,2		-
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power	kW A W/W I/h kPa kW kW	864,0 216,0 363,0 3,99 149099 134 647,0 54,7	909,0 228,0 378,0 3,99 156852 133 743,0	978,0 243,0 414,0 4,02 168696 156 746,0 63,8	1059,0 260,0 454,0 4,08 182745 166 796,0 68,7	1127,0 276,0 472,0 4,09 194431 188 797,0 68,7	1213 293 493 4,1 2092 11. 885,	8,0 12,00 3:0,0 5:	89,0 17,0 29,0 ,06 2401 2 42 38,0 4,0	1365,0 341,0 566,0 4,00 235505 128 990,0 89,0	1495,0 372,0 639,0 4,02 257918 131 1126,0 98,2	1576,0 388,0 677,0 4,06 271953 135	- - - -	-
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A	864,0 216,0 363,0 3,99 149099 134 647,0 54,7 86,6	909,0 228,0 378,0 3,99 156852 133 743,0 63,8 100,7	978,0 243,0 414,0 4,02 168696 156 746,0 63,8 100,7	1059,0 260,0 454,0 4,08 182745 166 796,0 68,7 108,3	1127,0 276,0 472,0 4,09 194431 188 797,0 68,7	1213 293 493 4,1- 2092 112 885, 79,	8,0 122 1,0 3: 1,0 5: 1,0 5: 1,0 9: 1,0 9: 1,0 9: 1,7 1: 1,0 1:	88,0 17,0 29,0 ,06 2401 242 42 88,0 4,0 33,4 1,17	1365,0 341,0 566,0 4,00 235505 128 990,0 89,0 141,2	1495,0 372,0 639,0 4,02 257918 131 1126,0 98,2 155,6	1576,0 388,0 677,0 4,06 271953 135 1177,0 103,1 163,2		-
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A	864,0 216,0 363,0 3,99 149099 134 647,0 54,7 86,6 11,83	909,0 228,0 378,0 3,99 156852 133 743,0 63,8 100,7	978,0 243,0 414,0 4,02 168696 156 746,0 63,8 100,7 11,69	1059,0 260,0 454,0 4,08 182745 166 796,0 68,7 108,3 11,60	1127,0 276,0 472,0 4,09 194431 188 797,0 68,7 108,3 11,61	1213 293 493 4,1. 2092 112 885, 79, 125, 11,2	8,0 122 1,0 3: 1,0 5: 1,0 5: 1,0 9: 1,0 9: 1,0 9: 1,7 1: 1,0 1:	88,0 17,0 29,0 ,06 2401 242 42 88,0 4,0 33,4 1,17	1365,0 341,0 566,0 4,00 235505 128 990,0 89,0 141,2 11,13	1495,0 372,0 639,0 4,02 257918 131 1126,0 98,2 155,6 11,46	1576,0 388,0 677,0 4,06 271953 135 1177,0 103,1 163,2 11,41		
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A	864,0 216,0 363,0 3,99 149099 134 647,0 54,7 86,6 11,83	909,0 228,0 378,0 3,99 156852 133 743,0 63,8 100,7	978,0 243,0 414,0 4,02 168696 156 746,0 63,8 100,7 11,69	1059,0 260,0 454,0 4,08 182745 166 796,0 68,7 108,3 11,60	1127,0 276,0 472,0 4,09 194431 188 797,0 68,7 108,3 11,61	1213 293 493 4,1. 2092 112 885, 79, 125, 11,2	8,0 122 1,0 3: 1,0 5: 1,0 5: 1,0 9: 1,0 9: 1,0 9: 1,7 1: 1,0 1:	88,0 17,0 29,0 ,06 2401 242 42 88,0 4,0 33,4 1,17	1365,0 341,0 566,0 4,00 235505 128 990,0 89,0 141,2 11,13	1495,0 372,0 639,0 4,02 257918 131 1126,0 98,2 155,6 11,46	1576,0 388,0 677,0 4,06 271953 135 1177,0 103,1 163,2 11,41		
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size Model: G Cooling performance chiller operation	kW A W/W I/h kPa kW kW A	864,0 216,0 363,0 3,99 149099 134 647,0 54,7 86,6 11,83	909,0 228,0 378,0 3,99 156852 133 743,0 63,8 100,7	978,0 243,0 414,0 4,02 168696 156 746,0 63,8 100,7 11,69	1059,0 260,0 454,0 4,08 182745 166 796,0 68,7 108,3 11,60	1127,0 276,0 472,0 4,09 194431 188 797,0 68,7 108,3 11,61	1213 293 493 4,1. 2092 112 885, 79, 125, 11,2	3,0 12,0 3:0,0 5:0	89,0 17,0 29,0 ,06 2401 2 442 38,0 4,0 33,4 1,17	1365,0 341,0 566,0 4,00 235505 128 990,0 89,0 141,2 11,13	1495,0 372,0 639,0 4,02 257918 131 1126,0 98,2 155,6 11,46	1576,0 388,0 677,0 4,06 271953 135 1177,0 103,1 163,2 11,41		
Size Model: B Cooling performance chiller operation Cooling capacity nput power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity nput power ree cooling total input current EER Size Model: G Cooling performance chiller operation Cooling capacity	kW A W/W I/h kPa kW kW A W/W	864,0 216,0 363,0 3,99 149099 134 647,0 54,7 86,6 11,83	909,0 228,0 378,0 3,99 156852 133 743,0 63,8 100,7 11,65	978,0 243,0 414,0 4,02 168696 156 746,0 63,8 100,7 11,69	1059,0 260,0 454,0 4,08 182745 166 796,0 68,7 108,3 11,60	1127,0 276,0 472,0 4,09 194431 188 797,0 68,7 108,3 11,61	1213 293 493 4,1: 2092 11: 885, 79, 125, 11,2	8,0 12 ,0 3 3 ,0 55 4 4 4 4 4998 22 2 1 ,0 998 0 8 0 0 8 0 12 6	889,0 17,0 29,0 ,06 2401 242 42 38,0 4,0 33,4 1,17 002	1365,0 341,0 566,0 4,00 235505 128 990,0 89,0 141,2 11,13 6402	1495,0 372,0 639,0 4,02 257918 131 1126,0 98,2 155,6 11,46 6903	1576,0 388,0 677,0 4,06 271953 135 1177,0 103,1 163,2 11,41 7203		
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EEER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EEER Size Model: G	kW A W/W I/h kPa kW kW A W/W	864,0 216,0 363,0 3,99 149099 134 647,0 54,7 86,6 11,83 3902	909,0 228,0 378,0 3,99 156852 133 743,0 63,8 100,7 11,65 4202	978,0 243,0 414,0 4,02 168696 156 746,0 63,8 100,7 11,69 4502	1059,0 260,0 454,0 4,08 182745 166 796,0 68,7 108,3 11,60 4802	1127,0 276,0 472,0 4,09 194431 188 797,0 68,7 108,3 11,61 5202	1213 293 493 4,1- 2092 11: 885, 79, 125, 11,2	8,0 12 ,0 3 3 ,0 55 ,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	889,0 17,0 29,0 ,06 2401 242 42 38,0 4,0 33,4 1,17 002	1365,0 341,0 566,0 4,00 235505 128 990,0 89,0 141,2 11,13 6402	1495,0 372,0 639,0 4,02 257918 131 1126,0 98,2 155,6 11,46 6903	1576,0 388,0 677,0 4,06 271953 135 1177,0 103,1 163,2 11,41 7203	- - - - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size Model: G Cooling performance chiller operation Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W	864,0 216,0 363,0 3,99 149099 134 647,0 54,7 86,6 11,83 3902	909,0 228,0 378,0 3,99 156852 133 743,0 63,8 100,7 11,65 4202	978,0 243,0 414,0 4,02 168696 156 746,0 63,8 100,7 11,69 4502	1059,0 260,0 454,0 4,08 182745 166 796,0 68,7 108,3 11,60 4802	1127,0 276,0 472,0 4,09 194431 188 797,0 68,7 108,3 11,61 5202	1212 293 493 4,1 2092 117 125 560 1208 296	3,0 12 ,0 3 3 ,0 55 4 4 4 4 4998 22 2 1 ,0 998 0 8 0 10 10 10 10 10 10 10 10 10 10 10 10 10 1	889,0 17,0 29,0 ,06 2401 2 442 38,0 4,0 33,4 1,17 002 84,0 20,0 33,0	1365,0 341,0 566,0 4,00 235505 128 990,0 89,0 141,2 11,13 6402	1495,0 372,0 639,0 4,02 257918 131 1126,0 98,2 155,6 11,46 6903	1576,0 388,0 677,0 4,06 271953 135 1177,0 103,1 163,2 11,41 7203	- - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size Model: G Cooling capacity Input power Cooling capacity Input power Cooling capacity Input power Cooling total input current EER Cooling total input current Cooling total input current	kW A W/W I/h kPa kW kW A W/W	864,0 216,0 363,0 3,99 149099 134 647,0 54,7 86,6 11,83 3902	909,0 228,0 378,0 3,99 156852 133 743,0 63,8 100,7 11,65 4202	978,0 243,0 414,0 4,02 168696 156 746,0 63,8 100,7 11,69 4502	1059,0 260,0 454,0 4,08 182745 166 796,0 68,7 108,3 11,60 4802	1127,0 276,0 472,0 4,09 194431 188 797,0 68,7 108,3 11,61 5202	1212 293 493 4,1 102 112 885 79, 125 11,2 560	3,0 12 ,0 3 3 ,0 55 4 4 4 4 4998 22 2 1 ,0 99 0 8 0 8 0 12 6 10 10 10 10 10 10 10 10 10 10	889,0 17,0 29,0 ,06 2401 2 442 388,0 44,0 333,4 1,17 002 84,0 20,0 333,0 ,01	1365,0 341,0 566,0 4,00 235505 128 990,0 89,0 141,2 11,13 6402 1359,0 344,0 570,0 3,95	1495,0 372,0 639,0 4,02 257918 131 1126,0 98,2 155,6 11,46 6903 1489,0 375,0 644,0	1576,0 388,0 677,0 4,06 271953 135 1177,0 103,1 163,2 11,41 7203	- - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size Model: G Cooling performance chiller operation Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW kW A W/W	864,0 216,0 363,0 3,99 149099 134 647,0 54,7 86,6 11,83 3902 861,0 218,0 366,0 3,94	909,0 228,0 378,0 3,99 156852 133 743,0 63,8 100,7 11,65 4202	978,0 243,0 414,0 4,02 168696 156 746,0 63,8 100,7 11,69 4502 974,0 245,0 418,0 3,97	1059,0 260,0 454,0 4,08 182745 166 796,0 68,7 108,3 11,60 4802	1127,0 276,0 472,0 4,09 194431 188 797,0 68,7 108,3 11,61 5202	1212 293 493 4,1 112 885 79, 125, 11,2 560	3,0 12 ,0 3' ,0 5: 4 4 4 4 4998 22 2 1 ,0 9! 0 8 0 8 0 12 0 12 0 3: 0 3: 0 3: 0 3: 0 3: 0 3: 0 3: 0 3: 0 3: 0 5: 0 4 4 4 4 0 5: 0 5: 0 7 10: 0 7 10:	889,0 17,0 29,0 ,06 2401 2 442 388,0 44,0 333,4 1,17 002 84,0 20,0 333,0 ,01	1365,0 341,0 566,0 4,00 235505 128 990,0 89,0 141,2 11,13 6402 1359,0 344,0 570,0 3,95	1495,0 372,0 639,0 4,02 257918 131 1126,0 98,2 155,6 11,46 6903 1489,0 375,0 644,0 3,97	1576,0 388,0 677,0 4,06 271953 135 1177,0 103,1 163,2 11,41 7203 1570,0 392,0 682,0 4,01	- - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size Model: G Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Model: G Cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W kW A W/W	864,0 216,0 363,0 3,99 149099 134 647,0 54,7 86,6 11,83 3902 861,0 218,0 366,0 3,94 148519	909,0 228,0 378,0 3,99 156852 133 743,0 63,8 100,7 11,65 4202 906,0 230,0 3,94 156292	978,0 243,0 414,0 4,02 168696 156 746,0 63,8 100,7 11,69 4502 974,0 245,0 418,0 3,97 168052	1059,0 260,0 454,0 4,08 182745 166 796,0 68,7 108,3 11,60 4802 1055,0 262,0 457,0 4,03 182059	1127,0 276,0 472,0 4,09 194431 188 797,0 68,7 108,3 11,61 5202 1122,0 278,0 475,0 4,03 193641	1212 293 493 4,1 112 8855 79,1 125,560 1208 497 4,0 2084	3,0 12 ,0 3' ,0 5: 4 4 4 4 4998 22 2 1 ,0 9! 0 8 0 8 0 12 0 12 0 3: 0 3: 0 3: 0 3: 0 3: 0 3: 0 3: 0 3: 0 3: 0 5: 0 4 4 4 4 0 5: 0 5: 0 7 10: 0 7 10:	889,0 17,0 29,0 ,06 2401 2 442 38,0 4,0 33,4 1,17 0002 84,0 20,0 333,0 ,01 1510 2	1365,0 341,0 566,0 4,00 235505 128 990,0 89,0 141,2 11,13 6402 1359,0 344,0 570,0 3,95 234585	1495,0 372,0 639,0 4,02 257918 131 1126,0 98,2 155,6 11,46 6903 1489,0 375,0 644,0 3,97 256917	1576,0 388,0 677,0 4,06 271953 135 1177,0 103,1 163,2 11,41 7203 1570,0 392,0 682,0 4,01 270905	- - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling capacity Input power Free cooling total input current EER Size Model: G Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling performances with free-cooling glycol-free	kW A W/W I/h kPa kW kW A W/W kW A W/W	864,0 216,0 363,0 3,99 149099 134 647,0 54,7 86,6 11,83 3902 861,0 218,0 366,0 3,94 148519	909,0 228,0 378,0 3,99 156852 133 743,0 63,8 100,7 11,65 4202 906,0 230,0 3,94 156292	978,0 243,0 414,0 4,02 168696 156 746,0 63,8 100,7 11,69 4502 974,0 245,0 418,0 3,97 168052	1059,0 260,0 454,0 4,08 182745 166 796,0 68,7 108,3 11,60 4802 1055,0 262,0 457,0 4,03 182059	1127,0 276,0 472,0 4,09 194431 188 797,0 68,7 108,3 11,61 5202 1122,0 278,0 475,0 4,03 193641	1212 293 493 4,1 112 8855 79,1 125,560 1208 497 4,0 2084	3,0 12 ,0 3' ,0 5: 4 4 4 4 4998 22 2 1 ,0 9: 0 8 0 8 7,7 1: 0 1' 02 6 33,0 12 ,0 3: ,0 5: 8 4 4 336 22 1 1	889,0 17,0 29,0 29,0 20,06 2401 242 442 388,0 44,0 333,4 1,17 002 84,0 20,0 333,0 ,01 1510 241	1365,0 341,0 566,0 4,00 235505 128 990,0 89,0 141,2 11,13 6402 1359,0 344,0 570,0 3,95 234585	1495,0 372,0 639,0 4,02 257918 131 1126,0 98,2 155,6 11,46 6903 1489,0 375,0 644,0 3,97 256917	1576,0 388,0 677,0 4,06 271953 135 1177,0 103,1 163,2 11,41 7203 1570,0 392,0 682,0 4,01 270905	- - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EEER Water flow rate system side Pressure drop system side Cooling capacity Input power Free cooling total input current EEER Model: G Cooling performance chiller operation Cooling capacity Input power Free cooling total input current EEER Model: G Cooling capacity Input power Cooling total input current EEER Water flow rate system side Pressure drop system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	864,0 216,0 363,0 3,99 149099 134 647,0 54,7 86,6 11,83 3902 861,0 218,0 366,0 3,94 148519	909,0 228,0 378,0 3,99 156852 133 743,0 63,8 100,7 11,65 4202 906,0 230,0 3,94 156292	978,0 243,0 414,0 4,02 168696 156 746,0 63,8 100,7 11,69 4502 974,0 245,0 418,0 3,97 168052	1059,0 260,0 454,0 4,08 182745 166 796,0 68,7 108,3 11,60 4802 1055,0 262,0 4,03 182059 165	1127,0 276,0 472,0 4,09 194431 188 797,0 68,7 108,3 11,61 5202 1122,0 278,0 475,0 4,03 193641 187	1212 293 493 4,1 2092 1112 8855 79,7 1255 11,2 560 1208 497 4,0 2084 111	3,0 12 3,0 3; 3,0 5; 4 4 4 4 4998 22 2 11 3,0 9; 0 8 0 8 7,7 1; 12 6 12 6 12 6 13 3 14 4 15 3 16 4 17 3 18 4 18 4	889,0 17,0 29,0 29,0 20,06 2401 242 442 388,0 44,0 333,4 1,17 002 84,0 20,0 333,0 ,01 1510 241	1365,0 341,0 566,0 4,00 235505 128 990,0 89,0 141,2 11,13 6402 1359,0 344,0 570,0 3,95 234585 127	1495,0 372,0 639,0 4,02 257918 131 1126,0 98,2 155,6 11,46 6903 1489,0 375,0 644,0 3,97 256917 130	1576,0 388,0 677,0 4,06 271953 135 1177,0 103,1 163,2 11,41 7203 1570,0 392,0 682,0 4,01 270905 134	- - - - - - - 8403	- - - - - - - - - - - - - - - - - - -
Size Model: B Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling capacity Input power Free cooling total input current EER Size Model: G Cooling performance chiller operation Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Cooling performances with free-cooling glycol-free Cooling performances with free-cooling glycol-free Cooling apacity	kW A W/W I/h kPa kW kW A W/W kW k	864,0 216,0 363,0 3,99 149099 134 647,0 54,7 86,6 11,83 3902 861,0 218,0 366,0 3,94 148519 133	909,0 228,0 378,0 3,99 156852 133 743,0 63,8 100,7 11,65 4202 906,0 230,0 381,0 3,94 156292 132	978,0 243,0 414,0 4,02 168696 156 746,0 63,8 100,7 11,69 4502 974,0 245,0 418,0 3,97 168052 155	1059,0 260,0 454,0 4,08 182745 166 796,0 68,7 108,3 11,60 4802 1055,0 262,0 457,0 4,03 182059 165	1127,0 276,0 472,0 4,09 194431 188 797,0 68,7 108,3 11,61 5202 1122,0 278,0 475,0 4,03 193641 187	1212 293 493 4,1 2092 1112 8855 79,7 1255 11,2 560 1208 497 4,0 2084 111	3,0 12 3,0 3; 3,0 5; 4 4 4 4 4998 22 2 1 3,0 9: 0 8 0 8 7,7 1; 12 6 12 6 13 3,0 12 14 4 15 4 16 5 17 1 18 4 18 4 18 4 18 5 18 5	88,0 17,0 29,0 ,06 2401 2 442 388,0 4,0 333,4 1,17 002 84,0 20,0 333,0 ,01 1510 2 441	1365,0 341,0 566,0 4,00 235505 128 990,0 89,0 141,2 11,13 6402 1359,0 344,0 570,0 3,95 234585 127	1495,0 372,0 639,0 4,02 257918 131 1126,0 98,2 155,6 11,46 6903 1489,0 375,0 644,0 3,97 256917 130	1576,0 388,0 677,0 4,06 271953 135 1177,0 103,1 163,2 11,41 7203 1570,0 392,0 682,0 4,01 270905 134		- - - - - - - - - - - - - - - - - - -

Cooling performance chiller operation: System side water heat exchanger 25 °C/20 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0%

699

NSM HWT BN-GN

NSW HW I BN-GN														
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Model: B													-	
Cooling performance chiller operation	LAM	2240	276.0	420.0	472.0	407.0	F20 0	F/7.0	(14.0	(42.0	(50.0	(07.0	751.0	002.0
Cooling capacity	kW kW	324,0	376,0	428,0	473,0		538,0	567,0	614,0	643,0	659,0	687,0	751,0	803,0
Input power		74,0	88,0	99,0	109,0		124,0	134,0	142,0	152,0	157,0	163,0	174,0	184,0
Cooling total input current EER	A W/W	132,0	154,0 4,27	172,0	184,0		206,0	222,0	235,0 4,32	252,0 4,24	265,0 4,21	280,0	297,0 4,32	313,0
	I/h	4,41 55983		4,31	4,35 81682	4,29 85818	4,33 92811	4,21 97769			113774	4,22 118607	129528	4,38 138643
Water flow rate system side Pressure drop system side	kPa	74	64940 93	73810 87	102		110		105919 111	111036 122	128	125	100	115
Cooling performances with free-cooling glycol-free	Kra	74	33	0/	102	113	110	122		122	120	123	100	113
Cooling capacity	kW	266,0	278,0	329,0	334,0	337,0	384,0	387,0	439,0	441,0	442,0	467,0	523,0	567,0
Input power	kW	12,0	14,0	19,0	19,0	20,0	22,0	22,0	24,0	24,0	24,0	24,0	29,0	31,0
Free cooling total input current	A	19,1	21,2	30,3	30,3	31,5	34,5	34,5	37,5	37,5	37,5	37,6	45,8	48,3
EER .	W/W	21,73	20,57	17,29	17,53	16,94	17,58	17,68	18,41	18,50	18,55	19,52	17,83	18,28
	11/11													
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Model: G														
Cooling performance chiller operation														
Cooling capacity	kW	323,0	374,0	426,0	471,0		535,0	564,0	611,0	640,0	656,0	683,0	746,0	799,0
Input power	kW	74,0	89,0	100,0	110,0	117,0	125,0	136,0	143,0	153,0	158,0	164,0	175,0	185,0
Cooling total input current	A	132,0	155,0	173,0	185,0		207,0	224,0	237,0	254,0	267,0	282,0	300,0	316,0
EER	W/W	4,36	4,22	4,26	4,29	4,23	4,27	4,15	4,26	4,18	4,15	4,16	4,26	4,32
Water flow rate system side	I/h	55770	64623	73447			92341	97251	105389		113149	117928	128821	137959
Pressure drop system side	kPa	74	92	86	101	112	109	121	110	121	127	123	99	113
Cooling performances with free-cooling glycol-free	LAM	270.0	202.0	246.0	251.0	254.0	404.0	407.0	461.0	462.0	464.0	401.0	F40.0	505.0
Cooling capacity	kW	279,0	292,0	346,0	351,0	354,0	404,0	407,0	461,0	463,0	464,0	491,0	549,0	595,0
Input power	kW	12,4	13,7	19,2 30,5	19,2	20,0	22,1	22,1	24,1	24,1	24,1	24,1	29,5	31,3
Free cooling total input current	A	19,2	21,4		30,5	31,7	34,8	34,8	37,8	37,8	37,8	37,9	46,1	48,6
EER	W/W	22,53	21,40	18,03	18,27	17,67	18,32	18,43	19,17	19,27	19,31	20,33	18,59	19,04
NSM HWT BN-GN														
Size		3902	4202	4502	4802	5202	56	602 6	002	6402	6903	7203	8403	9603
Model: B														
Cooling performance chiller operation														
Cooling capacity	kW	852,0	881,0	969,0	1033,0	1115,0) 119	98,0 12	263,0	1329,0	-	-	-	-
Input power	kW	195,0	207,0	218,0	232,0	249,0	26	5,0 2	88,0	311,0	-	-	-	-
Cooling total input current	Α	328,0	343,0	374,0	408,0	427,0	44	7,0 4	81,0	516,0	-	-	-	-
EER	W/W	4,37	4,26	4,44	4,46	4,49	4,	.51 4	1,38	4,27	-	-	-	-
Water flow rate system side	l/h	147047	152087	167278	178230	192448	3 206	685 21	7997	229339	-	-	-	-
Pressure drop system side	kPa	117	125	101	93	102	7	' 5	92	92	-	-	-	-
Cooling performances with free-cooling glycol-free														
Cooling capacity	kW	617,0	618,0	727,0	770,0	828,0	88	0,0 8	87,0	889,0	-	-	-	-
Input power	kW	32,8	32,8	41,1	43,7	45,7	47	7,7	17,7	47,7	-	-	-	-
Free cooling total input current	A	51,0	51,0	65,0	69,0	72,0	75		75,0	75,0	-	-	-	-
EER	W/W	18,81	18,85	17,68	17,59	18,12	18,	,46 1	8,60	18,64	-	-	-	-
Size		3902	4202	4502	4802	5202	56	602 6	002	6402	6903	7203	8403	9603
Model: G														
Cooling performance chiller operation														
Cooling capacity	kW	848,0	877,0	965,0	1028,0	1110,0	119	92,0 12	257,0	1322,0	-	-	-	-
Input power	kW	197,0	209,0	220,0	234,0	251,0			91,0	314,0	-	-	-	-
Cooling total input current	A	330,0	346,0	377,0	411,0	430,0	45	0,0 4	85,0	520,0	-	-	-	-
EER	W/W	4,31	4,20	4,38	4,40	4,43	4,	45	1,32	4,21	-	-	-	-
Water flow rate system side	l/h	146331	151317	166517	177452					228136	-	-	-	-
Pressure drop system side	kPa	116	124	100	92	101	7	'4	91	91	-	-	-	-
Cooling performances with free-cooling glycol-free														
Cooling capacity									22.0	0240	_	_	_	-
Cooling Capacity	kW	647,0	649,0	764,0	809,0	870,0	92	5,0 9	32,0	934,0				
Input power	kW kW	33,1	649,0 33,1	764,0 41,4	809,0 44,1	870,0 46,1	92 48		18,1	48,1	-	-	-	-
	kW A							3,1		48,1 75,5				-
Input power	kW	33,1	33,1	41,4	44,1	46,1	48	3,1 4 5,5 7	18,1	48,1	-	-	-	

www.aermec.com

Cooling performance chiller operation: System side water heat exchanger 25 °C/20 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0%

ELECTRIC DATA

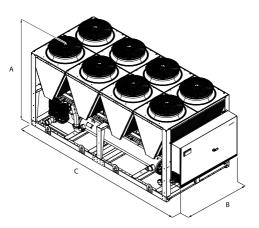
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Electric data															
	A	Α	206,0	228,0	253,0	265,0	289,0	306,0	324,0	362,0	384,0	400,0	415,0	449,0	472,0
Marrian comment (FLA)	E	Α	207,0	229,0	265,0	277,0	289,0	322,0	339,0	372,0	394,0	410,0	426,0	457,0	480,0
Maximum current (FLA)	N	Α	215,0	240,0	280,0	292,0	305,0	332,0	349,0	381,0	404,0	419,0	434,0	472,0	503,0
	U	Α	207,0	229,0	265,0	280,0	292,0	322,0	339,0	372,0	395,0	410,0	426,0	457,0	480,0
	A	Α	279,0	269,0	308,0	346,0	362,0	395,0	406,0	457,0	472,0	490,0	500,0	536,0	551,0
Deals surrent (LDA)	E	Α	279,0	269,0	317,0	354,0	362,0	403,0	415,0	466,0	480,0	499,0	509,0	545,0	560,0
Peak current (LRA)	N	Α	288,0	280,0	332,0	369,0	378,0	414,0	425,0	475,0	490,0	508,0	518,0	559,0	583,0
	U	Α	279,0	269,0	317,0	357,0	365,0	403,0	415,0	466,0	481,0	499,0	509,0	545,0	560,0
Size	,		3902	4202	4502	4802	5202	. 56	502	6002	6402	6903	7203	8403	9603
Electric data															
	A	Α	504,0	527,0	569,0	602,0	619,0	64	15,0	698,0	737,0	877,0	910,0	976,0	1111,0
Maximaxima assument (FLA)	E	А	512,0	550,0	583,0	631,0	648,0	68	31,0	730,0	779,0	894,0	936,0	-	-
Maximum current (FLA)	N	Α	541,0	564,0	624,0	667,0	693,0	71	9,0	758,0	797,0	-	-	-	-
	U	Α	512,0	550,0	583,0	631,0	648,0	68	3,0	731,0	779,0	899,0	941,0	-	-
	A	Α	590,0	611,0	643,0	665,0	857,0	88	3,0	963,0	990,0	866,0	888,0	1072,0	1204,0
DI	E	Α	598,0	628,0	651,0	687,0	879,0	90	16,0	980,0	1016,0	875,0	905,0	-	-
Peak current (LRA)	N	Α	627,0	642,0	692,0	723,0	924,0	94	15,0 1	009,0	1034,0	-	-	-	-

Data calculated without hydronic kit and accessories.

GENERAL TECHNICAL DATA

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Compressor															
Туре	A,E,N,U	type							Screw						
Compressor regulation	A,E,N,U	Туре							On-Off						
Number	A,E,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2
Circuits	A,E,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E,N,U	type		-		-			R134a						
System side heat exchanger															
Туре	A,E,N,U	type						9	hell and tub	e					
Number	A,E,N,U	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Inverter fan															
Туре	A,E,N,U	type							Axial						
	A	no.	8	8	8	8	10	10	10	12	12	12	12	14	14
Number	E,U	no.	8	8	10	10	10	12	12	14	14	14	14	16	16
	N	no.	10	10	12	12	12	14	14	16	16	16	16	18	20
Sound data calculated in cooling mode	(1)														
	A	dB(A)	97,1	97,1	97,4	97,3	98,1	98,0	97,8	98,4	98,4	98,7	99,3	100,4	100,8
	E	dB(A)	92,7	93,0	93,4	93,6	93,8	93,4	92,8	92,7	92,5	94,9	96,4	97,6	98,4
Sound power level	N	dB(A)	92,8	93,1	93,9	93,8	93,9	93,7	93,2	93,0	92,8	94,3	96,0	97,9	98,7
	U	dB(A)	97,3	97,4	98,4	98,3	98,4	98,8	98,7	99,1	99,1	99,5	100,1	101,2	101,6

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).


Size			3902	4202	4502	4802	5202	5602	6002	6402	6903	7203	8403	9603
Compressor														
Туре	A,E,N,U	type						Sc	rew					
Compressor regulation	A,E,N,U	Туре						0n	-Off					
	A	no.	2	2	2	2	2	2	2	2	3	3	3	3
Number	E,U	no.	2	2	2	2	2	2	2	2	3	3	-	-
	N	no.	2	2	2	2	2	2	2	2	-	-	-	-
	A	no.	2	2	2	2	2	2	2	2	3	3	3	3
Circuits	E,U	no.	2	2	2	2	2	2	2	2	3	3	-	-
	N	no.	2	2	2	2	2	2	2	2	-	-	-	-
Refrigerant	A,E,N,U	type						R1	34a					
System side heat exchanger														
Туре	A,E,N,U	type						Shell a	nd tube					
	Α	no.	1	1	1	1	1	1	1	1	1	1	1	1
Number	E,U	no.	1	1	1	1	1	2	2	2	2	2	-	-
	N	no.	1	1	2	2	2	2	2	2	-	-	-	-
Inverter fan														
Туре	A,E,N,U	type						A	kial					
	A	no.	16	16	18	18	18	20	22	22	28	28	30	34
Number	E,U	no.	18	20	20	22	22	24	26	28	30	32	-	-
	N	no.	22	22	26	28	30	32	32	32	-	-	-	-

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Size			3902	4202	4502	4802	5202	5602	6002	6402	6903	7203	8403	9603
Sound data calculated in cooling mode (1	I)													
	Α	dB(A)	100,8	100,4	100,8	100,9	101,4	102,3	102,3	101,9	103,7	103,8	105,0	104,8
Count manual land	E	dB(A)	97,6	96,4	96,7	97,0	98,9	100,3	99,5	98,7	98,7	98,9	-	-
Sound power level	N	dB(A)	97,9	96,8	97,0	97,3	98,7	100,1	99,5	98,7	-	-	-	-
•	U	dB(A)	101,5	101,4	101,4	101,8	102,3	103,2	103,1	102,9	104,0	104,3	-	-

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Dimensions and weights															
A	A,E,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	A	mm	5160	5160	5160	5160	6350	6350	6350	7140	7140	7140	7140	8330	8330
C	E,U	mm	5160	5160	6350	6350	6350	7140	7140	8330	8330	8330	8330	9520	9520
1	N	mm	6350	6350	7140	7140	7140	8330	8330	9520	9520	9520	9520	10710	11900
Size			3902	4202	4502	4802	5202	56	502	6002	6402	6903	7203	8403	9603
Size Dimensions and weights			3902	4202	4502	4802	5202	56	502	6002	6402	6903	7203	8403	9603
	A,E,N,U	mm	3902 2450	4202 2450	4502 2450	4802 2450	5202 2450			6002 2450	6402 2450	6903 2450	7203 2450	8403 2450	9603 2450
Dimensions and weights	A,E,N,U A,E,N,U	mm mm						24	450						
Dimensions and weights A			2450	2450	2450	2450	2450	2/	450 200	2450	2450	2450	2450	2450	2450
Dimensions and weights A		mm	2450 2200	2450 2200	2450 2200	2450 2200	2450 2200	24 22) 11	450 200 900	2450 2200	2450 2200	2450 2200	2450 2200	2450 2200	2450 2200

For transport reasons, the units with the depth of more than 13090 mm are shipped separately.

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NSMI 1251-6102 F

Air-water chiller with free-cooling

Cooling capacity 286 ÷ 1280 kW

- · High efficiency also at partial loads
- Microchannel coil
- Low electrical consumption

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

Outdoor units with high-efficiency screw compressors axial fans, microchannel external coils and plant side shell and tube heat exchanger.

In the unit with desuperheater, it is also possible to produce free-hot water. The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to 50 °C external air temperature. Unit can produce chilled water (up to -6 °C).

Units mono or dual-circuit

Unit with 1–2 refrigerant circuits.

The single circuit units have the inverter compressor, while the dual-circuit have an asynchronous compressor on/off switch and an inverter, the combination provides both high efficiency at part load and full load

Aluminium microchannel coils

The microchannel condensing aluminum coils ensure high levels of efficiency, reduced quantities of refrigerant and lower unit weight. The treatment "O" available as configurator it ensures high resistance to corrosion even in the most aggressive environments.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The compressors are completely shut down, if possible, leading to considerable electrical savings.

A "P" free-cooling plus model with the oversized water battery can be chosen for applications in which a higher free-cooling performance is required.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations, to obtain a solution that allows you to save money and to facilitate installation.

Low noise version

Silenced versions feature a special compressor jacket which ensures a further noise reduction of approximately 4 dB.

CONTROL PCO⁵

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

Further features:

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save

a log file with all the connected unit datas in the personal terminal for post analysis.

FB1: Air filter to protect the micro-channel coils. Formed of a frame and a composite baffle in micro-expanded aluminium mesh, with particularly low pressure drops.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

GP_: Anti-intrusion grid kit

KRS: Electric heater for the heat exchanger

ACCESSORIES COMPATIBILITY

Model	Ve	er	1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
AER485P1	Α,	E	•	•	•												
AER485P1 x no. 2	A,	E				•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	A,	E	•	•	•												
AERBACP x no. 2	A,	E				•	•	•	•	•	•	•	•	•	•	•	•
AERNET	A,	E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
FB1	A,	E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	Α,	E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Ver	1251	1601	1801	2352	2 26	52	2802	3202	3402	3802	4102	4402	48	02 !	202	5702	6102
A, E	GP4V	GP4V	GP5V	GP5\	/ GP	6V	GP7V	GP7V	GP7V	GP8V	GP9V	GP10V	GP1	11V G	P11V	GP11V	GP11V

A grey background indicates the accessory must be assembled in the factory

Antivibration - NSMI free-cooling

Ver	1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Integrated hydronic kit: 00															
A	AVX991	AVX992	AVX993	AVX966	AVX970	AVX995	AVX995	AVX995	AVX996	AVX988	AVX989	AVX990	AVX990	AVX990	AVX990
E	AVX991	AVX992	AVX994	AVX966	AVX970	AVX995	AVX995	AVX995	AVX996	AVX988	AVX989	AVX990	AVX990	AVX990	AVX990

Antivibration - NSMI free-cooling plus

Ver	1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Integrated hydronic kit: 00															
A	AVX991	AVX992	AVX993	AVX966	AVX970	AVX995	AVX995	AVX995	AVX996	AVX988	AVX989	AVX990	AVX990	AVX990	AVX990
E	AVX991	AVX992	AVX994	AVX966	AVX970	AVX995	AVX995	AVX999	AVX996	AVX988	AVX989	AVX990	AVX990	AVX990	AVX990

Heater exchangers

Ver	1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
A	KRS23	KRS23	KRS23	KRS23	KRS23	KRS23	-	KRS24							
E	KRS23	KRS24													

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3,4	NSMI
5,6,7,8	Size 1251, 1601, 1801, 2352, 2652, 2802, 3202, 3402, 3802, 4102, 4402, 4802, 5202, 5702, 6102
9	Model
F	Free-cooling
Р	Free-cooling plus (1)
10	Heat recovery
D	With desuperheater (2)
0	Without heat recovery
11	Version
Α	High efficiency
E	Silenced high efficiency
12	Coils / free-cooling coils
0	Painted alluminium microchannel / Copper painted aluminium
R	Copper-copper/Copper-copper
S	Copper-Tinned copper / Copper -Tinned copper
V	Copper-painted alumimium / Copper-painted alumimium
0	Alluminium microchannel / Copper - aluminium
13	Fans
J	Inverter
0	Standard
14	Power supply
0	400V ~ 3 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit
00	Without hydronic kit
	Kit with n° 1 pump
PA	Pump A
PB	Pump B

Field	d	Description
	PC	Pump C
	PD	Pump D
	PE	Pump E
	PF	Pump F
	PG	Pump G
	PH	Pump H
	PI	Pump I
	PJ	Pump J (3)
		Pump n° 1 pump + stand-by pump
	DA	Pump A + stand-by pump
	DB	Pump B + stand-by pump
	DC	Pump C + stand-by pump
	DD	Pump D + stand-by pump
	DE	Pump E + stand-by pump
	DF	Pump F + stand-by pump
	DG	Pump G + stand-by pump
	DH	Pump H + stand-by pump
	DI	Pump I + stand-by pump
	DJ	Pump J + stand-by pump (3)
		Kit with 2 pumps
	TF	Double pump F
	TG	Double pump G
	TH	Double pump H
	TI	Double pump I
	TJ	Double pump J (3)
17		Refrigerant gas
	0	R134a

- (1) The Free-Cooling Plus "P" models are only compatible with "" ed "0" (2) The temperature of the water in the heat exchanger inlet must never drop below 35°C. (3) For all configurations including pump J please contact the factory.

PERFORMANCE SPECIFICATIONS

NSMI - free-cooling (FA/FE - PA/PE)

Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Model: F																	
Cooling performance chiller operation (1)																	
Cooling capacity	A,E	kW	286,5	385,6	455,6	496,5	587,5	649,6	718,4	784,3	832,8	929,0	989,0	1096,3	1164,2	1208,4	1280,3
Input power	A,E	kW	96,6	126,7	157,5	177,7	206,3	221,2	244,7	272,7	280,5	324,3	343,8	368,4	417,3	436,6	477,9
Cooling total input current	A,E	A	166,0	212,0	261,0	309,0	356,0	381,0	417,0	456,0	470,0	547,0	580,0	644,0	692,0	728,0	761,0
EER	A,E	W/W	2,97	3,04	2,89	2,79	2,85	2,94	2,94	2,88	2,97	2,86	2,88	2,98	2,79	2,77	2,68
Water flow rate system side	A,E	I/h	49230	66245	78283	85309	100931	111607	123424	134748	143088	159614	169917	188349	200020	207622	219967
Pressure drop system side	A,E	kPa	52	78	75	48	67	68	76	46	54	68	79	80	90	94	107
Cooling performances with free-cooling (2)																	
Cooling capacity	A,E	kW	254,5	276,0	340,9	346,5	414,6	649,6	488,1	495,1	559,2	628,2	692,4	762,8	771,1	775,7	782,2
Input power	A,E	kW	15,0	15,0	18,7	18,7	22,5	26,2	26,2	26,2	30,0	33,7	37,5	41,2	41,2	41,2	41,2
Free cooling total input current	A,E	A	26,0	25,0	31,0	33,0	39,0	45,0	45,0	44,0	50,0	57,0	63,0	72,0	68,0	69,0	66,0
EER	A,E	W/W	19,97	18,41	18,19	18,49	18,43	18,22	18,60	18,87	18,65	18,62	18,47	18,50	18,70	18,81	18,97
Water flow rate system side	A,E	I/h	49230	66245	78283	85309	100931	111607	123424	134748	143088	159614	169917	188349	200020	207622	219967
Pressure drop system side	A,E	kPa	80	121	128	88	109	109	124	94	99	108	125	127	143	157	169
(1) System side water heat exchanger 12 °C/7 °(2) Acqua scambiatore lato utenza 12 °C/* °C;	C; External	air 35 °C; Ch	iller opera	tion 100%	; Free-coo	ling 0%											
(2) Acqua scambiatore lato utenza 12 C/ C,	Alla estell	ia z C															
Size	Alia estell	1a Z C	1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
	Alla estell	Id Z C	1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Size	Alia estell		1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Size Model: P	A,E	kW	1251 285,5	1601 383,5	1801 453,4	2352 493,5	2652 584,0	2802 646,4	3202 714,7	3402 778,5	3802 827,8	4102 923,5	983,6	4802	5202 1156,6	5702 1200,5	6102 1270,3
Size Model: P Cooling performance chiller operation (1)												· ·					
Size Model: P Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	A,E A,E A,E	kW	285,5	383,5	453,4	493,5	584,0 208,6 360,0	646,4	714,7	778,5 275,8 461,0	827,8 283,4 474,0	923,5 327,8 553,0	983,6 347,4 585,0	1090,1	1156,6	1200,5	1270,3 483,8 761,0
Size Model: P Cooling performance chiller operation (1) Cooling capacity Input power	A,E A,E A,E A,E	kW kW A W/W	285,5 97,4	383,5 127,8	453,4 158,9	493,5 179,7	584,0 208,6	646,4 223,4	714,7 247,5	778,5 275,8	827,8 283,4	923,5 327,8	983,6 347,4	1090,1 372,4	1156,6 421,9	1200,5 441,5	1270,3 483,8
Size Model: P Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	A,E A,E A,E A,E A,E	kW kW	285,5 97,4 168,0	383,5 127,8 214,0	453,4 158,9 263,0	493,5 179,7 312,0	584,0 208,6 360,0	646,4 223,4 385,0	714,7 247,5 421,0	778,5 275,8 461,0	827,8 283,4 474,0	923,5 327,8 553,0	983,6 347,4 585,0	1090,1 372,4 644,0	1156,6 421,9 692,0	1200,5 441,5 728,0	1270,3 483,8 761,0
Size Model: P Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	A,E A,E A,E A,E	kW kW A W/W	285,5 97,4 168,0 2,93	383,5 127,8 214,0 3,00	453,4 158,9 263,0 2,85	493,5 179,7 312,0 2,75	584,0 208,6 360,0 2,80	646,4 223,4 385,0 2,89	714,7 247,5 421,0 2,89	778,5 275,8 461,0 2,82	827,8 283,4 474,0 2,92	923,5 327,8 553,0 2,82	983,6 347,4 585,0 2,83	1090,1 372,4 644,0 2,93	1156,6 421,9 692,0 2,74	1200,5 441,5 728,0 2,72	1270,3 483,8 761,0 2,63
Size Model: P Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side	A,E A,E A,E A,E A,E	kW kW A W/W	285,5 97,4 168,0 2,93 49048	383,5 127,8 214,0 3,00 65887	453,4 158,9 263,0 2,85 77903	493,5 179,7 312,0 2,75 84789	584,0 208,6 360,0 2,80 100332	646,4 223,4 385,0 2,89 111060	714,7 247,5 421,0 2,89 122801	778,5 275,8 461,0 2,82 133758	827,8 283,4 474,0 2,92 142233	923,5 327,8 553,0 2,82 158667	983,6 347,4 585,0 2,83 168998	1090,1 372,4 644,0 2,93 187289	1156,6 421,9 692,0 2,74 198712	1200,5 441,5 728,0 2,72 206254	1270,3 483,8 761,0 2,63 218254
Size Model: P Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	A,E A,E A,E A,E A,E A,E	kW kW A W/W	285,5 97,4 168,0 2,93 49048	383,5 127,8 214,0 3,00 65887	453,4 158,9 263,0 2,85 77903	493,5 179,7 312,0 2,75 84789	584,0 208,6 360,0 2,80 100332	646,4 223,4 385,0 2,89 111060	714,7 247,5 421,0 2,89 122801	778,5 275,8 461,0 2,82 133758	827,8 283,4 474,0 2,92 142233	923,5 327,8 553,0 2,82 158667	983,6 347,4 585,0 2,83 168998	1090,1 372,4 644,0 2,93 187289	1156,6 421,9 692,0 2,74 198712	1200,5 441,5 728,0 2,72 206254	1270,3 483,8 761,0 2,63 218254
Size Model: P Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2)	A,E A,E A,E A,E A,E A,E	kW kW A W/W I/h	285,5 97,4 168,0 2,93 49048 51	383,5 127,8 214,0 3,00 65887 78	453,4 158,9 263,0 2,85 77903	493,5 179,7 312,0 2,75 84789 47	584,0 208,6 360,0 2,80 100332 67	646,4 223,4 385,0 2,89 111060 67	714,7 247,5 421,0 2,89 122801 75	778,5 275,8 461,0 2,82 133758 45	827,8 283,4 474,0 2,92 142233 53	923,5 327,8 553,0 2,82 158667 67	983,6 347,4 585,0 2,83 168998 79	1090,1 372,4 644,0 2,93 187289 79	1156,6 421,9 692,0 2,74 198712 89	1200,5 441,5 728,0 2,72 206254 92	1270,3 483,8 761,0 2,63 218254 105
Size Model: P Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity	A,E A,E A,E A,E A,E A,E	kW kW A W/W I/h kPa	285,5 97,4 168,0 2,93 49048 51 271,8	383,5 127,8 214,0 3,00 65887 78	453,4 158,9 263,0 2,85 77903 74	493,5 179,7 312,0 2,75 84789 47	584,0 208,6 360,0 2,80 100332 67	646,4 223,4 385,0 2,89 111060 67	714,7 247,5 421,0 2,89 122801 75	778,5 275,8 461,0 2,82 133758 45	827,8 283,4 474,0 2,92 142233 53	923,5 327,8 553,0 2,82 158667 67	983,6 347,4 585,0 2,83 168998 79	1090,1 372,4 644,0 2,93 187289 79	1156,6 421,9 692,0 2,74 198712 89	1200,5 441,5 728,0 2,72 206254 92 830,9	1270,3 483,8 761,0 2,63 218254 105
Size Model: P Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power	A,E A,E A,E A,E A,E A,E A,E	kW kW A W/W I/h kPa	285,5 97,4 168,0 2,93 49048 51 271,8 15,2	383,5 127,8 214,0 3,00 65887 78 296,0 15,2	453,4 158,9 263,0 2,85 77903 74 365,5 19,0	493,5 179,7 312,0 2,75 84789 47 371,4 19,0	584,0 208,6 360,0 2,80 100332 67 444,5 22,8	646,4 223,4 385,0 2,89 111060 67 512,7 26,7	714,7 247,5 421,0 2,89 122801 75 523,2 26,7	778,5 275,8 461,0 2,82 133758 45 530,1 26,7	827,8 283,4 474,0 2,92 142233 53 599,3 30,5	923,5 327,8 553,0 2,82 158667 67 673,3 34,3	983,6 347,4 585,0 2,83 168998 79 742,3 38,1	1090,1 372,4 644,0 2,93 187289 79 817,7 41,9	1156,6 421,9 692,0 2,74 198712 89 826,2 41,9	1200,5 441,5 728,0 2,72 206254 92 830,9 41,9	1270,3 483,8 761,0 2,63 218254 105 837,1 41,9
Model: P Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current	A,E A,E A,E A,E A,E A,E A,E A,E	kW kW A W/W I/h kPa kW kW	285,5 97,4 168,0 2,93 49048 51 271,8 15,2 26,0	383,5 127,8 214,0 3,00 65887 78 296,0 15,2 25,0	453,4 158,9 263,0 2,85 77903 74 365,5 19,0 32,0	493,5 179,7 312,0 2,75 84789 47 371,4 19,0 33,0	584,0 208,6 360,0 2,80 100332 67 444,5 22,8 39,0	646,4 223,4 385,0 2,89 111060 67 512,7 26,7 46,0	714,7 247,5 421,0 2,89 122801 75 523,2 26,7 45,0	778,5 275,8 461,0 2,82 133758 45 530,1 26,7 45,0	827,8 283,4 474,0 2,92 142233 53 599,3 30,5 51,0	923,5 327,8 553,0 2,82 158667 67 673,3 34,3 58,0	983,6 347,4 585,0 2,83 168998 79 742,3 38,1 64,0	1090,1 372,4 644,0 2,93 187289 79 817,7 41,9 72,0	1156,6 421,9 692,0 2,74 198712 89 826,2 41,9 69,0	1200,5 441,5 728,0 2,72 206254 92 830,9 41,9 69,0	1270,3 483,8 761,0 2,63 218254 105 837,1 41,9 66,0
Size Model: P Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER	A,E A,E A,E A,E A,E A,E A,E A,E A,E A,E	kW kW A W/W I/h kPa kW kW A W/W I/h kPa	285,5 97,4 168,0 2,93 49048 51 271,8 15,2 26,0 17,84 49048 80	383,5 127,8 214,0 3,00 65887 78 296,0 15,2 25,0 19,43 65887 120	453,4 158,9 263,0 2,85 77903 74 365,5 19,0 32,0 19,19 77903 127	493,5 179,7 312,0 2,75 84789 47 371,4 19,0 33,0 19,50 84789 87	584,0 208,6 360,0 2,80 100332 67 444,5 22,8 39,0 19,45	646,4 223,4 385,0 2,89 111060 67 512,7 26,7 46,0 19,23	714,7 247,5 421,0 2,89 122801 75 523,2 26,7 45,0 19,63	778,5 275,8 461,0 2,82 133758 45 530,1 26,7 45,0 19,89	827,8 283,4 474,0 2,92 142233 53 599,3 30,5 51,0 19,67	923,5 327,8 553,0 2,82 158667 67 673,3 34,3 58,0	983,6 347,4 585,0 2,83 168998 79 742,3 38,1 64,0 19,49	1090,1 372,4 644,0 2,93 187289 79 817,7 41,9 72,0 19,52	1156,6 421,9 692,0 2,74 198712 89 826,2 41,9 69,0 19,72	1200,5 441,5 728,0 2,72 206254 92 830,9 41,9 69,0 19,83	1270,3 483,8 761,0 2,63 218254 105 837,1 41,9 66,0 19,98

⁽²⁾ Acqua scambiatore lato utenza 12 °C/* °C; Aria esterna 2 °C

ENERGY INDICES (REG. 2016/2281 EU)

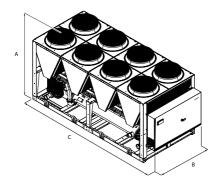
Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Model: F																	
SEPR - (EN14825: 2018) High temp	erature with stand	lard fans (1)															
SEPR	A,E	W/W	6,95	6,32	6,23	6,60	6,73	7,06	6,85	6,65	6,98	6,74	6,83	7,24	7,11	7,28	7,05
SEPR - (EN14825: 2018) High temp	erature with inver	ter fans (1)															
SEPR	A,E	W/W	6,95	6,32	6,23	6,60	6,73	7,06	6,85	6,65	6,98	6,74	6,83	7,24	7,11	7,28	7,05
(1) Calculation performed with FIXED	water flow rate.																
Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Model: P																	
SEPR - (EN14825: 2018) High temp	erature with stand	lard fans (1)															
SEPR	A,E	W/W	7,02	6,39	6,31	6,69	6,83	7,19	6,93	6,69	7,06	6,82	6,93	7,30	7,15	7,31	7,05
SEPR - (EN14825: 2018) High temp	erature with inver	ter fans (1)															
SEPR	A,E	W/W	7,02	6,39	6,31	6,69	6,83	7,19	6,93	6,69	7,06	6,82	6,93	7,30	7,15	7,31	7,05

⁽¹⁾ Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Electric data																	
Maximum current (FLA)	A,E	Α	259,9	299,9	388,4	452,7	485,9	534,4	534,4	582,4	670,9	727,4	774,9	874,2	917,2	1002,2	1036,2
Peak current (LRA)	A,E	Α	59,9	59,9	68,4	582,4	617,9	666,4	666,4	790,4	878,9	1008,4	1080,0	1180,2	1335,2	1420,2	1532,2

GENERAL TECHNICAL DATA


Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Compressor																	
Туре	A,E	type								Screw							
Compressor regulation	A,E	Туре	I	ı	-	I+0n/0ff	I+0n/0ff	I+0n/0ff	1+0n/0ff	f I+0n/0ff	I+0n/0ff	I+0n/0ff	I+0n/0ff	I+0n/0ff	1+0n/0ff	I+0n/0ff	f I+0n/0ff
Number	A,E	no.	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2
Circuits	A,E	no.	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E	type								R134a							
System side heat exchanger																	
Туре	A,E	type							S	hell and tu	be						
Number	A,E	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
System side hydraulic connections																	
Connections (in/out)	A,E	Туре							(rooved join	its						
Sizes (in/out)	A,E	Ø	5"	6"	6"	6"	6"	6"	6"	8"	8"	8"	8"	10"	10"	10"	10"
Fan																	
Туре	A,E	type								Axial							
Fan motor	A,E	type							Asynchro	onous with	phase cut						
Number	A,E	no.	8	8	10	10	12	14	14	14	16	18	20	22	22	22	22
Air flow rate	A,E	m³/h	109600	109600	137000	137000	164400	191800	191800	191800	219200	146600	274000	301400	301400	301400	301400

Sound data

Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Sound data calculated in cooling mode (1)																	
Cound a sure lavel	Α	dB(A)	98,1	99,2	99,4	99,4	99,7	100,7	100,7	101,1	101,2	101,3	101,9	103,6	103,8	103,8	103,9
Sound power level —	E	dB(A)	94,2	96,0	96,3	95,7	96,2	96,6	96,6	97,8	97,9	98,3	98,6	100,2	100,2	100,2	100,3

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Dimensions and weights	'																
A	A,E	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
C	A,E	mm	4760	4760	5950	6400	7140	8330	8330	8330	9520	10710	11900	13090	13090	13090	13090

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

TBA 1300-3350 F

Air-water chiller with free-cooling

Cooling capacity 317,2 ÷ 1223,6 kW

- · High efficiency also at partial loads
- Microchannel coil
- Low peak current (only 6 Amps!)
- Evaporator with low refrigerant charge
- Available also with R513A (XP10) refrigerant

DESCRIPTION

Air-cooled chiller designed to meet air conditioning needs in residential / commercial complexes or industrial applications.

These are outdoor units with oil free centrifugal compressor, axial fans, micro-channel coils, and shell and tube heat exchangers.

The base, the structure and the panels are made of steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to 43°C external air temperature depending on size and version. For further details refer to the selection software/technical documentation.

Units mono or dual-circuit

The units according to the size are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Oil free centrifugal compressor

Two-stage oil-free centrifugal compressor with magnetic levitation and inverter.

Compressor features:

- Operates without oil as bearings are magnetic levitation type
- Continuous load modulation by varying rpm (from 30% to 100%)
- Low peak currents (only 6 Amps!)

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode.

Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The

compressors are completely shut down, if possible, leading to considerable electrical savings.

A "P" free-cooling plus model with the oversized water battery can be chosen for applications in which a higher free-cooling performance is required.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL PCO⁵

Units include 1 control board for each circuit.

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

Further features:

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

CONFIGURATOR

Fiel	d	Description
1,2,		TBA
	6,7	Size 1300, 1350, 2300, 2325, 2350, 3300, 3320, 3340, 3350
В		Model
	F	Free-cooling
	Р	Free-cooling plus (1)
9		Heat recovery
	0	Without heat recovery
10		Version
	Α	High efficiency
	Ε	Silenced high efficiency
11		Coils / free-cooling coils
	0	Painted alluminium microchannel / Copper painted aluminium
	R	Copper-copper/Copper-copper
	S	Copper-Tinned copper / Copper -Tinned copper
	٧	Copper-painted alumimium / Copper-painted alumimium
	0	Alluminium microchannel / Copper - aluminium
12		Fans
	J	Inverter
13		Power supply
	0	400V ~ 3 50Hz with magnet circuit breakers
14,1	15	Integrated hydronic kit
	00	Without hydronic kit
		Kit with n° 1 pump
	PA	Pump A
	PB	Pump B
	PC	Pump C
	PD	Pump D
	PE	Pump E
	PF	Pump F
	PG	Pump G
	PH	Pump H
	PI	Pump I
	PJ	Pump J (2)
		Pump n° 1 pump + stand-by pump
	DA	Pump A + stand-by pump
	DB	Pump B + stand-by pump
	DC	Pump C + stand-by pump
	DD	Pump D + stand-by pump
	DE	Pump E + stand-by pump
	DF	Pump F + stand-by pump
	DG	Pump G + stand-by pump

Field		Description
	DH	Pump H + stand-by pump
	DI	Pump I + stand-by pump
	DJ	Pump J + stand-by pump (2)
		Kit with inverter pump to fixed speed
	IA	Pump A equipped with inverter device to work at fixed speed
	IB	Pump B equipped with inverter device to work at fixed speed
	IC	Pump C equipped with inverter device to work at fixed speedr
	ID	Pump D equipped with inverter device to work at fixed speed
	IE	Pump E equipped with inverter device to work at fixed speed
	IF	Pump F equipped with inverter device to work at fixed speed
	IG	Pump G equipped with inverter device to work at fixed speed
	IH	Pump H equipped with inverter device to work at fixed speed
	II	Pump I equipped with inverter device to work at fixed speed
	IJ	Pump J equipped with inverter device to work at fixed speed (2)
		Kit with n°1 pump + stand-by pump both equipped wih inverter device to work at
		fixed speed
	JA	Pump A+stand-by pump, both equipped with inverter to work at fixed speed
	JB	Pump B+stand-by pump, both equipped with inverter to work at fixed speed
	JC	Pump C+stand-by pump, both equipped with inverter to work at fixed speed
	JD	Pump D+stand-by pump, both equipped with inverter to work at fixed speed
	JE	Pump E+stand-by pump, both equipped with inverter to work at fixed speed
	JF	Pump F+stand-by pump, both equipped with inverter to work at fixed speed
	JG	Pump G+stand-by pump, both equipped with inverter to work at fixed speed
	JH	Pump H+stand-by pump, both equipped with inverter to work at fixed speed
	JI	Pump I+stand-by pump, both equipped with inverter to work at fixed speed
	JJ	Pump J+stand-by pump, both equipped with inverter to work at fixed speed (2)
		Kit with double pump both equipped with inverter device to work at fixed speed
	KF	Doble pump F with inverter device to work at fixed speed
	KG	Doble pump G with inverter device to work at fixed speed
	KH	Doble pump H with inverter device to work at fixed speed
	KI	Doble pump I with inverter device to work at fixed speed
	KJ	Doble pump J with inverter device to work at fixed speed (2)
		Kit with double pumps
	TF	Double pump F
	TG	Double pump G
	TH	Double pump H
	TI	Double pump I
	TJ	Double pump J (2)
16		Refrigerant gas
	G	R513A (XP10)
	0	R134a

 ⁽¹⁾ The Free-Cooling Plus "P" models are only compatible with "O" ed "O"
 (2) For all configurations including pump J please contact the factory.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save

a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

GP_T: Anti-intrusion grid kit

ACCESSORIES COMPATIBILITY

Model	Ver	1300	1350	2300	2325	2350	3300	3320	3340	3350
AER485P1	A,E	•	•	•		•	•		•	•
AER485P1 x no. 2	A,E									
AERBACP	A,E	•	•	•		•	•		•	•
AERBACP x no. 2	A,E							•		
AERNET	A,E	•								•
MULTICHILLER-EVO	A,E	•								•

Antivibration

Alltiviblation									
Ver	1300	1350	2300	2325	2350	3300	3320	3340	3350
A, E	AVX. (1)								

⁽¹⁾ Contact us.

Anti-intrusion grid

Ver	1300	1350	2300	2325	2350	3300	3320	3340	3350
A, E	GP3T	GP4T	GP6T	GP7T	GP8T	GP9T	GP10T	GP11T	GP11T

A grey background indicates the accessory must be assembled in the factory

PERFORMANCE SPECIFICATIONS

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350
Model: F											
Cooling performance chiller operation (1)										
Cooling capacity	A,E	kW	317,2	419,2	634,5	736,4	838,4	934,7	1065,0	1149,0	1223,6
Input power	A,E	kW	91,6	121,8	182,8	214,3	244,4	267,3	311,2	337,8	365,9
Cooling total input current	A,E	A	147,5	198,3	295,0	345,8	396,7	427,5	498,3	559,2	604,2
EER	A,E	W/W	3,46	3,44	3,47	3,44	3,43	3,50	3,42	3,40	3,34
Water flow rate system side	A,E	l/h	54505	72025	109011	126530	144050	160596	182983	197414	210235
Pressure drop system side	A,E	kPa	65	32	70	54	45	69	72	66	52
Cooling performances with free-cooling	(2)										
Cooling capacity	A,E	kW	297,2	395,5	594,4	692,7	791,1	888,3	994,1	1085,0	1100,1
Input power	A,E	kW	11,3	15,0	22,5	26,3	30,0	33,8	37,5	41,3	41,3
Free cooling total input current	A,E	A	17,5	23,3	35,0	40,8	46,7	52,5	58,3	64,2	64,2
EER	A,E	W/W	26,41	26,36	26,41	26,38	26,36	26,31	26,50	26,30	26,66
Water flow rate system side	A,E	l/h	54505	72025	109011	126530	144050	160596	182983	197414	210235
Pressure drop system side	A,E	kPa	118	78	130	103	99	127	138	117	109

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C/* °C; Aria esterna 2 °C

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350
Model: P											
Cooling performance chiller operation	n (1)										
Cooling capacity	A,E	kW	317,2	419,2	634,5	736,4	838,4	934,7	1065,0	1149,0	1206,6
Input power	A,E	kW	93,1	123,9	185,8	217,9	248,6	271,6	316,4	343,6	366,0
Cooling total input current	A,E	A	147,9	198,8	295,7	346,7	397,6	428,6	499,6	560,5	605,5
EER	A,E	W/W	3,41	3,38	3,42	3,38	3,37	3,44	3,37	3,34	3,30
Water flow rate system side	A,E	I/h	54505	72025	109011	126530	144050	160596	182983	197414	207315
Pressure drop system side	A,E	kPa	65	32	70	54	45	69	72	66	50
Cooling performances with free-cool	ing (2)										
Cooling capacity	A,E	kW	319,4	425,1	638,8	744,5	850,2	954,8	1068,2	1166,2	1181,8
Input power	A,E	kW	11,5	15,3	23,0	26,8	30,7	34,5	38,4	42,2	42,2
Free cooling total input current	A,E	A	17,9	18,8	35,7	36,7	37,6	53,6	44,6	65,5	80,5
EER	A,E	W/W	27,76	27,71	27,76	27,73	27,71	27,66	27,85	27,64	28,01
Water flow rate system side	A,E	I/h	54505	72025	109011	126530	144050	160596	182983	197414	207315
Pressure drop system side	A,E	kPa	114	74	126	99	95	123	134	113	102

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C / * °C; Aria esterna 2 °C

Size

ENERGY INDICES (REG. 2016/2281 EU)

Model: F	'										
SEER - (EN14825:2018) 12/7 witl	h inverter fans (1)										
SEER	A,E	W/W	5,06	5,14	5,21	5,17	5,30	5,40	5,32	5,26	5,23
Seasonal efficiency	A,E	%	199,3%	202,7%	205,5%	203,6%	208,8%	212,8%	209,6%	207,2%	206,1%
SEPR - (EN14825: 2018) High ter	nperature with inverte	r fans (2)									
SEPR	A,E	W/W	8,65	8,51	8,79	8,32	8,53	9,04	9,34	8,89	8,58
(2) Calculation performed with FIX Size	teo mater now late.		1300	1350	2300	2325	2350	3300	3320	3340	3350
Model: P	1										
SEER - (EN14825:2018) 12/7 witl	h inverter fans (1)										
SEER	A,E	W/W	4,98	5,06	5,14	5,09	5,21	5,32	5,11	5,18	5,17
Seasonal efficiency	A,E	%	196,3%	199,4%	202,5%	200,4%	205,5%	209,7%	201,2%	204,0%	203,7%
SEPR - (EN14825: 2018) High ter	nperature with inverte	r fans (2)									
SEPR	A.E	W/W	8.91	8.45	8.88	8.53	8.65	9.18	8.99	9.06	8.81

2300

2325

2350

3300

3320

3340

3350

1300

1350

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

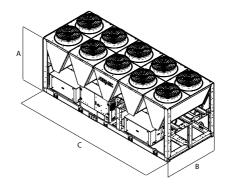
Size			1300	1350	2300	2325	2350	3300	3320	3340	3350
Electric data											
Maximum current (FLA)	A,E	Α	165,0	249,0	329,0	413,0	498,0	493,0	577,0	737,0	737,0
Peak current (LRA)	A,E	A	36,0	45,0	210,0	305,0	315,0	384,0	479,0	575,0	575,0

GENERAL TECHNICAL DATA

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350
Compressor											
Туре	A,E	type					Centrifugal				
Compressor regulation	A,E	Туре					Inverter				
Number	A,E	no.	1	1	2	2	2	3	3	3	3
Circuits	A,E	no.	1	1	1	2	1	1	2	1	1
Refrigerant	A,E	type					R134a				
Refrigerant charge (1)	A,E	kg	81,5	165,7	163,0	253,8	295,8	275,2	317,2	327,9	397,9
System side heat exchanger											
Туре	A,E	type					Shell and tube				
Number	A,E	no.	1	1	1	1	1	1	1	1	1
Hydraulic connections											
Connections (in/out)	A,E	Туре					Grooved joints				
Size (in)	A,E	Ø	3″	4"	4"	5"	5"	5"	5"	6"	6"
Size (out)	A,E	Ø	3″	4"	4"	5"	5"	5"	5"	6"	6"
Sound data calculated in cooling mo	ode (2)										
Cound mouse lavel	Α	dB(A)	88,3	90,0	91,3	92,8	93,1	93,1	94,1	95,5	95,5
Sound power level	E	dB(A)	82,3	84,0	85,3	86,8	87,1	87,1	88,1	89,5	89,5
Cound account level (10 m)	A	dB(A)	56,1	57,6	58,7	60,0	60,2	60,1	61,0	62,3	62,3
Sound pressure level (10 m)	E	dB(A)	50,1	51,6	52,7	54,0	54,2	54,1	55,0	56,3	56,3

General data - fans (F model)

	,										
Size			1300	1350	2300	2325	2350	3300	3320	3340	3350
Fan											
Туре	A,E	type					Axial				
Fan motor	A,E	type					Inverter				
Number	A,E	no.	6	8	12	14	16	18	20	22	22
Air flow rate	A,E	m³/h	93180	124240	186360	217420	248480	279540	310600	341660	341660


General data - fans (P model)

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350
Fan											
Type	A,E	type					Axial				
Fan motor	A,E	type					Inverter				
Number	A,E	no.	6	8	12	14	16	18	20	22	22
Air flow rate	A,E	m³/h	88680	118240	177360	206920	236480	266040	295600	325160	325160

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350
Integrated hydronic kit	:: 00, DA, DB, D	C, DD, DE,	DF, DG, DH,	DI, DJ, IA,	IB, IC, ID,	IE, IF, IG, II	I, II, IJ, JA, .	IB, JC, JD, .	JE, JF, JG, J	H, JI, JJ, KI	F, KG, KH,
KI, KJ, PA, PB, PC, PD, PI	E, PF, PG, PH, P	I, PJ, TF, TC	5, TH, TI, TJ								
Dimensions and weights											
A	A,E	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200
(A,E	mm	3570	4760	7140	8330	9520	10710	11900	13090	13090
Model F											
Size			1300	1350	2300	2325	2350	3300	3320	3340	3350
Integrated hydronic kit	:: 00										
Weights											
Emptywaight	A	kg	3290	4330	5860	7050	8020	8490	9820	10310	10670
Empty weight	E	kg	3370	4440	6030	7250	8240	8740	10100	10610	10970
Weight functioning	А	kg	3570	4720	6380	7680	8790	9270	10720	11270	11710
Weight functioning	E	kg	3650	4830	6550	7880	9010	9520	11000	11570	12010
Model P											
Size			1300	1350	2300	2325	2350	3300	3320	3340	3350
Integrated hydronic kit	:: 00										
Weights											
Emptyweight	A	kg	3380	4460	6050	7270	8270	8780	10140	10650	11020
Empty weight	E	kg	3470	4570	6220	7470	8490	9020	10410	10960	11320
Wainha firm sain m	A	kg	3700	4910	6650	8000	9150	9680	11180	11760	12220
Weight functioning	E	ka	3790	5020	6820	8200	9370	9920	11450	12070	12520

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

TBG 1230-4310 F

Air-water chiller with free-cooling

Cooling capacity 238 ÷ 1110 kW

- HFO R1234ze refrigerant gas
- · High efficiency also at partial loads
- Microchannel coil
- Low peak current (only 6 Amps!)
- Evaporator with low refrigerant charge

DESCRIPTION

Air-cooled chiller designed to meet air conditioning needs in residential / commercial complexes or industrial applications.

These are outdoor units with oil free centrifugal compressor, axial fans, micro-channel coils, and shell and tube heat exchangers.

The base, the structure and the panels are made of steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to 43°C external air temperature depending on size and version. For further details refer to the selection software/technical documentation.

Units mono or dual-circuit

The units according to the size are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Oil free centrifugal compressor

Two-stage oil-free centrifugal compressor with magnetic levitation and inverter.

Compressor features:

- Operates without oil as bearings are magnetic levitation type
- $-\!\!\!-$ Continuous load modulation by varying rpm (from 30% to 100%)
- Low peak currents (only 6 Amps!)

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode.

Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The

compressors are completely shut down, if possible, leading to considerable electrical savings.

A "P" free-cooling plus model with the oversized water battery can be chosen for applications in which a higher free-cooling performance is required.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations, to obtain a solution that allows you to save money and to facilitate installation.

HFO R1234ze refrigerant gas

HFO R1234ze is a mixture featuring:

da ODP = 0 e GWP (Global Warming Potential) = 7, R134a GWP = 1430; with thermodynamic properties that guarantee and sometimes improve efficiencies achieved with HFC refrigerants.

CONTROL PCO⁵

Units include 1 control board for each circuit.

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

Further features:

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

CONFIGURATOR

CU	NFI	GURATOR
<u>Fiel</u>	d	Description
1,2,	,3	TBG
4,5,	,6,7	Size 1230, 1310, 2230, 2270, 2310, 3270, 3280, 3310, 4270, 4310
8		Model
	F	Free-cooling
	Р	Free-cooling plus (1)
9		Heat recovery
	0	Without heat recovery
10		Version
	Α	High efficiency
	Ε	Silenced high efficiency
11		Coils / free-cooling coils
	0	Painted alluminium microchannel / Copper painted aluminium
	R	Copper-copper/Copper-copper
	S	Copper-Tinned copper / Copper -Tinned copper
	٧	Copper-painted alumimium / Copper-painted alumimium
	0	Alluminium microchannel / Copper - aluminium
12		Fans
	J	Inverter
13		Power supply
	0	400V ~ 3 50Hz with magnet circuit breakers
14,	15	Integrated hydronic kit
	00	Without hydronic kit
		Kit with n° 1 pump
	PA	Pump A
	PB	Pump B
	PC	Pump C
	PD	Pump D
	PE	Pump E
	PF	Pump F
	PG	Pump G
	PH	Pump H
	PI	Pump I
	PJ	Pump J (2)
		Pump n° 1 pump + stand-by pump
	DA	Pump A + stand-by pump
	DB	Pump B + stand-by pump
	DC	Pump C + stand-by pump
	DD	Pump D + stand-by pump
	DE	Pump E + stand-by pump
	DF	Pump F + stand-by pump

Field	Description
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump (2)
	Kit with inverter pump to fixed speed
IA	Pump A equipped with inverter device to work at fixed speed
IB	Pump B equipped with inverter device to work at fixed speed
IC	Pump C equipped with inverter device to work at fixed speedr
ID	Pump D equipped with inverter device to work at fixed speed
IE	Pump E equipped with inverter device to work at fixed speed
IF	Pump F equipped with inverter device to work at fixed speed
IG	Pump G equipped with inverter device to work at fixed speed
IH	Pump H equipped with inverter device to work at fixed speed
II	Pump I equipped with inverter device to work at fixed speed
IJ	Pump J equipped with inverter device to work at fixed speed (2)
	Kit with n°1 pump + stand-by pump both equipped wih inverter device to work at
	fixed speed
JA	Pump A+stand-by pump, both equipped with inverter to work at fixed speed
JB	Pump B+stand-by pump, both equipped with inverter to work at fixed speed
JC	Pump C+stand-by pump, both equipped with inverter to work at fixed speed
JD	Pump D+stand-by pump, both equipped with inverter to work at fixed speed
JE	Pump E+stand-by pump, both equipped with inverter to work at fixed speed
JF	Pump F+stand-by pump, both equipped with inverter to work at fixed speed
JG	Pump G+stand-by pump, both equipped with inverter to work at fixed speed
JH	Pump H+stand-by pump, both equipped with inverter to work at fixed speed
JI	Pump I+stand-by pump, both equipped with inverter to work at fixed speed
JJ	Pump J+stand-by pump, both equipped with inverter to work at fixed speed (2)
	Kit with double pump both equipped with inverter device to work at fixed speed
KF	Doble pump F with inverter device to work at fixed speed
KG	Doble pump G with inverter device to work at fixed speed
KH	Doble pump H with inverter device to work at fixed speed
KI	Doble pump I with inverter device to work at fixed speed
KJ	Doble pump J with inverter device to work at fixed speed (2)
	Kit with double pumps
TF	Double pump F
TG	Double pump G
TH	Double pump H
TI	Double pump I
TJ	Double pump J (2)

⁽¹⁾ The Free-Cooling Plus "P" models are only compatible with"°" ed "O" (2) For all configurations including pump J please contact the factory.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

GP_T: Anti-intrusion grid kit

ACCESSORIES COMPATIBILITY

Model	Ver	1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
AER485P1	A,E	•	•	•		•		•	•		
AER485P1 x no. 2	A,E				•		•			•	•
AERBACP	A,E	•	•	•		•		•	•		
AERBACP x no. 2	A,E						•			•	•
AERNET	A.E		•						•		

Antivibration

Ver	1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Integrated hydronic kit: 00, DA, DB, DC	, DD, DE, DF, DG, DH	, DI, DJ, IA, IB, IC	, ID, IE, IF, IG, IH,	II, IJ, JA, JB, JC, JI	D, JE, JF, JG, JH, JI,	, JJ, KF, KG, KH, KI		PD, PE, PF, PG, PH	, PI, PJ, TF, TG, TI	I, TI, TJ
A. E	AVX591	AVX. (1)	AVX1187	AVX. (1)	AVX. (1)	AVX. (1)	AVX. (1)	AVX. (1)	AVX. (1)	AVX. (1)

(1) Contact us.

Anti-intrusion grid

Ver	1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
A, E	GP3T	GP4T	GP5T	GP6T	GP7T	GP8T	GP9T	GP10T	GP11T	GP11T

A grey background indicates the accessory must be assembled in the factory

PERFORMANCE SPECIFICATIONS

Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Model: F												
Cooling performance chiller operation	(1)											
Cooling capacity	A,E	kW	237,9	328,6	453,2	526,8	623,2	730,8	798,8	907,5	1019,7	1110,3
Input power	A,E	kW	68,6	95,3	130,6	153,1	181,1	211,4	231,7	260,0	294,0	328,1
Cooling total input current	A,E	Α	112,5	158,3	214,2	255,0	300,8	346,7	387,5	433,3	489,2	549,2
EER	A,E	W/W	3,47	3,45	3,47	3,44	3,44	3,46	3,45	3,49	3,47	3,38
Water flow rate system side	A,E	I/h	40879	56452	77865	90518	107064	125557	137237	155924	175196	190769
Pressure drop system side	A,E	kPa	48	51	45	54	50	55	54	63	46	56
Cooling performances with free-coolir	ng (2)											
Cooling capacity	A,E	kW	275,5	371,6	478,0	568,6	665,9	766,4	855,5	956,3	1057,8	1079,5
Input power	A,E	kW	11,3	15,0	18,8	22,5	26,3	30,0	33,8	37,5	41,3	41,3
Free cooling total input current	A,E	A	17,5	23,3	29,2	35,0	40,8	46,7	52,5	58,3	64,2	64,2
EER	A,E	W/W	24,49	24,77	25,49	25,27	25,36	25,54	25,34	25,50	25,64	26,16
Water flow rate system side	A,E	l/h	40879	56452	77865	90518	107064	125557	137237	155924	175196	190769
Pressure drop system side	A,E	kPa	81	93	86	97	87	97	98	113	88	105

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C / * °C; Aria esterna 2 °C

Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Model: P												
Cooling performance chiller operatio	n (1)											
Cooling capacity	A,E	kW	237,9	328,6	453,2	526,8	623,1	730,8	798,8	907,5	1019,7	1110,3
Input power	A,E	kW	69,6	96,9	132,6	155,8	184,3	214,7	235,6	265,7	296,9	337,7
Cooling total input current	A,E	А	112,5	158,3	214,2	255,0	300,8	346,7	387,5	433,3	489,2	549,2
EER	A,E	W/W	3,42	3,39	3,42	3,38	3,38	3,40	3,39	3,42	3,43	3,29
Water flow rate system side	A,E	l/h	40879	56452	77865	90518	107064	125557	137237	155924	175196	190769
Pressure drop system side	A,E	kPa	48	51	45	54	50	55	54	63	46	56
Cooling performances with free-cool	ing (2)											
Cooling capacity	A,E	kW	295,4	398,2	514,2	610,9	714,2	823,8	919,0	1029,7	1136,1	1160,9
Input power	A,E	kW	11,5	15,4	19,2	23,0	26,9	30,7	34,5	38,3	42,2	42,2
Free cooling total input current	A,E	A	17,5	23,3	29,2	35,0	40,8	46,7	52,5	58,3	64,2	64,2
EER	A,E	W/W	25,70	25,90	26,80	26,50	26,60	26,90	26,60	26,90	26,90	27,50
Water flow rate system side	A,E	I/h	40879	56452	77864	90517	107064	125557	137236	155924	175196	190768
Pressure drop system side	A.E	kPa	78	91	83	94	84	94	95	110	84	101

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) Acqua scambiatore lato utenza 12 °C/* °C; Aria esterna 2 °C

ENERGY INDICES (REG. 2016/2281 EU)

Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Model: F												
SEER - (EN14825:2018) 12/7 with	inverter fans (1)											
SEER	A,E	W/W	5,40	5,47	5,72	5,35	5,72	5,53	5,64	5,67	5,66	5,49
Seasonal efficiency	A,E	%	213,1%	215,7%	225,9%	210,9%	225,8%	218,0%	222,6%	223,7%	223,4%	216,4%
SEPR - (EN14825: 2018) High tem	perature with inverte	r fans (2)										
SEPR	A,E	W/W	9,45	9,36	9,37	8,49	9,15	9,31	9,45	9,50	9,47	9,13
(1) Calculation performed with FIXE	D water flow rate and V	ARIARI F outlet	temperature									

(2) Calculation performed with FIXED water flow rate.

Size		
JILC		

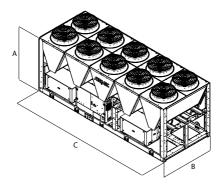
		1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
er fans (1)											
A,E	W/W	5,33	5,58	5,65	5,27	5,63	5,45	5,56	5,56	5,63	5,34
A,E	%	210,3%	220,0%	222,8%	207,6%	222,2%	214,9%	219,2%	219,3%	222,3%	210,7%
re with inverte	r fans (2)										
A,E	W/W	9,36	9,24	9,27	8,55	9,21	9,34	9,35	9,35	9,43	8,93
	A,E A,E ure with inverte	A,E W/W A,E % ure with inverter fans (2)	er fans (1) A,E W/W 5,33 A,E % 210,3% are with inverter fans (2)	er fans (1) A,E W/W 5,33 5,58 A,E % 210,3% 220,0% are with inverter fans (2)	er fans (1) A,E W/W 5,33 5,58 5,65 A,E % 210,3% 220,0% 222,8% are with inverter fans (2)	er fans (1) A,E W/W 5,33 5,58 5,65 5,27 A,E % 210,3% 220,0% 222,8% 207,6% are with inverter fans (2)	er fans (1) A,E W/W 5,33 5,58 5,65 5,27 5,63 A,E % 210,3% 220,0% 222,8% 207,6% 222,2% are with inverter fans (2)	er fans (1) A,E W/W 5,33 5,58 5,65 5,27 5,63 5,45 A,E % 210,3% 220,0% 222,8% 207,6% 222,2% 214,9% are with inverter fans (2)	er fans (1) A,E W/W 5,33 5,58 5,65 5,27 5,63 5,45 5,56 A,E % 210,3% 220,0% 222,8% 207,6% 222,2% 214,9% 219,2% are with inverter fans (2)	er fans (1) A,E W/W 5,33 5,58 5,65 5,27 5,63 5,45 5,56 5,56 A,E % 210,3% 220,0% 222,8% 207,6% 222,2% 214,9% 219,2% 219,3% are with inverter fans (2)	er fans (1) A,E W/W 5,33 5,58 5,65 5,27 5,63 5,45 5,56 5,56 5,63 A,E % 210,3% 220,0% 222,8% 207,6% 222,2% 214,9% 219,2% 219,3% 222,3% are with inverter fans (2)

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Electric data												
Maximum current (FLA)	A,E	Α	125,0	189,0	239,0	304,0	368,0	418,0	538,0	547,0	597,0	707,0
Peak current (LRA)	A,E	A	36,0	45,0	161,0	230,0	239,0	355,0	424,0	433,0	549,0	608,0

GENERAL TECHNICAL DATA


Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Compressor												
Туре	A,E	type					Centr	rifugal				
Compressor regulation	A,E	Туре					Inv	erter				
Number	A,E	no.	1	1	2	2	2	3	3	3	4	4
Circuits	A,E	no.	1	1	1	2	1	2	1	1	2	2
Refrigerant	A,E	type					R12	34ze				
Refrigerant charge (1)	A,E	kg	81,5	120,1	152,3	187,1	197,8	264,5	275,2	285,9	327,9	327,9
System side heat exchanger												
Туре	A,E	type					Shell a	nd tube				
Number	A,E	no.	1	1	1	1	1	1	1	1	1	1
Hydraulic connections												
Connections (in/out)	A,E	Туре					Groove	ed joints				
Size (in)	A,E	Ø	3"	3"	4"	4"	5"	5"	5"	5"	6"	6"
Size (out)	A,E	Ø	3"	3"	4"	4"	5"	5"	5"	5"	6"	6"
Sound data calculated in cooling mode (2)											
Cound nowar lovel	A	dB(A)	86,3	88,9	88,8	90,5	91,7	91,6	93,1	93,3	93,3	94,2
Sound power level	E	dB(A)	83,3	85,9	85,8	87,5	88,7	88,6	90,1	90,3	90,3	91,2
Count	A	dB(A)	54,1	56,5	56,3	57,9	58,9	58,7	60,1	60,2	60,1	61,0
Sound pressure level (10 m)	E	dB(A)	51,1	53,5	53,3	54,9	55,9	55,7	57,1	57,2	57,1	58,0

General data - fans

Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Model: F												
Inverter fan												
Туре	A,E	type					A	rial				
Fan motor	A,E	type					Inve	erter				
Number	A,E	no.	6	8	10	12	14	16	18	20	22	22
Air flow rate	A,E	m³/h	93150	124200	155250	186300	217350	248400	279450	310500	341550	341550
Size	,		1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Model: P												
Inverter fan												
Туре	A,E	type					A	rial				
Fan motor	A,E	type	Inverter									
Number	A,E	no.	6	8	10	12	14	16	18	20	22	22
Air flow rate	A.E	m³/h	88800	118400	148000	177600	207200	236800	266400	296000	325600	325600

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Integrated hydronic ki	t: 00, DA, DB, D	C, DD, DE,	DF, DG, D	H, DI, DJ,	IA, IB, IC,	ID, IE, IF,	IG, IH, II, I	J, JA, JB, .	IC, JD, JE,	JF, JG, JH,	, JI, JJ, KF,	KG, KH,
KI, KJ, PA, PB, PC, PD, F	PE, PF, PG, PH, P	I, PJ, TF, T	G, TH, TI, 1	[]								
Dimensions and weights	,											
A	A,E	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
(A,E	mm	3570	4760	5950	7140	8330	9520	10710	11900	13090	13090
Model F												
Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Integrated hydronic ki	t: 00											
Weights												
[masternations]	A	kg	3250	4110	5220	6180	6770	8130	8720	9400	10960	11220
Empty weight	E	kg	3330	4220	5360	6350	6960	8350	8960	9670	11270	11520
Wainha firmationing	A	kg	3510	4450	5630	6700	7360	8820	9500	10250	11920	12190
Weight functioning	E	kg	3590	4560	5770	6870	7550	9040	9740	10520	12230	12490
Model P												
Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Integrated hydronic ki	t: 00											
Weights												-
Emptyweight	A	kg	3340	4240	5380	6370	6990	8380	9000	9710	11310	11570
Empty weight	E	kg	3430	4350	5520	6540	7180	8600	9250	9990	11610	11870
Mainha Gunationina	A	kg	3640	4640	5860	6970	7680	9180	9900	10700	12420	12690
Weight functioning	E	kg	3730	4750	6000	7140	7870	9400	10150	10980	12720	12990

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

WATER / WATER CHILLERS AND HEAT PUMPS

Aermec plant engineering really comes into its own in the field of machines and technology for centralised systems. Aermec offer a full range of chillers and heat pumps from the small domestic system up to that of the large size for the service industry.

The cooling capacity range is extremely wide, and the fittings solutions are equally diverse, for scroll, screw or centrifugal compressor applications.

The careful selection of materials and the close attention paid to every detail of assembly coupled with the huge selection of accessories complete the industry-leading products designed for use in this sector, making Aermec units a real "must" in the world of Italian and European climate control.

	WATER / WATE	R CHILLERS AND HEAT PUMPS	Air flow rate (m3/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Page
	Units with scroll compr	essors				
	VENICE-H	Reversible water-cooled heat pump, gas side	-	6,9-,9,7	8,3-11,7	720
	WRL 026H-161H	Reversible water-cooled heat pump, gas side		6,0-40,0	8,0-48,0	723
	WRL 026-161	Water cooled heat pump reversible water side	-	6,6-44,2	7,5-48,0	730
	WRL 180H-650H	Reversible water-cooled heat pump, gas side	-	44,9-157,4	53,0-183,3	736
	WRL 180-650	Water cooled heat pump reversible water side		49,0-174,0	55,0-192,0	740
	WRK	Reversible water-cooled heat pump, gas side		38,9-165,9	48,5-207,7	745
	WWB 0300-0900	Water-water heat pumps only	-	-	56,7-265,9	753
new	WWBG	Water-water heat pumps only	-	-	77,2-,138,2	758
	WWM	Water cooled heat pump reversible water side		96	110	763
	NXW 0503-1654	Water cooled heat pump reversible water side	-	111-511	127-582	769
	NXW 0503H - 1654H	Reversible water-cooled heat pump, gas side	-	106-477	125-565	774
new	NGW-0500-2600	Water cooled heat pump reversible water side		116,3-790,2	131,3-904,6	779
new	NGW-0350H-2600H	Reversible water-cooled heat pump, gas side	-	107,0-746,4	126,3-879,3	784
	Units with screw comp	ressors				
	WS 0601-2802	Water cooled heat pump reversible water side	-	147-700	164-778	790
	HWS 0601 - 2802	Water cooled heat pump reversible water side	-	147-369	165-778	794
	HWSG	Water cooled heat pump reversible water side	-	110-396	122-595	799
	WSH	Reversible water-cooled heat pump, gas side	-	165,8-269,7	183,3-300,3	803
	WFGI	Water cooled heat pump reversible water side	-	217-1765	243-1960	807
	WFGN	Water cooled heat pump reversible water side	-	136-1727	153-1921	817
	WFI	Water cooled heat pump reversible water side		291-2406	326-2664	824
	WFN	Water cooled heat pump reversible water side		182-2349	205-2610	833
	Units with centrifugal o	compressors				
	WMX	Water/water chiller (with R134a)	-	280,1-324,2	-	841
	WMG	Water/water chiller (with R1234ze)	-	282,3-312,4	-	844
	WTX	Water/water chiller	-	222,9-1958,4	-	847
	WTG	Water/water chiller (with R1234ze)	-	246,6-1959,4	-	852

VENICE-H

- Compact dimensions
- · Quick & easy installation

Reversible water-cooled heat pump, gas side

Cooling capacity 6,9 ÷ 9,7 kW Heating capacity 8,3 ÷ 11,7 kW

DESCRIPTION

The water-cooled heat pumps are reversible units for the production of chilled and hot water. They are indoor units with scroll compressors, system side heat exchangers and a plate source, which fully meet the needs of the residential market: reduced size, easy installation, low noise levels.

FEATURES

- Cycle reversal on refrigerant circuit
- All versions are equipped with circulation pump, water tank, water filter and safety valve
- Complies with safety (EC) directive
- Differential pressure switch on the external circuit standard on heat
 numps
- Flow-switch supplied in series only on the DHW side exchanger.
- Microprocessor control

- Control panel
- Plate heat exchanger
- Compact dimensions
- $-\!\!\!-\!\!\!\!-$ Metallic protective cabinet with rust proofing polyester paint RAL 9003
- Protection rating IP 24

ACCESSORIES

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

VPH: Pressure switch valve with bypass solenoid valve, during cooling mode operation the bypass valve is closed so the water flows exclusively through the circuit with the pressure switch. During heating mode operation the water flows through both branches of the circuit.

VT: Anti-vibration supports.

ACCESSORIES COMPATIBILITY

Accessory	VENICE 20H	VENICE 30H
PR3	•	•
Pressure switch valve		
Accessory	VENICE 20H	VENICE 30H
VPH10	•	
VPH11		
Antivibration		
Accessory	VENICE 20H	VENICE 30H
VT7	•	•

720 www.aermec.com VENICE-20-30-HP_Y_UN50_06

PERFORMANCE SPECIFICATIONS

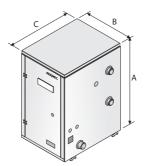
		VENICE 20H	VENICE 30H
Cooling performance 12 °C / 7 °C (1)			
Cooling capacity	kW	6,9	9,7
Input power	kW	1,9	2,6
Cooling total input current	A	9,0	13,0
EER	W/W	3,62	3,72
Water flow rate system side	l/h	1185	1667
Useful head system side	kPa	63	59
Water flow rate source side	l/h	1495	2095
Pressure drop source side	kPa	18	12
Heating performance 40 °C / 45 °C (2)			
Heating capacity	kW	8,3	11,7
Input power	kW	2,3	3,2
Heating total input current	A	12,0	16,0
COP	W/W	3,66	3,70
Water flow rate system side	l/h	1450	2027
Useful head system side	kPa	48	41
Water flow rate source side	l/h	1791	2505
Pressure drop source side	kPa	25	17

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

ENERGY INDICES (REG. 2016/2281 EU)

		VENICE 20H	VENICE 30H
SEER - 12/7 (EN14825: 2018) (1)			
SEER	W/W	3,66	4,02
Seasonal efficiency	%	143,4	157,8
UE 811/2013 performance in average	ambient conditions (average) - 35 °C - Pdo	esignh ≤ 70 kW (2)	
Pdesignh	kW	11	16
SCOP	W/W	4,20	4,33
ηsh	%	160,00	165,00
Efficiency energy class		A++	A++

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature. (2) Efficiencies for low temperature applications (35 $^{\circ}\text{C})$


ELECTRIC DATA

		VENICE 20H	VENICE 30H
Power supply			
Power supply		230V~50Hz	230V~50Hz
Electric data			
Maximum current (FLA)	A	15,0	24,0
Peak current (LRA)	A	61,0	100,0

GENERAL TECHNICAL DATA

		VENICE 20H	VENICE 30H
Compressor			
Туре	type	Scroll	Scroll
Number	no.	1	1
Circuits	no.	1	1
Refrigerant	type	R407C	R407C
System side heat exchanger			
Туре	type	Brazed plate	Brazed plate
Number	no.	1	1
Connections (in/out)	Туре	Gas M	Gas M
Sizes (in/out)	Ø	1"	1"
Source side heat exchanger			
Туре	type	Brazed plate	Brazed plate
Number	no.	1	1
Connections (in/out)	Туре	Gas M	Gas M
Sizes (in/out)	Ø	1"	1"
Sound data			
Sound power level	dB(A)	56,0	57,0
Sound pressure level	dB(A)	48,0	49,0

DIMENSIONS

		VENICE 20H	VENICE 30H
Dimensions and weights			
A	mm	625	625
В	mm	404	404
С	mm	504	504
Empty weight	kg	103	109

WRL 026H - 161H

Reversible water-cooled heat pump, gas side

Cooling capacity 6 ÷ 40 kW Heating capacity 8 ÷ 48 kW

- High efficiency
- Production of hot water up to 60 °C
- Production of domestic hot water priority
- Suitable for geothermal applications

DESCRIPTION

Water-water offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications. Indoor units with hermetic scroll compressors and plate heat exchangers. In the configuration with desuperheater, it is also possible to produce free-hot water.

The technological choices made, always oriented to the highest quality, ensure very easy installation. In fact the electrical and hydraulic connections are all located in the upper part of the unit, facilitating the installation and maintenance operations and also reducing the technical gaps and their position in as little space as possible.

VERSIONS

° Without storage tank **A** With storage tank

FEATURES

Operating field

Operation at full power with domestic hot water for the system up to 60 °C. (for more information, refer to the technical documentation).

Plug and play

All the units are equipped with scroll compressors and plate heat exchangers; the base and panelling are made of steel treated with RAL 9003 polyester paints.

The electric and hydraulic connections are all located on the upper part of the unit facilitating installation and maintenance. This allows reduced plant room space and installation in the smallest space possible.

The heat pump can be supplied with all the components required for its installation in new systems and to replace other heat generators. It can be combined with low temperature emission systems such as floor heating or fan coils, but also with conventional radiators.

Version with Integrated hydronic kit

The standard unit is supplied with a water filter, differential pressure switch and safety valve already installed on the service and source side (and also on the recovery side, if present).

To obtain a solution that offers economic savings and facilitates installation, these units can be configured with an integrated hydronic kit on both hydraulic sides (service and source).

Low-head and high-head pumps are available, along with a modulating 2-way valve that can only be applied on the source side to reduce consumption in applications with groundwater.

CONTROL MPC

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

KSAE: External air sensor.

PGD1: Allows you to control the unit at a distance.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

SSM: Probe to be used with the mixer valve in applications with radiant panels. The probe requires the VMF-CRP area accessory as well.

TAH: Ambient terminal with temperature and humidity probe - 230V AC flush-mounting model that can command an On-Off valve or a zone pump and dehumidifier consent.

TAT: Ambient terminal with temperature probe - 230V AC flush-mounting model that can command an On-Off valve or a zone pump.

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with the VMF-E6 panel, the VMF-CRP modules will be able to manage heat recovery units, RAS, boiler, sanitary management, I/O control, pumps.

VPHL: Pressure switch valve with bypass solenoid valve, during cooling mode operation the bypass valve is closed so the water flows exclusively

through the circuit with the pressure switch. During heating mode operation the water flows through both branches of the circuit.

ACCESSORIES COMPATIBILITY

Model	026	031	041	051	071	081	101	141	161
AER485P1	•	•	•	•	•	•	•	•	•
AERBACP	•	•	•	•	•	•	•	•	•
KSAE	•	•	•	•	•	•	•	•	•
PGD1	•	•	•	•	•	•	•	•	•
SGD	•	•	•	•	•	•	•	•	•
SSM	•	•	•	•	•	•	•	•	•
TAH	•	•	•	•	•	•	•	•	•
TAT					•	•			

Antivibration

Version	Integrated hydronic kit, source side	System side - pumps	026	031	041	051	071
0	°, B, I, U, V	°, N, P	VT9	VT9	VT9	VT9	VT9
A	°, B, I, U, V	°, N, P	VT15	VT15	VT15	VT15	VT15

Version	Integrated hydronic kit, source side	System side - pumps	081	101	141	161
0	°, B, I, U, V	°, N, P	VT9	VT15	VT15	VT15
A	°, B, I, U, V	°, N, P	VT15	VT15A	VT15A	VT15A

Pressure switch valve

riessure switch valve									
Ver	026	031	041	051	071	081	101	141	161
°. A	VPHI 1	VPHI 1	VPHI 2	VPHI 2	VPHI 3	VPHI 3	VPHI 4	VPHI 4	VPHI 4

CONFIGURATOR

CONFIGUR	
Field	Description
1,2,3	WRL
4,5,6	Size
7	026, 031, 041, 051, 071, 081, 101, 141, 161
<u>7</u> х	Operating field Electronic thermostatic expansion valve
8	Model
о Н	Reversible heat pump, gas side
	Neversion Version
9 .	
	Without storage tank
Α	With storage tank
10	Heat recovery
	Without heat recovery
11	Integrated hydronic kit, source side
В	On-off pump (1)
I	Inverter pump (2)
U	Pump high head (3)
V	Applications with bore hole water
0	Without hydronic kit
12	System side - pumps
N	Pump high head (3)
P	Pump (4)
0	Without hydronic kit
13	Recovery side - pumps
٥	Without hydronic kit
14	Soft-start
S	With soft-start
0	Without soft-start
15	Power supply
М	230V~50Hz (5)
0	400V~3N 50Hz

⁽¹⁾ For size WRL 051 ÷ 081. The speed of the inverter pump must be set upon commissioning, according to the useful static pressure required; once it has been set, the pump will work at a constant flow rate.
(2) Only for WRL 026 ÷ 081
(3) Only for WRL 101 ÷ 161
(4) In sizes WRL 026 ÷ 081, it's an inverter circulator; for other sizes, it's an on-off pump.
(5) Only for WRL 026 ÷ 041

725

PERFORMANCE SPECIFICATIONS 12 °C/ 7 °C - 40 °C/ 45 °C

WRL - (H°) - (400V 3N ~ 50Hz)

Size		026	031	041	051	071	081	101	141	161
Power supply: °										
Cooling performance 12 °C / 7 °C (1)		,								
Cooling capacity	kW	6,3	8,1	10,4	13,7	17,8	20,3	27,6	35,4	40,4
Input power	kW	1,6	2,3	2,3	3,0	4,2	5,0	6,1	8,5	10,1
Cooling total input current	A	4,0	4,0	6,0	7,0	9,0	10,0	13,0	17,0	19,0
EER	W/W	3,98	3,47	4,52	4,51	4,18	4,08	4,49	4,15	4,01
Water flow rate source side	l/h	1346	1782	2178	2870	3759	4312	5763	7501	8611
Pressure drop source side	kPa	13	16	19	20	24	27	28	37	44
Water flow rate system side	l/h	1085	1396	1798	2367	3058	3492	4748	6098	6964
Pressure drop system side	kPa	9	11	13	14	16	18	20	24	29
Heating performance 40 °C / 45 °C (2)										
Heating capacity	kW	7,9	9,5	12,4	16,4	20,9	24,0	32,7	41,7	47,6
Input power	kW	2,1	2,4	3,0	4,0	5,2	6,1	8,1	10,5	12,3
Heating total input current	A	4,8	4,8	6,6	8,3	10,0	12,0	16,0	20,0	23,0
COP	W/W	3,84	3,96	4,08	4,07	4,01	3,94	4,05	3,97	3,87
Water flow rate source side	l/h	1714	2086	2759	3635	4611	5291	7248	9196	10445
Pressure drop source side	kPa	34	34	46	43	50	59	52	62	73
Water flow rate system side	l/h	1364	1644	2151	2842	3616	4165	5669	7217	8246
Pressure drop system side	kPa	20	18	28	28	32	38	35	43	51

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

Technical data WRL (H°) - (230V ~ 50Hz)

ower supply: M oling performance 12 °C/7 °C(1) oling capacity	kW kW	6,3								
oling performance 12 °C/7 °C(1) oling capacity		6,3								
		6,3								
out nower	kW		7,9	10,3	-	-	-	-	-	-
out power	10.4.4	1,7	1,9	2,4	-	-	-	-	-	-
oling total input current	A	9,0	11,0	14,0	-	-	-	-	-	-
R	W/W	3,74	4,13	4,28	-	-	-	-	-	-
nter flow rate source side	l/h	1363	1678	2179	-	-	-	-	-	-
essure drop source side	kPa	14	16	19	-	-	-	-	-	-
ater flow rate system side	l/h	1085	1362	1781	-	-	-	-	-	-
essure drop system side	kPa	9	10	13	-	-	-	-	-	-
eating performance 40 °C / 45 °C (2)										-
ating capacity	kW	7,9	9,9	12,6	-	-	-	-	-	-
out power	kW	2,1	2,6	3,3	-	-	-	-	-	-
ating total input current	A	10,0	13,0	17,0	-	-	-	-	-	-
P	W/W	3,85	3,89	3,82	-	-	-	-	-	-
ater flow rate source side	I/h	1717	2173	2745	-	-	-	-	-	-
essure drop source side	kPa	34	36	46	-	-	-	-	-	-
ater flow rate system side	I/h	1366	1723	2186	-	-	-	-	-	-
essure drop system side	kPa	20	22	29	-	-	-	-	-	-

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

PERFORMANCE SPECIFICATIONS 23 °C/ 18 °C - 30 °C/ 35 °C

WRL - (H°) - (400V 3N ~ 50Hz)

Size		026	031	041	051	071	081	101	141	161
Power supply: °										
Cooling performance 23 °C / 18 °C (1)										
Cooling capacity	kW	8,3	10,0	13,5	17,5	23,9	27,4	34,9	47,8	54,5
Input power	kW	1,6	1,9	2,4	3,3	4,4	5,2	6,6	9,0	10,7
Cooling total input current	A	4,1	3,0	6,0	7,6	9,2	10,0	14,0	17,0	19,0
EER	W/W	5,22	5,34	5,54	5,35	5,39	5,25	5,31	5,32	5,11
Water flow rate source side	l/h	1681	2039	2719	3547	4844	5557	7089	9679	11092
Pressure drop source side	kPa	20	21	30	31	40	45	42	62	73
Water flow rate system side	l/h	1428	1737	2330	3022	4136	4730	6040	8270	9438
Pressure drop system side	kPa	16	17	22	23	29	33	32	44	53
Heating performance 30 °C / 35 °C (2)										
Heating capacity	kW	8,1	10,1	13,0	17,0	22,6	25,8	34,1	45,0	50,8
Input power	kW	1,6	1,9	2,5	3,2	4,3	5,1	6,4	8,7	10,3
Heating total input current	A	3,7	3,7	5,2	6,4	8,4	9,7	12,0	16,0	19,0
COP	W/W	5,03	5,38	5,29	5,33	5,24	5,06	5,31	5,18	4,91
Water flow rate source side	l/h	1397	1751	2246	2934	3893	4456	5888	7770	8761
Pressure drop source side	kPa	21	20	30	30	37	43	38	50	58
Water flow rate system side	I/h	1901	2418	3098	4045	5363	6102	8125	10710	11951
Pressure drop system side	kPa	42	46	58	53	68	78	65	84	95

⁽¹⁾ Date 14511:2022; Water user side 23 °C / 18 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 30 °C / 35 °C; Water source side 10 °C / 5 °C

WRL (H°) - (230V ~ 50Hz)

Size		026	031	041	051	071	081	101	141	161
Power supply: M										
Cooling performance 23 °C / 18 °C (1)										
Cooling capacity	kW	8,3	10,1	13,3	-	-	-	-	-	-
Input power	kW	1,6	2,0	2,5	-	-	-	-	-	-
Cooling total input current	A	8,1	11,0	14,0	-	-	-	-	-	-
EER	W/W	5,05	5,18	5,27	-	-	-	-	-	-
Water flow rate source side	l/h	1690	2070	2699	-	-	-	-	-	-
Pressure drop source side	kPa	22	24	29	-	-	-	-	-	-
Water flow rate system side	l/h	1428	1755	2295	-	-	-	-	-	-
Pressure drop system side	kPa	16	17	22	-	-	-	-	-	-
Heating performance 30 °C / 35 °C (2)										
Heating capacity	kW	8,2	10,2	13,1	-	-	-	-	-	-
Input power	kW	1,6	1,9	2,6	-	-	-	-	-	-
Heating total input current	A	8,1	9,7	13,0	-	-	-	-	-	-
COP	W/W	5,05	5,27	5,01	-	-	-	-	-	-
Water flow rate source side	I/h	1409	1767	2263	-	-	-	-	-	-
Pressure drop source side	kPa	21	23	31	-	-	-	-	-	-
Water flow rate system side	I/h	1919	2430	3082	-	-	-	-	-	-
Pressure drop system side	kPa	42	45	58	-	-	-	-	-	-

⁽¹⁾ Date 14511:2022; Water user side 23 °C / 18 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 30 °C / 35 °C; Water source side 10 °C / 5 °C

ENERGY INDICES (REG. 2016/2281 EU)

WRL - (H°) - (400V 3N ~ 50Hz)

Size		026	031	041	051	071	081	101	141	161
Power supply: °										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	3,64	3,39	4,31	4,53	4,20	4,13	4,81	4,49	4,36
Seasonal efficiency	%	142,7%	132,4%	169,4%	178,1%	165,1%	162,3%	189,4%	176,5%	171,4%
UE 811/2013 performance in average ambient condition	s (average) - 5	55 °C - Pdesignh	≤ 70 kW (2)							
Pdesignh	kW	10	12	16	21	26	31	42	53	61
ηsh	%	141.0%	145.0%	151.0%	152.0%	151.0%	150.0%	175.0%	173.0%	167.0%
SCOP	W/W	3,73	3,83	3,98	4,00	3,98	3,95	4,58	4,53	4,38
Efficiency energy class		A++	A++	A+++						
UE 811/2013 performance in average ambient condition	s (average) - 3	35 °C - Pdesignh	≤ 70 kW (3)							
Pdesignh	kW	11	14	17	23	30	35	45	60	68
ηsh	%	195.0%	210.0%	207.0%	212.0%	211.0%	205.0%	233.0%	226.0%	212.0%
SCOP	W/W	5,08	5,45	5,38	5,50	5,48	5,33	6,03	5,85	5,50
Efficiency energy class		A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Efficiencies for average temperature applications (55 °C) (3) Efficiencies for low temperature applications (35 °C)

WRL - (H $^{\circ}$) - (230V \sim 50Hz)

Size		026	031	041	051	071	081	101	141	161
Power supply: M										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	3,48	3,80	4,15	-	-	-	-	-	-
Seasonal efficiency	%	136,2%	148,8%	163,1%	-	-	-	-	-	-
UE 811/2013 performance in average ambient co	onditions (average) - 5	5 °C - Pdesignh	≤ 70 kW (2)							
Pdesignh	kW	10	13	16	-	-	-	-	-	-
ηsh	%	142.0%	145.0%	142.0%	-	-	-	-	-	-
SCOP	W/W	3,75	3,83	3,75	-	-	-	-	-	-
Efficiency energy class		A++	A++	A++	-	-	-	-	-	-
UE 811/2013 performance in average ambient co	onditions (average) - 3	5 °C - Pdesignh	≤ 70 kW (3)							
Pdesignh	kW	11	14	17	-	-	-	-	-	-
ηsh	%	198.0%	212.0%	199.0%	-	-	-	-	-	-
SCOP	W/W	5,15	5,50	5,18	-	-	-	-	-	-
Efficiency energy class		A+++	A+++	A+++	-	-	-	-	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Efficiencies for average temperature applications (55 °C)
(3) Efficiencies for low temperature applications (35 °C)

WRL - (H ABP) - (400V 3N ~ 50Hz)

Size		026	031	041	051	071	081	101	141	161
Power supply: °										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	4,47	4,07	5,37	5,40	4,96	4,85	5,17	4,75	4,67
Seasonal efficiency	%	175,9%	159,7%	211,8%	213,1%	195,3%	190,9%	203,7%	186,8%	183,9%
UE 811/2013 performance in average ambient condition	s (average) - 5	5 °C - Pdesignh	≤ 70 kW (2)							
Pdesignh	kW	10	12	16	21	26	30	41	52	60
ηsh	%	151.0%	155.0%	161.0%	161.0%	157.0%	155.0%	173.0%	170.0%	166.0%
SCOP	W/W	3,98	4,08	4,23	4,23	4,13	4,08	4,53	4,45	4,35
Efficiency energy class		A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++
UE 811/2013 performance in average ambient condition	s (average) - 3	5 °C - Pdesignh	≤ 70 kW (3)							
Pdesignh	kW	10	13	17	22	30	34	44	59	66
ηsh	%	223.0%	238.0%	222.0%	237.0%	222.0%	210.0%	232.0%	230.0%	216.0%
SCOP	W/W	5,78	6,15	5,75	6,13	5,75	5,45	6,00	5,95	5,60
Efficiency energy class		A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++

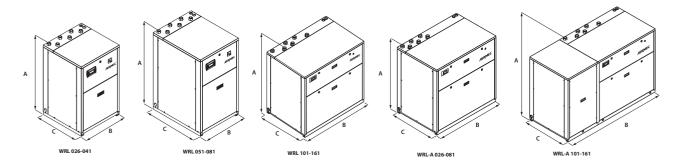
⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Efficiencies for average temperature applications (55 °C)
(3) Efficiencies for low temperature applications (35 °C)

WRL - (H ABP) - (230V ~ 50Hz)

Size		026	031	041	051	071	081	101	141	161
Power supply: M										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	4,21	4,63	5,14	-	-	-	-	-	-
Seasonal efficiency	%	165,5%	182,3%	202,7%	-	-	-	-	-	-
UE 811/2013 performance in average ambient con	ditions (average) - 5	5 °C - Pdesignh	≤ 70 kW (2)							
Pdesignh	kW	10	13	16	-	-	-	-	-	-
ηsh	%	152.0%	156.0%	152.0%	-	-	-	-	-	-
SCOP	W/W	4,00	4,10	4,00	-	-	-	-	-	-
Efficiency energy class		A+++	A+++	A+++	-	-	-	-	-	-
UE 811/2013 performance in average ambient con	ditions (average) - 3	5 °C - Pdesignh	≤ 70 kW (3)							
Pdesignh	kW	11	13	17	-	-	-	-	-	-
ηsh	%	228.0%	243.0%	214.0%	-	-	-	-	-	-
SCOP	W/W	5,90	6,28	5,55	-	-	-	-	-	-
Efficiency energy class		A+++	A+++	A+++	-	-	-	-	-	-

- (1) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
 (2) Efficiencies for average temperature applications (55 °C)
 (3) Efficiencies for low temperature applications (35 °C)

ELECTRIC DATA


Size	·	026	031	041	051	071	081	101	141	161
Power supply: °										
Electric data										
Maximum current (FLA)	A	8,5	9,0	11,0	13,0	20,0	23,0	23,0	37,0	43,0
Peak current (LRA)	A	34,0	37,0	50,0	66,0	75,0	75,0	88,0	91,0	94,0
Size		026	031	041	051	071	081	101	141	161
Power supply: M										
Electric data										
Maximum current (FLA)	A	19,0	22,0	26,0	-	-	-	-	-	-
Peak current (LRA)	A	63,0	84,0	99,0	-	-	-	-	-	-

GENERAL TECHNICAL DATA

Size			026	031	041	051	071	081	101	141	161
Compressor											
Туре	°,A	type					Scroll				
Number	°,A	no.	1	1	1	1	1	1	2	2	2
Circuits	°,A	no.	1	1	1	1	1	1	1	1	1
Refrigerant	°,A	type					R410A				
Source side heat exchanger											
Туре	°,A	type					Brazed plate				
Number	°,A	no.	1	1	1	1	1	1	1	1	1
System side heat exchanger											
Туре	°,A	type					Brazed plate				
Number	°,A	no.	1	1	1	1	1	1	1	1	1
Source side hydraulic connections											
Connections (in/out)	°,A	Туре					Gas - F				
Sizes (in/out)	°,A	Ø					1″1/4				
System side hydraulic connections											
Connections (in/out)	°,A	Туре					Gas - F				
Sizes (in/out)	°,A	Ø					1″1/4				
Sound data calculated in cooling mode (1)											
Sound power level	°,A	dB(A)	55,5	57,0	57,5	59,0	60,0	60,5	62,0	63,0	63,5
C	0	dB(A)	24,3	25,8	26,3	27,7	28,7	29,2	30,6	31,6	32,1
Sound pressure level (10 m)	Α	dB(A)	24,1	25,6	26,1	27,6	28,6	29,1	30,5	31,5	32,0

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			026	031	041	051	071	081	101	141	161
Dimensions and weights											
Λ.	۰	mm	976	976	976	1126	1126	1126	1126	1126	1126
A	A	mm	1126	1126	1126	1126	1126	1126	1126	1126	1126
n	٥	mm	605	605	605	605	605	605	1155	1155	1155
В	A	mm	1155	1155	1155	1155	1155	1155	1755	1755	1755
r	٥	mm	603	603	603	773	773	773	773	773	773
C	A	mm	773	773	773	773	773	773	773	773	773
F===6i=h6	0	kg	120	125	130	150	170	180	260	270	280
Empty weight	A	kg	190 (1)	200 (1)	210 (1)	230 (1)	250 (1)	260 (1)	340 (1)	350 (1)	360 (1)

⁽¹⁾ Units with two heat exchangers and storage tank, without pumps

WRL 026 -161

Water cooled heat pump reversible water side

Cooling capacity 6,6 ÷ 44,2 kW Heating capacity 7,5 ÷ 48,0 kW

- High efficiency
- Suitable for geothermal applications

DESCRIPTION

Water-water offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications. Indoor units with hermetic scroll compressors and plate heat exchangers. In the configuration with desuperheater, it is also possible to produce free-hot water.

The technological choices made, always oriented to the highest quality, ensure very easy installation.

In fact, the electrical and hydraulic connections are all located at the top of the unit making it easy to install and maintain, also reducing the technical areas and their placement in the smallest space possible.

VERSIONS

° Without storage tank **A** With storage tank

FEATURES

Operating field

Full-load operation with the production of chilled water 4-18°C, and the possibility to produce also negative temperature water down to -8°C for the evaporator and hot water for the condenser up to 55 °C.

(for more information, refer to the technical documentation).

Plug and play

All the units are equipped with scroll compressors and plate heat exchangers; the base and panelling are made of steel treated with RAL 9003 polyester paints.

The electric and hydraulic connections are all located on the upper part of the unit facilitating installation and maintenance. This allows reduced plant room space and installation in the smallest space possible.

The heat pump can be supplied with all the components required for its installation in new systems and to replace other heat generators. It can be combined with low temperature emission systems such as floor heating or fan coils, but also with conventional radiators.

Version with Integrated hydronic kit

The standard unit is supplied with a water filter, differential pressure switch and safety valve already installed on the service and source side (and also on the recovery side, if present).

To obtain a solution that offers economic savings and facilitates installation, these units can be configured with an integrated hydronic kit on both hydraulic sides (service and source).

Low-head and high-head pumps are available, along with a modulating 2-way valve that can only be applied on the source side to reduce consumption in applications with groundwater.

MODUCONTROL CONTROL

The command panel of the unit allows the rapid setting of the working parameters of the machine, and their visualisation. The display consists of 4 figures and various LEDs for indicating the type of operational mode, the visualisation of the parameters set and of any alarms triggered. The card stores all the default settings and any modifications.

The regulation using an outside air temperature sensor (accessory) allows a dynamic control of the water temperature produced by increasing the energy efficiency of the system.

ACCESSORIES

AERBAC-MODU: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP. The accessory is supplied with the unit and must be installed on an external electrical panel.

AERSET: It makes it possible to automatically compensate for the operation setting of the unit to which it is connected, based on a 0-10V MODBUS input signal. Mandatory accessory MODU-485BL.

KSAE: External air sensor.

MODU-485BL: RS-485 interface for supervision systems with MODBUS protocol.

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

VT: Anti-vibration supports.

VPL: Pressure switch valve complete with connections, piloted directly in relation to condensation pressure; the valve modulates the volume of water needed to cool the condenser, thereby maintaining the condensation temperature unchanged.

731

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ For the installation of the PR4 remote panel, the MODU-485BL communication interface is indispensable.

ACCESSORIES COMPATIBILITY

Model	Ver	026	031	041	051	071	081	101	141	161
AERBAC-MODU	°,A	•	•	•	•	•	•	•	•	•
AERSET	°,A	•					•			•
KSAE	°,A	•	•	•	•	•	•	•	•	•
MODU-485BL	°,A	•	•	•		•	•	•	•	•
PR3	°,A	•								•
SGD	°,A				•		•			

Antivibration

Version	Integrated hydronic kit, source side	System side - pumps	026	031	041	051	071
0	٥	0	VT9	VT9	VT9	VT9	VT9
0	B, I, U, V	N, P	VT9	VT9	VT9	VT9	VT9
A	°, B, I, U, V	°, N, P	VT15	VT15	VT15	VT15	VT15

Version	Integrated hydronic kit, source side	System side - pumps	081	101	141	161
٥	0	0	VT9	VT15	VT15	VT15
0	U	N, P	VT9	VT15	VT15	VT15
٥	B, I, V	N, P	VT9	VT15	VT15	-
A	°, B, I, U, V	°, N, P	VT15	VT15A	VT15A	VT15A

not available

PR4

Model	Ver	026	031	041	051	071	081	101	141	161
PR4	°,A	•	•	•	•	•	•	•	•	•

Pressure switch valve

Ver	026	031	041	051	071	081	101	141	161
° Д	VPI 1	VPI 1	VPI 2	VPI 2	VPI 3	VPI 3	VPI 4	VPI 4	VPI 4

CONFIGURATOR

Configuration options

Field	Description										
1,2,3	WRL										
4,5,6	Size 026, 031, 041, 051, 071, 081, 101, 141, 161										
7	Operating field										
Υ	Low temperature mechanic thermostatic valve (1)										
0	Standard mechanic thermostatic valve (2)										
8	Model										
E	Evaporating unit (3)										
0	Heat pump reversible on the water side										
9	Version										
0	Without storage tank										
Α	With storage tank										
10	Heat recovery										
D	With desuperheater										
0	Without heat recovery										
11	Integrated hydronic kit, source side										
В	On-off pump (4)										
- 1	Inverter pump (5)										
U	Pump high head (6)										

Field	1	Description
		Applications with bore hole water
	٧	2-way modulating valve
	0	Without hydronic kit
12		System side - pumps
	N	Pump high head (6)
	Р	On-off pump (4)
	0	Without hydronic kit
13		Recovery side - pumps
	0	Without Pumps
14		Soft-start
	S	With soft-start
	0	Without soft-start
15		Power supply
	М	230V~ 50Hz (7)
	0	400V~3N 50Hz

- (1) Water produced from 4 °C ÷ -8 °C
 (2) Water produced from 4 °C ÷ -8 °C
 (3) Shipped with holding charge only
 (4) For size WRL 051 ÷ 081. The speed of the inverter pump must be set upon commissioning, according to the useful static pressure required; once it has been set, the pump will work at a constant flow rate.
 (5) Only for WRL 026 ÷ 081
 (6) Only for WRL 101 ÷ 161
 (7) Only for WRL 026 ÷ 041

www.aermec.com

PERFORMANCE SPECIFICATIONS

WRL - °

Size		026	031	041	051	071	081	101	141	161
Power supply: M										
Cooling performance 12 °C/7 °C(1)										
Cooling capacity	kW	6,6	8,3	11,3	-	-	-	-	-	-
Input power	kW	1,5	1,8	2,5	-	-	-	-	-	-
Cooling total input current	A	7,2	9,2	12,0	-	-	-	-	-	-
EER	W/W	4,30	4,50	4,56	-	-	-	-	-	-
Water flow rate source side	l/h	1386	1731	2359	-	-	-	-	-	-
Pressure drop source side	kPa	28	29	36	-	-	-	-	-	-
Water flow rate system side	l/h	1137	1430	1955	-	-	-	-	-	-
Pressure drop system side	kPa	15	17	23	-	-	-	-	-	-
Heating performance 40 °C / 45 °C (2)										
Heating capacity	kW	7,6	9,4	12,5	-	-	-	-	-	-
Input power	kW	2,0	2,4	3,1	-	-	-	-	-	-
Heating total input current	A	9,3	12,0	15,0	-	-	-	-	-	-
COP	W/W	3,86	3,89	4,05	-	-	-	-	-	-
Water flow rate source side	l/h	1662	2053	2778	-	-	-	-	-	-
Pressure drop source side	kPa	32	35	46	-	-	-	-	-	-
Water flow rate system side	l/h	1319	1626	2171	-	-	-	-	-	-
Pressure drop system side	kPa	25	26	30	-	-	-	-	-	-
(1) Date 14511:2022; Water user side 12 °C / 7 °C; Wat	tor course side 20 °C / 2E	00								
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Water user	ater source side 10 °C / 7	°C								
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Wa Size	ater source side 10 °C / 7	026	031	041	051	071	081	101	141	161
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Wa	ater source side 10 °C / 7	°C	031	041	051	071	081	101	141	161
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Wa Size	ater source side 10 °C / 7	°C	031	041	051	071	081	101	141	161
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Was Size Power supply: °	kW	°C	031 8,4	11,3	051	071 19,3	21,9	29,5	141 38,5	161 43,9
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Was Size Power supply: ° Cooling performance 12 °C / 7 °C (1)	ater source side 10 °C / 7	026								
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Was Size Power supply: ° Cooling performance 12 °C / 7 °C (1) Cooling capacity	ater source side 10 °C / 7	026 6,7	8,4	11,3	14,7	19,3	21,9	29,5	38,5	43,9
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Wassize Power supply: ° Cooling performance 12 °C / 7 °C (1) Cooling capacity Input power	ater source side 10 °C / 7 kW kW	026 6,7 1,5	8,4 1,8	11,3 2,6	14,7 3,1	19,3 4,0	21,9 4,7	29,5 6,2	38,5 8,1	43,9 9,5
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Wa Size Power supply: ° Cooling performance 12 °C / 7 °C (1) Cooling capacity Input power Cooling total input current	kW kW A W/W	6,7 1,5 3,1	8,4 1,8 2,6	11,3 2,6 4,9	14,7 3,1 6,4 4,70 3054	19,3 4,0 7,4	21,9 4,7 9,1	29,5 6,2 13,0	38,5 8,1 15,0	43,9 9,5 18,0
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Wa Size Power supply: ° Cooling performance 12 °C / 7 °C (1) Cooling capacity Input power Cooling total input current EER	kW kW kW A W/W	6,7 1,5 3,1 4,49	8,4 1,8 2,6 4,74	11,3 2,6 4,9 4,39	14,7 3,1 6,4 4,70	19,3 4,0 7,4 4,77	21,9 4,7 9,1 4,63	29,5 6,2 13,0 4,72	38,5 8,1 15,0 4,75	43,9 9,5 18,0 4,62
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Wa Size Power supply: ° Cooling performance 12 °C / 7 °C (1) Cooling capacity Input power Cooling total input current EER Water flow rate source side	kW kW A W/W	026 6,7 1,5 3,1 4,49 1396	8,4 1,8 2,6 4,74 1735	11,3 2,6 4,9 4,39 2375	14,7 3,1 6,4 4,70 3054	19,3 4,0 7,4 4,77 3978	21,9 4,7 9,1 4,63 4538	29,5 6,2 13,0 4,72 6100	38,5 8,1 15,0 4,75 7947	43,9 9,5 18,0 4,62 9077
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Wa Size Power supply: ° Cooling performance 12 °C / 7 °C (1) Cooling capacity Input power Cooling total input current EER Water flow rate source side Pressure drop source side	kW kW kW A W/W I/h kPa	°C 026 6,7 1,5 3,1 4,49 1396 28	8,4 1,8 2,6 4,74 1735 30	11,3 2,6 4,9 4,39 2375 35	14,7 3,1 6,4 4,70 3054 32	19,3 4,0 7,4 4,77 3978 40	21,9 4,7 9,1 4,63 4538 46	29,5 6,2 13,0 4,72 6100 42	38,5 8,1 15,0 4,75 7947 57	43,9 9,5 18,0 4,62 9077 66
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Was Size Power supply: ° Cooling performance 12 °C / 7 °C (1) Cooling capacity Input power Cooling total input current EER Water flow rate source side Pressure drop source side Water flow rate system side	kW kW kW A W/W I/h kPa I/h	026 6,7 1,5 3,1 4,49 1396 28 1154	8,4 1,8 2,6 4,74 1735 30 1447	11,3 2,6 4,9 4,39 2375 35 1955	14,7 3,1 6,4 4,70 3054 32 2541	19,3 4,0 7,4 4,77 3978 40 3320	21,9 4,7 9,1 4,63 4538 46 3770	29,5 6,2 13,0 4,72 6100 42 5078	38,5 8,1 15,0 4,75 7947 57 6638	43,9 9,5 18,0 4,62 9077 66 7555
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Was Size Power supply: ° Cooling performance 12 °C / 7 °C (1) Cooling capacity Input power Cooling total input current EER Water flow rate source side Pressure drop source side Pressure drop system side Pressure drop system side	kW kW kW A W/W I/h kPa I/h	026 6,7 1,5 3,1 4,49 1396 28 1154	8,4 1,8 2,6 4,74 1735 30 1447	11,3 2,6 4,9 4,39 2375 35 1955	14,7 3,1 6,4 4,70 3054 32 2541	19,3 4,0 7,4 4,77 3978 40 3320	21,9 4,7 9,1 4,63 4538 46 3770	29,5 6,2 13,0 4,72 6100 42 5078	38,5 8,1 15,0 4,75 7947 57 6638	43,9 9,5 18,0 4,62 9077 66 7555
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Was Size Power supply: ° Cooling performance 12 °C / 7 °C (1) Cooling capacity Input power Cooling total input current EER Water flow rate source side Pressure drop source side Pressure drop system side Pressure drop system side Heating performance 40 °C / 45 °C (2)	kW kW kW A W/W I/h kPa I/h kPa	°C 026 6,7 1,5 3,1 4,49 1396 28 1154 15 7,7 1,9	8,4 1,8 2,6 4,74 1735 30 1447 17	11,3 2,6 4,9 4,39 2375 35 1955 23	14,7 3,1 6,4 4,70 3054 32 2541 21	19,3 4,0 7,4 4,77 3978 40 3320 26 21,0 5,1	21,9 4,7 9,1 4,63 4538 46 3770 30	29,5 6,2 13,0 4,72 6100 42 5078 25	38,5 8,1 15,0 4,75 7947 57 6638 34	43,9 9,5 18,0 4,62 9077 66 7555 38
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Was Size Power supply: ° Cooling performance 12 °C / 7 °C (1) Cooling capacity Input power Cooling total input current EER Water flow rate source side Pressure drop source side Pressure drop system side Pressure drop system side Heating performance 40 °C / 45 °C (2) Heating capacity	kW kW A W/W I/h kPa I/h kPa kW kW	°C 026 6,7 1,5 3,1 4,49 1396 28 1154 15	8,4 1,8 2,6 4,74 1735 30 1447 17	11,3 2,6 4,9 4,39 2375 35 1955 23	14,7 3,1 6,4 4,70 3054 32 2541 21	19,3 4,0 7,4 4,77 3978 40 3320 26	21,9 4,7 9,1 4,63 4538 46 3770 30	29,5 6,2 13,0 4,72 6100 42 5078 25	38,5 8,1 15,0 4,75 7947 57 6638 34	43,9 9,5 18,0 4,62 9077 66 7555 38
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Was Size Power supply: ° Cooling performance 12 °C / 7 °C (1) Cooling capacity Input power Cooling total input current EER Water flow rate source side Pressure drop source side Water flow rate system side Pressure drop system side Heating performance 40 °C / 45 °C (2) Heating capacity Input power Heating total input current COP	kW kW A W/W I/h kPa I/h kPa kW kW A	°C 026 6,7 1,5 3,1 4,49 1396 28 1154 15 7,7 1,9 4,1 3,93	8,4 1,8 2,6 4,74 1735 30 1447 17 9,3 2,3 3,4 4,04	11,3 2,6 4,9 4,39 2375 35 1955 23 12,6 3,2 6,1 3,94	14,7 3,1 6,4 4,70 3054 32 2541 21 16,3 4,0 8,2 4,05	19,3 4,0 7,4 4,77 3978 40 3320 26 21,0 5,1 9,2 4,17	21,9 4,7 9,1 4,63 4538 46 3770 30 24,0 5,9 11,0 4,04	29,5 6,2 13,0 4,72 6100 42 5078 25 32,5 8,0 16,0 4,06	38,5 8,1 15,0 4,75 7947 57 6638 34 42,1 10,2 18,0 4,14	43,9 9,5 18,0 4,62 9077 66 7555 38 48,0 12,0 23,0 4,02
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Was Size Power supply: ° Cooling performance 12 °C / 7 °C (1) Cooling capacity Input power Cooling total input current EER Water flow rate source side Pressure drop source side Water flow rate system side Pressure drop system side Heating performance 40 °C / 45 °C (2) Heating capacity Input power Heating total input current	kW kW A W/W I/h kPa I/h kPa kW kW	°C 026 6,7 1,5 3,1 4,49 1396 28 1154 15 7,7 1,9 4,1	8,4 1,8 2,6 4,74 1735 30 1447 17 9,3 2,3 3,4	11,3 2,6 4,9 4,39 2375 35 1955 23 12,6 3,2 6,1	14,7 3,1 6,4 4,70 3054 32 2541 21 16,3 4,0	19,3 4,0 7,4 4,77 3978 40 3320 26 21,0 5,1 9,2	21,9 4,7 9,1 4,63 4538 46 3770 30 24,0 5,9 11,0	29,5 6,2 13,0 4,72 6100 42 5078 25 32,5 8,0 16,0	38,5 8,1 15,0 4,75 7947 57 6638 34 42,1 10,2 18,0	43,9 9,5 18,0 4,62 9077 66 7555 38 48,0 12,0 23,0
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Was Size Power supply: ° Cooling performance 12 °C / 7 °C (1) Cooling capacity Input power Cooling total input current EER Water flow rate source side Pressure drop source side Water flow rate system side Pressure drop system side Heating performance 40 °C / 45 °C (2) Heating capacity Input power Heating total input current COP	kW kW A W/W I/h kPa I/h kPa kW kW A	°C 026 6,7 1,5 3,1 4,49 1396 28 1154 15 7,7 1,9 4,1 3,93	8,4 1,8 2,6 4,74 1735 30 1447 17 9,3 2,3 3,4 4,04	11,3 2,6 4,9 4,39 2375 35 1955 23 12,6 3,2 6,1 3,94	14,7 3,1 6,4 4,70 3054 32 2541 21 16,3 4,0 8,2 4,05	19,3 4,0 7,4 4,77 3978 40 3320 26 21,0 5,1 9,2 4,17	21,9 4,7 9,1 4,63 4538 46 3770 30 24,0 5,9 11,0 4,04	29,5 6,2 13,0 4,72 6100 42 5078 25 32,5 8,0 16,0 4,06	38,5 8,1 15,0 4,75 7947 57 6638 34 42,1 10,2 18,0 4,14	43,9 9,5 18,0 4,62 9077 66 7555 38 48,0 12,0 23,0 4,02
(2) Date 14511:2022; Water user side 40 °C / 45 °C; Was Size Power supply: ° Cooling performance 12 °C / 7 °C (1) Cooling capacity Input power Cooling total input current EER Water flow rate source side Pressure drop source side Water flow rate system side Pressure drop system side Heating performance 40 °C / 45 °C (2) Heating capacity Input power Heating total input current COP Water flow rate source side	kW kW A W/W I/h kPa I/h kPa kW A W/W	026 6,7 1,5 3,1 4,49 1396 28 1154 15 7,7 1,9 4,1 3,93 1680	8,4 1,8 2,6 4,74 1735 30 1447 17 9,3 2,3 3,4 4,04 2053	11,3 2,6 4,9 4,39 2375 35 1955 23 12,6 3,2 6,1 3,94 2767	14,7 3,1 6,4 4,70 3054 32 2541 21 16,3 4,0 8,2 4,05 3602	19,3 4,0 7,4 4,77 3978 40 3320 26 21,0 5,1 9,2 4,17 4708	21,9 4,7 9,1 4,63 4538 46 3770 30 24,0 5,9 11,0 4,04 5325	29,5 6,2 13,0 4,72 6100 42 5078 25 32,5 8,0 16,0 4,06 7200	38,5 8,1 15,0 4,75 7947 57 6638 34 42,1 10,2 18,0 4,14 9414	43,9 9,5 18,0 4,62 9077 66 7555 38 48,0 12,0 23,0 4,02

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

ENERGY INDICES (REG. 2016/2281 EU)

WRL - °

AAIVE -										
Size		026	031	041	051	071	081	101	141	161
Power supply: M										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	3,77	4,13	4,27	-	-	-	-	-	-
Seasonal efficiency	%	147,9%	162,0%	167,6%	-	-	-	-	-	-
UE 811/2013 performance in average ambient of	onditions (average) - 3	5 °C - Pdesignh	≤ 70 kW (2)							
Pdesignh	kW	11	14	17	-	-	-	-	-	-
SCOP	W/W	5,15	5,50	5,18	-	-	-	-	-	-
ηsh	%	198.0%	212.0%	199.0%	-	-	-	-	-	-
Efficiency energy class		A+++	A+++	A+++	-	-	-	-	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Efficiencies for low temperature applications (35 °C)

733

Size		026	031	041	051	071	081	101	141	161
Power supply: °										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	3,93	4,29	4,13	4,51	4,66	4,52	4,93	4,93	4,75
Seasonal efficiency	%	154,0%	168,5%	162,1%	177,3%	183,3%	177,8%	194,1%	194,0%	187,1%
UE 811/2013 performance in average ambien	t conditions (average) - 3	5 °C - Pdesignh	≤ 70 kW (2)							
Pdesignh	kW	11	14	17	23	30	35	45	60	68
SCOP	W/W	5,08	5,45	5,38	5,50	5,48	5,33	6,03	5,85	5,50
ηsh	%	195.0%	210.0%	207.0%	212.0%	211.0%	205.0%	233.0%	226.0%	212.0%
Efficiency energy class		A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Efficiencies for low temperature applications (35 °C)

PERFORMANCE SPECIFICATIONS

WRL ABP

Size		026	031	041	051	071	081	101	141	161
Power supply: M										
Cooling performance 12 °C / 7 °C (1)										
Cooling capacity	kW	6,7	8,4	11,4	-	-	-	-	-	-
Input power	kW	1,5	1,8	2,4	-	-	-	-	-	-
Cooling total input current	A	7,8	9,9	12,0	-	-	-	-	-	-
EER	W/W	4,54	4,75	4,80	-	-	-	-	-	-
Water flow rate source side	l/h	1386	1731	2359	-	-	-	-	-	-
Useful head source side	kPa	59	54	36	-	-	-	-	-	-
Water flow rate system side	l/h	1137	1430	1955	-	-	-	-	-	-
Useful head system side	kPa	74	70	56	-	-	-	-	-	-
Heating performance 40 °C / 45 °C (2)										
Heating capacity	kW	7,5	9,3	12,4	-	-	-	-	-	-
Input power	kW	1,9	2,3	3,0	-	-	-	-	-	-
Heating total input current	A	9,9	13,0	15,0	-	-	-	-	-	-
COP	W/W	3,97	4,01	4,17	-	-	-	-	-	-
Water flow rate source side	l/h	1662	2053	2778	-	-	-	-	-	-
Useful head source side	kPa	52	43	16	-	-	-	-	-	-
Water flow rate system side	l/h	1319	1626	2171	-	-	-	-	-	-
Useful head system side	kPa	63	59	45	-	-	-	-	-	-
(1) Date 14511:2022; Water user side 12 °C / 7 °C; Water sou (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water so										
Size		026	031	041	051	071	081	101	141	161

Size		026	031	041	051	071	081	101	141	161
Power supply: °										
Cooling performance 12 °C/7 °C(1)										
Cooling capacity	kW	6,8	8,5	11,4	14,9	19,4	22,0	29,8	38,9	44,2
Input power	kW	1,4	1,7	2,5	3,1	3,9	4,6	6,3	8,1	9,4
Cooling total input current	А	3,7	3,3	5,6	7,5	8,6	10,0	14,0	17,0	20,0
EER	W/W	4,75	5,02	4,62	4,84	4,93	4,78	4,75	4,79	4,69
Water flow rate source side	l/h	1396	1735	2375	3054	3978	4538	6100	7947	9077
Useful head source side	kPa	59	53	36	63	43	28	116	137	125
Water flow rate system side	l/h	1154	1447	1955	2541	3320	3770	5078	6638	7555
Useful head system side	kPa	74	70	56	79	66	56	148	164	157
Heating performance 40 °C / 45 °C (2)										
Heating capacity	kW	7,6	9,2	12,5	16,1	20,9	23,8	32,2	41,6	47,6
Input power	kW	1,9	2,2	3,1	3,9	4,9	5,8	8,0	10,1	11,8
Heating total input current	A	4,7	4,0	6,7	9,3	10,0	13,0	18,0	20,0	25,0
COP	W/W	4,05	4,17	4,05	4,11	4,24	4,09	4,01	4,13	4,04
Water flow rate source side	l/h	1680	2053	2767	3602	4708	5325	7200	9414	10671
Useful head source side	kPa	52	43	16	46	20	4	90	121	109
Water flow rate system side	l/h	1326	1607	2181	2819	3647	4159	5629	7284	8315
Useful head system side	kPa	63	59	46	70	54	41	130	148	138

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

PERFORMANCE SPECIFICATIONS EVAPORATING UNITS

Size			026	031	041	051	071	081	101	141	161
Power supply: M											
Cooling performance 12 °C/7 °C(1)											
Cooling canacity		kW	6,6	8,3	11,3	-	-	-	-	-	-
Cooling capacity	A	kW	6,7	8,4	11,4	-	-	-	-	-	-
Input power		kW	1,5	1,8	2,5	-	-	-	-	-	-
iliput power	A	kW	1,5	1,8	2,4	-	-	-	-	-	-
Cooling total input current		A	7,2	9,2	12,0	-	-	-	-	-	-
Cooling total input current	A	A	7,8	9,9	12,0	-	-	-	-	-	-
EER		W/W	4,30	4,50	4,56	-	-	-	-	-	-
LLN	A	W/W	4,54	4,75	4,80	-	-	-	-	-	-
Water flow rate system side	°,A	l/h	1137	1430	1955	-	-	-	-	-	-
Pressure drop system side	°,A	kPa	15	17	23	-	-	-	-	-	-
(1) Date 14511:2022; Water user side 12 $^{\circ}\text{C}$	/7°C; Water sou	rce side 30 °C / 3	5℃								
Size			026	031	041	051	071	081	101	141	161
Power supply: °											
Cooling performance 12 °C/7 °C(1)											
Cooling canacity	0	kW	6,7	8,4	11,3	14,7	19,3	21,9	29,5	38,5	43,9
Cooling capacity	Α	kW	6,8	8,5	11,4	14,9	19,4	22,0	29,8	38,9	44,2
Innut namer	٥	kW	1,5	1,8	2,6	3,1	4,0	4,7	6,2	8,1	9,5
Input power	A	kW	1,4	1,7	2,5	3,1	3,9	4,6	6,3	8,1	9,4
Cooling total input current	0	A	3,1	2,6	4,9	6,4	7,4	9,1	13,0	15,0	18,0
Cooling total input current	A	A	3,7	3,3	5,6	7,5	8,6	10,0	14,0	17,0	20,0
EER	0	W/W	4,49	4,74	4,39	4,70	4,77	4,63	4,72	4,75	4,62
LLN	A	W/W	4,75	5,02	4,62	4,84	4,93	4,78	4,75	4,79	4,69
Water flow rate system side	°,A	l/h	1154	1447	1955	2541	3320	3770	5078	6638	7555
Pressure drop system side	°,A	kPa	15	17	23	21	26	30	25	34	38

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C

ENERGY INDICES (REG. 2016/2281 EU)

WRL ABP

Size		026	031	041	051	071	081	101	141	161
Power supply: M										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	4,73	5,20	5,22	-	-	-	-	-	-
Seasonal efficiency	%	186,3%	205,1%	205,6%	-	-	-	-	-	-
UE 811/2013 performance in average ambient of	onditions (average) - 3	35 °C - Pdesignh	≤ 70 kW (2)							
Pdesignh	kW	11	13	17	-	-	-	-	-	-
SCOP	W/W	5,90	6,28	5,55	-	-	-	-	-	-
ηsh	%	228.0%	243.0%	214.0%	-	-	-	-	-	-
Efficiency energy class		A+++	A+++	A+++	-	-	-	-	-	-
(1) Calaulatian manfaura divitali FIVED water flavores										

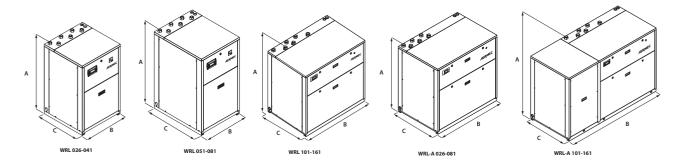
⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Efficiencies for low temperature applications (35 °C)

Size		026	031	041	051	071	081	101	141	161
Power supply: °										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	5,00	5,37	5,22	5,38	5,62	5,30	5,31	5,27	5,21
Seasonal efficiency	%	196,9%	211,7%	205,8%	212,0%	221,7%	208,8%	209,2%	207,7%	205,5%
UE 811/2013 performance in average ambient condition	s (average) - 3	5 °C - Pdesignh	≤ 70 kW (2)							
Pdesignh	kW	10	13	17	22	30	34	44	59	66
SCOP	W/W	5,78	6,15	5,75	6,13	5,75	5,45	6,00	5,95	5,60
ηsh	%	223.0%	238.0%	222.0%	237.0%	222.0%	210.0%	232.0%	230.0%	216.0%
Efficiency energy class		A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Efficiencies for low temperature applications (35 °C)

ELECTRIC DATA

FI	۵	rt	ri,	 lэ	ta


Electric data											
Size			026	031	041	051	071	081	101	141	161
Electric data	,										
Marinarya suggest (FLA)	٥	A	8,0	8,0	15,0	17,0	21,0	22,0	32,0	40,0	41,0
Maximum current (FLA)	M	A	18,0	21,0	34,0	-	-	-	-	-	-
Dools sussessed (LDA)	0	A	34,0	37,0	65,0	75,0	75,0	75,0	90,0	94,0	95,0
Peak current (LRA)	M	A	63.0	84 0	119 0	-	-	-	-	-	

WRL-026-161-HP-W_Y_UN50_13 734 www.aermec.com

GENERAL TECHNICAL DATA

Size			026	031	041	051	071	081	101	141	161
Compressor											
Туре	°,A	type	-				Scroll				
Number	°,A	no.	1	1	1	1	1	1	2	2	2
Circuits	°,A	no.	1	1	1	1	1	1	1	1	1
Refrigerant	°,A	type					R410A				
Refrigerant charge (1)	°,A	kg	0,8	0,9	1,2	1,6	1,9	2,0	3,6	4,4	4,7
Source side heat exchanger		-									
Туре	°,A	type					Brazed plate				
Number	°,A	no.	1	1	1	1	1	1	1	1	1
System side heat exchanger											
Туре	°,A	type					Brazed plate				
Number	°,A	no.	1	1	1	1	1	1	1	1	1
Source side hydraulic connections											
Connections (in/out)	°,A	Туре					Gas-F				
Sizes (in/out)	°,A	Ø					1"1/4				
System side hydraulic connections			-								
Connections (in/out)	°,A	Туре					Gas-F				
Sizes (in/out)	°,A	Ø					1″1/4				
Sound data calculated in cooling mod	e (2)										
Sound power level	°,A	dB(A)	55,5	57,0	57,5	59,0	60,0	60,5	62,0	63,0	63,5
	0	dB(A)	24,3	25,8	26,3	27,7	28,7	29,2	30,6	31,6	32,1
Sound pressure level (10 m)	Α	dB(A)	24,1	25,6	26,1	27,6	28,6	29,1	30,5	31,5	32,0

DIMENSIONS

Size			026	031	041	051	071	081	101	141	161
Dimensions and weights	·										
Λ.	0	mm	976	976	976	1126	1126	1126	1126	1126	1126
A	A	mm	1126	1126	1126	1126	1126	1126	1126	1126	1126
В	0	mm	605	605	605	605	605	605	1155	1155	1155
	A	mm	1155	1155	1155	1155	1155	1155	1755	1755	1755
•	0	mm	603	603	603	773	773	773	773	773	773
C	A	mm	773	773	773	773	773	773	773	773	773
Fundamental ala	0	kg	120	125	130	150	170	180	260	270	280
Empty weight	A	kg	190 (1)	200 (1)	210 (1)	230 (1)	250 (1)	260 (1)	340 (1)	350 (1)	360 (1)

⁽¹⁾ Units with two heat exchangers and storage tank, without pumps

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

WRL 180H - 650H

Reversible water-cooled heat pump, gas side

Cooling capacity 44,9 ÷ 157,4 kW Heating capacity 53,0 ÷ 183,3 kW

- High efficiency
- Suitable for geothermal applications
- Production of hot water up to 55 °C

DESCRIPTION

Water-water offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications. Indoor units with hermetic scroll compressors and plate heat exchangers. In the configuration with desuperheater, it is also possible to produce free-hot water.

The technological choices made, always oriented to the highest quality, ensure very easy installation. In fact the electrical and hydraulic connections are all located in the upper part of the unit, facilitating the installation and maintenance operations and also reducing the technical gaps and their position in as little space as possible.

FEATURES

Operating field

Full-load operation with the production of chilled water 4-18°C, and the possibility to produce also negative temperature water down to -8°C for the evaporator and hot water for the condenser up to 55 °C.

(for more information, refer to the technical documentation).

Plug and play

All the units are equipped with scroll compressors and plate heat exchangers; the base and panelling are made of steel treated with RAL 9003 polyester paints.

The electric and hydraulic connections are all located on the upper part of the unit facilitating installation and maintenance. This allows reduced plant room space and installation in the smallest space possible.

The heat pump can be supplied with all the components required for its installation in new systems and to replace other heat generators. It can be combined with low temperature emission systems such as floor heating or fan coils, but also with conventional radiators.

Version with Integrated hydronic kit

The standard unit is supplied with a water filter, differential pressure switch and safety valve already installed on the service and source side (and also on the recovery side, if present).

To obtain a solution that offers economic savings and facilitates installation, these units can be configured with an integrated hydronic kit on both hydraulic sides (service and source).

Low-head and high-head pumps are available, along with a modulating 2-way valve that can only be applied on the source side to reduce consumption in applications with groundwater.

CONTROL MPC

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

KSAE: External air sensor.

PGD1: Allows you to control the unit at a distance.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

SSM: Probe to be used with the mixer valve in applications with radiant panels. The probe requires the VMF-CRP area accessory as well.

TAH: Ambient terminal with temperature and humidity probe - 230V AC flush-mounting model that can command an On-Off valve or a zone pump and dehumidifier consent.

TAT: Ambient terminal with temperature probe - 230V AC flush-mounting model that can command an On-Off valve or a zone pump.

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with the

VMF-E6 panel, the VMF-CRP modules will be able to manage heat recovery units, RAS, boiler, sanitary management, I/O control, pumps.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

ACCESSORIES COMPATIBILITY

Model	Ver	180	200	300	400	500	550	600	650
AER485P1	0	•	•	•	•	•	•	•	•
AERNET	0	•	•	•	•	•	•	•	•
KSAE	0	•	•	•	•	•	•	•	•
PGD1	0	•	•	•	•	•	•	•	•
SGD	0	•	•	•	•	•			
SSM	0	•	•	•	•	•	•	•	•
TAH	0	•	•	•	•	•	•	•	•
TAT	0	•	•	•	•	•	•	•	•
VMF-CRP	0	•	•				•		•

Antivibration

System side - pumps	Integrated hydronic kit, source side	180	200	300	400	500	550	600	650
°, N, P	°, B, F, I, U, V	VT9	VT9	VT9	VT9	VT15	VT15	VT15	VT15
PR4									
Model		Ver	180	200	300	400	500 550	600	650
PR4		0	•	•		•			•

CONFIGURATOR

Field	Description
1,2,3	WRL
4,5,6	Size 180, 200, 300, 400, 500, 550, 600, 650
7	Operating field
χ	Electronic thermostatic expansion valve
Υ	Low temperature mechanic thermostatic valve (1)
0	Standard mechanic thermostatic valve (2)
8	Model
H	Reversible heat pump, gas side
9	Version
0	Standard
10	Heat recovery
0	With desuperheater
0	Without heat recovery
11	Integrated hydronic kit, source side
В	On-off pump
F	Single low-head inverter pump

Field	Description
I	High-head inverter pump
U	Pump high head
	Applications with bore hole water
٧	2-way modulating valve
0	Without hydronic kit
12	System side - pumps
N	Pump high head
Р	Pump low head
0	Without hydronic kit
13	Field for future development
0	Field for future development
14	Soft-start
S	With soft-start
0	Without soft-start
15	Power supply
0	400V ~ 3N 50Hz

⁽¹⁾ Water produced from 4 °C \div - 8 °C (2) Water produced from 4 °C \div 18 °C

PERFORMANCE SPECIFICATIONS

WRL - °

Size			180	200	300	400	500	550	600	650
Cooling performance 12 °C / 7 °C (1)										
Cooling capacity	0	kW	44,9	59,6	64,8	79,5	93,0	120,1	140,1	157,4
Input power	0	kW	10,8	14,7	16,3	18,6	20,1	27,6	31,4	35,8
Cooling total input current	0	А	20,0	25,0	28,0	32,0	36,0	52,0	60,0	69,0
EER	0	W/W	4,15	4,06	3,97	4,27	4,63	4,34	4,46	4,39
Water flow rate source side	0	l/h	9520	12659	13823	16682	19331	25177	29250	32920
Pressure drop source side	0	kPa	31	52	51	74	34	56	57	71
Water flow rate system side	0	l/h	7732	10274	11168	13711	16013	20686	24139	27112
Pressure drop system side	0	kPa	22	37	36	52	25	40	40	38
Heating performance 40 °C / 45 °C (2)										
Heating capacity	0	kW	53,0	70,9	76,6	92,6	106,4	143,7	164,2	183,3
Input power	0	kW	12,9	17,7	19,1	22,6	24,0	33,1	37,2	42,7
Heating total input current	0	А	23,0	29,0	31,0	37,0	41,0	56,0	64,0	74,0
COP	0	W/W	4,10	4,00	4,01	4,10	4,44	4,34	4,41	4,30
Water flow rate source side	0	I/h	11777	15734	17011	20840	24211	32704	37512	41689
Pressure drop source side	0	kPa	49	89	92	132	61	107	101	126
Water flow rate system side	0	I/h	9190	12277	13264	16046	18452	24913	28485	31788
Pressure drop system side	٥	kPa	30	52	49	72	32	58	56	70

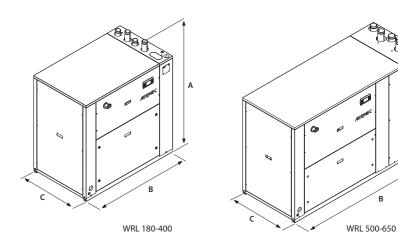
ELECTRIC DATA

Size			180	200	300	400	500	550	600	650
Electric data	'									
Maximum current (FLA)	0	А	32,6	41,8	45,2	52,1	59,0	99,0	112,0	125,0
Peak current (LRA)	0	A	119.0	123.0	125.0	167.0	174.0	265.0	310.0	323.0

ENERGY INDICES (REG. 2016/2281 EU)

Size			180	200	300	400	500	550	600	650
SEER - 12/7 (EN14825: 2018) (1)										
SEER	0	W/W	4,25	4,04	4,15	4,38	5,04	4,62	4,80	4,69
Seasonal efficiency	0	%	166,9%	158,5%	162,8%	172,3%	198,4%	181,7%	188,9%	184,5%
UE 813/2013 performance in average a	mbient conditio	ns (average) - 55	°C - Pdesignh ≤ 4	100 kW (2)						
Pdesignh	0	kW	68	91	98	119	137	185	212	236
ηsh	0	%	173.0%	170.0%	170.0%	175.0%	189.0%	186.0%	189.0%	184.0%
SCOP	0	W/W	4,53	4,45	4,45	4,58	4,93	4,85	4,93	4,80
Efficiency energy class	0		A+++	-	-	-	-	-	-	-
UE 813/2013 performance in average a	mbient conditio	ns (average) - 35	°C - Pdesignh ≤ 4	100 kW (3)						
Pdesignh	0	kW	79	-	-	-	-	-	-	-
ηsh	0	%	222.0%	-	-	-	-	-	-	-
SCOP	0	W/W	5,75	-	-	-	-	-	-	-
Efficiency energy class	0		A+++	-	-	-	-	-	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Efficiencies for average temperature applications (55 °C) (3) Efficiencies for low temperature applications (35 °C)


⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

GENERAL TECHNICAL DATA

Size			180	200	300	400	500	550	600	650
Compressor										
Туре	0	type				Sc	roll			
Compressor regulation	٥	Туре				0n	-Off			
Number	0	no.	2	2	2	2	2	2	2	2
Circuits	0	no.	1	1	1	1	1	1	1	1
Refrigerant	0	type				R4	10A			
Source side heat exchanger										
Туре	0	type				Braze	d plate			
Number	0	no.	1	1	1	1	1	1	1	1
System side heat exchanger										
Туре	0	type				Braze	d plate			
Number	0	no.	1	1	1	1	1	1	1	1
Source side hydraulic connections										
Connections (in/out)	0	Туре				Groove	ed joints			
Sizes (in/out)	0	Ø	2"	2"	2"	2"	2"1/2	2"1/2	2"1/2	2"1/2
System side hydraulic connections										
Connections (in/out)	0	Туре				Groove	ed joints			
Sizes (in/out)	0	Ø	2"	2"	2"	2"	2"1/2	2"1/2	2"1/2	2"1/2
Sound data calculated in cooling mod	le (1)									
Sound power level	0	dB(A)	61,1	61,8	62,9	71,1	67,6	79,1	79,1	79,1
Sound pressure level (10 m)	0	dB(A)	29,6	30,3	31,4	39,6	36,0	47,5	47,5	47,5

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			180	200	300	400	500	550	600	650
Dimensions and weights										
A	0	mm	1380	1380	1380	1380	1380	1380	1380	1380
В	0	mm	1320	1320	1320	1320	2060	2060	2060	2060
C	0	mm	845	845	845	845	845	845	845	845
Empty weight	۰	kg	370	370	381	388	522	598	708	753

WRL 180 - 650

Water cooled heat pump reversible water side

Cooling capacity 49 ÷ 174 kW Heating capacity 55 ÷ 192 kW

- High efficiency
- Suitable for geothermal applications
- Production of hot water up to 55 °C

DESCRIPTION

Water-water offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications. Indoor units with hermetic scroll compressors and plate heat exchangers. In the configuration with desuperheater, it is also possible to produce free-hot water.

The technological choices made, always oriented to the highest quality, ensure very easy installation. In fact the electrical and hydraulic connections are all located in the upper part of the unit, facilitating the installation and maintenance operations and also reducing the technical gaps and their position in as little space as possible.

FEATURES

Operating field

Full-load operation with the production of chilled water 4-18°C, and the possibility to produce also negative temperature water down to -8°C for the evaporator and hot water for the condenser up to 55 °C.

(for more information, refer to the technical documentation).

Plug and play

All the units are equipped with scroll compressors and plate heat exchangers; the base and panelling are made of steel treated with RAL 9003 polyester paints.

The electric and hydraulic connections are all located on the upper part of the unit facilitating installation and maintenance. This allows reduced plant room space and installation in the smallest space possible.

The heat pump can be supplied with all the components required for its installation in new systems and to replace other heat generators. It can be combined with low temperature emission systems such as floor heating or fan coils, but also with conventional radiators.

Version with Integrated hydronic kit

The standard unit is supplied with a water filter, differential pressure switch and safety valve already installed on the service and source side (and also on the recovery side, if present).

To obtain a solution that offers economic savings and facilitates installation, these units can be configured with an integrated hydronic kit on both hydraulic sides (service and source).

Low-head and high-head pumps are available, along with a modulating 2-way valve that can only be applied on the source side to reduce consumption in applications with groundwater.

CONTROL MPC

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

KSAE: External air sensor.

PGD1: Allows you to control the unit at a distance.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

SSM: Probe to be used with the mixer valve in applications with radiant panels. The probe requires the VMF-CRP area accessory as well.

TAH: Ambient terminal with temperature and humidity probe - 230V AC flush-mounting model that can command an On-Off valve or a zone pump and dehumidifier consent.

TAT: Ambient terminal with temperature probe - 230V AC flush-mounting model that can command an On-Off valve or a zone pump.

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with the

VMF-E6 panel, the VMF-CRP modules will be able to manage heat recovery units, RAS, boiler, sanitary management, I/O control, pumps.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another

ACCESSORIES COMPATIBILITY

Ver		180	200	300	400	500	550	600	650
Model: E, K, °									
		AER485P1, AERNET,	AFDAOCD1 AFDNET	AFDAOFD1 AFDNET	AFD 40FD1 AFDNET				
0		KSAE, PGD1, SGD,	AER485P1, AERNET,	AER485P1, AERNET,	AER485P1, AERNET,				
		SSM, TAH, TAT,	KSAE, PGD1, SSM,	KSAE, PGD1, SSM,	KSAE, PGD1, SSM,				
		VMF-CRP	VMF-CRP	VMF-CRP	VMF-CRP	VMF-CRP	TAH, TAT, VMF-CRP	TAH, TAT, VMF-CRP	TAH, TAT, VMF-CRP
PR4									
Model		Ver	180	200	300	400 50	00 550	600	650
PR4		°,E,K	•	•	•	•		•	•
Antivibration									
Integrated hydronic	System side	100	200	200	400	500	FFA	600	650
kit, source side	- pumps	180	200	300	400	500	550	600	650
°, B, F, I, U, V	°, N, P	VT9	VT9	VT9	VT9	VT15	VT15	VT15	VT15

CONFIGURATOR

CON	4FI	JUNATUR
Field		Description
1,2,3		WRL
4,5,6		Size 180, 200, 300, 400, 500, 550, 600, 650
7		Operating field
	Χ	Electronic thermostatic expansion valve
	Υ	Low temperature mechanic thermostatic valve (1)
	0	Standard mechanic thermostatic valve (2)
8		Model
	E	Evaporating unit (3)
	K	Heat pump reversible on the water side with low pressure drops
	0	Heat pump reversible on the water side
9		Version
	0	Standard
10		Heat recovery
	D	With desuperheater
	0	Without heat recovery
11		Integrated hydronic kit, source side
	В	On-off pump
	F	Single low-head inverter pump

Field	Description
I	High-head inverter pump
U	Pump high head
	Applications with bore hole water
V	2-way modulating valve
0	Without hydronic kit
12	System side - pumps
N	Pump high head
Р	Pump low head
0	Without hydronic kit
13	Field for future development
0	Field for future development
14	Soft-start Soft-start
S	With soft-start
0	Without soft-start
15	Power supply
0	400V~3N 50Hz

⁽¹⁾ Water produced from 4 °C \div - 8 °C (2) Water produced from 4 °C \div 18 °C (3) Shipped with holding charge only

PERFORMANCE SPECIFICATIONS

WRL - E

Size		180	200	300	400	500	550	600	650
Cooling performance 12 °C/7 °C (1)	,								
Cooling capacity	kW	46,0	60,1	69,6	80,1	90,6	121,3	140,2	158,7
Input power	kW	12,4	16,0	18,5	19,8	23,1	29,6	34,1	38,5
Cooling total input current	А	23,0	29,0	32,0	36,0	42,0	56,0	65,0	74,0
EER	W/W	3,71	3,76	3,76	4,05	3,92	4,10	4,11	4,12
Water flow rate system side	I/h	7903	10326	11958	13762	15566	20841	24088	27266
Pressure drop system side	kPa	23	39	39	56	25	42	47	57

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

WRL - °

Size		180	200	300	400	500	550	600	650
Cooling performance 12 °C/7 °C (1)									
Cooling capacity	kW	49,7	64,3	74,4	85,9	99,8	129,5	150,1	169,0
Input power	kW	10,8	14,4	16,8	18,3	20,4	27,0	31,0	35,7
Cooling total input current	A	20,0	25,0	29,0	62,0	36,0	51,0	59,0	68,0
EER	W/W	4,59	4,47	4,42	4,69	4,90	4,80	4,84	4,73
Water flow rate source side	l/h	10336	13418	15531	17725	20550	26664	30860	34836
Pressure drop source side	kPa	27	46	62	81	32	52	57	72
Water flow rate system side	l/h	8549	11082	12824	14822	17186	22296	25844	29025
Pressure drop system side	kPa	27	43	46	60	30	49	53	67
Heating performance 40 °C / 45 °C (2)									
Heating capacity	kW	55,8	72,6	84,1	95,6	110,7	143,6	166,1	187,7
Input power	kW	13,2	17,6	20,5	22,4	24,8	32,9	37,9	43,9
Heating total input current	A	24,0	30,0	34,0	38,0	44,0	61,0	71,0	82,0
COP	W/W	4,24	4,13	4,10	4,27	4,46	4,36	4,38	4,27
Water flow rate source side	I/h	12542	16257	18813	21745	25213	32709	37914	42683
Pressure drop source side	kPa	58	93	99	129	65	105	114	144
Water flow rate system side	I/h	9685	12580	14561	16557	19196	24909	28816	32553
Pressure drop system side	kPa	24	40	55	71	28	45	50	63

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WRL - K

Input power kW 13,2 17,5 20,5 22,2 24,8 32,3 37,3 43,1 Heating total input current A 24,0 30,0 34,0 38,0 44,0 61,0 71,0 82,0 COP W/W 4,24 4,24 4,20 4,40 4,46 4,56 4,56 4,46 Water flow rate source side I/h 12542 16745 19337 22397 25213 33690 39052 43963 Pressure drop source side kPa 58 73 90 103 65 52 71 88 Water flow rate system side I/h 9685 12876 14904 16953 1916 25504 29507 33331	**************************************									
Cooling capacity kW 49,7 66,3 76,7 88,6 99,8 133,5 154,6 174,1 Input power kW 10,8 14,4 16,9 18,3 20,4 26,7 30,8 35,6 Cooling total input current A 20,0 25,0 29,0 32,0 36,0 51,0 59,0 68,0 EER W/W 4,59 4,61 4,55 4,85 4,50 5,00 5,02 4,90 Water flow rate source side kPa 27 48 65 85 32 55 60 76 Water flow rate system side l/h 8549 1141 13209 15267 17186 22965 26619 29967 Pressure drop system side kPa 27 34 42 48 30 24 33 41 Heating performance 40 °C/45 °C(2) 144 132 17,5 20,5 22,2 24,8 32,3 37,3 43,1 Input pow	Size		180	200	300	400	500	550	600	650
Input power kW 10,8 14,4 16,9 18,3 20,4 26,7 30,8 35,6 Cooling total input current A 20,0 25,0 29,0 32,0 36,0 51,0 59,0 68,0 EER W/W 4,59 4,61 4,55 4,85 4,50 5,00 5,02 4,90 Water flow rate source side I/h 10336 13753 15919 18173 20550 27338 31642 35716 Pressure drop source side kPa 27 48 65 85 32 55 60 76 Water flow rate system side I/h 8549 11414 13209 15267 17186 22965 26619 29967 Pressure drop system side kPa 27 34 42 48 30 24 33 41 Heating performance 40 °C / 45 °C (2) WW 55,8 74,3 86,1 97,9 110,7 147,1 170,1 192,1 Input power kW 13,2 17,5 20,5 22,2 24,8 32,3 37,3 43,1 Heating total input current A 24,0 30,0 34,0 38,0 44,0 61,0 71,0 82,0 COP W/W 4,24 4,24 4,20 4,40 4,46 4,56 4,56 4,46 Water flow rate system side kPa 58 73 90 103 65 52 71 88 Water flow rate system side l/h 9685 12876 14904 16953 19196 25504 29507 33331	Cooling performance 12 °C / 7 °C (1)									
Cooling total input current A 20,0 25,0 29,0 32,0 36,0 51,0 59,0 68,0 EER W/W 4,59 4,61 4,55 4,85 4,50 5,00 5,02 4,90 Water flow rate source side I/h 10336 13753 15919 18173 20550 27338 31642 35716 Pressure drop source side kPa 27 48 65 85 32 55 60 76 Water flow rate system side I/h 8549 11414 13209 15267 17186 22965 26619 29967 Pressure drop system side kPa 27 34 42 48 30 24 33 41 Heating performance 40 °C / 45 °C (2) Heating capacity kW 55,8 74,3 86,1 97,9 110,7 147,1 170,1 192,1 Input power kW 13,2 17,5 20,5 22,2 24,8 32,3 37,3 43,1 Heating total input current A 24,0 30,0 34,0 38,0 44,0 61,0 71,0 82,0 COP W/W 4,24 4,24 4,20 4,40 4,46 4,56 4,56 4,56 Water flow rate source side kPa 58 73 90 103 65 52 71 88 Water flow rate system side I/h 9685 12876 14904 16953 19196 25504 29507 33331	Cooling capacity	kW	49,7	66,3	76,7	88,6	99,8	133,5	154,6	174,1
EER W/W 4,59 4,61 4,55 4,85 4,50 5,00 5,02 4,90 Water flow rate source side I/h 10336 13753 15919 18173 20550 27338 31642 35716 Pressure drop source side kPa 27 48 65 85 32 55 60 76 Water flow rate system side l/h 8549 11414 13209 15267 17186 22965 26619 29967 Pressure drop system side kPa 27 34 42 48 30 24 33 41 Heating performance 40 °C / 45 °C (2) 48 55,8 74,3 86,1 97,9 110,7 147,1 170,1 192,1 Input power kW 13,2 17,5 20,5 22,2 24,8 32,3 37,3 43,1 Heating total input current A 24,0 30,0 34,0 38,0 44,0 61,0 71,0 82,0 <tr< td=""><td>Input power</td><td>kW</td><td>10,8</td><td>14,4</td><td>16,9</td><td>18,3</td><td>20,4</td><td>26,7</td><td>30,8</td><td>35,6</td></tr<>	Input power	kW	10,8	14,4	16,9	18,3	20,4	26,7	30,8	35,6
Water flow rate source side I/h 10336 13753 15919 18173 20550 27338 31642 35716 Pressure drop source side kPa 27 48 65 85 32 55 60 76 Water flow rate system side l/h 8549 11414 13209 15267 17186 22965 26619 29967 Pressure drop system side kPa 27 34 42 48 30 24 33 41 Heating performance 40 °C / 45 °C (2) *** *** 74,3 86,1 97,9 110,7 147,1 170,1 192,1 Input power kW 13,2 17,5 20,5 22,2 24,8 32,3 37,3 43,1 Heating total input current A 24,0 30,0 34,0 38,0 44,0 61,0 71,0 82,0 COP W/W 4,24 4,24 4,20 4,40 4,46 4,56 4,56 4,46 <tr< td=""><td>Cooling total input current</td><td>A</td><td>20,0</td><td>25,0</td><td>29,0</td><td>32,0</td><td>36,0</td><td>51,0</td><td>59,0</td><td>68,0</td></tr<>	Cooling total input current	A	20,0	25,0	29,0	32,0	36,0	51,0	59,0	68,0
Pressure drop source side kPa 27 48 65 85 32 55 60 76 Water flow rate system side I/h 8549 11414 13209 15267 17186 22965 26619 29967 Pressure drop system side kPa 27 34 42 48 30 24 33 41 Heating performance 40 °C / 45 °C (2) Heating capacity kW 55,8 74,3 86,1 97,9 110,7 147,1 170,1 192,1 Input power kW 13,2 17,5 20,5 22,2 24,8 32,3 37,3 43,1 Heating total input current A 24,0 30,0 34,0 38,0 44,0 61,0 71,0 82,0 COP W/W 4,24 4,24 4,20 4,40 4,46 4,56 4,56 4,46 Water flow rate source side I/h 12542 16745 19337 22397 25213 33690 <td>EER</td> <td>W/W</td> <td>4,59</td> <td>4,61</td> <td>4,55</td> <td>4,85</td> <td>4,50</td> <td>5,00</td> <td>5,02</td> <td>4,90</td>	EER	W/W	4,59	4,61	4,55	4,85	4,50	5,00	5,02	4,90
Water flow rate system side I/h 8549 11414 13209 15267 17186 22965 26619 29967 Pressure drop system side kPa 27 34 42 48 30 24 33 41 Heating performance 40 °C / 45 °C (2) Heating capacity kW 55,8 74,3 86,1 97,9 110,7 147,1 170,1 192,1 Input power kW 13,2 17,5 20,5 22,2 24,8 32,3 37,3 43,1 Heating total input current A 24,0 30,0 34,0 38,0 44,0 61,0 71,0 82,0 COP W/W 4,24 4,24 4,20 4,40 4,46 4,56 4,56 4,46 Water flow rate source side I/h 12542 16745 19337 22397 25213 33690 39052 43963 Pressure drop source side kPa 58 73 90 103 65 <td< td=""><td>Water flow rate source side</td><td>l/h</td><td>10336</td><td>13753</td><td>15919</td><td>18173</td><td>20550</td><td>27338</td><td>31642</td><td>35716</td></td<>	Water flow rate source side	l/h	10336	13753	15919	18173	20550	27338	31642	35716
Pressure drop system side kPa 27 34 42 48 30 24 33 41 Heating performance 40 °C / 45 °C (2) Heating capacity kW 55,8 74,3 86,1 97,9 110,7 147,1 170,1 192,1 Input power kW 13,2 17,5 20,5 22,2 24,8 32,3 37,3 43,1 Heating total input current A 24,0 30,0 34,0 38,0 44,0 61,0 71,0 82,0 COP W/W 4,24 4,24 4,20 4,40 4,46 4,56 4,56 4,46 Water flow rate source side I/h 12542 16745 19337 22397 25213 33690 39052 43963 Pressure drop source side kPa 58 73 90 103 65 52 71 88 Water flow rate system side I/h 9685 12876 14904 16953 19196 25504	Pressure drop source side	kPa	27	48	65	85	32	55	60	76
Heating performance 40 °C / 45 °C (2) Heating capacity kW 55,8 74,3 86,1 97,9 110,7 147,1 170,1 192,1 Input power kW 13,2 17,5 20,5 22,2 24,8 32,3 37,3 43,1 Heating total input current A 24,0 30,0 34,0 38,0 44,0 61,0 71,0 82,0 COP W/W 4,24 4,24 4,20 4,40 4,46 4,56 4,56 4,46 Water flow rate source side 1/h 12542 16745 19337 22397 25213 33690 39052 43963 Pressure drop source side kPa 58 73 90 103 65 52 71 88 Water flow rate system side 1/h 9685 12876 14904 16953 19196 25504 29507 33331	Water flow rate system side	l/h	8549	11414	13209	15267	17186	22965	26619	29967
Heating capacity kW 55,8 74,3 86,1 97,9 110,7 147,1 170,1 192,1 Input power kW 13,2 17,5 20,5 22,2 24,8 32,3 37,3 43,1 Heating total input current A 24,0 30,0 34,0 38,0 44,0 61,0 71,0 82,0 COP W/W 4,24 4,24 4,20 4,40 4,46 4,56 4,56 4,46 Water flow rate source side I/h 12542 16745 19337 22397 25213 33690 39052 43963 Pressure drop source side kPa 58 73 90 103 65 52 71 88 Water flow rate system side I/h 9685 12876 14904 16953 1916 25504 29507 33331	Pressure drop system side	kPa	27	34	42	48	30	24	33	41
Input power kW 13,2 17,5 20,5 22,2 24,8 32,3 37,3 43,1 Heating total input current A 24,0 30,0 34,0 38,0 44,0 61,0 71,0 82,0 COP W/W 4,24 4,24 4,20 4,40 4,46 4,56 4,56 4,46 Water flow rate source side I/h 12542 16745 19337 22397 25213 33690 39052 43963 Pressure drop source side kPa 58 73 90 103 65 52 71 88 Water flow rate system side I/h 9685 12876 14904 16953 19196 25504 29507 33331	Heating performance 40 °C / 45 °C (2)									
Heating total input current A 24,0 30,0 34,0 38,0 44,0 61,0 71,0 82,0 COP W/W 4,24 4,24 4,20 4,40 4,46 4,56 4,56 4,46 Water flow rate source side I/h 12542 16745 19337 22397 25213 33690 39052 43963 Pressure drop source side kPa 58 73 90 103 65 52 71 88 Water flow rate system side I/h 9685 12876 14904 16953 19196 25504 29507 33331	Heating capacity	kW	55,8	74,3	86,1	97,9	110,7	147,1	170,1	192,1
COP W/W 4,24 4,24 4,20 4,40 4,46 4,56 4,56 4,66 4,66 4,46 Water flow rate source side I/h 12542 16745 19337 22397 25213 33690 39052 43963 Pressure drop source side kPa 58 73 90 103 65 52 71 88 Water flow rate system side I/h 9685 12876 14904 16953 19196 25504 29507 33331	Input power	kW	13,2	17,5	20,5	22,2	24,8	32,3	37,3	43,1
Water flow rate source side I/h 12542 16745 19337 22397 25213 33690 39052 43963 Pressure drop source side kPa 58 73 90 103 65 52 71 88 Water flow rate system side I/h 9685 12876 14904 16953 19196 25504 29507 33331	Heating total input current	А	24,0	30,0	34,0	38,0	44,0	61,0	71,0	82,0
Pressure drop source side kPa 58 73 90 103 65 52 71 88 Water flow rate system side I/h 9685 12876 14904 16953 19196 25504 29507 33331	COP	W/W	4,24	4,24	4,20	4,40	4,46	4,56	4,56	4,46
Water flow rate system side I/h 9685 12876 14904 16953 19196 25504 29507 33331	Water flow rate source side	l/h	12542	16745	19337	22397	25213	33690	39052	43963
	Pressure drop source side	kPa	58	73	90	103	65	52	71	88
Pressure drop system side kPa 24 42 57 74 28 48 52 66	Water flow rate system side	I/h	9685	12876	14904	16953	19196	25504	29507	33331
	Pressure drop system side	kPa	24	42	57	74	28	48	52	66

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

ENERGY INDICES (REG. 2016/2281 EU)

WRL °

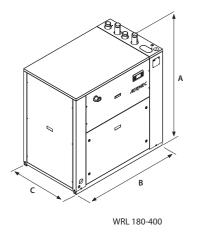
Size	,	180	200	300	400	500	550	600	650
SEER - 12/7 (EN14825: 2018) (1)								5,04 5,12 198,7% 201,7% 185 212 186.0% 189.0% 4,85 4,93 	
SEER	W/W	4,65	4,55	4,54	4,74	5,31	5,04	5,12	4,97
Seasonal efficiency	%	182,8%	178,9%	178,5%	186,4%	209,3%	198,7%	201,7%	195,8%
UE 813/2013 performance in average ambient	conditions (average) - 55 °(C - Pdesignh ≤ 40	0 kW (2)						
Pdesignh	kW	68	91	98	119	137	185	212	236
ηsh	%	173.0%	170.0%	170.0%	175.0%	189.0%	186.0%	189.0%	184.0%
SCOP	W/W	4,53	4,45	4,45	4,58	4,93	4,85	4,93	4,80
Efficiency energy class		A+++	-	-	-	-	-	-	-
UE 813/2013 performance in average ambient	conditions (average) - 35 °(: - Pdesignh ≤ 40	0 kW (3)						
Pdesignh	kW	79	-	-	-	-	-	-	-
ηsh	%	222.0%	-	-	-	-	-	-	-
SCOP	W/W	5,75	-	-	-	-	-	-	-
Efficiency energy class		A+++	-	-	-	-	-	-	-

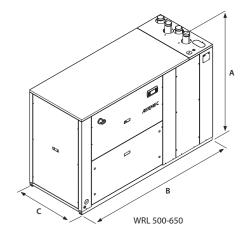
⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Efficiencies for average temperature applications (55 °C)
(3) Efficiencies for low temperature applications (35 °C)

WRL K

Size		180	200	300	400	500	550	600	650
	-	100	200	300	400			- 000	050
SEER - 12/7 (EN14825: 2018) (1)									
SEER	W/W	4,65	4,71	4,67	4,90	5,31	5,31	5,35	5,19
Seasonal efficiency	%	182,8%	185,3%	183,6%	192,9%	209,3%	209,2%	210,9%	204,6%
UE 813/2013 performance in average ambien	t conditions (average) - 55 °(C - Pdesignh ≤ 40	0 kW (2)						
Pdesignh	kW	68	91	98	119	137	185	212	236
ηsh	%	173.0%	170.0%	170.0%	175.0%	189.0%	186.0%	189.0%	184.0%
SCOP	W/W	4,53	4,45	4,45	4,58	4,93	4,85	4,93	4,80
Efficiency energy class		A+++	-	-	-	-	-	-	-
UE 813/2013 performance in average ambien	t conditions (average) - 35 °(C - Pdesignh ≤ 40	0 kW (3)						
Pdesignh	kW	79	-	-	-	-	-	-	-
ηsh	%	222.0%	-	-	-	-	-	-	-
SCOP	W/W	5,75	-	-	-	-	-	-	-
Efficiency energy class		A+++	-	-	-	-	-	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Efficiencies for average temperature applications (55 °C)
(3) Efficiencies for low temperature applications (35 °C)


ELECTRIC DATA


Size			180	200	300	400	500	550	600	650
Electric data										
Maximum current (FLA)	°,E,K	Α	32,6	41,8	45,2	52,1	59,0	99,0	112,0	125,0
Peak current (LRA)	°,E,K	А	119,0	123,0	125,0	167,0	174,0	265,0	310,0	323,0

GENERAL TECHNICAL DATA

Size			180	200	300	400	500	550	600	650
Compressor										
Туре	°,E,K	type				Sc	roll			_
Compressor regulation	°,E,K	Туре				0n	-Off			
Number	°,E,K	no.	2	2	2	2	2	2	2	2
Circuits	°,E,K	no.	1	1	1	1	1	1	1	1
Refrigerant	°,E,K	type				R4	10A			
Defrigerant charge (1)	°,K	kg	6,0	7,0	6,8	7,2	9,0	14,5	16,8	16,5
Refrigerant charge (1)	E	kg	Holding charge							
Source side heat exchanger										
Tune	°,K	type				Braze	d plate			
Туре	E	type								
Number	°,K	no.	1	1	1	1	1	1	1	1
Number	E	no.	-	-	-	-	-	-	-	-
System side heat exchanger										
Туре	°,E,K	type				Braze	d plate			
Number	°,E,K	no.	1	1	1	1	1	1	1	1
Source side hydraulic connections										
Connections (in/out)	°,K	Туре				Groove	d joints			
Connections (m/out)	E	Type								
Sizes (in/out)	°,K	Ø	2"	2"	2"	2"	2"1/2	2"1/2	2"1/2	2"1/2
Sizes (III/Out)	E	Ø								
System side hydraulic connections										
Connections (in/out)	°,E,K	Type				Groove	d joints			
Sizes (in/out)	°,E,K	Ø	2"	2"	2"	2"	2" 1/2	2"1/2	2"1/2	2"1/2
Sound data calculated in cooling mode (2)									
Sound power level	°,E,K	dB(A)	61,1	61,8	62,9	71,1	67,6	79,1	79,1	79,1
Sound pressure level (10 m)	°,E,K	dB(A)	29,6	30,3	31,4	39,6	36,0	47,5	47,5	47,5

DIMENSIONS

Size			180	200	300	400	500	550	600	650
Dimensions and weights										
A	°,E,K	mm	1380	1380	1380	1380	1380	1380	1380	1380
В	°,E,K	mm	1320	1320	1320	1320	2060	2060	2060	2060
C	°,E,K	mm	845	845	845	845	845	845	845	845
Emptyweight	°,K	kg	375	375	381	388	518	594	670	715
Empty weight	E	kg	-	-	-	-	-	-	-	-

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

WRK

Reversible water-cooled heat pump, gas side

Cooling capacity 38,9 ÷ 165,9 kW Heating capacity 48,5 ÷ 207,7 kW

- Optimised for heating in centralised systems.
- Production of hot water at high temperature up to 68°C.
- Independent from the gas network.
- DHW production.

DESCRIPTION

Water source heat pump with reverse cycle valve. The unit can produce chilled and hot water but it is optimized for high temperature hot water production, making it a perfect solution for DHW applications. It can also work with low source temperatures which make it possible to work with geothermal applications.

VERSIONS

° Standard

L Standard silenced

FEATURES

Extended operating range

Particular attention has been given to winter operation, ensuring the production of hot water up to 68°C .

Plug and play

All units are equipped with scroll compressors with steam injection and brazed plate heat exchangers. The base and panels are made of steel treated with polyester paints RAL 9003.

The heat pump can be supplied with all the components required for its installation in new systems and in retrofit applications. It can be combined with low temperature emission systems such as in floor radiant heating or fan coils, but also with conventional radiators.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, high or low head, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

PGD1: Allows you to control the unit at a distance.

SGD: Electronic expansion that enables connecting to the photovoltaic system and heat pumps to accumulate heat in the DHW tank or in the heating system during the photovoltaic production phase and release it at times when heating demand is highest.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

745

ACCESSORIES COMPATIBILITY

Model	Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
AER485P1	0						•	•	•	•	•
AER403FT	L										
AERBACP	0						•	•	•	•	•
AERBACP	L	•	•	•	•	•	•	•	•	•	•
AERNET	0						•	•	•	•	•
AEKNEI	L	•	•	•	•	•	•	•	•	•	•
PGD1	0						•	•	•	•	•
רטעו	L	•	•	•	•	•	•	•	•	•	•
SCD.	0						•	•			
SGD	L	•	•	•		•	•				

Antivibration

Version	System side - pumps	Integrated hydronic kit, source side	0200	0280	0300	0330	0350
0	٥	°, J, K, Q, R, U, V, W, Z	-	-	-	-	-
0	М	°, J, K, U, W	-	-	-	-	-
0	N	°, Q, R, V, Z	-	-	-	-	-
0	0	°, J, K, U, W	-	-	-	-	-
0	Р	°, Q, R, V, Z	-	-	-	-	-
L	٥	°, J, K, Q, R, U, V, W, Z	-	-	-	-	-
L	M	°, J, K, U, W	-	-	-	-	-
L	N	°, Q, R, V, Z	-	-	-	-	-
L	0	°, J, K, U, W	-	-	-	-	-
L	Р	°, Q, R, V, Z	-	-	-	-	-

Version	System side - pumps	Integrated hydronic kit, source side	0500	0550	0600	0650	0700
0	0	0	AVX345	AVX342	AVX342	AVX342	AVX342
0	°, M	J, K, U, W	AVX343	AVX343	AVX343	AVX343	AVX343
0	N	0	AVX343	AVX343	AVX343	AVX343	AVX343
0	0	J, K, U, W	AVX343	AVX343	AVX343	AVX343	AVX343
0	Р	0	AVX343	AVX343	AVX343	AVX343	AVX343
0	٥	Q, R, V, Z	AVX313	AVX343	AVX343	AVX343	AVX343
0	M, 0	0	AVX313	AVX343	AVX343	AVX343	AVX343
0	N, P	Q, R, V, Z	AVX343	AVX343	AVX343	AVX344	AVX344
L	٥	0	AVX345	AVX342	AVX342	AVX342	AVX342
L	°, M	J, K, U, W	AVX343	AVX343	AVX343	AVX343	AVX343
L	N	0	AVX343	AVX343	AVX343	AVX343	AVX343
L	0	J, K, U, W	AVX343	AVX343	AVX343	AVX343	AVX343
L	Р	0	AVX343	AVX343	AVX343	AVX343	AVX343
L	0	Q, R, V, Z	AVX313	AVX343	AVX343	AVX343	AVX343
L	M, 0	0	AVX313	AVX343	AVX343	AVX343	AVX343
L	N, P	Q, R, V, Z	AVX343	AVX343	AVX343	AVX344	AVX344

not available

Version	System side - pumps	Integrated hydronic kit, source side	0200	0280	0300	0330	0350
0	0	°, J, K, Q, R, U, V, W, Z	-	-	-	-	-
0	М	°, J, K, U, W	-	-	-	-	-
0	N	°, Q, R, V, Z	-	-	-	-	-
0	0	°, J, K, U, W	-	-	-	-	-
0	Р	°, Q, R, V, Z	-	-	-	-	-
L	0	0	VT9	VT9	VT9	VT9	VT9
L	٥	J, K, Q, R, U, V, W, Z	VT15	VT15	VT15	VT15	VT15
L	M	°, J, K, U, W	VT15	VT15	VT15	VT15	VT15
L	N	°, Q, R, V, Z	VT15	VT15	VT15	VT15	VT15
Ĺ	0	°, J, K, U, W	VT15	VT15	VT15	VT15	VT15
L	Р	°, Q, R, V, Z	VT15	VT15	VT15	VT15	VT15

Version	System side - pumps	Integrated hydronic kit, source side	0500	0550	0600	0650	0700
0	0	°, J, K, Q, R, U, V, W, Z	-	-	-	-	-
٥	M	°, J, K, U, W	-	-	-	-	-
٥	N	°, Q, R, V, Z	-	-	-	-	-
٥	0	°, J, K, U, W	-	-	-	-	-
٥	Р	°, Q, R, V, Z	-	-	-	-	-
L	0	°, J, K, Q, R, U, V, W, Z	-	-	-	-	-
L	М	°, J, K, U, W	-	-	-	-	-
L	N	°, Q, R, V, Z	-	-	-	-	-
L	0	°, J, K, U, W	-	-	-	-	-
L	P	°, Q, R, V, Z	-	-	-	-	-

⁻ not available

PR4

Model	Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
PR4	0						•	•	•	•	•
PK4											•

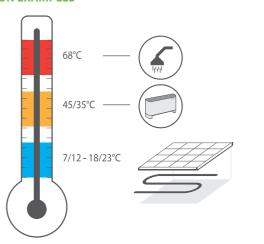
Electronic device for peak current reduction.

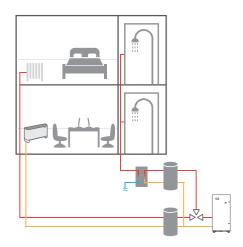
Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
0	-	-	-	-	-	DREWRK0500 (1)	DREWRK0550 (1)	DREWRK0600 (1)	DREWRK0650 (1)	DREWRK0700 (1)
L	DREWRK0200 (1)	DREWRK0280 (1)	DREWRK0300 (1)	DREWRK0330 (1)	DREWRK0350 (1)	DREWRK0500 (1)	DREWRK0550 (1)	DREWRK0600 (1)	DREWRK0650 (1)	DREWRK0700 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Power factor correction.

Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
0	-	-	-	-	-	RIFWRK0500	RIFWRK0550	RIFWRK0600	RIFWRK0650	RIFWRK0700
L	RIFWRK0200	RIFWRK0280	RIFWRK0300	RIFWRK0330	RIFWRK0350	RIFWRK0500	RIFWRK0550	RIFWRK0600	RIFWRK0650	RIFWRK0700


A grey background indicates the accessory must be assembled in the factory


Double safety valve.

Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
0	-	-	-	-	-	T6WRK2	T6WRK2	T6WRK2	T6WRK2	T6WRK2
	T6WRK1	T6WRK1	T6WRK1	T6WRK1	T6WRK1	T6WRK2	T6WRK2	T6WRK2	T6WRK2	T6WRK2

A grey background indicates the accessory must be assembled in the factory

APPLICATION EXAMPLES

WRK units are used in building renovations, where centralised boilers need replacing, while maintaining the existing distribution system and terminals (e.g. radiators) at the same time, to ensure the production of domestic hot water. This situation is typical when operating in contexts such as public buildings, but also in the case of centralised residential systems such as condominiums, where costs must be limited without changing the distribution system, while also offering a renewable energy source, represented precisely by heat pumps. Being able to upgrade a building without involving the distribution system also eliminates the inconveniences associated with the renovation of the premises, ensuring the continuity of the property's use, saving time and money.

CONFIGURATOR

Field	Description
1,2,3	WRK
4,5,6,7	Size 0200, 0280, 0300, 0330, 0350, 0500, 0550, 0600, 0650, 0700
8	Operating field
0	Standard mechanic thermostatic valve
9	Model
Н	Heat pump
10	Version
0	Standard
L	Standard silenced (1)
11	Evaporator
0	Standard
12	Heat recovery
D	With desuperheater
0	Without heat recovery
13	Power supply
0	400V ~ 3 50Hz with magnet circuit breakers
14	System side - pumps
М	Single pump low head

Field	d	Description								
	N	Pump low head + stand-by pump								
	0	Single pump high head								
	Р	Pump high head + stand-by pump								
	0	Without hydronic kit								
15		Integrated hydronic kit, source side (2)								
	J	Single low-head inverter pump								
	K	Single high-head inverter pump								
	Q	Single high-head inverter pump + stand-by pump								
	R	Single low-head inverter pump + stand-by pump								
	U	Single pump low head								
	٧	Pump low head + stand-by pump								
	W	Single pump high head								
	Z	Pump high head + stand-by pump								
	0	Without hydronic kit								
16		Field for future development								
	0	Field for future development								

- (1) The size $\,$ 0200-0280-0300-0330-0350 only available in low noise version (L) (2) Heat pumps R and Q are availables only for sizes $\,$ 0500 \div 0700

PERFORMANCE SPECIFICATIONS 12 °C/ 7 °C - 40 °C/ 45 °C

WRK - H°

	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
kW	-	-	-	-	-	96,2	110,9	130,0	145,8	166,1
kW	-	-	-	-	-	21,5	24,0	28,6	33,3	37,4
A	-	-	-	-	-	48,0	50,0	62,0	86,0	89,0
W/W	-	-	-	-	-	4,47	4,63	4,55	4,38	4,44
l/h	-	-	-	-	-	20140	23075	27128	30634	34797
kPa	-	-	-	-	-	25	25	25	24	25
l/h	-	-	-	-	-	16552	19082	22366	25077	28566
kPa	-	-	-	-	-	17	17	17	16	17
kW	-	-	-	-	-	120,8	137,7	163,1	187,1	207,9
kW	-	-	-	-	-	26,4	29,7	35,4	41,2	45,4
A	-	-	-	-	-	52,0	56,0	69,0	92,0	95,0
W/W	-	-	-	-	-	4,58	4,64	4,61	4,55	4,58
l/h	-	-	-	-	-	27658	31618	37369	42704	47563
kPa	-	-	-	-	-	49	49	50	47	50
l/h	-	-	-	-	-	20958	23884	28290	32459	36068
kPa	-	-	-	-	-	28	27	28	27	28
	kW A W/W I/h kPa I/h kPa kW kW A W/W I/h kPa	kW -	kW	kW	kW	kW	kW	kW - - - - 96,2 110,9 kW - - - - 21,5 24,0 A - - - - 48,0 50,0 W/W - - - - 4,47 4,63 I/h - - - - 20140 23075 kPa - - - - 25 25 I/h - - - - 16552 19082 kPa - - - - 17 17 kW - - - - 17 17 kW - - - - 26,4 29,7 A - - - - 52,0 56,0 W/W - - - - 4,58 4,64 I/h - - - - 49 4	kW - - - - 96,2 110,9 130,0 kW - - - - 21,5 24,0 28,6 A - - - - - 24,0 28,6 A - - - - 48,0 50,0 62,0 W/W - - - - 4,47 4,63 4,55 I/h - - - - - 20140 23075 27128 kPa - - - - 20140 23075 27128 kPa - - - - 25 25 25 1/h - - - - 16552 19082 22366 kPa - - - - 17 17 17 17 17 17 17 17 17 17 18 4	KW

WRK - HL

WILK - IIE											
Size		0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	38,9	54,4	65,0	74,1	83,5	96,2	110,9	130,0	145,8	166,1
Input power	kW	8,6	12,0	14,3	16,8	18,8	21,5	24,0	28,6	33,3	37,4
Cooling total input current	A	20,0	25,0	31,0	43,0	45,0	48,0	50,0	62,0	86,0	89,0
EER	W/W	4,54	4,54	4,54	4,41	4,43	4,47	4,63	4,55	4,38	4,44
Water flow rate source side	l/h	8131	11358	13570	15551	17498	20140	23075	27128	30634	34797
Pressure drop source side	kPa	19	23	24	25	26	25	25	25	24	25
Water flow rate system side	l/h	6699	9362	11186	12754	14363	16552	19082	22366	25077	28566
Pressure drop system side	kPa	13	16	16	17	17	17	17	17	16	17
Heating performance 40 °C / 45 °C (2)											
Heating capacity	kW	48,4	68,6	81,6	93,4	104,0	120,8	137,7	163,1	187,1	207,9
Input power	kW	10,6	14,8	17,8	20,8	22,9	26,4	29,7	35,4	41,2	45,4
Heating total input current	A	21,0	28,0	35,0	46,0	48,0	52,0	45,0	69,0	92,0	95,0
COP	W/W	4,57	4,62	4,58	4,48	4,54	4,58	4,64	4,61	4,55	4,58
Water flow rate source side	I/h	11062	15751	18684	21290	23771	27658	31618	37369	42704	47563
Pressure drop source side	kPa	37	45	47	49	50	49	49	50	47	50
Water flow rate system side	l/h	8397	11904	14149	16207	18041	20958	23884	28290	32459	36068
Pressure drop system side	kPa	21	26	27	28	29	28	27	28	27	28

⁽¹⁾ Date 14511:2022; Water user side 12 °C /7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

PERFORMANCE SPECIFICATIONS 23 °C/ 18 °C - 30 °C/ 35 °C

WRK - H°

Size		0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Cooling performance 23 °C / 18 °C (1)											
Cooling capacity	kW	-	-	-	-	-	126,3	144,8	169,8	189,7	217,3
Input power	kW	-	-	-	-	-	21,7	23,3	29,3	33,4	39,0
Cooling total input current	A	-	-	-	-	-	47,0	47,0	62,0	84,0	91,0
EER	W/W	-	-	-	-	-	5,82	6,20	5,80	5,69	5,58
Water flow rate source side	l/h	-	-	-	-	-	25317	28767	34057	38166	43828
Pressure drop source side	kPa	-	-	-	-	-	39	39	40	37	40
Water flow rate system side	l/h	-	-	-	-	-	21826	25015	29337	32770	37528
Pressure drop system side	kPa	-	-	-	-	-	29	29	29	28	29
Heating performance 30 °C / 35 °C (2)											
Heating capacity	kW	-	-	-	-	-	116,4	132,7	155,6	178,3	198,1
Input power	kW	-	-	-	-	-	20,7	23,0	27,5	32,1	35,4
Heating total input current	A	-	-	-	-	-	42,0	44,0	54,0	73,0	75,0
СОР	W/W	-	-	-	-	-	5,62	5,77	5,66	5,56	5,60
Water flow rate source side	l/h	-	-	-	-	-	16656	19095	22309	25455	28334
Pressure drop source side	kPa	-	-	-	-	-	18	18	18	17	18
Water flow rate system side	l/h	-	-	-	-	-	20118	22943	26905	30825	34248
Pressure drop system side	kPa	-	-	-	-	-	25	25	25	24	25

⁽¹⁾ Date 14511:2022; Water user side 23 °C / 18 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 30 °C / 35 °C; Water source side 10 °C / 5 °C

WRK - HL

Size	,	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Cooling performance 23 °C / 18 °C (1)											
Cooling capacity	kW	50,9	71,0	84,9	96,4	109,2	126,3	144,8	169,8	189,7	217,3
Input power	kW	8,8	11,7	14,7	16,9	19,8	21,7	23,3	29,3	33,4	39,0
Cooling total input current	A	20,0	24,0	31,0	42,0	46,0	47,0	47,0	62,0	84,0	91,0
EER	W/W	5,81	6,10	5,78	5,69	5,53	5,82	6,20	5,80	5,69	5,58
Water flow rate source side	l/h	10217	14150	17036	19386	22038	25317	28767	34057	38166	43828
Pressure drop source side	kPa	30	36	37	39	41	39	39	40	37	40
Water flow rate system side	l/h	8796	12274	14672	16662	18865	21826	25015	29337	32770	37528
Pressure drop system side	kPa	22	27	28	29	30	29	29	29	28	29
Heating performance 30 °C/35 °C(2)											
Heating capacity	kW	46,4	66,1	77,8	89,0	100,1	116,4	132,7	155,6	178,3	198,1
Input power	kW	8,3	11,5	13,8	16,2	18,2	20,7	23,0	27,5	32,1	35,4
Heating total input current	A	17,0	22,0	28,0	36,0	39,0	42,0	44,0	54,0	73,0	75,0
COP	W/W	5,60	5,76	5,66	5,51	5,49	5,62	5,77	5,66	5,56	5,60
Water flow rate source side	l/h	6629	9514	11157	12694	14269	16656	19095	22309	25455	28334
Pressure drop source side	kPa	13	17	17	17	18	18	18	18	17	18
Water flow rate system side	l/h	8016	11435	13458	15390	17310	20118	22943	26905	30825	34248
Pressure drop system side	kPa	19	24	24	25	26	25	25	25	24	25

⁽¹⁾ Date 14511:2022; Water user side 23 °C / 18 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 30 °C / 35 °C; Water source side 10 °C / 5 °C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
SEER - 12/7 (EN14825: 2018) (1)												
CLED	٥	W/W	-	-	-	-	-	5,33	5,46	5,28	5,38	5,28
SEER	L	W/W	4,75	5,14	5,04	5,04	4,97	5,33	5,46	5,28	5,38	5,28
Caranal off size or	0	%	-	-	-	-	-	210,2%	215,4%	208,2%	212,2%	208,2%
Seasonal efficiency	L	%	187,0%	202,6%	198,6%	198,6%	195,8%	210,2%	215,4%	208,2%	212,2%	208,2
UE 811/2013 performance in average am	bient conditio	ons (average)	- 55 °C - Pdesig	nh ≤ 70 kW (2)							
F#F siamen an army slave	٥		-	-	-	-	-	-	-	-	-	-
Efficiency energy class	L		A+++	-	-	-	-	-	-	-	-	-
District	0	kW	-	-	-	-	-	157	179	212	244	271
Pdesignh	L	kW	63	89	106	122	135	157	179	212	244	271
	0	%	-	-	-	-	-	191.0%	195.0%	194.0%	193.0%	192.0%
ηsh	L	%	181.0%	187.0%	185.0%	181.0%	182.0%	191.0%	195.0%	194.0%	193.0%	192.0%
COOR	0	W/W	-	-	-	-	-	4,98	5,08	5,05	5,03	5,00
SCOP	L	W/W	4,73	4,88	4,83	4,73	4,75	4,98	5,08	5,05	5,03	5,00

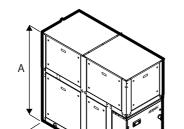
⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA

Size			0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Electric data												
Marianova surrent (FLA)	0	Α	-	-	-	-	-	75,0	84,0	104,0	130,0	132,0
Maximum current (FLA)	L	A	32,0	42,0	52,0	65,0	66,0	75,0	84,0	104,0	130,0	132,0
Dook surrent (LDA)	0	A	-	-	-	-	-	216,0	181,0	218,0	271,5	273,0
Peak current (LRA)	L	A	144,0	139,0	166,0	206,5	207,0	216,0	181,0	218,0	271,5	273,0

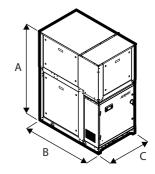
GENERAL TECHNICAL DATA

Size			0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Compressor												
T	٥	type	-	-	-	-	-	Scroll	Scroll	Scroll	Scroll	Scroll
Туре	L	type					Sc	roll				
Number	0	no.	-	-	-	-	-	3	4	4	4	4
Number	L	no.	2	2	2	2	2	3	4	4	4	4
Circuits	٥	no.	-	-	-	-	-	2	2	2	2	2
UICUIS	L	no.	2	2	2	2	2	2	2	2	2	2
Refrigerant	0	type	-	-	-	-	-	R410A	R410A	R410A	R410A	R410A
nemgerani	L	type					R4	10A				
Refrigerant charge (1)	0	kg	-	-	-	-	-	13,0	16,0	18,0	22,0	24,0
Kenigerani Charge (1)	L	kg	6,0	8,0	9,0	10,0	11,0	13,0	16,0	18,0	22,0	24,0
Source side heat exchanger												
Туре	°,L	type					Braze	d plate				
Number	٥	no.	-	-	-	-	-	1	1	1	1	1
Number	L	no.	1	1	1	1	1	1	1	1	1	1
System side heat exchanger												
Туре	°,L	type					Braze	d plate				
Number	٥	no.	-	-	-	-	-	1	1	1	1	1
Number	L	no.	1	1	1	1	1	1	1	1	1	1
Source side hydraulic connections												
Connections (in/out)	°,L	Туре					Groove	d joints				
Sizes (in/out)	٥	Ø	-	-	-	-	-	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"
Sizes (III/Out)	L	Ø					21	/2"				
System side hydraulic connections												
Connections (in/out)	°,L	Туре					Groove	d joints				
Since (in /out)	0	Ø	-	-	-	-	-	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"
Sizes (in/out)	L	Ø					21	/2"				
Sound data calculated in cooling mod	le (2)											
Cound nowar lovel	۰	dB(A)	-	-	-	-	-	81,6	82,2	81,6	82,7	83,4
Sound power level	L	dB(A)	71,6	73,9	72,4	74,0	75,6	76,3	77,0	75,9	77,5	78,0
Cound assessed level (10 m)	0	dB(A)	-	-	-	-	-	49,9	50,5	49,9	51,0	51,7
Sound pressure level (10 m)	L	dB(A)	40,1	42,4	40,9	42,5	44,1	44,6	45,3	44,2	45,8	46,3


⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS


WRK 0350°

В

Size			0200	0280	0300	0330	0350
Dimensions and weights without hydroni	ic kit						
Α.	0	mm	-	-	-	-	-
Α .	L	mm	1675	1675	1675	1675	1675
D	0	mm	-	-	-	-	-
В	L	mm	1265	1265	1265	1265	1265
<i>.</i>	0	mm	-	-	-	-	-
(L	mm	800	800	800	800	800
Dimensions and weights with pump/s							
Α.	0	mm	-	-		-	-
Α .	L	mm	1675	1675	1675	1675	1675
D	0	mm	-	-	-	-	-
В	L	mm	1890	1890	1890	1890	1890
	0	mm	-	-	-	-	-
	L	mm	800	800	800	800	800
Size			0500	0550	0600	0650	0700
Dimensions and weights without hydroni	ic kit						
	0	mm	1840	1840	1840	1840	1840
A	L	mm	1885	1885	1885	1885	1885
В	°,L	mm	2155	2155	2155	2155	2155
C	°,L	mm	800	800	800	800	800
Dimensions and weights with pump/s							
Α.	0	mm	1840	1840	1840	1840	1840
Α	L	mm	1885	1885	1885	1885	1885
В	°,L	mm	3090	3090	3090	3090	3090
C	°,L	mm	800	800	800	800	800

	Version	System side - pumps	Integrated hydronic kit, source side		0200	0280	0300	0330	0350
	0	°/M/N/0/P	°/J/K/Q/R/U/V/W/Z	kg	-	-	-	-	-
	L	٥	٥	kg	495	550	565	570	580
	L	٥	J/K/U/W	kg	665	720	735	740	750
	L	0	Q/R/V/Z	kg	690	745	760	765	775
	L	N/P	0	kg	690	745	760	765	775
F	L	M/0	0	kg	665	720	730	740	750
Empty weight	L	M/0	J/K/U/W	kg	695	755	765	775	785
	L	М	Q/R/V/Z	kg	-	-	-	-	-
	L	N	J/K/U/W	kg	-	-	-	-	-
	L	0	Q/R/V/Z	kg	-	-	-	-	-
	L	Р	J/K/U/W	kg	-	-	-	-	-
	L	N/P	Q/R/V/Z	kg	750	805	820	825	835

not available

	Version	System side - pumps	Integrated hydronic kit, source side		0500	0550	0600	0650	0700
	0	٥	0	kg	755	840	865	890	920
	0	0	J/K/U/W	kg	935	1020	1045	1085	1115
	٥	0	Q/R/V/Z	kg	1005	1090	1115	1170	1200
	0	M/0	0	kg	900	985	1010	1045	1075
	٥	M/0	J/K/U/W	kg	990	1075	1100	1150	1180
	0	М	Q/R/V/Z	kg	-	-	-	-	-
	٥	N	J/K/U/W	kg	-	-	-	-	-
	0	0	Q/R/V/Z	kg	-	-	-	-	-
		P	J/K/U/W	kg	-	-	-	-	-
	0	N/P	o o	kg	970	1055	1080	1125	1155
mntu waiaht	0	N/P	Q/R/V/Z	kg	1130	1215	1240	1315	1340
npty weight	L	0	0	kg	930	1015	1040	1065	1095
	L	0	J/K/U/W	kg	1155	1240	1265	1305	1335
	L	0	Q/R/V/Z	kg	1225	1310	1335	1390	1420
	L	M/0	o o	kg	1120	1205	1230	1265	1295
	L	M/0	J/K/U/W	kg	1210	1295	1320	1370	1400
	L	М	Q/R/V/Z	kg	-	-	-	-	-
	L	N	J/K/U/W	kg	-	-	-	-	-
	L	0	Q/R/V/Z	kg	-	-	-	-	-
	L	P	J/K/U/W	kg	-	-	-	-	-
	L	N/P	0	kg	1190	1275	1300	1345	1375
	L	N/P	Q/R/V/Z	kg	1350	1435	1460	1535	1560

not available

WWB 0300-0900

Water-water heat pumps only

Heating capacity 56,7 ÷ 265,9 kW

- Optimised to produce high temperature hot water
- Can be used with any air or water cooled heat pump
- Max. processed water temperature: 80
 °C
- Max inlet temperature on source side: 45°C

DESCRIPTION

WWB is a range of irreversible water-water heat pumps that produce high temperature water with a low or medium temperature source.

Internal unit suitable for use in centralised residential systems, in systems that serve hotels and other forms of accommodation, and for applications in the tertiary and industrial sectors.

FEATURES

Maximum energy efficiency

Aermec, which has focused for years on energy efficiency, designed the WWB units with the aim of guaranteeing high efficiency both with full and partial loads.

Operating field

With its wide operating range, it can be integrated with numerous applications and is a valid alternative to boilers and all conventional systems used to produce high temperature hot water since it also uses existing systems. Production of hot water up to 80 °C (Max inlet temperature on source side $45\,^{\circ}\mathrm{C}$)

Constructional characteristics of unit

- Optimised plate heat exchangers with low pressure drops.
- $-\!\!\!-$ 2 cooling circuits, 1 compressor per circuit.
- Scroll compressors for high condensing temperatures.
- Compact size for easier installation.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

CONTROL

Optimised control logic for use with low and medium temperature heat

Complies with safety (EC) and electromagnetic compatibility directives.

Removable slide-out electrical panel with opening side (LH/RH side) configurator option

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

VT: Anti-vibration supports.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signaling of the alarms of a single unit.

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ACCESSORIES COMPATIBILITY

Model	Ver	0300	0330	0350	0550	0600	0700	0800	0900
AER485P1	L	•	•	•	•	•	•	•	•
AERBACP	L	•	•	•	•	•	•		•
AERNET	L	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	L	•	•	•	•	•	•	•	
PGD1	1			•	•		•	•	•

MULTICHILLER_EVO: Contact the factory for compatibility of the accessory with the type of implant envisaged.

Antivibration

Ver	0300	0330	0350	0550	0600	0700	0800	0900
L	VT9	VT9	VT9	VT9	VT15	VT15	VT15	VT15

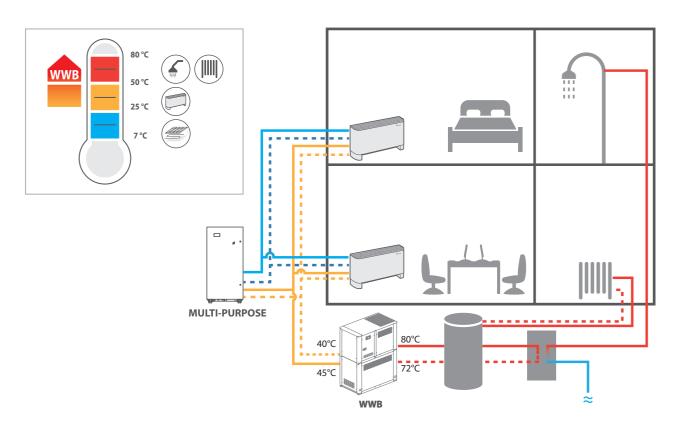
Power factor correction

Ver	0300	0330	0350	0550	0600	0700	0800	0900
	RIFWWB0300	RIFWWB0330	RIFWWB0350	RIFWWB0550	RIFWWB0600	RIFWWB0700	RIFWWB0800	RIFWWB0900

A grey background indicates the accessory must be assembled in the factory

PR4

Model	Ver	0300	0330	0350	0550	0600	0700	0800	0900
PR4	L	•	•	•	•		•	•	•


CONFIGURATOR

Field	Description							
1,2,3	WWB							
4,5,6,7	Size 0300, 0330, 0350, 0550, 0600, 0700, 0800, 0900							
8	Operating field (1)							
Х	Standard							
9	Model							
H	Heat pump							
10	Version							

Field	d	Description
	L	Silenced
11		Power supply
	S	400V ~ 3 50Hz with Soft-Start
	0	400V ~ 3 50Hz
12		Electrical panel version
	R	Reverse opening (RH)
	0	Standard opening (LH)

⁽¹⁾ Evaporator water up to $+5^{\circ}$ C. Electronic thermostatic valve as standard.

Example of four-pipe system

PERFORMANCE SPECIFICATIONS

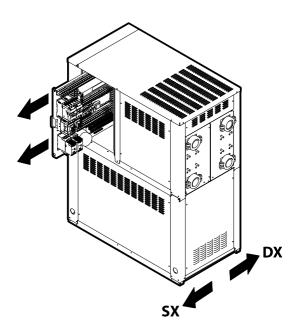
Size			0300	0330	0350	0550	0600	0700	0800	0900	
Heating performances (Water user si	de 70 °C / 78 °C; Wa	ter source side 4	5 °C / 40 °C) (1)								
Heating capacity	L	kW	70,3	77,7	93,2	114,6	143,7	181,7	220,5	265,9	
Input power	L	kW	16,7	18,0	21,6	27,7	34,7	44,3	55,4	66,4	
Heating total input current	L	A	29,0	30,0	36,0	46,0	61,0	71,0	89,0	104,0	
COP	L	W/W	4,22	4,31	4,33	4,14	4,14	4,11	3,98	4,00	
Water flow rate system side	L	l/h	7721	8537	10243	12592	15787	19973	24229	29221	
Pressure drop system side	L	kPa	18	22	31	21	33	24	35	24	
Water flow rate source side	L	l/h	9339	10400	12491	15141	18986	23950	28791	34785	
Pressure drop source side	L	kPa	12	15	10	15	8	12	16	23	
Heating performances (Water user side 70 °C / 78 °C; Water source side 35 °C / 30 °C) (2)											
Heating capacity	L	kW	56,7	62,7	75,2	92,4	115,9	146,5	177,8	214,4	
Input power	L	kW	16,3	17,6	21,0	27,0	33,9	43,2	54,0	64,7	
Heating total input current	L	A	28,0	29,0	35,0	45,0	59,0	70,0	87,0	102,0	
COP	L	W/W	3,48	3,56	3,58	3,42	3,42	3,39	3,29	3,31	
Water flow rate system side	L	l/h	6228	6886	8262	10157	12734	16110	19543	23570	
Pressure drop system side	L	kPa	12	14	20	14	22	15	23	16	
Water flow rate source side	L	l/h	7008	7820	9396	11340	14221	17924	21486	25974	
Pressure drop source side	L	kPa	7	9	6	8	4	7	9	13	
Heating performances (Water user si	de 47 °C / 55 °C; Wa	iter source side 1	0°C/7°C)(3)								
Heating capacity	L	kW	35,6	39,4	47,3	58,1	72,9	92,2	111,8	134,8	
Input power	L	kW	9,8	10,6	12,7	16,3	20,4	26,1	32,6	39,1	
Input current	L	A	16,9	17,8	21,4	27,4	35,9	42,1	52,7	61,8	
COP	L	W/W	3,62	3,71	3,73	3,56	3,57	3,53	3,43	3,45	
Water flow rate system side	L	l/h	3881	4291	5148	6329	7935	10039	12178	14688	
Pressure drop system side	L	kPa	5	6	8	8	8	6	9	6	
Water flow rate source side	L	l/h	7405	8259	9923	11988	15034	18952	22733	27478	
Pressure drop source side	L	kPa	8	10	6	9	5	7	10	15	

ENERGY DATA

Size			0300	0330	0350	0550	0600	0700	0800	0900
UE 813/2013 performance in average ambient conditions (average) - 55 °C - Pdesignh ≤ 400 kW (1)										
Pdesignh	L	kW	46	51	61	76	95	120	145	175
ηsh	L	%	176,00	180,00	180,00	175,00	174,00	174,00	169,00	175,00
SCOP	L	W/W	4,60	4,70	4,70	4,58	4,55	4,55	4,43	4,48
Efficiency energy class	L		A++	A++	A++	-	-	-	-	-

⁽¹⁾ Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA

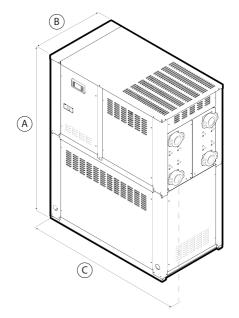

Size			0300	0330	0350	0550	0600	0700	0800	0900
Power supply: S	,									
Electric data										
Maximum current (FLA)	L	A	30,9	32,2	38,2	50,2	64,6	79,8	94,6	113,7
Peak current (LRA)	L	А	53,4	60,5	66,3	81,1	101,9	129,9	156,1	180,9
Size			0300	0330	0350	0550	0600	0700	0800	0900
Power supply: °	'									
Electric data										
Maximum current (FLA)	L	А	30,9	32,2	38,2	50,2	64,6	79,8	94,6	113,7
Peak current (LRA)	L	A	110,4	127,1	137,1	165,1	206,3	264,9	319,3	366,9

⁽¹⁾ Date 14511:2022; Water user side 70 °C / 78 °C; Water source side 45 °C / 40 °C (2) Date 14511:2022; Water user side 70 °C / 78 °C; Water source side 35 °C / 30 °C (3) Date 14511:2022; Water user side 47 °C / 55 °C; Water source side 10 °C / 7 °C

GENERAL TECHNICAL DATA

Size			0300	0330	0350	0550	0600	0700	0800	0900
Compressor										
Туре	L	type				Sc	roll			
Compressor regulation	L	Туре				0n	-Off			
Number	L	no.	2	2	2	2	2	2	2	2
Circuits	L	no.	2	2	2	2	2	2	2	2
Refrigerant	L	type		R134a						
Refrigerant load circuit 1 (1)	L	kg	2,8	2,8	3,6	4,4	6,5	7,7	8,0	9,9
Refrigerant load circuit 2 (1)	L	kg	2,8	2,8	3,5	4,3	6,3	7,5	7,8	9,7
Source side heat exchanger										
Туре	L	type				Braze	d plate			
Number	L	no.	1	1	1	1	1	1	1	1
Connections (in/out)	L	Туре				Groove	d joints			
Sizes (in/out)	L	Ø	2"	2"	2"	2"	2"	2"1/2	2"1/2	2"1/2
System side heat exchanger										
Туре	L	type				Braze	d plate			
Number	L	no.	1	1	1	1	1	1	1	1
Connections (in/out)	L	Туре				Groove	d joints			
Sizes (in/out)	L	Ø	2"	2"	2"	2"	2"	2"1/2	2"1/2	2"1/2
Sound data calculated in cooling mode (2	2)									
Sound power level	L	dB(A)	71,8	71,8	71,8	75,1	78,3	79,3	80,4	82,4
Sound pressure level (10 m)	L	dB(A)	40,2	40,2	40,2	43,5	46,7	47,7	48,9	50,9

Removal of electrical panel



Electrical panel version	Configurator option				
Sx - LH side	° (Standard)				
Dx - RH side	R				

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0300	0330	0350	0550	0600	0700	0800	0900
Dimensions and weights										
A	L	mm	1650	1650	1650	1650	1650	1650	1650	1650
В	L	mm	710	710	710	710	710	710	710	710
(L	mm	1300	1300	1300	1300	1300	1300	1300	1300
Weights										
Weight empty + packaging	L	kg	420	425	440	455	500	715	760	820
Weight functioning	L	kg	415	420	440	460	510	730	775	840

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

WWBG

Water-water heat pumps only

Heating capacity 77,2 ÷ 138,2 kW

- · Optimised to produce high temperature hot water
- Can be used with any air or water cooled heat pump
- Max. processed water temperature: 80
- Max inlet temperature on source side: 45°C

WWBG is a range of irreversible water-water heat pumps that produce high temperature water with a low or medium temperature source.

Internal unit suitable for use in centralised residential systems, in systems that serve hotels and other forms of accommodation, and for applications in the tertiary and industrial sectors.

FEATURES

Maximum energy efficiency

Aermec, which has focused for years on energy efficiency, designed the WWBG units with the aim of guaranteeing high efficiency both with full and partial loads.

Operating field

With its wide operating range, it can be integrated with numerous applications and is a valid alternative to boilers and all conventional systems used to produce high temperature hot water since it also uses existing systems. Production of hot water up to 80 °C (Max inlet temperature on source side

Constructional characteristics of unit

- Optimised plate heat exchangers with low pressure drops.
- 2 cooling circuits, 1 compressor per circuit.
- Scroll compressors for high condensing temperatures.
- Compact size for easier installation.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

R513A (XP10) refrigerant gas

Thanks to the R513A (XP10) refrigerant, the environmental impact of the units is significantly reduced.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO₂ values.

CONTROL

Control unit accessible externally with touch-screen user interface, multilingual display of all operating parameters.

Optimised control logic for use with low and medium temperature heat

Complies with safety (EC) and electromagnetic compatibility directives.

Removable slide-out electrical panel with opening side (LH/RH side) configurator option

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

VT: Anti-vibration supports.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

■ The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ACCESSORIES COMPATIBILITY

Model	Ver	0330	0350	0550	0600
AER485P1	L	•	•	•	•
AERBACP	L	•	•	•	•
AERNET	L	•	•	•	•
MULTICHILLER-EVO	L	•	•	•	•
PGD1	L	•	•	•	•

MULTICHILLER_EVO: Contact the factory for compatibility of the accessory with the type of implant envisaged.

Antivibration

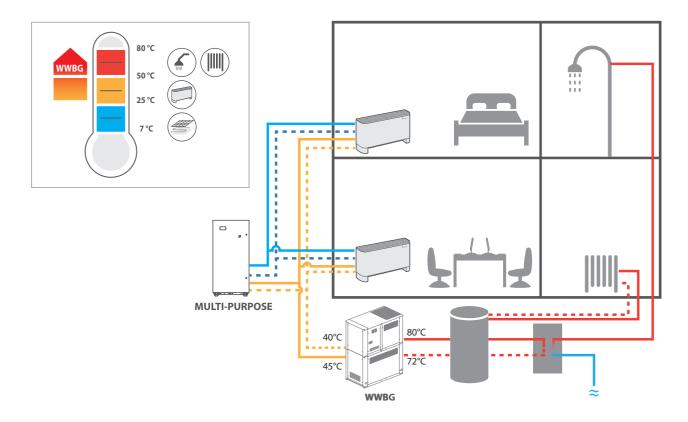
Ver	0330	0350	0550	0600
L	VT9	VT9	VT9	VT15

PR4

Model	Ver	0330	0350	0550	0600
PR4	L	•	•	•	•

Power factor correction

Ver	0330	0350	0550	0600
L	RIFWWBG0330	RIFWWBG0350	RIFWWBG0550	RIFWWBG0600


A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3,4	WWBG
5,6,7,8	Size 0330, 0350, 0550, 0600
9	Operating field
Х	Standard
10	Model
Н	Heat pump
11	Version
L	Silenced

Fiel	d	Description
12		Power supply
	S	400V ~ 3 50Hz with Soft-Start
	0	400V ~ 3 50Hz
13		Electrical panel version
	R	Reverse opening (RH)
	0	Standard opening (LH)
14		Leak detector
	G	with leak detector
	0	Without leak detector

Example of four-pipe system

PERFORMANCE SPECIFICATIONS

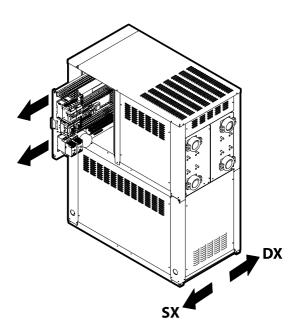
Size			0330	0350	0550	0600		
Heating performances (Water user	side 70 °C / 78 °C; Water	r source side 45 °C / 40 °C)	(1)					
Heating capacity	L	kW	77,2	92,5	115,4	138,2		
Input power	L	kW	18,4	21,9	28,0	33,6		
COP	L	W/W	4,19	4,22	4,13	4,11		
Water flow rate system side	L	l/h	8485	10161	12667	15166		
Pressure drop system side	L	kPa	10	14	21	31		
Water flow rate source side	L	l/h	10279	12336	15279	18264		
Pressure drop source side	L	kPa	15	10	15	7		
Heating performances (Water user side 70 °C/78 °C; Water source side 35 °C/30 °C) (2)								
Heating capacity	L	kW	63,0	75,4	94,1	112,7		
Input power	L	kW	18,2	21,6	27,6	33,1		
COP	L	W/W	3,46	3,49	3,41	3,40		
Water flow rate system side	L	l/h	6922	8289	10334	12372		
Pressure drop system side	L	kPa	6	9	14	20		
Water flow rate source side	L	l/h	7806	9373	11588	13845		
Pressure drop source side	L	kPa	9	6	9	4		
Heating performances (Water user s	side 47 °C / 55 °C; Water	source side 10 °C / 7 °C) (3	3)					
Heating capacity	L	kW	40,0	47,9	59,8	71,6		
Input power	L	kW	11,3	13,4	17,1	20,6		
COP	L	W/W	3,53	3,57	3,48	3,48		
Water flow rate system side	L	l/h	4343	5200	6483	7761		
Pressure drop system side	L	kPa	3	4	6	8		
Water flow rate source side	L	l/h	8505	10210	12631	15094		
Pressure drop source side	L	kPa	10	7	10	5		

ENERGY DATA

Size			0330	0350	0550	0600		
UE 813/2013 performance in average ambient conditions (average) - 55 °C - Pdesignh ≤ 400 kW (1)								
Pdesignh	L	kW	51	61	76	91		
ηsh	L	%	175,00	177,00	173,00	172,00		
SCOP	L	W/W	4,58	4,62	4,53	4,51		
Efficiency energy class	L		A+++	A+++	-	-		

⁽¹⁾ Efficiencies for average temperature applications (55 °C)

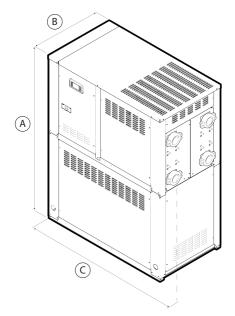
ELECTRIC DATA


Size			0330	0350	0550	0600
Electric data					.,	
Maximum current (FLA)	L	A	40,0	46,0	60,0	72,0
Peak current (LRA)	L	A	131,0	141,0	170,0	210,0
Peak current with Soft-start	L	A	66,0	71,0	85,0	105,0

⁽¹⁾ Date 14511:2022; Water user side 70 °C / 78 °C; Water source side 45 °C / 40 °C (2) Date 14511:2022; Water user side 70 °C / 78 °C; Water source side 35 °C / 30 °C (3) Date 14511:2022; Water user side 47 °C / 55 °C; Water source side 10 °C / 7 °C

GENERAL TECHNICAL DATA

Size			0330	0350	0550	0600
Compressor						
Туре	L	type		Sc	roll	
Compressor regulation	L	Туре		On	-Off	
Number	L	no.	2	2	2	2
Circuits	L	no.	2	2	2	2
Refrigerant	L	type		R513A	(XP10)	
Refrigerant load circuit 1 (1)	L	kg	3,1	3,4	4,2	5,8
Refrigerant load circuit 2 (1)	L	kg	3,1	3,4	4,2	5,8
Source side heat exchanger						
Туре	L	type		Braze	d plate	
Number	L	no.	1	1	1	1
Connections (in/out)	L	Туре		Groove	d joints	
Sizes (in/out)	L	Ø			<u>]</u> "	
System side heat exchanger						
Туре	L	type		Braze	d plate	
Number	L	no.	1	1	1	1
Connections (in/out)	L	Туре		Groove	d joints	
Sizes (in/out)	L	Ø			2"	
Sound data calculated in heating m	ode (2)					
Sound power level	L	dB(A)	71,8	71,8	76,1	78,3
Sound pressure level (10 m)	L	dB(A)	40,2	40,2	44,5	46,7
Sound pressure level (1 m)	L	dB(A)	55,7	55,7	60,0	62,2


Removal of electrical panel

Electrical panel version	Configurator option
Sx - LH side	° (Standard)
Dx - RH side	R

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0330	0350	0550	0600
Dimensions and weights						
A	L	mm	1650	1650	1650	1650
В	L	mm	710	710	710	710
C	L	mm	1300	1300	1300	1300
Weights						
Weight empty + packaging	L	kg	430	445	455	500
Weight functioning	L	kg	430	445	460	510

Water cooled heat pump reversible water side

Cooling capacity 96 kW Heating capacity 110 kW

- Compact module
- · Single or dual refrigerant circuit
- Reliable and modular
- Max 2 levels of stackable units
- Up to 36 connectable units (see the modularity options)
- Easy installation and maintenance

DESCRIPTION

Water-water offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

These are indoor units with hermetic scroll compressors, system side heat exchanger and plate source.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

FEATURES

The precise choice of components, the special configuration, and the possibility to connect several independent modules and manage them as if they were a single unit are all aspects that guarantee maximum output at full load, whilst ensuring continuous adaptation to the real service needs.

Bus Bar, to facilitate the electrical connections.

Modularity

Thanks to its modular construction, the installation can be adapted to suit specific system development needs whilst guaranteeing improved safety and reliability.

As a result, the cooling capacity can be easily increased over time, at a limited cost.

WWM consists of independent 96 kW modules that can be linked together to reach a capacity of 3456 kW.

With WWM, you can combine up to 36 units designed to minimise the overall dimensions.

The modules are easy to install and link together from the hydronic point of view, thanks to the connections with grooved joints.

Refrigerant circuit

The refrigerant circuit can easily be disconnected from the unit, maintaining all the functions of the hydronic circuit to ensure correct system operation.

Hydraulic components

WWM version PN10 has the **switch**; WWM version PN21 mounts the **transmitter**.

Fitted as standard, with **butterfly shut-off valves** on both hydronic lines for disconnecting the circuit when maintenance needs to be carried out. In the event of a variable flow rate, the **motorised hydronic valves** can intercept one module or more in order to reduce the flow rate when there is a low thermal load level.

Very quiet

The WWM units stand out for their quiet operation.

Accurate unit sound-proofing, using good-quality sound absorbent material, means all the units work at low noise levels.

Units in parallel

The MULTICHILLER_EVO (accessory) allows up to 9 units to be managed in parallel mode.

This accessory allow to maximise the total efficency to the system under to work load, external air temperature conditions and water produced. Each unit has its own electrical panel, guaranteeing continuity even if one module malfunctions or goes into lockout.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The adjustment system includes the complete management of alarms and the alarm log.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

KWWM: Kit containing 4 caps with a diameter of 6" for the water manifolds. **MULTICHILLER-EVO:** Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

763

■ The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

CRATE_WWM°: Special crate for transport

KITIDRO_WWM: Water filter with connection pipe (diameter 6") with drain tap and additional bulb well (diameter ½") available to the installer. KREC_WWM: Cable entries box in order to facilitate the electrical installation.

FACTORY FITTED ACCESSORIES

CRATE_WWMH-A: Special crate for transport

ACCESSORIES COMPATIBILITY

Accessory	WWM05001H	WWM05001°	WWM05002H	WWM05002°
AER485P1	•	•	•	•
AERBACP	•	•	•	•
AERNET	•	•	•	•
KWWM	•	•	•	•
MULTICHILLER-EVO	•	•	•	•

For the control with MULTICHILLER EVO, nr.1 accessory AER485P1 is mandatory for every WWM of the system.

PR4

Accessory	WWM05001H	WWM05001°	WWM05002H	WWM05002°
PR4	•	•	•	•

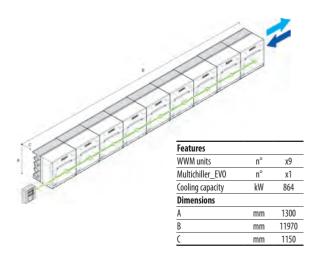
Special crate for transport

Accessory	WWM05001H	WWM05001°	WWM05002H	WWM05002°
CRATE_WWMH-A		•		
CRATE WWM°		•		

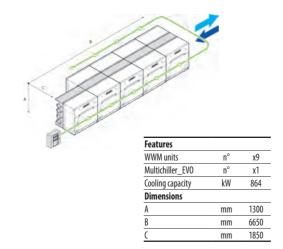
■ CRATE_WWM°: 100 kg, CRATE_WWMH-A: 130 kg

Cable entries box

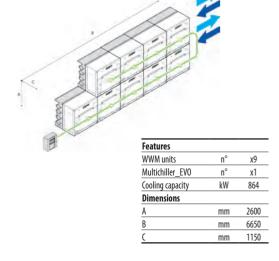
Accessory	WWM05001H	WWM05001°	WWM05002H	WWM05002°
KREC_WWM	•	•	•	•
Water filter				
Accessory	WWM05001H	WWM05001°	WWM05002H	WWM05002°
KITIDRO WWM		•		•

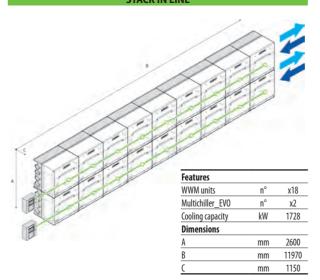

CONFIGURATOR

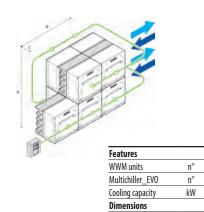
Field	Description				
1,2,3	WWM				
4,5,6,7	Size 0500				
8	Operating field (1)				
0	Standard mechanic thermostatic valve				
9	Model				
1	Single refrigerant circuit				
2	Double refrigerant circuit				
10	Hydraulic pressure rating				
1	145 psi (PN10)				
3	300 psi (PN21)				
11	Hydraulic headers kit				
Н	6" Headers kit - PN21 standard carbon steel pipes declared in accordance with EN 10255				
0	No headers provided				


Field	Description
12	Power connection
В	With bus bars
0	Without bus bars
13	Power supply
0	400V ~ 3 50Hz with magnet circuit breakers
14	Electrical panel SCCR
0	10 kA control panel
15	Peak current reduction
R	With power factor device (2)
0	Without power factor device
16	Field for future development
0	-

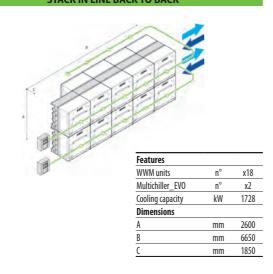
⁽¹⁾ Water produced up to $+4\,^{\circ}\text{C}$ (2) Factory installed


CONFIGURATION 1: IN LINE


CONFIGURATION 2: BACK TO BACK


CONFIGURATION 3.1: STACK IN LINE

CONFIGURATION 3.2: STACK IN LINE



CONFIGURATION 4.1: STACK IN LINE BACK TO BACK

В

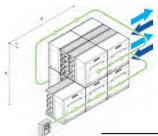
CONFIGURATION 4.2: STACK IN LINE BACK TO BACK

х9

х1

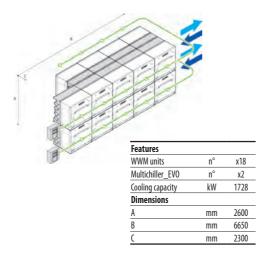
2600

3990

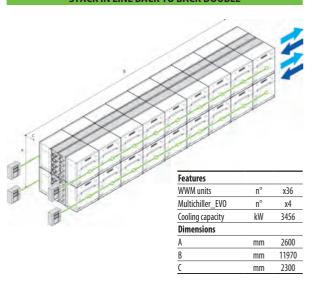

1850

mm

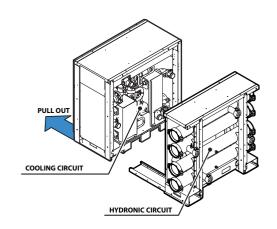
mm


864

CONFIGURATION 5.1: STACK IN LINE BACK TO BACK DOUBLE



n°	х9
n°	х1
kW	864
mm	2600
mm	3990
mm	2300
	n° kW mm mm


CONFIGURATION 5.2: STACK IN LINE BACK TO BACK DOUBLE

CONFIGURATION 5.3: STACK IN LINE BACK TO BACK DOUBLE

EASY MAINTENANCE

PERFORMANCE SPECIFICATIONS

WWM - Single refrigerant circuit "1" - Double refrigerant circuit "2"

		WWM05001°	WWM05002°
Cooling performance 12 °C/7 °C(1)			
Cooling capacity	kW	96,0	95,2
Input power	kW	20,3	20,0
Cooling total input current	A	40,0	40,0
EER	W/W	4,74	4,76
Water flow rate source side	I/h	20046	19895
Pressure drop source side	kPa	34	23
Water flow rate system side	I/h	16528	16384
Pressure drop system side	kPa	24	17
Heating performance 40 °C / 45 °C (2)			
Heating capacity	kW	109,2	110,0
Input power	kW	24,8	24,1
Heating total input current	A	48,0	48,0
COP	W/W	4,41	4,57
Water flow rate system side	I/h	18943	19092
Pressure drop system side	kPa	30	21
Water flow rate source side	l/h	24430	24809
Pressure drop source side	kPa	52	39

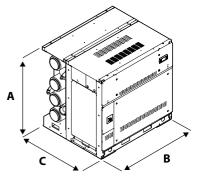
⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

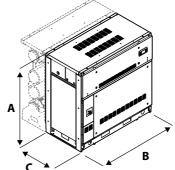
ENERGY DATA

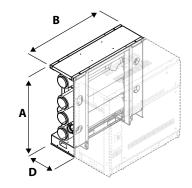
		WWM05001°	WWM05002°
SEER - 12/7 (EN14825:2018) with star	ndard fans (1)		
SEER	W/W	6,12	5,37
Seasonal efficiency	%	241,8%	211,8%
UE 813/2013 performance in average	ambient conditions (average) - 55 °C - Pd	esignh ≤ 400 kW (2)	
Pdesignh	kW	138	140
SCOP	W/W	4,83	4,68
ηsh	%	185.0%	179.0%

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA


		WWM05001°	WWM05002°
Electric data			
Maximum current (FLA)	A	62,0	62,0
Peak current (LRA)	A	148.9	148.9


GENERAL TECHNICAL DATA


	WWM05001°	WWM05002°
type	Scroll	Scroll
no.	2	2
no.	1	2
type	R410A	R410A
type	Brazed plate	Brazed plate
no.	1	1
Туре	Grooved joints	Grooved joints
Ø	6"	6"
type	Brazed plate	Brazed plate
no.	1	1
Туре	Grooved joints	Grooved joints
Ø	6"	6"
dB(A)	81,0	81,0
dB(A)	49,5	49,5
	no. no. type type no. Type Ø type no. Type Ø dB(A)	type Scroll no. 2 no. 1 type R410A type Brazed plate no. 1 Type Grooved joints Ø 6" type Brazed plate no. 1 Type Grooved joints Ø 6" dB(A) 81,0

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

		WWM05001°	WWM05001H	WWM05002°	WWM05002H
Dimensions and weights					
	mm	1300	1300	1300	1300
В	mm	1330	1330	1330	1330
C	mm	775	1150	775	1150
D	mm	-	452	-	452
Weights					
Weight empty + packaging	kg	700	930	700	930
Weight functioning	kg	711	1042	711	1042
Empty weight + packaging (with bus bars)	kg	736	966	736	966
Weight functioning (with bus bars)	kg	747	1078	747	1078
Hydraulic headers kit					
Weight empty + packaging	kg	-	230	-	230
Weight functioning	kg	-	330	-	330

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NXW 0503 - 1654

Water cooled heat pump reversible water side

Cooling capacity 111 ÷ 511 kW Heating capacity 127 ÷ 582 kW

- Options of 1 or 2 pumps on both source and user side.
- Reversible on hydraulic side in heat pump

DESCRIPTION

Water-water offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications. Indoor units with hermetic scroll compressors and plate heat exchangers. The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

L Standard silenced

FEATURES

Operating field

Full-load operation with the production of chilled water 4-18 °C, and the possibility to produce also negative temperature water down to -10°C for the evaporator and hot water for the condenser up to 55 °C. (for more information, refer to the technical documentation).

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Option integrated hydronic kit, source and user side

The built-in hydronic module includes the main water circuit components; it is available in varius configurations with one or two pumps with high or low head both on the system side and the source side, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL PCO

Microprocessor adjustment, with display LCD which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and the ad adjustment includes complete management of the alarms and their log.

You also have the possibility to:

- Check two units in parallel Master-Slave
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signaling of the alarms of a single unit.

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

ACCESSORIES COMPATIBILITY

Model	Ver	0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
AER485P1	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	°,L	•		•	•	•	•		•	•	•	•	•	
AERNET	°,L	•	•	•	•	•	•	•		•	•	•	•	•
MULTICHILLER-EVO	°,L	•		•	•	•	•	•	•	•	•	•	•	•
PGD1	°.L													

Antivibration

Version	System side - pumps	Integrated hydronic kit, source side	0503	0553	0604	0654	0704	0754	0804
0	0	0	AVX319	AVX319	AVX301	AVX301	AVX301	AVX303	AVX310
0	0	J, K, U, W	AVX320	AVX320	AVX320	AVX320	AVX320	AVX312	AVX651
0	M, 0	0	AVX320	AVX320	AVX320	AVX320	AVX320	AVX312	AVX651
0	0	V, Z	AVX320	AVX320	AVX309	AVX309	AVX309	AVX312	AVX651
0	М	J, K, U, V, W, Z	AVX320	AVX320	AVX309	AVX309	AVX309	AVX312	AVX651
0	N	°, J, K, U, W	AVX320	AVX320	AVX309	AVX309	AVX309	AVX312	AVX651
0	0	J, K, U, V, W, Z	AVX320	AVX320	AVX309	AVX309	AVX309	AVX312	AVX651
0	Р	°, J, K, U, W	AVX320	AVX320	AVX309	AVX309	AVX309	AVX312	AVX651
0	N, P	V, Z	AVX309	AVX309	AVX310	AVX310	AVX310	AVX312	AVX651
L	0	0	AVX309	AVX309	AVX310	AVX303	AVX303	AVX310	AVX314
L	0	J, K, U, W	AVX321	AVX321	AVX311	AVX311	AVX651	AVX651	AVX652
L	M, 0	0	AVX321	AVX321	AVX311	AVX311	AVX651	AVX651	AVX652
L	٥	V, Z	AVX311	AVX311	AVX311	AVX311	AVX651	AVX651	AVX652
L	М	J, K, U, W	AVX311	AVX311	AVX311	AVX311	AVX651	AVX651	AVX652
L	N	0	AVX311	AVX311	AVX311	AVX311	AVX651	AVX651	AVX652
L	0	J, K, U, W	AVX311	AVX311	AVX311	AVX311	AVX651	AVX651	AVX652
L	Р	0	AVX311	AVX311	AVX311	AVX311	AVX651	AVX651	AVX652
L	М	V, Z	AVX311	AVX311	AVX312	AVX312	AVX651	AVX651	AVX652
L	N	J, K, U, W	AVX311	AVX311	AVX312	AVX312	AVX651	AVX651	AVX652
L	0	V, Z	AVX311	AVX311	AVX312	AVX312	AVX651	AVX651	AVX652
L	Р	J, K, U, W	AVX311	AVX311	AVX312	AVX312	AVX651	AVX651	AVX652
L	N, P	V, Z	AVX312	AVX312	AVX312	AVX310	AVX651	AVX651	AVX652

Version	System side - pumps	Integrated hydronic kit, source side	0904	1004	1254	1404	1504	1654
0	0	0	AVX314	AVX316	AVX316	AVX315	AVX330	AVX330
٥	0	J, K, U, W	AVX655	AVX653	AVX654	AVX654	AVX334	AVX337
0	M, N, 0	0	AVX655	AVX653	AVX654	AVX654	AVX334	AVX337
•	0	V, Z	AVX655	AVX653	AVX654	AVX654	AVX337	-
0	M, 0	J, K, U, W	AVX665	AVX653	AVX654	AVX654	AVX337	AVX335
•	M, 0	V, Z	AVX655	AVX653	AVX654	AVX654	AVX340	-
٥	N	J, K, U, W	AVX665	AVX653	AVX654	AVX654	AVX340	AVX335
0	N	V, Z	AVX665	AVX653	AVX654	AVX654	AVX335	-
٥	P	٥	AVX655	AVX653	AVX654	AVX654	-	-
0	Р	J, K, U, V, W, Z	AVX665	AVX653	AVX654	AVX654	-	-
L	0	0	AVX314	AVX315	AVX315	AVX317	AVX331	AVX331
L	0	J, K, U, W	AVX653	AVX654	AVX659	AVX659	AVX335	AVX338
L	M, 0	0	AVX653	AVX654	AVX659	AVX659	AVX335	AVX338
L	0	V, Z	AVX653	AVX654	AVX659	AVX659	AVX338	-
L	М	J, K, U, W	AVX653	AVX654	AVX659	AVX659	AVX338	AVX339
L	N	0	AVX653	AVX654	AVX659	AVX659	AVX338	AVX339
L	0	J, K, U, W	AVX653	AVX654	AVX659	AVX659	AVX338	AVX339
L	M, N, 0	V, Z	AVX653	AVX654	AVX659	AVX659	AVX339	-
L	N	J, K, U, W	AVX653	AVX654	AVX659	AVX659	AVX339	AVX341
L	Р	°, J, K, U, V, W, Z	AVX653	AVX654	AVX659	AVX659	-	-

not available

PR4

Model	Ver	0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
PR4	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•

Power factor correction

Ver	0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
°,L	RIF98	RIF98	RIF95	RIF95	RIF95	RIF95	RIF95	RIF96	RIF97	RIF97	RIF97	RIF97	RIF97

A grey background indicates the accessory must be assembled in the factory

Device for peak current reduction

Ver	0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
°, L	DRE501 (1)	DRE551 (1)	DRE601 (1)	DRE651 (1)	DRE701 (1)	DRE751 (1)	DRE801 (1)	DRE901 (1)	DRE1001 (1)	DRE1251 (1)	DRE1401 (1)	DRE1500 (1)	DRE1650 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

771

CONFIGURATOR

Field	Description
1,2,3	NXW
4,5,6,7	Size
	0503, 0553, 0604, 0654, 0704, 0754, 0804, 0904, 1004, 1254, 1404, 1504, 1654
8	Operating field
Х	Electronic thermostatic expansion valve
Y	Low temperature mechanic thermostatic valve (1)
	Standard mechanic thermostatic valve (2)
9	Model
K	Heat pump reversible on the water side with low pressure drops (3)
•	Heat pump reversible on the water side
10	Version
•	Standard
L	Standard silenced
11	Evaporator
E	Evaporating unit (4)
•	Standard
12	Heat recovery
D	With desuperheater (5)
T	With total recovery (6)
•	Without heat recovery
13	Power supply
5	500V ~ 3 50Hz with magnet circuit breakers (7)
0	400V ~ 3 50Hz with magnet circuit breakers
14	System side - pumps
M	Single pump low head
N	Pump low head + stand-by pump
0	Single pump high head
P	Pump high head + stand-by pump (8)
•	Without hydronic kit
15	Integrated hydronic kit, source side
J	Single low-head inverter pump (8)
K	Single high-head inverter pump (8)
U	Single pump low head
V	Pump low head + stand-by pump (9)
W	Pump high head
Z	Pump high head + stand-by pump (9)
0	Without hydronic kit

- (1) Water produced from $4^{\circ}\text{C} \div -10^{\circ}\text{C}$; for the availability with the heat recovery we advise you to contact us (2) Water produced from $4^{\circ}\text{C} \div 18^{\circ}\text{C}$ (3) Only for sizes from $0704 \div 0904$ (4) Shipped with holding charge only. (5) The desuperheater must be isolated in heating mode. In cooling mode, a water temperature no lower

- than 35°C must always be guaranteed on the heat exchanger inlet.

 (6) Options not available for condensing unit, and for models with pump/s

 (7) Only for 0804 ÷ 1004 sizes

 (8) Not available for size 1504 ÷ 1654

 (9) Not available for size 1654

PERFORMANCE SPECIFICATIONS

Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	°,L	kW	111,8	120,7	148,7	166,7	188,7	222,7	257,6	291,6	325,7	354,6	384,6	453,9	511,4
Input power	°,L	kW	23,0	24,8	30,6	34,4	38,9	45,6	53,0	60,3	66,5	72,6	78,7	92,3	104,0
Cooling total input current	°,L	Α	48,0	51,0	58,0	63,0	86,0	94,0	102,0	120,0	138,0	140,0	143,0	160,0	178,0
EER	°,L	W/W	4,87	4,86	4,86	4,85	4,85	4,88	4,86	4,84	4,90	4,88	4,89	4,92	4,92
Water flow rate source side	°,L	l/h	23047	24886	30656	34332	38866	45790	52970	60075	67065	73041	79190	93374	105103
Pressure drop source side	°,L	kPa	25	29	29	37	37	45	60	38	29	34	36	36	47
Water flow rate system side	°,L	l/h	19243	20789	25600	28692	32472	38314	44327	50169	56011	60993	66147	78063	87938
Pressure drop system side	°,L	kPa	30	35	32	40	43	47	49	55	35	36	36	36	40
Heating performance 40 °C / 45 °C (2)															
Heating capacity	°,L	kW	127,6	137,8	170,0	190,3	215,4	253,7	293,5	332,9	371,5	404,7	438,7	517,1	582,0
Input power	°,L	kW	27,6	29,9	36,3	40,9	46,4	54,5	63,3	72,3	79,0	86,2	93,3	109,5	123,4
Heating total input current	°,L	Α	57,0	60,0	68,0	73,0	100,0	109,0	119,0	140,0	161,0	163,0	166,0	186,0	207,0
COP	°,L	W/W	4,62	4,61	4,69	4,66	4,64	4,66	4,64	4,60	4,70	4,69	4,70	4,72	4,71
Water flow rate source side	°,L	l/h	29340	31697	39235	43975	49768	58721	67938	76891	85844	93480	101380	119642	134776
Pressure drop source side	°,L	kPa	70	81	75	94	101	110	115	129	82	85	85	85	94
Water flow rate system side	°,L	l/h	22142	23905	29490	33021	37384	44030	50933	57790	64513	70265	76175	89802	101065
Pressure drop system side	°,L	kPa	23	27	27	34	34	42	55	35	27	31	33	33	43

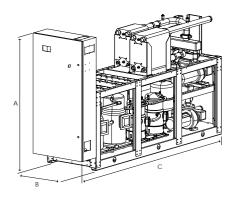
⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

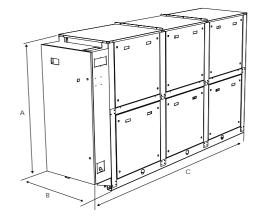
ENERGY INDICES (REG. 2016/2281 EU)

Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
SEER - 12/7 (EN14825: 2018) (1)															
SEER	°,L	W/W	5,50	5,85	5,79	5,77	5,84	5,81	5,52	6,30	6,42	6,37	6,38	6,49	6,48
Seasonal efficiency	°,L	%	217,0%	231,0%	228,6%	227,8%	230,6%	229,4%	217.8%	248,8%	253,8%	251,6%	252,0%	256,4%	256,2%
SEPR - (EN 14825: 2018) High temperatu	re (2)														
EPR —	0	W/W	-	-	-	-	-	-	-	7,90	7,90	7,80	7,80	8,00	8,00
	L	W/W	-	-	-	-	-	-	-	7,93	7,90	7,78	7,80	8,00	8,02
UE 813/2013 performance in average am	bient conditi	ons (averag	e) - 55 °C - P	designh ≤	400 kW (3)										
Pdesignh	°,L	kW	164	177	218	244	277	326	377	-	-	-	-	-	-
SCOP	°,L	W/W	5,10	5,05	5,18	5,10	5,10	5,10	5,08	-	-	-	-	-	-
ŋsh	°,L	%	196.0%	194.0%	199.0%	196.0%	196.0%	196.0%	195.0%	-	-	-	-	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.
(3) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA


Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
Electric data															
Maximum current (FLA)	°,L	A	75,0	80,0	96,0	107,0	122,0	146,0	169,0	193,0	217,0	231,0	248,0	267,0	296,0
Peak current (LRA)	°,L	Α	240,0	245,0	227,0	238,0	289,0	319,0	341,0	398,0	422,0	490,0	504,0	601,0	630,0


GENERAL TECHNICAL DATA

Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
Compressor															
Туре	°,L	type							Scroll						
Compressor regulation	°,L	Туре							0n-0ff						
Number	°,L	no.	3	3	4	4	4	4	4	4	4	4	4	4	4
Circuits	°,L	no.	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	°,L	type							R410A						
Refrigerant charge (1)	°,L	kg	13,2	12,5	15,6	15,6	18,0	22,0	26,0	33,0	38,0	44,0	44,0	46,0	53,0
Source side heat exchanger															
Туре	°,L	type							Brazed plate	2					
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,L	Туре						(Grooved join	ts					
Size (in)	°,L	Ø	2"1/2	2"1/2	2" 1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"	3"	3″	3″	3″	3"
Size (out)	°,L	Ø	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2" 1/2	3"	3″	3″	3″	3″	3"
System side heat exchanger															
Туре	°,L	type							Brazed plate	2					
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,L	Туре						(Grooved join	ts					
Size (in)	°,L	Ø	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"	3″	3″	3″	3"
Size (out)	°,L	Ø	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"	3″	3″	3″	3"
Sound data calculated in cooling mode (2															
Cound a count lovel	0	dB(A)	78,0	79,0	79,0	80,0	82,0	86,0	88,0	88,0	88,0	90,0	90,0	93,0	95,0
Sound power level —	L	dB(A)	72,0	73,0	73,0	74,0	76,0	80,0	82,0	82,0	82,0	84,0	84,0	86,0	87,0
C	0	dB(A)	46,4	47,4	47,4	48,4	50,4	54,3	56,3	56,3	56,3	58,3	58,3	61,3	63,3
Sound pressure level (10 m)	L	dB(A)	40,3	41,3	41,3	42,3	44,3	48,3	50,3	50,3	50,3	52,3	52,3	54,3	55,3

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
Dimensions and weights															
A	0	mm	1835	1835	1835	1835	1835	1775	1775	1820	1820	1820	1820	1820	1820
Α -	L	mm	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
В	°,L	mm	800	800	800	800	800	800	800	800	800	800	800	800	800
•	0	mm	1795	1795	1795	1795	1795	2420	2420	2420	2420	2420	2420	2420	2420
-	L	mm	2090	2090	2090	2090	2090	2420	2420	2420	2420	2420	2420	2420	2420
Dimensions and weights with pump/s															
A	0	mm	1775	1775	1775	1775	1775	1775	1775	1820	1820	1820	1820	1820	1820
Α -	L	mm	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
В	°,L	mm	800	800	800	800	800	800	800	800	800	800	800	800	800
C	°,L	mm	3020	3020	3020	3020	3020	3480	3480	3480	3480	3480	3480	3480	3480
Dimensions and weights			-		-										
F	0	kg	578	582	682	690	727	882	989	1180	1417	1461	1539	1613	1721
Empty weight -	L	kg	750	755	854	863	900	1054	1187	1378	1615	1659	1737	1811	1919

The weight of the unit does not include the hydronic kit and accessories.

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NXW

Reversible water-cooled heat pump, gas side

Cooling capacity 106 ÷ 477 kW Heating capacity 125 ÷ 565 kW

- Installation versatility also for geothermal applications.
- Options of 1 or 2 pumps on both source and user side.
- Production of hot water up to 55 °C

DESCRIPTION

Water-water offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

These are indoor units with hermetic scroll compressors, system side heat exchanger and plate source.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

L Standard silenced

FEATURES

Operating field

Full-load operation with the production of chilled water 4-18°C, and the possibility to produce also negative temperature water down to -8°C for the evaporator and hot water for the condenser up to 55 °C.

(for more information, refer to the technical documentation).

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Option integrated hydronic kit, source and user side

Possibility of integrated hydronic kit containing the main hydraulic components and available with various configurations.

CONTROL PCO

Microprocessor adjustment, with display LCD which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and the ad adjustment includes complete management of the alarms and their log.

You also have the possibility to:

- Check two units in parallel Master-Slave
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

The accessory PR4 should only be combined with the RS485 communication interface when the serial port is occupied by another device.

774 www.aermec.com NXW-0503-1654-HP Y UN50 10

ACCESSORIES COMPATIBILITY

Model	Ver	0503	0553	0604	0654	0704	0754	0804
AER485P1	°,L	•	•	•	•	•	•	•
AERBACP	°,L	•	•	•	•	•	•	•
AERNET	°,L	•	•	•	•	•	•	•
MULTICHILLER-EVO	°,L	•	•	•	•	•	•	•
PGD1	°,L	•	•	•	•	•	•	•
Model	Ver	0904	1004	1254		1404	1504	1654
AER485P1	°,L	•						

Model	Ver	0904	1004	1254	1404	1504	1654
AER485P1	°,L	•	•	•	•	•	•
AERBACP	°,L	•	•	•	•	•	•
AERNET	°,L	•	•	•	•	•	•
MULTICHILLER-EVO	°,L	•	•	•	•	•	•
PGD1	°,L		•	•	•	•	•

Antivibration

Version	System side - pumps	Integrated hydronic kit, source side	0503	0553	0604	0654	0704	0754	0804
٥	٥	0	AVX319	AVX319	AVX301	AVX301	AVX302	AVX310	AVX310
٥	0	J, K, U, W	AVX320	AVX320	AVX320	AVX309	AVX309	AVX651	AVX651
0	M, 0	0	AVX320	AVX320	AVX320	AVX309	AVX309	AVX651	AVX651
0	0	V, Z	AVX320	AVX320	AVX303	AVX309	AVX311	AVX651	AVX651
0	M	J, K, U, W	AVX320	AVX320	AVX303	AVX309	AVX311	AVX651	AVX651
0	N	0	AVX320	AVX320	AVX303	AVX309	AVX311	AVX651	AVX651
0	0	J, K, U, W	AVX320	AVX320	AVX303	AVX309	AVX311	AVX651	AVX651
0	P	0	AVX320	AVX320	AVX303	AVX309	AVX311	AVX651	AVX651
0	М	V, Z	AVX309	AVX309	AVX303	AVX311	AVX312	AVX651	AVX651
0	N	J, K, U, W	AVX309	AVX309	AVX303	AVX311	AVX312	AVX651	AVX651
0	0	V, Z	AVX309	AVX309	AVX303	AVX311	AVX312	AVX651	AVX651
0	Р	J, K, U, W	AVX309	AVX309	AVX303	AVX311	AVX312	AVX651	AVX651
0	N, P	V, Z	AVX309	AVX309	AVX312	AVX312	AVX312	AVX651	AVX651
L	0	0	AVX309	AVX309	AVX310	AVX303	AVX304	AVX314	AVX314
L	0	J, K, U, W	AVX311	AVX311	AVX311	AVX311	AVX651	AVX652	AVX665
L	M, 0	Ó	AVX311	AVX311	AVX311	AVX311	AVX651	AVX652	AVX665
L	0	V, Z	AVX311	AVX311	AVX312	AVX313	AVX651	AVX652	AVX665
L	М	J, K, U, W	AVX311	AVX311	AVX312	AVX313	AVX651	AVX652	AVX665
L	N	0	AVX311	AVX311	AVX312	AVX313	AVX651	AVX652	AVX665
L	0	J, K, U, W	AVX311	AVX311	AVX312	AVX313	AVX651	AVX652	AVX665
L	Р	0	AVX311	AVX311	AVX312	AVX313	AVX651	AVX652	AVX665
L	М	V, Z	AVX312	AVX312	AVX312	AVX313	AVX651	AVX652	AVX665
L	N	J, K, U, V, W, Z	AVX312	AVX312	AVX312	AVX313	AVX651	AVX652	AVX665
L	0	V, Z	AVX312	AVX312	AVX312	AVX313	AVX651	AVX652	AVX665
L	Р	J, K, U, V, W, Z	AVX312	AVX312	AVX312	AVX313	AVX651	AVX652	AVX665

Version	System side - pumps	Integrated hydronic kit, source side	0904	1004	1254	1404	1504	1654
0	0	0	AVX314	AVX316	AVX315	AVX317	AVX330	AVX331
0	0	J, K, U, W	AVX665	AVX654	AVX654	AVX654	AVX337	AVX336
0	M, 0	٥	AVX665	AVX654	AVX654	AVX654	AVX337	AVX336
0	0	V, Z	AVX665	AVX654	AVX654	AVX654	AVX336	-
0	М	J, K, U, W	AVX665	AVX654	AVX654	AVX654	AVX336	AVX335
0	N	0	AVX665	AVX654	AVX654	AVX654	AVX336	AVX335
0	0	J, K, U, W	AVX665	AVX654	AVX654	AVX654	AVX336	AVX335
0	M, 0	V, Z	AVX665	AVX654	AVX654	AVX654	AVX335	-
0	N	J, K, U, W	AVX665	AVX654	AVX654	AVX654	AVX335	AVX339
0	N	V, Z	AVX665	AVX654	AVX654	AVX654	-	-
0	P	°, J, K, U, V, W, Z	AVX665	AVX654	AVX654	AVX654	-	-
L	0	0	AVX315	AVX317	AVX317	AVX318	AVX331	AVX333
L	0	J, K, U, W	AVX653	AVX659	AVX659	AVX659	AVX338	AVX338
L	0	V, Z	AVX653	AVX659	AVX659	AVX659	AVX338	AVX341
L	М	°, J, K, U, W	AVX653	AVX659	AVX659	AVX659	AVX338	AVX341
L	N	0	AVX653	AVX659	AVX659	AVX659	AVX338	AVX341
L	0	°, J, K, U, W	AVX653	AVX659	AVX659	AVX659	AVX338	AVX341
L	M, 0	V, Z	AVX653	AVX659	AVX659	AVX659	AVX339	-
L	N	J, K, U, W	AVX653	AVX659	AVX659	AVX659	AVX339	AVX341
L	N	V, Z	AVX653	AVX659	AVX659	AVX659	AVX341	-
L	Р	°, J, K, U, V, W, Z	AVX653	AVX659	AVX659	AVX659	-	-

- not available

PR4

Model	Ver	0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
PR4	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•

Power factor correction

Ver	0503	0553	0604	0654	0704 075	4 0804
°,L	RIF98	RIF98	RIF95	RIF95	RIF95 RIF9	95 RIF95
A grey background indicates the accessory	must be assembled in the fact	ory				
Ver	0904	1004	1254	1404	1504	1654
°,L	RIF96	RIF97	RIF97	RIF97	RIF97	RIF97

A grey background indicates the accessory must be assembled in the factory

Device for peak current reduction

Ver	0503	0553	0604	0654	0704	0754	0804
°,L	DRE501 (1)	DRE551 (1)	DRE601 (1)	DRE651 (1)	DRE701 (1)	DRE751 (1)	DRE801 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Ver	0904	1004	1254	1404	1504	1654
°,L	DRE901 (1)	DRE1001 (1)	DRE1251 (1)	DRE1401 (1)	DRE1500 (1)	DRE1650 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NXW
4,5,6,7	Size
	0503, 0553, 0604, 0654, 0704, 0754, 0804, 0904, 1004, 1254, 1404, 1504, 1654
8	Operating field (1)
X	Electronic thermostatic expansion valve
•	Standard mechanic thermostatic valve
9	Model
H	Heat pump
10	Version
	Standard
L	Standard silenced
11	Evaporator
•	Standard
12	Heat recovery
D	With desuperheater (2)
	Without heat recovery
13	Power supply
5	500V ~ 3 50Hz with magnet circuit breakers (3)
۰	400V ~ 3 50Hz with magnet circuit breakers
14	System side - pumps
M	Single pump low head
N	Pump low head + stand-by pump
0	Single pump high head
Р	Pump high head + stand-by pump (4)
0	Without hydronic kit
15	Integrated hydronic kit, source side
J	Single low-head inverter pump
K	Single high-head inverter pump
U	Single pump low head
V	Pump low head + stand-by pump (5)
W	Pump high head
Z	Pump high head + stand-by pump (5)
0	Without hydronic kit

⁽¹⁾ Water produced from 4 °C ÷ 18 °C
(2) The desuperheater must be isolated in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
(3) Only for 0804 ÷ 1004 sizes
(4) The hydronic kit P is not available for sizes 1504 and 1654
(5) The hydronic kits V and Z are not available for size 1654

PERFORMANCE SPECIFICATIONS

Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	°,L	kW	105,9	113,8	140,8	159,8	180,7	211,6	242,7	277,7	313,6	341,7	369,7	423,6	477,0
Input power	°,L	kW	23,8	25,7	31,1	35,3	40,2	47,1	54,2	62,2	70,4	76,6	82,7	94,8	106,7
Cooling total input current	°,L	Α	49,0	52,0	60,0	65,0	87,0	95,0	104,0	122,0	140,0	144,0	147,0	164,0	183,0
EER	°,L	W/W	4,45	4,43	4,52	4,52	4,50	4,49	4,47	4,47	4,45	4,46	4,47	4,47	4,47
Water flow rate source side	°,L	l/h	22173	23854	29402	33334	37744	44198	50635	58078	65694	71514	77333	88547	99702
Pressure drop source side	°,L	kPa	25	29	28	35	35	42	55	36	28	32	34	41	44
Water flow rate system side	°,L	l/h	18212	19586	24225	27490	31098	36424	41750	47764	53949	58759	63570	72837	82027
Pressure drop system side	°,L	kPa	17	20	19	24	24	29	38	24	19	22	24	29	30
Heating performance 40 °C / 45 °C (2)															
Heating capacity	°,L	kW	125,4	135,8	165,8	187,6	210,4	269,6	310,2	325,2	365,6	399,8	434,0	500,6	565,2
Input power	°,L	kW	27,9	30,2	36,8	41,8	46,9	55,6	64,6	72,6	80,8	88,6	96,4	111,2	124,9
Heating total input current	°,L	Α	54,0	57,0	66,0	72,0	94,0	105,0	115,0	135,0	154,0	160,0	165,0	181,0	202,0
COP	°,L	W/W	4,49	4,49	4,51	4,49	4,48	4,85	4,80	4,48	4,52	4,51	4,50	4,50	4,52
Water flow rate source side	°,L	l/h	28545	30928	37776	42774	47928	62567	71944	74067	83306	91109	98905	114256	129207
Pressure drop source side	°,L	kPa	43	49	46	58	58	46	61	58	46	52	58	66	71
Water flow rate system side	°,L	l/h	21762	23561	28776	32552	36508	46797	53844	56470	63485	69420	75355	86926	98135
Pressure drop system side	°,L	kPa	24	28	26	33	32	31	40	33	26	30	32	41	43

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

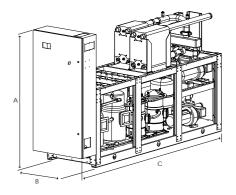
ENERGY INDICES (REG. 2016/2281 EU)

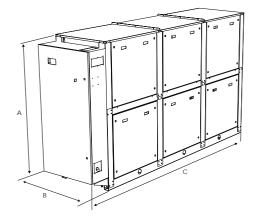
Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
SEER - 12/7 (EN14825: 2018) (1)															
SEER	°,L	W/W	5,39	5,38	5,53	5,60	5,38	5,60	5,27	5,77	5,88	5,94	5,97	6,43	6,44
Seasonal efficiency	°,L	%	212,6%	212,2%	218,2%	221,0%	212,2%	221,0%	207.8%	227,8%	232,2%	234,5%	235,6%	254,2%	254,7%
SEPR - (EN 14825: 2018) High temperatur	re (2)														
SEPR	°,L	W/W	-	-	-	-	-	-	-	7,03	7,06	7,06	7,03	-	-
UE 813/2013 performance in average am	bient conditio	ons (averag	e) - 55 °C - P	designh ≤	400 kW (3)										
Pdesignh	°,L	kW	161	175	213	241	271	320	368	-	-	-	-	-	-
SCOP	°,L	W/W	4,95	4,93	4,95	4,93	4,93	4,90	4,80	-	-	-	-	-	-
ηsh	°,L	%	190.0%	189.0%	190.0%	189.0%	189.0%	188.0%	184.0%	-	-	-	-	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.
(3) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA

Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
Electric data															
Maximum current (FLA)	°,L	A	75,0	80,0	96,0	107,0	122,0	146,0	169,0	193,0	217,0	231,0	248,0	267,0	296,0
Peak current (LRA)	°,L	A	240,0	245,0	227,0	238,0	289,0	319,0	341,0	398,0	422,0	490,0	504,0	601,0	630,0


GENERAL TECHNICAL DATA


Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
Compressor															
Туре	°,L	type							Scroll						
Compressor regulation	°,L	Туре							0n-0ff						
Number	°,L	no.	3	3	4	4	4	4	4	4	4	4	4	4	4
Circuits	°,L	no.	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	°,L	type							R410A						
Refrigerant charge (1)	°,L	kg	13,0	13,0	17,0	17,0	20,0	22,0	26,0	36,0	54,0	54,0	58,0	60,0	62,0
Source side heat exchanger															
Туре	°,L	type							Brazed plate						
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,L	Туре						(Grooved joint	ts					
Size (in)	°,L	Ø	2"1/2	2"1/2	2" 1/2	2" 1/2	2" 1/2	2"1/2	2" 1/2	3"	3"	3"	3"	3"	3"
Size (out)	°,L	Ø	2"1/2	2"1/2	2"1/2	2"1/2	2" 1/2	2"1/2	2" 1/2	3"	3"	3"	3"	3"	3"
System side heat exchanger															
Туре	°,L	type							Brazed plate	<u> </u>					
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,L	Туре						(Grooved joint	ts					
Size (in)	°,L	Ø	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"	3"	3"	3"	3″	3″
Size (out)	°,L	Ø	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3″	3"	3"	3"	3″	3″
Sound data calculated in cooling mode (2)															
County assumed to the	0	dB(A)	78,0	79,0	79,0	80,0	82,0	86,0	88,0	88,0	88,0	90,0	90,0	93,0	95,0
Sound power level —	L	dB(A)	72,0	73,0	73,0	74,0	76,0	80,0	82,0	82,0	82,0	84,0	84,0	86,0	87,0
Sound procesure level (10 m)	0	dB(A)	46,4	47,4	47,4	48,4	50,4	54,3	56,3	56,3	56,3	58,3	58,3	61,3	63,3
Sound pressure level (10 m)	L	dB(A)	40,3	41,3	41,3	42,3	44,3	48,3	50,3	50,3	50,3	52,3	52,3	54,3	55,3

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
Dimensions and weights															
A	0	mm	1835	1835	1835	1835	1835	1775	1775	1820	1820	1820	1820	1820	1820
Α -	L	mm	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
В	°,L	mm	800	800	800	800	800	800	800	800	800	800	800	800	800
•	0	mm	1795	1795	1795	1795	1795	2420	2420	2420	2420	2420	2420	2420	2420
-	L	mm	2090	2090	2090	2090	2090	2420	2420	2420	2420	2420	2420	2420	2420
Dimensions and weights with pump/s															
A	0	mm	1775	1775	1775	1775	1775	1775	1775	1820	1820	1820	1820	1820	1820
Α -	L	mm	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
В	°,L	mm	800	800	800	800	800	800	800	800	800	800	800	800	800
C	°,L	mm	3020	3020	3020	3020	3020	3480	3480	3480	3480	3480	3480	3480	3480
Dimensions and weights			-		-										
F	0	kg	628	633	734	743	791	948	1042	1275	1545	1577	1657	1687	1825
Empty weight -	L	kg	801	805	907	915	963	1121	1240	1473	1743	1774	1855	1885	2023

The weight of the unit does not include the hydronic kit and accessories.

NGW 0500-2600

Water cooled heat pump reversible water side

Cooling capacity 116,3 ÷ 790,2 kW Heating capacity 131,3 ÷ 904,6 kW

- Production of hot water up to 60 °C
- Options of 1 or 2 pumps on both source and user side.
- Reversible on hydraulic side in heat pump

DESCRIPTION

Water-water offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications. Units with hermetic scroll compressors and plate heat exchangers. The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

FEATURES

Operating field

Full load functioning with production of chilled water from -2 to 20 °C, with the possibility of also producing water at negative temperatures down to -10 °C at the evaporator and hot water at the condenser up to 60 °C. (for more information, refer to the technical documentation).

Compressors

The compressors, optimised for low compression ratios in tandem and trio two-circuit configuration, ensure high efficiency especially at part loads, enabling them to exceed the minimum seasonal energy efficiency requirements for the design of low energy systems in both winter and summer.

Dual-circuit unit

The units are two-circuit to ensure continuity of operation in case one of the circuits fails.

Option integrated hydronic kit, source and user side

The hydronic kit is available in different configurations with one or two pumps, both on the evaporator and condenser side, in order to have a cost-saving solution that also facilitates final installation.

Refrigerant HFC R32

Thanks to the R32 refrigerant (A2L slightly flammable), the environmental impact of the units is significantly reduced.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent ${\rm CO_2}$ values.

The unit is fitted with:

- Refrigerant gas detector and safety valves with exchange valve as standard
- Electrical control board completely separate from compressor compartment
- Only the version with hood is available

The machine can be installed in class 3 areas according to EN 378-3.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy seasonal efficiency of the unit.

CONTROL

Microprocessor control, complete with a 6-button multifunction keypad for simple and intuitive navigation between the various screens, making it possible to edit the operating parameters and fully manage alarms and their history.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

S1485: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AVX: Spring anti-vibration supports.

SAENGW: External air probe for climate control curve.

KITFILTRO_2"1/2: The kit, supplied in a wooden crate, contains all the necessary elements for quick and efficient installation: water filter, 2"1/2 flexible coupling and insulation shell.

KITFILTRO_4": The kit, supplied in a wooden crate, contains all the necessary elements for quick and efficient installation: Y-water filter, 4" pipe, flexible coupling and insulation shell.

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

■ The accessory PR4 should only be combined with SI485 communication interface when the serial port is occupied by another device.

ACCESSORIES COMPATIBILITY

Λ,	-	cco	ries

Model	0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
AERNET	•	•		•	•	•	•		•	•	•	•		•	•	•	•	•
MULTICHILLER-EVO		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
S1485	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Remote panel

Model	0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
PR4	•	•	•			•	•	•	•	•		•	•	•	•	•	•	•

The accessory PR4 should only be combined with SI485 communication interface when the serial port is occupied by another device.

ribratio	

Hydronic kit integrated on chilled water utility side	Integrated hydronic kit, source side	0500	0550	0600	0650	0700	0750	0800	0900	1000
00	00	AVX380								
00	IA, IB, IC, ID, IE, IF, IG, JA, JB, JC, JD, JE, JF, JG, UA, UB, UC, UD, UE, UF, UG, VA, VB, VC, VD, VE, VF, VG	AVX380	AVX380	AVX380	AVX380	AVX380	AVX381	AVX381	AVX381	AVX381
DA, DB, DC, DD, DE, DF, DG	00, IA, IB, IC, ID, IE, IF, IG, UA, UB, UC, UD, UE, UF, UG	AVX380	AVX380	AVX380	AVX380	AVX380	AVX381	AVX381	AVX381	AVX381
PA, PB, PC, PD, PE, PF, PG	00, IA, IB, IC, ID, IE, IF, IG, JA, JB, JC, JD, JE, JF, JG, UA, UB, UC, UD, UE, UF, UG, VA, VB, VC, VD, VE, VF, VG	AVX380	AVX380	AVX380	AVX380	AVX380	AVX381	AVX381	AVX381	AVX381
DA, DB, DC, DD, DE, DF, DG	JA, JB, JC, JD, JE, JF, JG, VA, VB, VC, VD, VE, VF, VG	AVX380	AVX380	AVX380	AVX380	AVX380	AVX391	AVX382	AVX382	AVX382
Hydronic kit integrated on chilled water utility side	Integrated hydronic kit, source side	1200	1400	1500	1600	1800	2000	2200	2450	2600
00	00	AVX389	AVX389	AVX389	AVX389	AVX389	AVX393	AVX390	AVX390	AVX390
00	IA, IB, IC, ID, IE, IF, IG, UA, UB, UC, UD, UE, UF, UG	AVX381	AVX381	AVX383	AVX383	AVX383	AVX384	AVX384	AVX386	AVX386
PA, PB, PC, PD, PE, PF, PG	00	AVX381	AVX381	AVX383	AVX383	AVX383	AVX384	AVX384	AVX386	AVX386
00	JA, JB, JC, JD, JE, JF, JG, VA, VB, VC, VD, VE, VF, VG	AVX381	AVX381	AVX382	AVX383	AVX383	AVX384	AVX384	AVX385	AVX385
DA, DB, DC, DD, DE, DF, DG	00	AVX381	AVX381	AVX382	AVX383	AVX383	AVX384	AVX384	AVX385	AVX385
PA, PB, PC, PD, PE, PF, PG	IA, IB, IC, ID, IE, IF, IG, UA, UB, UC, UD, UE, UF, UG	AVX381	AVX381	AVX382	AVX383	AVX383	AVX384	AVX384	AVX385	AVX385
DA, DB, DC, DD, DE, DF, DG	IA, IB, IC, ID, IE, IF, IG, UA, UB, UC, UD, UE, UF, UG	AVX381	AVX382	AVX382	AVX383	AVX383	AVX384	AVX385	AVX385	AVX385
PA, PB, PC, PD, PE, PF, PG	JA, JB, JC, JD, JE, JF, JG, VA, VB, VC, VD, VE, VF, VG	AVX381	AVX382	AVX382	AVX383	AVX383	AVX384	AVX385	AVX385	AVX385
DA, DB, DC, DD, DE, DF, DG	JA, JB, JC, JD, JE, JF, JG, VA, VB, VC, VD, VE, VF, VG	AVX382	AVX382	AVX382	AVX392	AVX392	AVX385	AVX385	AVX385	AVX387

Device for peak current reduction

0500	0550	0600	0650	0700	0750	0800	0900	1000
DRENGW0500	DRENGW0550	DRENGW0600	DRENGW0650	DRENGW0700	DRENGW0750	DRENGW0800	DRENGW0900	DRENGW1000
A grey background indica	tes the accessory must be	e assembled in the factory	/					
1200	1400	1500	1600	1800	2000	2200	2450	2600
DRENGW1200	DRENGW1400	DRENGW1500	DRENGW1600	DRENGW1800	DRENGW2000	DRENGW2200	DRENGW2450	DRENGW2600

A grey background indicates the accessory must be assembled in the factory

water filter kit

Model	0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
KITFILTRO_2"1/2		•	•	•	•	•												
Model	0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
KITFILTRO 4"							•	•	•	•	•			•		•		

CONFIGURATOR

Configuration options

Configuratio	on options
Field	Description
1,2,3	NGW
4,5,6,7	Size
	0500, 0550, 0600, 0650, 0700, 0750, 0800, 0900, 1000, 1200, 1400, 1500, 1600, 1800, 2000, 2200, 2450, 2600
8	Operating field
X	Electronic thermostatic expansion valve (1)
Z	Low temperature electronic thermostatic valve (2)
9	Model
	Heat pump reversible on the water side
10	Evaporator
E	Evaporating unit
	Standard
11	Heat recovery
D	With desuperheater
	Without heat recovery
12	Power supply
0	400V ~ 3 50Hz with magnet circuit breakers
13,14	Hydronic kit integrated on chilled water utility side
00	Without hydronic kit
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump (3)
DB	Pump B + stand-by pump (3)
DC	Pump C + stand-by pump (3)
DD	Pump D + stand-by pump (4)
DE	Pump E + stand-by pump (4)
DF	Pump F + stand-by pump (4)
DG	Pump G + stand-by pump (4)
	Kit with n° 1 pump
PA	Pump A (3)
PB	Pump B (3)
PC	Pump C (3)
PD	Pump D (4)
PE	Pump E (4)
PF	Pump F (4)
PG	Pump G (4)
15,16	Integrated hydronic kit, source side
00	Without hydronic kit
	Kit with n° 1 inverter pump to fixed speed
IA	Pump A equipped with inverter device to work at fixed speed (3)
IB	Pump B equipped with inverter device to work at fixed speed (3)
IC	Pump C equipped with inverter device to work at fixed speedr (3)
ID	Pump D equipped with inverter device to work at fixed speed (4)
IE	Pump E equipped with inverter device to work at fixed speed (4)
IF	Pump F equipped with inverter device to work at fixed speed (4)
IG	Pump G equipped with inverter device to work at fixed speed (4)
	Kit with n° 1 inverter pump + stand-by pump to fixed speed
JA	Pump A+stand-by pump, both equipped with inverter to work at fixed speed (3)
JB	Pump B+stand-by pump, both equipped with inverter to work at fixed speed (3)
JC	Pump C+stand-by pump, both equipped with inverter to work at fixed speed (3)
JD	Pump D+stand-by pump, both equipped with inverter to work at fixed speed (4)
JE	Pump E+stand-by pump, both equipped with inverter to work at fixed speed (4)
JF	Pump F+stand-by pump, both equipped with inverter to work at fixed speed (4)
JG	Pump G+stand-by pump, both equipped with inverter to work at fixed speed (4)
	Kit with n°1 pump
UA	Pump A (3)

Field	Description
UB	Pump B (3)
UC	Pump C (3)
UD	Pump D (4)
UE	Pump E (4)
UF	Pump F (4)
UG	Pump G (4)
	Pump n° 1 pump + stand-by pump
VA	Pump A + stand-by pump (3)
VB	Pump B + stand-by pump (3)
VC	Pump C + stand-by pump (3)
VD	Pump D + stand-by pump (4)
VE	Pump E + stand-by pump (4)
VF	Pump F + stand-by pump (4)
VG	Pump G + stand-by pump (4)

(1) Water produced from -2 °C \div 20 °C (2) Water produced from -10 °C \div 10 °C

(3) Only for 0500 - 0750 sizes (4) Only for 0800 - 2600 sizes

PERFORMANCE SPECIFICATIONS

Size			0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
Cooling performance 12 °C/7 °C (1)																				
Cooling capacity	0	kW	116,3	126,3	142,0	157,8	174,4	208,3	242,3	272,8	310,2	333,6	385,4	430,0	488,0	532,0	614,8	703,9	747,1	790,2
Input power	0	kW	23,1	25,8	28,6	32,0	35,4	41,8	48,3	55,2	61,1	68,2	78,4	89,9	99,2	110,8	128,0	144,9	156,9	169,0
Cooling total input current	0	Α	46,0	50,0	56,0	63,0	69,0	82,0	92,0	102,0	112,0	122,0	139,0	158,0	174,0	193,0	223,0	252,0	271,0	290,0
EER	0	W/W	5,02	4,91	4,97	4,93	4,93	4,98	5,02	4,94	5,08	4,89	4,92	4,78	4,92	4,80	4,80	4,86	4,76	4,67
Water flow rate source side	0	I/h	23858	26011	29172	32446	35868	42774	49770	56140	63592	68752	79371	88890	100428	109848	126942	145015	154345	163659
Pressure drop source side	0	kPa	26	30	33	33	35	35	23	27	23	28	30	38	36	42	45	49	56	63
Water flow rate system side	0	l/h	20000	21737	24440	27149	30009	35846	41678	46918	53358	57360	66276	73940	83902	91467	105717	121028	128461	135873
Pressure drop system side	0	kPa	18	21	23	23	25	25	15	19	16	20	21	27	25	30	32	35	39	43

(1) Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C

Size			0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
Heating performance 40 °C / 45 °C (1)																				
Heating capacity	0	kW	131,3	144,6	160,4	178,4	197,7	236,2	275,0	308,6	348,8	377,8	437,4	490,5	553,8	606,7	700,9	800,5	852,7	904,6
Input power	0	kW	29,5	33,4	36,2	40,5	44,9	53,0	61,0	68,9	76,7	85,8	99,0	113,7	125,5	140,1	161,4	182,2	197,5	212,2
COP	0	W/W	4,46	4,33	4,43	4,41	4,40	4,45	4,50	4,48	4,55	4,40	4,42	4,31	4,41	4,33	4,34	4,39	4,32	4,26
Water flow rate system side	0	I/h	22789	25088	27829	30948	34307	40989	47727	53585	60562	65594	75963	85177	96178	105356	121721	139011	148077	157091
Pressure drop system side	0	kPa	24	28	30	30	32	32	21	24	21	26	28	35	33	39	42	45	51	58
Water flow rate source side	0	l/h	29818	32608	36390	40424	44800	53701	62474	70101	79473	85435	99053	110507	125500	136976	158407	181617	192771	204032
Pressure drop source side	0	kPa	41	48	51	52	55	57	33	42	37	44	48	59	56	68	71	78	87	98

(1) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

ENERGY INDICES (REG. 2016/2281 EU)

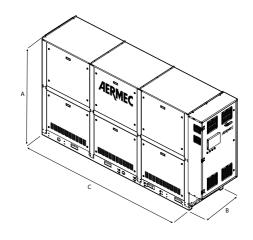
Energy index

Size			0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
SEER - 12/7 (EN14825: 2018) (1)																				
SEER	0	W/W	7,45	7,37	7,46	7,57	7,62	7,15	7,68	7,47	7,83	7,76	7,90	7,73	7,98	7,71	7,93	7,93	7,80	7,63
Seasonal efficiency	0	%	295,1	291,8	295,4	299,9	301,9	282,9	304,2	295,7	310,2	307,3	313	306,3	316,3	305,4	314	314,1	309,1	302,1
SEER - 23/18 (EN 14825: 2018)																				
SEER	0	W/W	10,71	10,82	10,79	11,02	11,06	9,83	10,66	10,29	11,04	10,96	11,37	11,04	11,80	11,35	11,68	12,21	11,84	11,43
Seasonal efficiency	0	%	425,30	429,80	428,50	437,90	439,20	390,20	423,30	408,50	438,50	435,50	451,70	438,80	469,00	451,10	464,00	485,20	470,50	454,10
SEPR - (EN 14825: 2018) High temperature	(2)																			
SEPR	0	W/W	7,71	7,60	7,81	7,80	7,54	7,38	7,76	7,52	7,93	7,66	7,89	7,41	7,84	7,50	7,86	7,74	7,62	7,42
UE 813/2013 performance in average amb	ient conditi	ons (aver	age) - 35	°C - Pde	signh ≤	400 kW	(3)													
SCOP	0	W/W	6,71	6,61	6,51	6,62	6,84	6,60	7,03	6,85	7,06	6,86	6,96	6,71	6,83	6,67	6,63	7,01	6,79	6,73
ηsh	0	%	260,20	256,30	252,50	256,60	265,40	255,80	273,00	265,80	274,20	266,50	270,30	260,50	265,30	258,90	257,20	272,40	263,70	261,30
Pdesignh	0	kW	138	151	169	187	207	247	287	324	367	397	458	513	579	634	732	836	890	943
UE 813/2013 performance in average amb	ient conditi	ons (aver	age) - 55	°C - Pde	signh ≤	400 kW	(4)													
SCOP	0	W/W	4,91	4,78	4,82	4,93	4,93	4,80	5,04	4,96	5,00	4,85	4,93	4,80	4,86	4,74	4,83	5,40	5,31	5,27
ηsh	0	%	188,50	183,30	184,90	189,30	189,00	184,10	193,70	190,20	191,80	186,00	189,30	184,10	186,20	181,50	185,20	207,90	204,20	202,60
Pdesignh	0	kW	128	141	156	174	192	229	267	300	340	369	425	478	539	591	684	777	829	880

- (1) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
 (2) Calculation performed with FIXED water flow rate.
 (3) Efficiencies for low temperature applications (35 °C)
 (4) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA

Electric data


Electric data																				
Size			0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
Electric data																				
Maximum current (FLA)	0	Α	73,0	81,0	89,0	99,0	108,0	127,0	145,0	163,0	181,0	198,0	228,0	258,0	288,0	318,0	367,0	416,0	446,0	476,0
Peak current (LRA)	0	Α	239,0	204,0	210,0	265,0	274,0	293,0	359,0	377,0	395,0	412,0	538,0	568,0	598,0	628,0	677,0	726,0	756,0	786,0

GENERAL TECHNICAL DATA

General data

deliciai data																				
Size			0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
Compressor																				
Туре	0	type									Sci	roll								
Compressor regulation	0	Туре									0n-	-Off								
Number	0	no.	3	4	4	4	4	4	4	4	4	4	4	4	4	4	5	6	6	6
Circuits	0	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	0	type									R:	32								
Refrigerant load circuit 1 (1)	0	kg	6,0	6,0	7,0	8,0	9,0	11,0	11,0	11,0	14,0	14,0	15,0	15,0	19,0	19,0	23,0	28,0	28,0	28,0
Refrigerant load circuit 2 (1)	0	kg	6,0	6,0	7,0	8,0	9,0	11,0	11,0	11,0	14,0	14,0	15,0	15,0	19,0	19,0	23,0	28,0	28,0	28,0
Source side heat exchanger																				
Туре	0	type									Braze	d plate								
Number	0	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	0	Туре									Groove	d joints								
Size (in)	0	Ø	2"1/2	2"1/2	2"1/2	2"1/2	2" 1/2	2" 1/2	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"
Size (out)	0	Ø	2"1/2	2"1/2	2" 1/2	2" 1/2	2"1/2	2"1/2	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"
System side heat exchanger																				
Туре	0	type									Braze	d plate								
Number	0	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	0	Туре									Groove	d joints								
Size (in)	0	Ø	2" 1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"
Size (out)	0	Ø	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"
Sound data calculated in cooling mode (2)																				
Sound power level	0	dB(A)	79,0	80,0	80,0	80,0	81,0	82,0	82,0	83,0	84,0	85,0	87,0	88,0	90,0	91,0	91,0	91,0	92,0	92,0
Sound pressure level (10 m)	0	dB(A)	47,3	48,3	48,3	48,3	49,3	50,2	50,2	51,2	52,2	53,2	55,2	56,2	58,2	59,2	59,1	59,1	60,1	60,1

DIMENSIONS

Dimensions and weights

Size			0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
Dimensions and weights																				
A	0	mm	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
В	0	mm	800	800	800	800	800	850	850	850	850	850	850	850	850	850	900	900	900	900
C	0	mm	2090	2090	2090	2090	2090	2500	2500	2500	2500	2500	2500	2500	2500	2500	3600	3600	3600	3600
Empty weight	0	kg	920	980	995	1015	1040	1095	1225	1285	1405	1470	1585	1655	1860	1970	2330	2550	2610	2670
Dimensions and weights with pump/s																				
A	0	mm	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
В	0	mm	800	800	800	800	800	850	850	850	850	850	850	850	900	900	900	900	900	900
С	0	mm	2950	2950	2950	2950	2950	3600	3600	3600	3600	3600	3600	3600	3600	3600	4700	4700	4700	4700

The weight of the unit does not include the hydronic kit and accessories.

For the version with hydronic kit please contact headquarters.

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.

Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

NGW 0500H-2600H

Reversible water-cooled heat pump, gas side

Cooling capacity 107 ÷ 746,4 kW Heating capacity 126,3 ÷ 879,3 kW

- Production of hot water up to 60 °C
- Installation versatility also for geothermal applications.
- Options of 1 or 2 pumps on both source and user side.
- Reversible in heat pump on refrigerant circuit.

DESCRIPTION

Water-water offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications. Units with hermetic scroll compressors and plate heat exchangers. The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

FEATURES

Operating field

Full load functioning with production of chilled water from -2 to 20 °C, with the possibility of also producing water at negative temperatures down to -10 °C at the evaporator and hot water at the condenser up to 60 °C. (for more information, refer to the technical documentation).

Compressors

The compressors, optimised for low compression ratios in tandem and trio two-circuit configuration, ensure high efficiency especially at part loads, enabling them to exceed the minimum seasonal energy efficiency requirements for the design of low energy systems in both winter and summer.

Dual-circuit unit

The units are two-circuit to ensure continuity of operation in case one of the circuits fails.

Option integrated hydronic kit, source and user side

The hydronic kit is available in different configurations with one or two pumps, both on the evaporator and condenser side, in order to have a cost-saving solution that also facilitates final installation.

Refrigerant HFC R32

Thanks to the R32 refrigerant (A2L slightly flammable), the environmental impact of the units is significantly reduced.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO_2 values.

The unit is fitted with:

- Refrigerant gas detector and safety valves with exchange valve as standard
- Electrical control board completely separate from compressor compartment
- Only the version with hood is available

The machine can be installed in class 3 areas according to EN 378-3.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy seasonal efficiency of the unit.

CONTRO

Microprocessor control, complete with a 6-button multifunction keypad for simple and intuitive navigation between the various screens, making it possible to edit the operating parameters and fully manage alarms and their history.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

S1485: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AVX: Spring anti-vibration supports.

SAENGW: External air probe for climate control curve.

KITFILTRO_2"1/2: The kit, supplied in a wooden crate, contains all the necessary elements for quick and efficient installation: water filter, 2"1/2 flexible coupling and insulation shell.

KITFILTRO_4": The kit, supplied in a wooden crate, contains all the necessary elements for quick and efficient installation: Y-water filter, 4" pipe, flexible coupling and insulation shell.

784 www.aermec.com NGW-0500-2600-HP_Y_UN50_01

PR4: Remote panel with LCD display and touch keyboard that allows carrying out the basic controls, the programming of time ranges and the signalling of the alarms of a single unit.

FACTORY FITTED ACCESSORIES DRE: Electronic device for peak current reduction.

■ The accessory PR4 should only be combined with SI485 communication interface when the serial port is occupied by another device.

ACCESSORIES COMPATIBILITY

Access	Ories
Meec 33	01163

Model	0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
AERNET	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	•	•	•	•	•				•	•	•	•	•	•		•	•	•
SI485	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Remote panel

Model	0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
PR4	•	•	•		•	•		•	•	•	•	•				•		•

The accessory PR4 should only be combined with SI485 communication interface when the serial port is occupied by another device.

-	- •			- •		
Δı	ntiv	/ih	ra	*1	^	n

Hydronic kit integrated on chilled water utility side	Integrated hydronic kit, source side	0500	0550	0600	0650	0700	0750	0800	0900	1000
00	00	AVX380								
00	IA, IB, IC, ID, IE, IF, IG, JA, JB, JC, JD, JE, JF, JG, UA, UB, UC, UD, UE, UF, UG, VA, VB, VC, VD, VE, VF, VG	AVX380	AVX380	AVX380	AVX380	AVX380	AVX381	AVX381	AVX381	AVX381
DA, DB, DC, DD, DE, DF, DG	00, IA, IB, IC, ID, IE, IF, IG, UA, UB, UC, UD, UE, UF, UG	AVX380	AVX380	AVX380	AVX380	AVX380	AVX381	AVX381	AVX381	AVX381
PA, PB, PC, PD, PE, PF, PG	00, IA, IB, IC, ID, IE, IF, IG, JA, JB, JC, JD, JE, JF, JG, UA, UB, UC, UD, UE, UF, UG, VA, VB, VC, VD, VE, VF, VG	AVX380	AVX380	AVX380	AVX380	AVX380	AVX381	AVX381	AVX381	AVX381
DA, DB, DC, DD, DE, DF, DG	JA, JB, JC, JD, JE, JF, JG, VA, VB, VC, VD, VE, VF, VG	AVX380	AVX380	AVX380	AVX380	AVX380	AVX391	AVX382	AVX382	AVX382
Hydronic kit integrated on chilled water utility side	Integrated hydronic kit, source side	1200	1400	1500	1600	1800	2000	2200	2450	2600
00	00	AVX389	AVX389	AVX389	AVX389	AVX389	AVX393	AVX390	AVX390	AVX390
00	IA, IB, IC, ID, IE, IF, IG, UA, UB, UC, UD, UE, UF, UG	AVX381	AVX381	AVX383	AVX383	AVX383	AVX384	AVX384	AVX386	AVX386
PA, PB, PC, PD, PE, PF, PG	00	AVX381	AVX381	AVX383	AVX383	AVX383	AVX384	AVX384	AVX386	AVX386
00	JA, JB, JC, JD, JE, JF, JG, VA, VB, VC, VD, VE, VF, VG	AVX381	AVX381	AVX382	AVX383	AVX383	AVX384	AVX384	AVX385	AVX385
DA, DB, DC, DD, DE, DF, DG	00	AVX381	AVX381	AVX382	AVX383	AVX383	AVX384	AVX384	AVX385	AVX385
PA, PB, PC, PD, PE, PF, PG	IA, IB, IC, ID, IE, IF, IG, UA, UB, UC, UD, UE, UF, UG	AVX381	AVX381	AVX382	AVX383	AVX383	AVX384	AVX384	AVX385	AVX385
DA, DB, DC, DD, DE, DF, DG	IA, IB, IC, ID, IE, IF, IG, UA, UB, UC, UD, UE, UF, UG	AVX381	AVX382	AVX382	AVX383	AVX383	AVX384	AVX385	AVX385	AVX385
PA, PB, PC, PD, PE, PF, PG	JA, JB, JC, JD, JE, JF, JG, VA, VB, VC, VD, VE, VF, VG	AVX381	AVX382	AVX382	AVX383	AVX383	AVX384	AVX385	AVX385	AVX385
DA, DB, DC, DD, DE, DF, DG	JA, JB, JC, JD, JE, JF, JG, VA, VB, VC, VD, VE, VF, VG	AVX382	AVX382	AVX382	AVX392	AVX392	AVX385	AVX385	AVX385	AVX387

External air sensor

Model	0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
SAENGW	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Device for peak current reduction

0500	0550	0600	0650	0700	0750	0800	0900	1000
DRENGW0500	DRENGW0550	DRENGW0600	DRENGW0650	DRENGW0700	DRENGW0750	DRENGW0800	DRENGW0900	DRENGW1000
A grey background indica	tes the accessory must be	e assembled in the factory	I					
1200	1400	1500	1600	1800	2000	2200	2450	2600
DRENGW1200	DRENGW1400	DRENGW1500	DRENGW1600	DRENGW1800	DRENGW2000	DRENGW2200	DRENGW2450	DRENGW2600

A grey background indicates the accessory must be assembled in the factory

Water filter kit

Model	0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
KITFILTRO_2"1/2	•	•	•	•	•	•												
Model	0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
KITFILTRO 4"							•					-			-			

CONFIGURATOR

Configuratio	n options
Field	Description
1,2,3	NGW
4,5,6,7	Size
	0500, 0550, 0600, 0650, 0700, 0750, 0800, 0900, 1000, 1200, 1400, 1500, 1600, 1800, 2000, 2200, 2450, 2600
8	Operating field
X	Electronic thermostatic expansion valve (1)
<u>Z</u>	Low temperature electronic thermostatic valve (2)
9	Model (3)
H	Reversible heat pump, gas side Evaporator
10 .	
	Standard
11	Heat recovery
D	With desuperheater
	Without heat recovery
12	Power supply
	400V ~ 3 50Hz with magnet circuit breakers
13,14	Hydronic kit integrated on chilled water utility side
00	Without hydronic kit
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump (4)
DB	Pump B + stand-by pump (4)
DC	Pump C + stand-by pump (4)
DD	Pump D + stand-by pump (5)
DE DF	Pump E + stand-by pump (5)
	Pump F + stand-by pump (5)
DG	Pump G + stand-by pump (5) Kit with n° 1 pump
PA PR	Pump A (4)
PB	Pump B (4)
PC PD	Pump C (4)
PD PE	Pump D (5)
PE PF	Pump E (5)
PG	Pump F (5)
	Pump G (5)
15,16	Integrated hydronic kit, source side
00	Without hydronic kit
	Kit with n°1 inverter pump to fixed speed
IA	Pump A equipped with inverter device to work at fixed speed (4)
IB	Pump B equipped with inverter device to work at fixed speed (4)
IC	Pump C equipped with inverter device to work at fixed speedr (4)
ID IE	Pump D equipped with inverter device to work at fixed speed (5)
	Pump E equipped with inverter device to work at fixed speed (5)
IF IG	Pump F equipped with inverter device to work at fixed speed (5) Pump G equipped with inverter device to work at fixed speed (5)
IU	
JA	Kit with n° 1 inverter pump + stand-by pump to fixed speed Pump A+stand-by pump, both equipped with inverter to work at fixed speed (4)
JA JB	Pump B+stand-by pump, both equipped with inverter to work at fixed speed (4)
JC	Pump C+stand-by pump, both equipped with inverter to work at fixed speed (4)
JC	Pump C+stand-by pump, both equipped with inverter to work at fixed speed (4) Pump D+stand-by pump, both equipped with inverter to work at fixed speed (5)
JE	
JE	Pump E+stand-by pump, both equipped with inverter to work at fixed speed (5) Pump E+stand-by pump, both equipped with inverter to work at fixed speed (5)
JF 	Pump F+stand-by pump, both equipped with inverter to work at fixed speed (5) Pump G+stand-by pump, both equipped with inverter to work at fixed speed (5)
טנ	Kit with n° 1 pump
UA	Pump A (4)
UB	Pump B (4)
UD	Tullip b (4)

Field	Description
UC	Pump C (4)
UD	Pump D (5)
UE	Pump E (5)
UF	Pump F (5)
UG	Pump G (5)
	Pump n° 1 pump + stand-by pump
VA	Pump A + stand-by pump (4)
VB	Pump B + stand-by pump (4)
VC	Pump C + stand-by pump (4)
VD	Pump D + stand-by pump (5)
VE	Pump E + stand-by pump (5)
VF	Pump F + stand-by pump (5)
VG	Pump G + stand-by pump (5)

(4) Only for 0500 - 0750 sizes (5) Only for 0800 - 2600 sizes

PERFORMANCE SPECIFICATIONS

Size			0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
Cooling performance 12 °C/7 °C (1)																				
Cooling capacity	Н	kW	107,0	116,5	131,0	145,6	161,0	192,0	224,1	252,8	285,3	312,6	361,4	405,2	458,1	501,6	578,8	661,4	703,9	746,4
Input power	Н	kW	24,4	27,0	29,9	33,5	37,1	44,1	50,3	57,2	63,9	70,9	81,5	92,5	103,0	114,1	132,0	150,0	161,2	172,6
Cooling total input current	Н	А	46,0	50,0	56,0	63,0	69,0	82,0	92,0	102,0	112,0	122,0	139,0	158,0	174,0	193,0	223,0	252,0	271,0	290,0
EER	Н	W/W	4,38	4,31	4,38	4,35	4,34	4,35	4,45	4,42	4,47	4,41	4,43	4,38	4,45	4,40	4,39	4,41	4,37	4,33
Water flow rate source side	Н	I/h	22477	24529	27493	30595	33839	40348	46960	53028	59761	65602	75759	85059	95925	105189	121421	138586	147677	156768
Pressure drop source side	Н	kPa	25	29	31	32	33	33	20	25	22	26	28	36	33	40	42	46	52	59
Water flow rate system side	Н	l/h	18406	20041	22537	25048	27701	33030	38529	43476	49070	53766	62145	69667	78757	86242	99517	113722	121034	128345
Pressure drop system side	Н	kPa	16	19	20	21	22	22	13	17	14	17	19	23	22	26	28	30	34	39
(1) Date 14511:2022; Water user side 12 °C /	7 °C; Water so	urce side 3	0 °C / 35	°C																
Size			0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
Hasting parformance 40 °C / 45 °C /1)																				

Size			0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
Heating performance 40 °C / 45	°C (1)																			
Heating capacity	Н	kW	126,3	137,9	153,5	171,3	189,8	226,8	263,2	296,7	333,6	365,9	423,3	476,1	537,1	589,7	680,3	775,8	827,5	879,3
Input power	Н	kW	30,7	34,0	37,6	42,0	46,5	55,3	62,6	70,9	78,9	87,4	100,4	114,0	126,9	140,5	162,7	185,1	199,0	213,0
СОР	Н	W/W	4,11	4,06	4,08	4,08	4,08	4,10	4,20	4,18	4,23	4,19	4,21	4,18	4,23	4,20	4,18	4,19	4,16	4,13
Water flow rate source side	Н	I/h	28011	30483	34010	37920	42038	50310	58607	66067	74467	81529	94494	106176	120167	131791	151939	173447	184814	196191
Pressure drop source side	Н	kPa	35	42	44	45	47	48	28	36	31	38	41	51	49	58	62	67	76	86
Water flow rate system side	Н	l/h	21919	23928	26641	29720	32926	39358	45687	51511	57935	63543	73504	82679	93270	102408	118150	134728	143707	152693
Pressure drop system side	Н	kPa	22	26	27	27	29	29	17	22	19	23	24	31	29	35	37	40	46	52
(4) 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1			~ -																

⁽¹⁾ Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

ENERGY INDICES (REG. 2016/2281 EU)

Energy index

Size			0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
SEER - 12/7 (EN14825: 2018) (1)																				
SEER	Н	W/W	6,48	6,44	6,55	6,59	6,61	6,36	6,68	6,56	6,73	6,60	6,76	6,75	6,86	6,74	6,78	6,83	6,89	6,84
Seasonal efficiency	Н	%	256,10	254,70	259,10	260,60	261,30	251,50	264,10	259,30	266,30	261,00	267,50	267,00	271,30	266,40	268,20	270,00	272,40	270,50
SEER - 23/18 (EN 14825: 2018)																				
SEER	Н	W/W	9,24	9,35	9,44	9,48	9,49	8,75	9,30	9,06	9,49	9,22	9,56	9,56	9,86	9,67	9,73	9,68	9,70	9,90
Seasonal efficiency	Н	%	366,40	370,90	374,50	376,30	376,60	346,80	368,90	359,30	376,40	365,60	379,20	379,50	391,30	383,90	386,30	384,10	385,10	393,00
SEPR - (EN 14825: 2018) High temperatur	e (2)																			
SEPR	Н	W/W	6,83	6,75	6,84	6,93	6,79	6,70	6,89	6,80	6,95	6,67	6,93	6,95	7,15	6,92	6,95	7,04	7,14	6,94
UE 813/2013 performance in average am	bient conditi	ons (aver	age) - 35	°C - Pde	esignh ≤	400 kW	(3)													
SCOP	Н	W/W	5,41	5,55	5,45	5,58	5,54	5,41	5,62	5,63	5,77	5,78	5,81	5,75	5,85	5,82	5,80	5,74	5,75	5,69
ηsh	Н	%	208,40	214,00	210,00	215,00	213,60	208,20	216,90	217,10	222,60	223,00	224,50	221,90	225,90	224,60	224,10	221,70	221,90	219,50
Pdesignh	Н	kW	126	138	154	171	190	226	263	296	333	365	423	475	536	589	679	774	826	877
UE 813/2013 performance in average am	bient conditi	ons (aver	age) - 5	°C - Pde	esignh ≤	400 kW	(4)													
SCOP	Н	W/W	4,70	4,72	4,75	4,87	4,83	4,72	4,86	4,82	4,87	4,84	4,87	4,85	4,87	4,80	4,85	5,00	4,95	4,94
ηsh	Н	%	180,10	180,70	181,90	186,90	185,30	180,80	186,30	184,90	186,70	185,40	186,60	185,80	186,90	183,80	186,00	192,00	189,90	189,50
Pdesignh	Н	kW	121	133	148	164	183	218	252	286	321	352	406	456	514	565	652	742	797	848

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.
(3) Efficiencies for low temperature applications (35 °C)
(4) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA

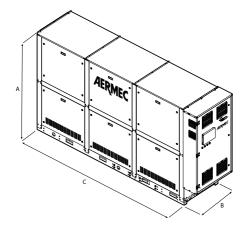
Electric data

Size			0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
Electric data																				
Maximum current (FLA)	Н	Α	73,0	81,0	89,0	99,0	108,0	127,0	145,0	163,0	181,0	198,0	228,0	258,0	288,0	318,0	367,0	416,0	446,0	476,0
Peak current (LRA)	Н	A	239,0	204,0	210,0	265,0	274,0	293,0	359,0	377,0	395,0	412,0	538,0	568,0	598,0	628,0	677,0	726,0	756,0	786,0

⁽¹⁾ Water produced from -2 °C ÷ 20 °C (2) Water produced from -10 °C ÷ 10 °C (3) Not available for the condenserless "E"

GENERAL TECHNICAL DATA

General data


c:						0.450			***		1000	4200		4500	4400	4000	2000	2200	2450	2400
Size			0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
Compressor																				
Туре	Н	type									Sci	oll								
Compressor regulation	Н	Туре									0n-	-Off								
Number	Н	no.	3	4	4	4	4	4	4	4	4	4	4	4	4	4	5	6	6	6
Circuits	Н	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	Н	type									R:	32								
Refrigerant load circuit 1 (1)	Н	kg	6,0	6,0	7,0	8,0	9,0	11,0	11,0	11,0	14,0	14,0	15,0	15,0	19,0	19,0	23,0	28,0	28,0	28,0
Refrigerant load circuit 2 (1)	Н	kg	6,0	6,0	7,0	8,0	9,0	11,0	11,0	11,0	14,0	14,0	15,0	15,0	19,0	19,0	23,0	28,0	28,0	28,0
Source side heat exchanger																				
Туре	Н	type									Braze	l plate								
Number	Н	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	Н	Туре									Groove	d joints								
Size (in)	Н	Ø	2"1/2	2"1/2	2" 1/2	2"1/2	2"1/2	2"1/2	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"
Size (out)	Н	Ø	2" 1/2	2" 1/2	2"1/2	2"1/2	2"1/2	2"1/2	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"
System side heat exchanger																				
Туре	Н	type									Braze	d plate								
Number	Н	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	Н	Туре									Groove	d joints								
Size (in)	Н	Ø	2"1/2	2"1/2	2"1/2	2" 1/2	2" 1/2	2"1/2	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"
Size (out)	Н	Ø	2"1/2	2" 1/2	2" 1/2	2"1/2	2"1/2	2"1/2	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"	4"
Sound data calculated in cooling mode (2)																				
Sound power level	Н	dB(A)	79,0	80,0	80,0	80,0	81,0	82,0	82,0	83,0	84,0	85,0	87,0	88,0	90,0	91,0	91,0	91,0	92,0	92,0
Sound pressure level (10 m)	Н	dB(A)	47,3	48,3	48,3	48,3	49,3	50,2	50,2	51,2	52,2	53,2	55,2	56,2	58,2	59,2	59,1	59,1	60,1	60,1

NGW-0500-2600-HP_Y_UN50_01 788 www.aermec.com

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Dimensions and weights

		0500	0550	0600	0650	0700	0750	0800	0900	1000	1200	1400	1500	1600	1800	2000	2200	2450	2600
Н	mm	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Н	mm	800	800	800	800	800	850	850	850	850	850	850	850	850	850	900	900	900	900
Н	mm	2090	2090	2090	2090	2090	2500	2500	2500	2500	2500	2500	2500	2500	2500	3600	3600	3600	3600
Н	kg	920	980	995	1015	1040	1095	1225	1285	1405	1470	1585	1655	1860	1970	2330	2550	2610	2670
Н	mm	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Н	mm	800	800	800	800	800	850	850	850	850	850	850	850	900	900	900	900	900	900
Н	mm	2950	2950	2950	2950	2950	3600	3600	3600	3600	3600	3600	3600	3600	3600	4700	4700	4700	4700
	H H H H	H mm H kg H mm	H mm 2000 H mm 800 H mm 2090 H kg 920 H mm 2000 H mm 800	H mm 2000 2000 H mm 800 800 H mm 2090 2090 H kg 920 980 H mm 2000 2000 H mm 800 800	H mm 2000 2000 2000 H mm 800 800 800 H mm 2090 2090 2090 H kg 920 980 995 H mm 2000 2000 2000 H mm 800 800 800	H mm 2000 2000 2000 2000 H mm 800 800 800 800 H mm 2090 2090 2090 2090 H kg 920 980 995 1015 H mm 2000 2000 2000 2000 H mm 800 800 800 800	H mm 2000 2000 2000 2000 2000 2000 H mm 800 800 800 800 800 H mm 2090 2090 2090 2090 2090 H kg 920 980 995 1015 1040 H mm 2000 2000 2000 2000 2000 H mm 800 800 800 800 800	H mm 2000 2000 2000 2000 2000 2000 2000 H mm 800 800 800 800 800 800 850 H mm 2090 2090 2090 2090 2090 2500 H kg 920 980 995 1015 1040 1095 H mm 2000 2000 2000 2000 2000 2000 H mm 800 800 800 800 800 800 850	H mm 2000 2000 2000 2000 2000 2000 2000	H mm 2000 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2000 2001 2001 2002 2000	H mm 2000 2000 2000 2000 2000 2000 2000	H mm 2000	H mm 2000 2000 2000 2000 2000 2000 2000	H mm 2000 2000 2000 2000 2000 2000 2000	H mm 2000 2000 2000 2000 2000 2000 2000	H mm 2000 2000 2000 2000 2000 2000 2000	H mm 2000 2000 2000 2000 2000 2000 2000	H mm 2000 2000 2000 2000 2000 2000 2000	H mm 2000 2000 2000 2000 2000 2000 2000

The weight of the unit does not include the hydronic kit and accessories.

For the version with hydronic kit please contact headquarters.

WS

Water cooled heat pump reversible water side

Cooling capacity 147 ÷ 700 kW Heating capacity 164 ÷ 778 kW

- · High efficiency all in Class A Eurovent
- Optimised for low condenser temperatures
- Optimised for geothermal applications
- Available also with R513A (XP10) refrigerant

DESCRIPTION

Units for internal installation offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

Compact and flexible, perfect alignment to the requested load thanks to an accurate control algorithm.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

L Standard silenced

FEATURES

Operating field

Full-load operation with the production of chilled water from 4 to 16° C, and the possibility to produce negative temperature water (down to -6° C) on the evaporator and hot water (up to 50 °C) on the condenser.

(for more information, refer to the technical documentation).

Units mono or dual-circuit

Depending on the size, the units are one-circuit or two-circuit models to ensure maximum efficiency with full loads as well as partial loads and guarantee operation continuity if one of the circuits stop.

They are equipped with screw compressors and system and source side plate heat exchangers.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

Adjustment includes complete management of the alarms and their log. Possibility to control two units in a Master-Slave configuration

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AER485P1 x n° 2: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

AKW: Acoustic kit that lowers the noise level even further, thanks to the special coating on the panelling or on those components that produce the most noise in the unit. Available for the low noise version only.

ACCESSORIES COMPATIBILITY

Model	Ver	0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
AER485P1	°,L	•	•	•	•	•								
AER485P1 x n° 2 (1)	°,L						•	•	•	•	•	•	•	•
AERBACP	°,L	•	•		•	•	•	•		•	•	•	•	•
AERNET	°,L	•	•			•	•			•	•	•		•
MULTICHILLER-EVO	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•
PRV3	°,L	•	•		•	•	•	•	•	•	•	•		•

(1) x Indicates the quantity of accessories to match.

Antivibration

Ver	0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Evaporator: E													
°,L	AVX651	AVX651	AVX652	AVX652	AVX656	AVX658	AVX658	AVX658	AVX659	AVX667	AVX661	AVX661	AVX661
Evaporator: °													
°,L	AVX651	AVX651	AVX652	AVX652	AVX656	AVX658	AVX658	AVX658	AVX659	AVX667	AVX661	AVX661	AVX661

Power factor correction

Ver	0601	0701	0801	0901	1101	1202	1402
°,L	-	RIF161	RIF161	RIF201	RIF241	RIF161 x2	RIF161 x2

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	1602	1802	2002	2202	2502	2802
°,L	RIF161 x2	RIF201 x 2	RIF201+RIF241	RIF241 x2	RIF301 x2	RIF301 x2

A grey background indicates the accessory must be assembled in the factory

Acoustic kit

Ver	0601	0701	0801	0901	1101	1202	1402
L	AKW (1)						

(1) Available only in low noise version A grey background indicates the accessory must be assembled in the factory

3 7		,				
Ver	1602	1802	2002	2202	2502	2802
L	AKW (1)					

(1) Available only in low noise version

À grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2	WS
3,4,5,6	Size 0601, 0701, 0801, 0901, 1101, 1202, 1402, 1602, 1802, 2002, 2202, 2502, 2802
7	Operating field
Х	Electronic thermostatic expansion valve (1)
Υ	Low temperature mechanic thermostatic valve (2)
Z	Low temperature electronic thermostatic valve (2)
0	Standard mechanic thermostatic valve (1)
8	Model
0	Heat pump reversible on the water side
9	Heat recovery
D	With desuperheater (3)
T	With total recovery (4)
0	Without heat recovery
10	Version
0	Standard

Field	Description
L	Standard silenced
11	Evaporator
E	Evaporating unit (5)
0	Standard
12	Power supply
2	230V ~ 3 50Hz with fuses
4	230V ~ 3 50Hz with magnet circuit breakers
5	500V ~ 3 50Hz with fuses
8	400V ~ 3 50Hz with magnet circuit breakers
9	500V ~ 3 50Hz with magnet circuit breakers
0	400V ~ 3 50Hz with fuses

(1) Water produced from 4 °C ÷ 16 °C (2) Water produced from 4 °C ÷ -6 °C; for the avalability with the heat recovery we advise you to contact us (3) In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.

(4) Option not available for condenserless unit.
(5) Shipped with holding charge only.

PERFORMANCE SPECIFICATIONS

WS - °/L

Cooling performance 12 °C/7 °C(1) Cooling capacity	2202 2502 599,8 654,3 117,2 128,1 190,0 219,0 5,12 5,11 122506 133608 52 58 303434 133700	700,4 136,8 235,0 5,12 142894 65
Cooling capacity	117,2 128,1 190,0 219,0 5,12 5,11 122506 133608 52 58	136,8 235,0 5,12 142894 65
Input power	117,2 128,1 190,0 219,0 5,12 5,11 122506 133608 52 58	136,8 235,0 5,12 142894 65
The proper The property The pr	190,0 219,0 5,12 5,11 122506 133608 52 58	235,0 5,12 142894 65
EER	5,12 5,11 122506 133608 52 58	5,12 142894 65
Ech JL W/W 5,06 3,11 3,07 3,08 3,10 3,07 3,00 3,11 3 Water flow rate source side °,L l/h 30238 38269 43508 47922 61258 63078 75593 86332 96177 111478 12 Pressure drop source side °,L l/h 25421 32148 36495 40212 51431 53088 63476 72492 80788 93813 10 Pressure drop system side °,L kPa 23 17 15 16 18 33 25 27 30 33 Heating performance 40 °C/ 45 °C (2) Heating capacity °,L kW 164,9 208,7 237,3 261,4 334,0 343,7 412,1 470,6 524,2 607,2 6	122506 133608 52 58	142894 65
Pressure drop source side	52 58	65
Water flow rate system side		
Pressure drop system side	02142 112500	
Heating performance 40 °C/45 °C(2) Heating capacity °,L kW 164,9 208,7 237,3 261,4 334,0 343,7 412,1 470,6 524,2 607,2 6	103143 112508	120438
Heating capacity °,L kW 164,9 208,7 237,3 261,4 334,0 343,7 412,1 470,6 524,2 607,2 6	35 39	44
	667,2 727,6	778,0
Input power °,L kW 36,8 46,3 52,9 58,1 74,2 76,9 92,2 105,5 117,7 135,5 1	148,8 162,8	174,1
Heating total input current °,L A 70,0 84,0 94,0 105,0 120,0 138,0 168,0 188,0 210,0 225,0 2	240,0 275,0	296,0
COP °,L W/W 4,48 4,51 4,49 4,50 4,50 4,47 4,47 4,46 4,46 4,48 4	4,48 4,47	4,47
Water flow rate system side °,L I/h 28611 36218 41197 45370 57987 59660 71552 81718 91025 105442 11	115854 126347	135087
Pressure drop system side °,L kPa 29 21 19 20 23 42 32 35 38 43	46 52	58
Water flow rate source side °,L I/h 37525 47456 53873 59360 75920 78366 93702 107011 119257 138485 15	152256 166081	177787
Pressure drop source side °,L kPa 49 37 33 34 39 73 54 59 65 72		96

Performance specifications Evaporating units

WS - E

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Evaporator: E															
Cooling performance 12 °C/7 °C(1)															
Cooling capacity	°,L	kW	134,5	167,9	189,2	216,7	264,4	276,7	333,2	381,0	431,7	489,8	542,5	591,7	629,6
Input power	°,L	kW	34,7	42,2	48,2	55,0	67,0	69,3	84,4	96,5	109,9	122,0	134,1	146,8	157,0
Cooling total input current	°,L	Α	63,0	75,0	85,0	96,0	111,0	127,0	151,0	170,0	192,0	207,0	222,0	252,0	270,0
EER	°,L	W/W	3,88	3,98	3,92	3,94	3,94	3,99	3,95	3,95	3,93	4,01	4,05	4,03	4,01
Water flow rate system side	°,L	I/h	23108	28849	32512	37238	45248	47546	57251	65458	74169	84147	93212	101661	108175
Pressure drop system side	°,L	kPa	18	13	12	12	14	25	19	20	23	25	27	30	34

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

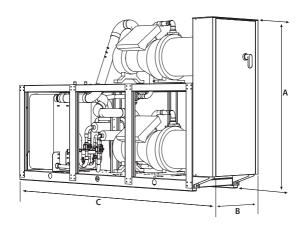
ENERGY INDICES (REG. 2016/2281 EU)

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
SEER - 12/7 (EN14825: 2018) (1)															
SEER	°,L	W/W	5,58	5,80	6,09	6,04	5,96	6,22	6,24	6,39	6,39	6,38	6,38	6,42	6,39
Seasonal efficiency	°,L	%	220,2%	229,0%	240,6%	238.6%	235,2%	245,7%	246,6%	252,5%	252,6%	252,1%	252,2%	253,9%	252,7%
SEPR - (EN 14825: 2018) High temperature (2)															
SEPR	°,L	W/W	-	-	-	-	7,77	7,97	7,99	8,11	8,01	8,04	8,01	8,05	8,01
UE 813/2013 performance in average am	bient conditi	ons (averag	e) - 35 °C - P	designh ≤	400 kW (3)										
Pdesignh	°,L	kW	229	290	330	363	-	-	-	-	-	-	-	-	-
SCOP	°,L	W/W	5,98	6,10	6,30	6,25	-	-	-	-	-	-	-	-	-
nsh	°,L	%	231.0%	236.0%	244.0%	242.0%	-	_	_	-	-	-	-	-	

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with VARIABLE water flow rate.
(3) Efficiencies for low temperature applications (35 °C)

ELECTRIC DATA

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Electric data															
Maximum current (FLA)	°,L	Α	90,7	98,0	112,0	128,0	156,0	168,0	196,0	224,0	256,0	284,0	312,0	354,0	380,0
Peak current (LRA)	°,L	Α	147,0	140,0	163,0	192,0	246,0	194,1	198,5	228,0	262,6	316,6	324,7	388,1	448,1


WS-0601-2802-HP-W_Y_UN50_09 792 www.aermec.com

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

GENERAL TECHNICAL DATA

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Compressor															
Туре	°,L	type							Screw						
Compressor regulation	°,L	Туре							On-Off						
Number	°,L	no.	1	1	1	1	1	2	2	2	2	2	2	2	2
Circuits	°,L	no.	1	1	1	1	1	2	2	2	2	2	2	2	2
Refrigerant	°,L	type							R134a						
Refrigerant charge (1)	°,L	kg	18,0	22,0	22,0	25,0	38,0	36,0	42,0	44,0	50,0	59,0	68,0	70,0	80,0
System side heat exchanger															
Туре	°,L	type							Brazed plate						
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Source side heat exchanger															
Туре	°,L	type							Brazed plate						
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
System side hydraulic connections															
Connections (in/out)	°,L	Туре						(Grooved joint	S					
Sizes (in/out)	°,L	Ø							3"						
Source side hydraulic connections															
Connections (in/out)	°,L	Туре						(Grooved joint	S					
Sizes (in/out)	°,L	Ø							3"						
Sound data calculated in cooling mode (2	!)														
Cound names lavel	0	dB(A)	86,1	86,8	87,1	87,8	87,1	89,1	89,8	90,1	90,8	90,5	90,1	91,3	91,8
Sound power level	L	dB(A)	78,1	78,8	79,1	79,9	78,1	81,1	81,8	82,1	82,9	82,1	81,1	83,4	84,1
Cound procesure level (10 m)	0	dB(A)	54,3	55,0	55,3	56,0	55,3	57,2	57,9	58,3	59,0	58,6	58,2	59,3	59,9
Sound pressure level (10 m)	L	dB(A)	46,3	47,0	47,3	48,1	46,3	49,2	50,0	50,2	51,0	50,2	49,2	51,5	52,2

DIMENSIONS

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Dimensions and weights															
Α.	0	mm	1775	1775	1775	1775	1775	1975	1975	1975	2005	1985	2065	2065	2065
A	L	mm	1775	1775	1775	1775	1775	2120	2120	2120	2120	2120	2120	2120	2120
В	°,L	mm	810	810	810	810	810	810	810	810	810	810	810	810	810
C	°,L	mm	2960	2960	2960	2960	3360	2960	2960	2960	2960	3360	3360	3360	3360
Frankrissinkk	0	kg	1101	1251	1301	1357	1788	1738	2071	2140	2212	2648	3050	3131	3131
Empty weight	L	kg	1229	1379	1429	1485	1934	1966	2299	2368	2440	2905	3307	3388	3388

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

HWS

Water cooled heat pump reversible water side

Cooling capacity 147 ÷ 369 kW Heating capacity 165 ÷ 778 kW

- · High efficiency all in Class A Eurovent
- Unit optimised for high condenser temperatures.
- Optimised for geothermal applications
- Available also with R513A (XP10) refrigerant

DESCRIPTION

Units for internal installation offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

Compact and flexible, perfect alignment to the requested load thanks to an accurate control algorithm.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

L Standard silenced

FEATURES

Operating field

Full-load operation with the production of chilled water 4-16 $^{\circ}$ C, and the possibility to produce also hot water for the condenser up to 60 $^{\circ}$ C. (for more information, refer to the technical documentation).

Units mono or dual-circuit

Depending on the size, the units are one-circuit or two-circuit models to ensure maximum efficiency with full loads as well as partial loads and guarantee operation continuity if one of the circuits stop.

They are equipped with screw compressors and system and source side plate heat exchangers.

Integral acoustic enclosure

For all versions, if required, it is available the integral acoustic enclosure, which can further reduce the sound level.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

Adjustment includes complete management of the alarms and their log. Possibility to control two units in a Master-Slave configuration

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AER485P1 x n° 2: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

AKW: Acoustic kit that lowers the noise level even further, thanks to the special coating on the panelling or on those components that produce the most noise in the unit. Available for the low noise version only.

ACCESSORIES COMPATIBILITY

Model	Ver	0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
AER485P1	°,L	•	•	•	•	•								
AER485P1 x n° 2 (1)	°,L						•	•	•	•	•	•	•	•
AERBACP	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET	°,L	•	•			•	•			•	•	•		•
MULTICHILLER-EVO	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•
PRV3	°,L	•	•	•	•	•	•	•	•	•	•	•		•

(1) x Indicates the quantity of accessories to match.

Antivibration

Version	Heat recovery	Evaporator	0601	0701	0801	0901	1101
0	0	0	AVX651	AVX651	AVX652	AVX652	AVX656
0	°, D	E	-	AVX668	AVX668	AVX668	AVX669
0	D	0	-	AVX651	AVX652	AVX652	AVX654
0	T	0	-	AVX652	AVX655	AVX655	AVX657
L	0	0	AVX651	AVX651	AVX652	AVX652	AVX656
L	°, D	E	-	AVX668	AVX668	AVX668	AVX669
L	D	0	-	AVX651	AVX652	AVX652	AVX654
L	T	٥		AVX652	AVX655	AVX655	AVX657
Version	Heat recovery	Evaporator	1202	1402	1602	1802	2002
۰	0	0	AVX658	AVX658	AVX658	AVX659	AVX667
0	0	E	-	AVX670	AVX670	AVX670	AVX671
0	D	0	AVX658	AVX658	-	-	-
٥	D	E	-	AVX670	-	-	-
0	T	0	-	AVX662	-	-	-
L	0	0	AVX658	AVX658	AVX658	AVX659	AVX667
L	0	E	-	AVX670	AVX670	AVX670	AVX671
L	D	0	AVX658	AVX658	-	-	-
L	D	E	-	AVX670	-	-	-
L	T	0	-	AVX662	-	_	-
Version	Heat re	covery	Evaporator	2202	25	02	2802
0	٥		0	AVX661	AVX	661	AVX661
0	0		E	AVX672	AVX	672	AVX672
0	D	1	°, E	-		-	-

Version	Heat recovery	Evaporator	2202	2502	2802
0	0	0	AVX661	AVX661	AVX661
0	0	E	AVX672	AVX672	AVX672
0	D	°, E	-	-	-
0	T	0	-	-	-
L	0	0	AVX661	AVX661	AVX661
L	0	E	AVX672	AVX672	AVX672
L	D	°,E	-	-	-
L	Ţ	0	-	-	-

not available

Power factor correction

Ver	0601	0701	0801	0901	1101	1202	1402
°,L	-	RIF161	RIF161	RIF201	RIF241	-	RIF161 x2

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	1602	1802	2002	2202	2502	2802
°, L	RIF161 x2	RIF201 x 2	RIF201+RIF241	RIF241 x2	RIF301 x2	RIF301 x2

A grey background indicates the accessory must be assembled in the factory

Acoustic kit

Ver	0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
L	AKW (1)												

(1) Available only in low noise version
A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	HWS
4,5,6,7	Size 0601, 0701, 0801, 0901, 1101, 1202, 1402, 1602, 1802, 2002, 2202, 2502, 2802
8	Operating field
Х	Electronic thermostatic expansion valve
0	Standard mechanic thermostatic valve
9	Model
0	Heat pump reversible on the water side
10	Heat recovery
D	With desuperheater (1)
T	With total recovery (2)
•	Without heat recovery
11	Version
0	Standard
L	Standard silenced

Field	Description
12	Evaporator
Е	Evaporating unit (3)
0	Standard
13	Power supply
2	230V ~ 3 50Hz with fuses
4	230V ~ 3 50Hz with magnet circuit breakers
5	500V ~ 3 50Hz with fuses
8	400V ~ 3 50Hz with magnet circuit breakers
9	500V ~ 3 50Hz with magnet circuit breakers
0	400V ~ 3 50Hz with fuses

- (1) The temperature of the water in the heat exchanger inlet must never drop below 35°C. The desuperheater is not available for sizes 0601 and 1202.
 (2) The desuperheater and total recovery are not available for sizes 0601 and 1202; T are not compatible with E.
 (3) Shipped with holding charge only. Option not available for size 0601 and 1202.

PERFORMANCE SPECIFICATIONS

HWS - °/L

Size			0601	0701	0801	0901	1101	1202	1402
Cooling performance 12 °C/7 °C(1)									
Cooling capacity	°,L	kW	146,7	178,8	212,7	233,7	293,7	293,7	356,6
Input power	°,L	kW	31,7	38,0	43,2	49,2	59,7	63,5	76,8
Cooling total input current	°,L	А	56,0	66,0	74,0	82,0	101,0	112,0	132,0
EER	°,L	W/W	4,63	4,70	4,92	4,75	4,92	4,62	4,64
Water flow rate source side	°,L	l/h	30474	37085	43795	48419	60454	60948	73996
Pressure drop source side	°,L	kPa	40	27	27	26	31	53	50
Water flow rate system side	°,L	l/h	25256	30754	36596	40204	50513	50513	61337
Pressure drop system side	°,L	kPa	29	20	20	19	23	38	36
Heating performance 40 °C / 45 °C (2)									
Heating capacity	°,L	kW	163,9	199,3	234,8	260,1	324,0	327,5	397,5
Input power	°,L	kW	38,0	45,4	51,6	58,8	71,4	76,3	92,2
Heating total input current	°,L	Α	66,0	78,0	88,0	97,0	120,0	133,0	157,0
COP	°,L	W/W	4,31	4,39	4,55	4,42	4,54	4,29	4,31
Water flow rate source side	°,L	l/h	36968	45016	53566	58847	73936	73936	89780
Pressure drop source side	°,L	kPa	62	43	43	41	49	81	77
Water flow rate system side	°,L	I/h	28421	34581	40752	45134	56255	56843	69010
Pressure drop system side	°,L	kPa	35	23	23	23	27	46	43

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

		1602	1802	2002	2202	2502	2802
°,L	kW	465,7	522,8	584,8	646,9	730,9	799,6
°,L	kW	104,0	121,3	133,2	145,1	165,9	181,5
°,L	А	176,0	195,0	218,0	241,0	277,0	280,0
°,L	W/W	4,48	4,31	4,39	4,46	4,41	4,40
°,L	l/h	106378	118198	133036	147873	166735	182932
°,L	kPa	86	88	96	103	114	137
°,L	I/h	80851	90770	101543	112315	126902	138328
°,L	kPa	48	50	54	58	65	79
	°,L °,L °,L °,L °,L °,L	°,L kW °,L A °,L W/W °,L I/h °,L kPa °,L I/h	°,L kW 465,7 °,L kW 104,0 °,L A 176,0 °,L W/W 4,48 °,L I/h 106378 °,L kPa 86 °,L I/h 80851	°,L kW 465,7 522,8 °,L kW 104,0 121,3 °,L A 176,0 195,0 °,L W/W 4,48 4,31 °,L I/h 106378 118198 °,L kPa 86 88 °,L I/h 80851 90770	°,L kW 465,7 522,8 584,8 °,L kW 104,0 121,3 133,2 °,L A 176,0 195,0 218,0 °,L W/W 4,48 4,31 4,39 °,L I/h 106378 118198 133036 °,L kPa 86 88 96 °,L I/h 80851 90770 101543	°,L kW 465,7 522,8 584,8 646,9 °,L kW 104,0 121,3 133,2 145,1 °,L A 176,0 195,0 218,0 241,0 °,L W/W 4,48 4,31 4,39 4,46 °,L I/h 106378 118198 133036 147873 °,L kPa 86 88 96 103 °,L I/h 80851 90770 101543 112315	°,L kW 465,7 522,8 584,8 646,9 730,9 °,L kW 104,0 121,3 133,2 145,1 165,9 °,L A 176,0 195,0 218,0 241,0 277,0 °,L W/W 4,48 4,31 4,39 4,46 4,41 °,L I/h 106378 118198 133036 147873 166735 °,L kPa 86 88 96 103 114 °,L I/h 80851 90770 101543 112315 126902

⁽¹⁾ Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

Performance specifications Evaporating units

HWS - F

UM2-E															
Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Evaporator: E															
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	°,L	kW	-	163,0	192,0	212,0	263,0	-	326,0	385,0	428,0	481,0	539,0	601,0	676,0
Input power	°,L	kW	-	41,0	47,0	54,0	66,0	-	82,0	93,0	108,0	120,0	132,0	146,0	159,0
Cooling total input current	°,L	Α	-	72,0	81,0	90,0	113,0	-	144,0	162,0	180,0	204,0	226,0	254,0	272,0
EER	°,L	W/W	-	3,98	4,09	3,93	3,98	-	3,98	4,14	3,96	4,01	4,08	4,12	4,25
Water flow rate system side	°,L	l/h	-	28005	32988	36424	45186	-	56011	66147	73535	82641	92606	103259	116144
Pressure drop system side	°,L	kPa	-	20	20	19	23	-	36	40	41	45	48	53	62

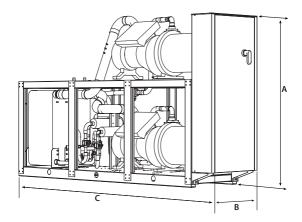
⁽¹⁾ Service side water 12 $^{\circ}$ C / 7 $^{\circ}$ C; Condensing temperature 45 $^{\circ}$ C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0601	0701	0801	0901	1101	1202	1402
SEER - 12/7 (EN14825: 2018) (1)									
SEER	°,L	W/W	5,01	5,28	5,57	5,43	5,59	5,36	5,42
Seasonal efficiency	°,L	%	197,4%	208,2%	219.8%	214.2%	220,6%	211,4%	213,6%
UE 813/2013 performance in average an	bient condition	ıs (average) - 55 °(C - Pdesignh ≤ 400 k	(W (2)					
Pdesignh	°,L	kW	215	257	293	330	-	-	-
SCOP	°,L	W/W	4,55	4,60	4,73	4,58	-	-	-
ηsh	°,L	%	174.0%	176.0%	181.0%	175.0%	-	-	-

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature.
(2) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA


Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Electric data															
Maximum current (FLA)	°,L	Α	105,0	124,0	144,0	162,0	182,0	210,0	248,0	288,0	324,0	344,0	364,0	430,0	430,0
Peak current (LRA)	°,L	A	180,0	163,0	192,0	229,0	300,0	285,0	287,0	336,0	391,0	462,0	482,0	575,0	575,0

GENERAL TECHNICAL DATA

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Compressor															
Туре	°,L	type							Screw						
Compressor regulation	°,L	Туре				-			On-Off						
Number	°,L	no.	1	1	1	1	1	2	2	2	2	2	2	2	2
Circuits	°,L	no.	1	1	1	1	1	2	2	2	2	2	2	2	2
Refrigerant	°,L	type							R134a						
System side heat exchanger															
Туре	°,L	type				-			Brazed plate	2					
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Source side heat exchanger				-		-									
Туре	°,L	type	e Brazed plate												
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
System side hydraulic connections															-
Connections (in/out)	°,L	Туре						(Grooved join	ts					
Sizes (in/out)	°,L	Ø		-		-			3"						
Source side hydraulic connections															
Connections (in/out)	°,L	Туре						(Grooved join	ts					
Sizes (in/out)	°,L	Ø							3"						-
Sound data calculated in cooling mode (1)															
Carrad manusar larval	0	dB(A)	85,0	86,0	86,0	86,0	92,0	88,0	89,0	89,0	89,0	93,0	95,0	95,0	95,0
Sound power level —	L	dB(A)	77,0	78,0	78,0	78,0	84,0	80,0	81,0	81,0	81,0	85,0	87,0	87,0	87,0
County	0	dB(A)	53,2	54,2	54,2	54,2	60,2	56,2	57,2	57,2	57,2	61,1	63,1	63,1	63,1
Sound pressure level (10 m)	L,	dB(A)	45,2	46,2	46,2	46,2	52,2	48,1	49,1	49,1	49,1	53,1	55,1	55,1	55,1

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Dimensions and weights															
A	0	mm	1775	1775	1775	1775	1775	1975	1975	1975	2005	1985	2065	2065	2065
A	L	mm	1775	1775	1775	1775	1775	2120	2120	2120	2120	2120	2120	2120	2120
В	°,L	mm	810	810	810	810	810	810	810	810	810	810	810	810	810
C	°,L	mm	2960	2960	2960	2960	3360	2960	2960	2960	2960	3360	3360	3360	3360
Empty weight	°,L	kg	1101	1251	1301	1357	1788	1738	2028	2097	2169	2598	3000	3095	3095

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

HWSG

Water cooled heat pump reversible water side

Cooling capacity 110 ÷ 396 kW Heating capacity 122 ÷ 595 kW

- Use of the new ecological gas R1234ze
- Unit optimised for high condenser temperatures.
- Production of hot water from condenser up to 65° C.

DESCRIPTION

Units for internal installation offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

Compact and flexible, perfect alignment to the requested load thanks to an accurate control algorithm.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

L Standard silenced

FEATURES

Operating field

Production of chilled water up to 4° C of water produced on the evaporator side, but also suitable for use in heat pump mode with condenser water temperature up to 65° C.

Units mono or dual-circuit

Depending on the size, the units are one-circuit or two-circuit models to ensure maximum efficiency with full loads as well as partial loads and guarantee operation continuity if one of the circuits stop.

They are equipped with screw compressors and system and source side plate heat exchangers dedicated to use of the new HFO R1234ze gas.

HFO R1234ze refrigerant gas

HFO R1234ze is a mixture featuring:

ODP = 0 e GWP (Global Warming Potential) = 7, R134a GWP = 1430, with thermodynamic properties that guarantee and sometimes improve efficiencies achieved with HFC refrigerants.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit. Standard for all sizes.

CONTROL

pCO⁵ control type

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

Adjustment includes complete management of the alarms and their log. Possibility to control two units in a Master-Slave configuration

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AER485P1 x n° 2: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

AVX: Spring anti-vibration supports.

ACCESSORIES COMPATIBILITY

Model	Ver	0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
AER485P1	°,L	•	•	•	•	•								
AER485P1 x n° 2 (1)	°,L							•		•	•			
AERBACP	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET	°,L									•	•			•
MULTICHILLER-EVO	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•
PRV3	°,L				•				•	•	•	•		•

(1) $\,x$ Indicates the quantity of accessories to match.

Antivibration

Ver	0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
°,L	AVX651	AVX651	AVX652	AVX652	AVX656	AVX658	AVX658	AVX658	AVX659	AVX667	AVX661	AVX661	AVX661

CONFIGURATOR

Field	Description
1,2,3,4	HWSG
5,6,7,8	Size 0601, 0701, 0801, 0901, 1101, 1202, 1402, 1602, 1802, 2002, 2202, 2502, 2802
9	Operating field
Х	Electronic thermostatic expansion valve (1)
Z	Low temperature electronic thermostatic valve (2)
10	Model
0	Optimised for high condenser temperatures
11	Heat recovery
D	With desuperheater (3)
T	With total recovery (3)
0	Without heat recovery
12	Version
0	Standard
L	Standard silenced
13	Evaporator
0	Standard
14	Power supply
0	400V ~ 3 50Hz with fuses

⁽¹⁾ Water produced from $4^{\circ}\text{C} \div 16^{\circ}\text{C}$ (2) Water produced from $-5^{\circ}\text{C} \div 4^{\circ}\text{C}$ (3) Order management

PERFORMANCE SPECIFICATIONS

HWSG - °/L

Cooling performance 12 °C/7 °C(1) Cooling capacity													
Cooling capacity	Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002
Input power 1	Cooling performance 12 °C/7 °C(1)												
Imput power	Cooling capacity	°,L	kW	110,5	135,1	156,5	176,0	215,8	221,7	271,4	315,9	354,9	396,8
EER ",L W/W 4,77 4,87 5,00 4,94 4,99 4,80 4,76 4,94 4,82 4, Water flow rate system side ",L l/h 19007 23236 26907 30255 37102 38143 46690 54329 61030 68 Pressure drop system side ",L l/h 22875 27903 32183 36261 44378 45808 56089 64986 73289 81 Pressure drop source side ",L l/h 22875 27903 32183 36261 44378 45808 56089 64986 73289 81 Pressure drop source side ",L kPa 23 16 15 15 17 34 47 31 34 3 Heating performance 40 °C / 45 °C (2) Heating capacity ",L kW 122,8 149,7 172,4 194,4 237,8 245,8 301,0 348,2 393,1 43 Input power ",L kW 27,7 33,1 37,3 42,5 51,6 55,2 68,3 76,4 88,0 99 Heating total input current ",L A 58,0 65,0 72,0 78,0 97,0 114,0 131,0 145,0 157,0 17 COP ",L W/W 4,43 4,52 4,62 4,57 4,61 4,45 4,41 4,56 4,47 4, Water flow rate source side ",L kPa 20 14 13 13 15 29 41 27 30 3 Water flow rate source side ",L kPa 20 34012 39384 44285 54307 55832 68342 79522 89331 99	Input power	°,L	kW	23,2	27,7	31,3	35,6	43,2	46,2	57,0	63,9	73,6	80,7
Ech J.L W/W 4,/7 4,67 3,00 4,94 4,99 4,80 4,76 4,94 4,92 4,80 4,76 4,94 4,02 4, Water flow rate system side °,L I/h 19007 23236 26907 30255 37102 38143 46690 54329 61030 68 Pressure drop system side °,L I/h 22875 27903 32183 36261 44378 45808 56089 64986 73289 81 Pressure drop source side °,L I/h 22875 27903 32183 36261 44378 45808 56089 64986 73289 81 Heating performance 40 °C / 45 °C (2) Heating performance 40 °C / 45 °C (2) Heating capacity °,L kW 122,8 149,7 172,4 194,4 237,8 245,8 301,0 348,2 393,1 43 Input power °,L kW 27,7 33,1 37,3 42,5 51,6 <td>Cooling total input current</td> <td>°,L</td> <td>A</td> <td>48,0</td> <td>55,0</td> <td>61,0</td> <td>66,0</td> <td>82,0</td> <td>96,0</td> <td>111,0</td> <td>122,0</td> <td>132,0</td> <td>149,0</td>	Cooling total input current	°,L	A	48,0	55,0	61,0	66,0	82,0	96,0	111,0	122,0	132,0	149,0
Pressure drop system side	EER	°,L	W/W	4,77	4,87	5,00	4,94	4,99	4,80	4,76	4,94	4,82	4,92
Pressure drop system side ',L kPa 10 11 10 11 12 24 32 21 25 22 Water flow rate source side °,L I/h 22875 27903 32183 36261 44378 45808 56089 64986 73289 81 Pressure drop source side °,L kPa 23 16 15 15 17 34 47 31 34 3 Heating performance 40 °C / 45 °C (2) Heating capacity °,L kW 122,8 149,7 172,4 194,4 237,8 245,8 301,0 348,2 393,1 43 Input power °,L kW 27,7 33,1 37,3 42,5 51,6 55,2 68,3 76,4 88,0 9 Heating total input current °,L A 58,0 65,0 72,0 78,0 97,0 114,0 131,0 145,0 157,0 17 COP °,L W/	Water flow rate system side	°,L	l/h	19007	23236	26907	30255	37102	38143	46690	54329	61030	68240
Pressure drop source side	Pressure drop system side	°,L	kPa	16	11	10	11	12	24	32	21	23	25
Heating performance 40 °C / 45 °C (2) Heating capacity °,L kW 122,8 149,7 172,4 194,4 237,8 245,8 301,0 348,2 393,1 43 Input power °,L kW 27,7 33,1 37,3 42,5 51,6 55,2 68,3 76,4 88,0 99 Heating total input current °,L A 58,0 65,0 72,0 78,0 97,0 114,0 131,0 145,0 157,0 17 COP °,L W/W 4,43 4,52 4,62 4,57 4,61 4,45 4,41 4,56 4,47 4, Water flow rate system side °,L I/h 21319 25989 29942 33756 41288 42668 52248 60463 68263 75 Pressure drop system side °,L kPa 20 14 13 13 15 29 41 27 30 3 Water flow rate source side °	Water flow rate source side	°,L	I/h	22875	27903	32183	36261	44378	45808	56089	64986	73289	81668
Heating capacity °,L kW 122,8 149,7 172,4 194,4 237,8 245,8 301,0 348,2 393,1 43 Input power °,L kW 27,7 33,1 37,3 42,5 51,6 55,2 68,3 76,4 88,0 99 Heating total input current °,L A 58,0 65,0 72,0 78,0 97,0 114,0 131,0 145,0 157,0 17 COP °,L W/W 4,43 4,52 4,62 4,57 4,61 4,45 4,41 4,56 4,47 4, Water flow rate system side °,L I/h 21319 25989 29942 33756 41288 42668 52248 60463 68263 75 Pressure drop system side °,L kPa 20 14 13 13 15 29 41 27 30 33 Water flow rate source side °,L I/h 27820 34012 <td< td=""><td>Pressure drop source side</td><td>°,L</td><td>kPa</td><td>23</td><td>16</td><td>15</td><td>15</td><td>17</td><td>34</td><td>47</td><td>31</td><td>34</td><td>36</td></td<>	Pressure drop source side	°,L	kPa	23	16	15	15	17	34	47	31	34	36
Input power °,L kW 27,7 33,1 37,3 42,5 51,6 55,2 68,3 76,4 88,0 99 Heating total input current °,L A 58,0 65,0 72,0 78,0 97,0 114,0 131,0 145,0 157,0 17 COP °,L W/W 4,43 4,52 4,62 4,57 4,61 4,45 4,41 4,56 4,47 4, Water flow rate system side °,L I/h 21319 25989 29942 33756 41288 4268 52248 60463 68263 75 Pressure drop system side °,L kPa 20 14 13 13 15 29 41 27 30 3 Water flow rate source side °,L I/h 27820 34012 39384 44285 54307 55832 68342 79522 89331 99	Heating performance 40 °C / 45 °C (2)												
Heating total input current	Heating capacity	°,L	kW	122,8	149,7	172,4	194,4	237,8	245,8	301,0	348,2	393,1	437,6
COP	Input power	°,L	kW	27,7	33,1	37,3	42,5	51,6	55,2	68,3	76,4	88,0	96,5
Water flow rate system side °,L I/h 21319 25989 29942 33756 41288 42668 52248 60463 68263 75 Pressure drop system side °,L kPa 20 14 13 13 15 29 41 27 30 3 Water flow rate source side °,L I/h 27820 34012 39384 44285 54307 55832 68342 79522 89331 99	Heating total input current		A	58,0	65,0	72,0	78,0	97,0	114,0	131,0	145,0	157,0	176,0
Pressure drop system side	COP	°,L	W/W	4,43	4,52	4,62	4,57	4,61	4,45	4,41	4,56	4,47	4,53
Water flow rate source side °,L I/h 27820 34012 39384 44285 54307 55832 68342 79522 89331 99	Water flow rate system side	°,L	I/h	21319	25989	29942	33756	41288	42668	52248	60463	68263	75995
	Pressure drop system side	°,L	kPa	20	14	13	13	15	29	41	27	30	31
Pressure drop source side °1 kPa 35 24 22 23 26 50 69 46 50 6	Water flow rate source side	°,L	I/h	27820	34012	39384	44285	54307	55832	68342	79522	89331	99885
1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Pressure drop source side	°,L	kPa	35	24	22	23	26	50	69	46	50	54

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

Size			2202	2502	2802
Heating performance 40 °C / 45 °C (1)				
Heating capacity	°,L	kW	488,6	540,8	595,5
Input power	°,L	kW	106,1	119,3	131,9
Heating total input current	°,L	A	196,0	225,0	240,0
COP	°,L	W/W	4,60	4,53	4,52
Water flow rate system side	°,L	l/h	84852	93902	103410
Pressure drop system side	°,L	kPa	34	37	45
Water flow rate source side	°,L	l/h	112042	123541	136133
Pressure drop source side	°,L	kPa	58	62	75

⁽¹⁾ Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

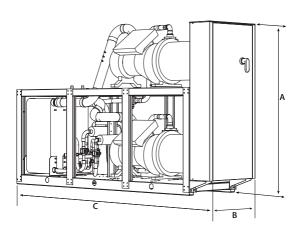
ENERGY INDICES (REG. 2016/2281 EU)

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002
SEER - 12/7 (EN14825: 2018) (1)												
Seasonal efficiency	°,L	%	205,9%	214,4%	222,6%	221,7%	221,9%	210,8%	211,5%	228,3%	223,0%	226,4%
SEER	°,L	W/W	5,22	5,44	5,64	5,62	5,62	5,35	5,36	5,78	5,65	5,74
UE 813/2013 performance in average an	nbient conditio	ons (average) -	55 °C - Pdesig	nh ≤ 400 kW (2)							
Pdesignh	°,L	kW	155	188	217	245	299	309	379	-	-	-
SCOP	°,L	W/W	4,52	4,62	4,72	4,69	4,69	4,63	4,60	-	-	-
ηsh	°,L	%	173.0%	177.0%	181.0%	179.0%	181.0%	177.0%	176.0%	-	-	-

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature.
(2) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Electric data															
Maximum current (FLA)	°,L	A	75,6	95,6	104,4	115,9	143,2	151,2	191,2	208,8	231,8	259,1	286,4	323,8	352,0
Peak current (LRA)	°,L	Α	180,0	163,0	192,0	229,0	267,0	255,6	258,6	296,4	344,9	372,2	410,2	475,9	490,0


www.aermec.com

GENERAL TECHNICAL DATA

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Compressor															
Туре	°,L	type							Screw						
Compressor regulation	°,L	Туре							On/Off						
Number	°,L	no.	1	1	1	1	1	2	2	2	2	2	2	2	2
Circuits	°,L	no.	1	1	1	1	1	2	2	2	2	2	2	2	2
Refrigerant	°,L	type		R1234ze											
Refrigerant load circuit 1 (1)	°,L	kg	18,0	20,0	22,0	25,0	38,0	18,0	20,5	21,5	25,0	25,0	33,0	35,0	39,0
Refrigerant load circuit 2 (1)	°,L	kg	-	-	-	-	-	18,0	20,0	22,0	25,0	30,0	18,0	20,5	21,5
System side heat exchanger															
Туре	°,L	type							Brazed plate	2					
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Source side heat exchanger															
Туре	°,L	type							Brazed plate	2					
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
System side hydraulic connections															
Connections (in/out)	°,L	Type						(Grooved join	ts					
Size (in) (2)	°,L	Ø							3"						
Size (out) (2)	°,L	Ø							3"						
Source side hydraulic connections															
Connections (in/out)	°,L	Туре						(Grooved join	ts					
Size (in)	°,L	Ø							3″						
Size (out)	°,L	Ø							3″						
Sound data calculated in cooling mode (3)															
Cound names lavel	0	dB(A)	87,0	86,0	86,0	86,0	92,0	89,0	90,0	89,0	89,0	93,0	95,0	95,0	95,0
Sound power level —	L	dB(A)	78,9	78,0	78,0	78,0	84,0	81,0	81,9	81,0	81,0	85,0	87,0	87,0	87,0
Cound procesure lovel (10 m)	0	dB(A)	55,2	54,2	54,2	54,2	60,2	57,2	58,1	57,2	57,2	61,1	63,1	63,1	63,1
Sound pressure level (10 m)	L	dB(A)	47,1	46,2	46,2	46,2	52,2	49,1	50,0	49,1	49,1	53,1	55,1	55,1	55,1

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

DIMENSIONS

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Dimensions and weights															
Λ	0	mm	1775	1775	1775	1775	1775	1975	1975	1975	2005	1985	2065	2065	2065
A	L	mm	1775	1775	1775	1775	1775	2120	2120	2120	2120	2120	2120	2120	2120
В	°,L	mm	810	810	810	810	810	810	810	810	810	810	810	810	810
C	°,L	mm	2960	2960	2960	2960	3360	2960	2960	2960	2960	3360	3360	3360	3360
Fttula	٥	kg	1101	1251	1301	1357	1788	1738	2028	2097	2169	2598	3000	3095	3095
Empty weight	L	kg	1229	1379	1429	1485	1934	1966	2256	2325	2397	2855	3257	3352	3352

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. 0442633111 - Telefax 044293577 www.aermec.com

⁽²⁾ Size
(3) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

WSH

Cooling capacity 165,8 ÷ 269,7 kW Heating capacity 183,3 ÷ 300,3 kW

- · Reversing valve
- Optional electronic expansion valve which allows: cooling down to -6 °C
- Modulating capacity control 25-100%

DESCRIPTION

Units for internal installation offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

High-efficiency screw compressors, with silent functioning and with cooling capacity adjustment via continuous modulation from 40 to 100%. (25-100% with electronic valve OPTION which is to be requested when placing the order)

Compact and flexible, perfect alignment to the requested load thanks to an accurate control algorithm.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

L Standard silenced

FEATURES

Operating field

Full-load operation with the production of chilled water 4-16 °C, and the possibility to produce also negative temperature water down to -6 °C for the evaporator and hot water for the condenser up to 55 °C.

(for more information, refer to the technical documentation).

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

Adjustment includes complete management of the alarms and their log. Possibility to control two units in a Master-Slave configuration

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AER485P1 x n° 2: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

AKW: Acoustic kit that lowers the noise level even further, thanks to the special coating on the panelling or on those components that produce the most noise in the unit. Available for the low noise version only.

ACCESSORIES COMPATIBILITY

Model	Ver	0701	0801	0901	1101
AER485P1	°,L	•	•	•	•
AERBACP	°,L	•	•	•	•
AERNET	°,L	•	•	•	•
MULTICHILLER-EVO	°,L	•	•	•	•
PRV3	°,L	•	•	•	•

Antivibration

Ver	0701	0801	0901	1101
°,L	AVX665	AVX665	AVX665	AVX666
		,		
Power factor correction				
Ver	0701	0801	0901	1101

RIF161

RIF201

RIF241

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

RIF161

Acoustic kit

Ver	0701	0801	0901	1101
L	AKW (1)	AKW (1)	AKW (1)	AKW (1)

CONFIGURATOR

CONTIGOR	
Field	Description
1,2,3	WSH
4,5,6,7	Size 0701, 0801, 0901, 1101, 1402, 1602, 1802, 2002, 2202, 2502
8	Operating field
Χ	Low temperature electronic thermostatic valve (1)
•	Standard mechanic thermostatic valve (2)
9	Model
0	Reversible heat pump, gas side
10	Heat recovery
D	With desuperheater (3)
0	Without heat recovery
11	Version
0	Standard
L	Standard silenced
12	Condenser
0	PED regulation
13	Power supply
2	230V ~ 3 50Hz with fuses
4	230V ~ 3 50Hz with magnet circuit breakers (4)
5	500V ~ 3 50Hz with fuses
8	400V ~ 3 50Hz with magnet circuit breakers
9	500V ~ 3 50Hz with magnet circuit breakers
0	400V ~ 3 50Hz

⁽¹⁾ Available only in low noise version
A grey background indicates the accessory must be assembled in the factory

⁽¹⁾ Water produced up to +4 °C. For different temperature please contact the factory.
(2) Water produced up to +4 °C
(3) In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
(4) Not available for size 2502

PERFORMANCE SPECIFICATIONS

WSH - °/L

Size			0701	0801	0901	1101
Cooling performance 12 °C/7 °C(1))		3,00			
Cooling capacity	°,L	kW	165,8	195,7	216,7	269,7
Input power	°,L	kW	37,1	42,3	48,3	58,8
Cooling total input current	°,L	A	65,0	73,0	81,0	100,0
EER	°,L	W/W	4,47	4,63	4,48	4,59
Water flow rate source side	°,L	I/h	34669	40687	45310	56133
Pressure drop source side	°,L	kPa	30	31	30	36
Water flow rate system side	°,L	l/h	28521	33675	37283	46389
Pressure drop system side	°,L	kPa	23	24	22	27
Heating performance 40 °C / 45 °C (2)					
Heating capacity	°,L	kW	183,3	210,3	237,3	300,3
Input power	°,L	kW	45,4	51,6	58,7	74,4
Heating total input current	°,L	A	81,0	91,0	101,0	131,0
COP	°,L	W/W	4,04	4,08	4,05	4,03
Water flow rate source side	°,L	l/h	40419	46517	52342	66297
Pressure drop source side	°,L	kPa	42	42	39	51
Water flow rate system side	°,L	l/h	31805	36498	41190	52140
Pressure drop system side	°,L	kPa	24	23	23	29

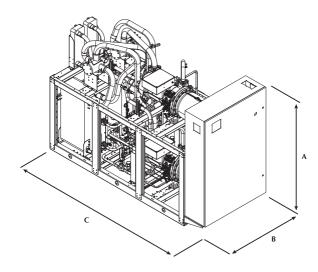
ENERGY INDICES (REG. 2016/2281 EU)

Size			0701	0801	0901	1101							
SEER - 12/7 (EN14825: 2018) (1)			'										
SEER	°,L	W/W	5,04	5,47	5,29	5,11							
Seasonal efficiency	°,L	%	198,6%	215,8%	208.6%	201,3%							
UE 813/2013 performance in average	UE 813/2013 performance in average ambient conditions (average) - 55 °C - Pdesignh ≤ 400 kW (2)												
Pdesignh	°,L	kW	249	285	322	-							
SCOP	°,L	W/W	4,20	4,25	4,23	-							
ηsh	°,L	%	160.0%	162.0%	161.0%	-							

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature.
(2) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA

Size			0701	0801	0901	1101
Electric data						
Maximum current (FLA)	°,L	A	124,0	144,0	162,0	182,0
Peak current (LRA)	°,L	A	163,0	192,0	229,0	300,0


⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

GENERAL TECHNICAL DATA

Size			0701	0801	0901	1101						
Compressor												
Туре	°,L	type		Bi-	vite							
Compressor regulation	°,L	Туре		On	-Off							
Number	°,L	no.	1	1	1	1						
Circuits	°,L	no.	1	1	1	1						
Refrigerant	°,L	type		R1	34a							
System side heat exchanger												
Гуре	°,L	type		Braze	d plate							
Number	°,L	no.	1	1	1	1						
Connections (in/out)	°,L	Туре	Grooved joints									
Sizes (in/out)	°,L	Ø			3"							
Source side heat exchanger												
Гуре	°,L	type		Braze	d plate							
Number	°,L	no.	1	1	1	1						
Connections (in/out)	°,L	Туре		Groove	d joints							
Sizes (in/out)	°,L	Ø			3"							
Sound data calculated in cooling m	ode (1)											
	0	dB(A)	86,0	86,0	86,0	92,0						
Sound power level	L	dB(A)	78,0	78,0	78,0	84,0						
·	0	dB(A)	54,1	54,1	54,1	60,1						
Sound pressure level (10 m)	L	dB(A)	46,1	46,1	46,1	52,1						

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0701	0801	0901	1101
Dimensions and weights						
Λ.	۰	mm	2050	2050	2050	2050
A	L	mm	2120	2120	2120	2120
В	°,L	mm	809	809	809	809
C	°,L	mm	2960	2960	2960	3360
Emptywaight	٥	kg	1391	1443	1506	1946
Empty weight	L	kg	1622	1674	1737	2206

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

WFGI

Water cooled heat pump reversible water side

Cooling capacity 217 ÷ 1765 kW Heating capacity 243 ÷ 1960 kW

- Production of hot water from condenser up to 65° C.
- Production of negative chilled water down to -8°C.

DESCRIPTION

Units for internal installation offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

Compact and flexible, perfect alignment to the requested load thanks to an accurate control algorithm.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

FEATURES

Operating field

Production of chilled water up to 20 °C of water produced on the evaporator side, but also suitable for use in heat pump mode with condenser water temperature up to 65 °C depending on the model.

With option Z (double electronic expansion valve) the unit is capable to produce chilled water temperature from -8°C up to 10°C.

Mono, bi-tri circuit unit

Unit with 1-2-3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

All units are equipped with an inverter compressor combined with an onoff compressor (two-circuit sizes) or two on/off compressors (three-circuit sizes), with R1234ze (A2L) refrigerant.

The R515B refrigerant with this type of gas is also available on the configurator. Performances do not vary when the refrigerant gas available on the configurator varies.

For further details refer to the technical documentation or to the Magellano selection program.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit. Standard for all sizes.

CONTROL PCO.

Microprocessor adjustment, with 4.3", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

Adjustment includes complete management of the alarms and their log. The possibility to controll several units in Master - Slave parallel mode up to a maximum of 4 compressors.

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AER485P1 x n° 2: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AER485P1 x n° 3: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis

AERSET: It makes it possible to automatically compensate for the operation setting of the unit to which it is connected, based on a 0-10V MODBUS input signal. Mandatory accessory MODU-485BL.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ISG: Insulation kit for condensers. Mandatory accessory for machine functioning in heat pump; standard in units with desuperheater or with heat recovery.

ACCESSORIES COMPATIBILITY

Model	Ver	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
AER485P1	A																					
AER485P1 x n° 2 (1)	A												•	•	•							
AER485P1 x n° 3 (1)	°,A																		•	•		•
AERBACP	0																					
AERBACP	Α	•			•		•				•	•	•	•	•			•	•	•		•
AERNET	0																					•
AEKNEI	A	•																				
AERSET	A			•	•					•	•		•			•		•				•
MULTICHILLER-EVO	٥																		•	•	•	•
MULIICHILLER-EVU	A			•		•			•	•	•					•	•	•	•			•
PGD1	0																			•		•
ruui	A																					•

(1) x Indicates the quantity of accessories to match.

Antivibration

Version	Set-up	Heat recovery	1101	1251	1401
0	°,L	°, D, T	-	-	-
A	0	0	AVX680	AVX680	AVX681
A	L	0	AVX681	AVX681	AVX681
A	°,L	D, T	-	-	-
Version	Set-up	Heat recovery	1601	1801	2101
0	°,L	°, D, T	-	-	-
A	0	0	AVX687	AVX687	AVX682
A	L	0	AVX682	AVX682	AVX682
A	°,L	D, T	-	-	-
Version	Set-up	Heat recovery	2401	2502	2801
0	°,L	°, D, T	-	-	-
A	0	Ó	AVX685	AVX673	AVX683
A	L	0	AVX683	AVX674	AVX683
A	°,L	D, T	-	AVX674	-
Version	Set-up	Heat recovery	2802	3201	3202
0	°,L	°, D, T	-	-	
A	°,L	Ó	AVX674	AVX683	AVX679
A	°,L	D, T	AVX674	-	AVX679
Version	Set-up	Heat recovery	3602	4202	4802
0	°,L	°, D, T	-	-	-
A	0	°, D	AVX679	AVX679	AVX678
A	L	0	AVX679	AVX679	AVX678
A	0	Ţ	AVX679	AVX678	AVX678
A	L	D, T	AVX679	AVX678	AVX678
Version	Set-up	Heat recovery	5602	6402	6703
0	°,L	°, D, T	-	-	Contact us.
A	°,L	°, D, T	AVX678	AVX678	Contact us.
Version	Set-up	Heat recovery	7203	8403	9603
0	°,L	°, D, T	Contact us.	Contact us.	Contact us.
	°,L	°, D, T			

not available

Power factor correction

Ver	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201
A	-	-	-	-	-	-	-	RIFWFI2502	-	RIFWFI2802	-

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver 3202 3602 4202 4802 5602 6402 6703 7203 8403 9603 RIFWFI6703 RIFWFI7203 RIFWFI8403 RIFWFI9603 RIFWFI3202 RIFWFI3602 RIFWFI4202 RIFWFI4802 RIFWFI5602 RIFWFI6402 RIFWFI6703 RIFWFI7203 RIFWFI8403 RIFWFI9603

A grey background indicates the accessory must be assembled in the factory

For the size of the units with the RIF accessory we ask you to contact the headquarters.

Isolating kit

Ver	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201
A	ISG10	ISG11	ISG12	ISG13	ISG13	ISG14	ISG14	ISG1	ISG15	ISG1	ISG15

A grey background indicates the accessory must be assembled in the factory $% \left(1\right) =\left(1\right) \left(1\right)$

Ver	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
0	-	-	-	-	-	-	ISG7	ISG8	ISG8	ISG8
A	ISG2	ISG2	ISG2	ISG3	ISG3	ISG3	ISG7	ISG8	ISG8	ISG8

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3,4	WFGI
	Size
5,6,7,8	1101, 1251, 1401, 1601, 1801, 2101, 2401, 2502, 2801, 2802, 3201, 3202, 3602, 4202, 4802, 5602, 6402, 6703, 7203, 8403, 9603
9	Model
Н	Optimised for high condensation
0	Standard condensation
10	Version
0	Standard (1)
Α	High efficiency
11	Operating field
Х	Electronic thermostatic expansion valve
Z	Double electronic thermostatic for low temperature
12	Set-up
K	Super low noise with hood (2)
L	Silenced with hood
•	Standard without hood

Field	Description
13	Heat recovery
D	With desuperheater (3)
T	With total recovery (3)
0	Without heat recovery
14	Evaporator
٥	Standard
15	Power supply
8	400V ~ 3 50Hz with magnet circuit breakers (4)
0	400V ~ 3 50Hz with fuses
16	Refrigerant gas (5)
G	R515B
0	R1234ze

- (1) Only for sizes from 6703 to 9603
 (2) Only for units with R515B
 (3) Not available for the condenserless "E"
 (4) Not available for 1101, 1251, 1401, 1601, 1801, 2101, 2401, 2801, 3201 size
 (5) Performances do not vary when the refrigerant gas available on the configurator varies.

MODEL PERFORMANCE DATA (°) - FOR TEMPERATURES WATER PRODUCED UP TO +55°C

WFGI 1101 - 3201 - model (°) version A - gas R1234ze

Input power Cooling total input current EER Water flow rate source side Pressure drop source side Water flow rate system side Pressure drop system side Heating performance 40 °C / 45 °C (2) Heating capacity Input power	kW A S S S S S S S S S S S S S S S S S S	216,8 41,8 74,0 5,19 14248 30 87296	255,6 50,3 87,0 5,08 52351 33 43987	285,6 55,3 95,0 5,17 58332 29 49124	324,6 62,1 106,0 5,23 66233 26 55816	366,2 73,8 125,0 4,96 75332 22	407,0 83,3 140,0 4,89 83987 21	484,9 92,6 152,0 5,24 98906 24	545,9 102,6 170,0 5,32 111058 24	586,5 112,2 187,0 5,23 119737 21
Cooling capacity Input power Cooling total input current EER Water flow rate source side Pressure drop source side Water flow rate system side Pressure drop system side Heating performance 40 °C / 45 °C (2) Heating capacity Input power	kW A	41,8 74,0 5,19 14248 30	50,3 87,0 5,08 52351 33	55,3 95,0 5,17 58332 29	62,1 106,0 5,23 66233 26	73,8 125,0 4,96 75332 22	83,3 140,0 4,89 83987 21	92,6 152,0 5,24 98906 24	102,6 170,0 5,32 111058 24	112,2 187,0 5,23 119737 21
Input power Cooling total input current EER Water flow rate source side Pressure drop source side Water flow rate system side Pressure drop system side Heating performance 40 °C / 45 °C (2) Heating capacity Input power	kW A	41,8 74,0 5,19 14248 30	50,3 87,0 5,08 52351 33	55,3 95,0 5,17 58332 29	62,1 106,0 5,23 66233 26	73,8 125,0 4,96 75332 22	83,3 140,0 4,89 83987 21	92,6 152,0 5,24 98906 24	102,6 170,0 5,32 111058 24	112,2 187,0 5,23 119737 21
Cooling total input current EER V Water flow rate source side Pressure drop source side Water flow rate system side Pressure drop system side Pressure drop system side Heating performance 40 °C / 45 °C (2) Heating capacity Input power	A	74,0 5,19 14248 30	87,0 5,08 52351 33	95,0 5,17 58332 29	106,0 5,23 66233 26	125,0 4,96 75332 22	140,0 4,89 83987 21	152,0 5,24 98906 24	170,0 5,32 111058 24	187,0 5,23 119737 21
EER V Water flow rate source side Pressure drop source side Water flow rate system side Pressure drop system side Heating performance 40 °C / 45 °C (2) Heating capacity Input power	N/W 1/h 4 kPa 1/h 3	5,19 14248 30	5,08 52351 33	5,17 58332 29	5,23 66233 26	4,96 75332 22	4,89 83987 21	5,24 98906 24	5,32 111058 24	5,23 119737 21
Water flow rate source side Pressure drop source side Water flow rate system side Pressure drop system side Heating performance 40 °C / 45 °C (2) Heating capacity Input power	I/h 4 kPa I/h 3	14248 30	52351 33	58332 29	66233 26	75332 22	83987 21	98906 24	111058 24	119737 21
Pressure drop source side Water flow rate system side Pressure drop system side Heating performance 40 °C / 45 °C (2) Heating capacity Input power	kPa I/h 3	30	33	29	26	22	21	24	24	21
Water flow rate system side Pressure drop system side Heating performance 40 °C / 45 °C (2) Heating capacity Input power	I/h 3									
Pressure drop system side Heating performance 40 °C / 45 °C (2) Heating capacity Input power		37296	43987	49124	55916	40040	C0004			
Heating performance 40 °C / 45 °C (2) Heating capacity Input power	I D				22010	62963	69984	83363	93854	100830
Heating capacity Input power	kPa	22	24	24	15	18	13	20	26	14
Input power										
Transfer of the second	kW 2	243,2	292,8	321,7	365,6	419,7	467,2	540,0	606,5	655,5
	kW	55,2	66,1	70,6	77,1	94,3	106,3	118,0	131,1	142,3
Heating total input current	A	97,0	114,0	120,0	131,0	159,0	178,0	193,0	215,0	236,0
COP	N/W	4,41	4,43	4,56	4,74	4,45	4,40	4,58	4,63	4,61
Water flow rate system side	I/h 4	12220	50823	55848	63486	72879	81140	93796	105337	113866
Pressure drop system side	kPa	27	31	27	23	20	20	22	22	19
Water flow rate source side	I/h 5	55079	66427	73525	84200	95108	105386	123347	139074	149713
Pressure drop source side	kPa	48	56	54	34	41	29	45	58	32

- (1) Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WFGI 2502 - 9603 - model (°) version A - gas R1234ze

Model: ° Cooling performance 12 °C/7 °C(1) Cooling capacity kW 506, Input power kW 96,8 Cooling total input current A 171, EER W/W 5,23 Water flow rate source side I/h 10299 Pressure drop source side kPa 61 Water flow rate system side I/h 8706 Pressure drop system side kPa 45											
Cooling capacity kW 506, Input power kW 96,8 Cooling total input current A 171,1 EER W/W 5,23 Water flow rate source side I/h 1029 Pressure drop source side kPa 61 Water flow rate system side I/h 8706											
Input power kW 96,8 Cooling total input current A 171,1 EER W/W 5,23 Water flow rate source side I/h 10293 Pressure drop source side kPa 61 Water flow rate system side I/h 8706											
Cooling total input current A 171, EER W/W 5,23 Water flow rate source side I/h 10293 Pressure drop source side kPa 61 Water flow rate system side I/h 8706	571,0	664,9	737,9	869,3	989,2	1096,6	1223,1	1323,2	1463,2	1605,2	1765,9
EER W/W 5,23 Water flow rate source side I/h 10293 Pressure drop source side kPa 61 Water flow rate system side I/h 8706	107,6	125,2	143,4	166,7	185,8	206,7	234,8	238,3	265,7	299,4	337,5
Water flow rate source side I/h 10293 Pressure drop source side kPa 61 Water flow rate system side I/h 8706	192,0	215,0	245,0	273,0	311,0	346,0	396,0	407,0	468,0	519,0	591,0
Pressure drop source side kPa 61 Water flow rate system side l/h 8706	5,31	5,31	5,15	5,22	5,32	5,30	5,21	5,55	5,51	5,36	5,23
Water flow rate system side I/h 8706	2 115945	135099	150773	177155	200809	223021	249142	267794	296179	326287	360505
	55	46	30	45	50	36	51	11	24	23	22
Pressure drop system side kPa 45	98181	114326	126885	149451	170077	188509	210265	227441	251516	275910	303500
	35	33	41	32	44	34	43	26	31	29	17
Heating performance 40 °C / 45 °C (2)											
Heating capacity kW 564,	631,4	731,6	821,0	966,2	1093,4	1212,3	1370,1	1454,7	1611,8	1770,0	1960,8
Input power kW 124,	136,1	155,8	181,8	211,1	235,7	260,5	299,0	300,1	334,7	374,9	420,6
Heating total input current A 218,	241,0	264,0	306,0	343,0	390,0	431,0	498,0	507,0	582,0	643,0	732,0
COP W/W 4,52	4,64	4,70	4,52	4,58	4,64	4,65	4,58	4,85	4,82	4,72	4,66
Water flow rate system side I/h 9799	109633	127054	142602	167814	189909	210585	237978	252762	280014	307509	340678
Pressure drop system side kPa 56	50	41	27	41	45	32	46	10	22	20	20
Water flow rate source side I/h 12945	0 145407	168838	187634	221376	252011	278815	314719	336930	373381	407768	449226
Pressure drop source side kPa 99											

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WFGI 6703 - 9603 - model (°) version ° - gas R1234ze

Size		6703	7203	8403	9603
Model: °					
Cooling performance 12 °C/7 °C(1)					
Cooling capacity	kW	1309,2	1445,9	1559,4	1729,0
Input power	kW	242,2	267,6	299,6	340,9
Cooling total input current	A	396,0	475,0	525,0	588,0
EER	W/W	5,40	5,40	5,20	5,07
Water flow rate source side	l/h	265488	293277	318297	354161
Pressure drop source side	kPa	44	39	34	41
Water flow rate system side	l/h	225045	248539	268020	297184
Pressure drop system side	kPa	27	29	22	26
Heating performance 40 °C / 45 °C (2)					
Heating capacity	kW	1443,5	1597,2	1729,1	1928,5
Input power	kW	304,0	336,2	373,6	425,5
Heating total input current	A	493,0	592,0	650,0	729,0
COP	W/W	4,75	4,75	4,63	4,53
Water flow rate system side	l/h	250744	277455	300382	335030
Pressure drop system side	kPa	39	35	30	37
Water flow rate source side	l/h	333379	368962	396107	439877
Pressure drop source side	kPa	59	64	49	58

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

Energy indices (Reg. 2016/2281 EU)

,									
	1101	1251	1401	1601	1801	2101	2401	2801	3201
%	343,60	349,90	351,60	353,90	361,00	361,00	360,80	362,20	361,40
W/W	8,67	8,82	8,87	8,92	9,10	9,10	9,10	9,13	9,11
W/W	9,70	9,80	9,60	9,30	9,80	9,40	9,50	9,20	9,10
	% W/W	% 343,60 W/W 8,67	% 343,60 349,90 W/W 8,67 8,82	1101 1251 1401 % 343,60 349,90 351,60 W/W 8,67 8,82 8,87	1101 1251 1401 1601 % 343,60 349,90 351,60 353,90 W/W 8,67 8,82 8,87 8,92	1101 1251 1401 1601 1801 % 343,60 349,90 351,60 353,90 361,00 W/W 8,67 8,82 8,87 8,92 9,10	1101 1251 1401 1601 1801 2101 % 343,60 349,90 351,60 353,90 361,00 361,00 W/W 8,67 8,82 8,87 8,92 9,10 9,10	1101 1251 1401 1601 1801 2101 2401 % 343,60 349,90 351,60 353,90 361,00 361,00 360,80 W/W 8,67 8,82 8,87 8,92 9,10 9,10 9,10	1101 1251 1401 1601 1801 2101 2401 2801 % 343,60 349,90 351,60 353,90 361,00 361,00 360,80 362,20 W/W 8,67 8,82 8,87 8,92 9,10 9,10 9,10 9,13

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with VARIABLE water flow rate.

Size			2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: °														
SEER - 12/7 (EN14825: 2018) (1)														
C	0	%	-	-	-	-	-	-	-	-	335.7%	337.9%	329.7%	326.0%
Seasonal efficiency	A	%	340.8%	345.4%	342.7%	347.3%	346.2%	347.8%	355.7%	349.1%	355.8%	353.7%	354.5%	349.3%
SEER	0	W/W	-	-	-	-	-	-	-	-	8,47	8,52	8,32	8,23
	A	W/W	8,60	8,71	8,64	8,76	8,73	8,77	8,97	8,80	8,97	8,92	8,94	8,81
SEPR - (EN 14825: 2018) High tempera	ture (2)													
CEDD	0	W/W	-	-	-	-	-	-	-	-	8,80	8,70	8,60	8,70
SEPR	A	W/W	9,30	9,40	8,90	9,00	9,10	9,10	9,20	9,20	8,90	8,90	9,00	9,00

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with VARIABLE water flow rate.

Size			1101	1251	1401
Model: °					
UE 813/2013 performance in average am	bient conditions (a	average) - 55 °C - Pdesignh ≤ 400	D kW (1)		
Ddacianh	٥	kW	-	-	-
Pdesignh	A	kW	300,00	368,00	399,00
SCOP	٥	W/W	-	-	-
SCOP	A	W/W	5,25	5,25	5,33
nch	۰	%	-	-	-
ηsh	A	%	202,00	202,00	205,00

⁽¹⁾ Efficiencies for average temperature applications (55 °C)

Electric data

Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: °																							
Electric data																							
Maximum aument (FLA)	0	A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	682,4	765,6	849,2	957,6
Maximum current (FLA)	A	А	158,9	180,6	184,4	201,3	220,8	247,5	280,9	309,0	315,2	331,4	342,7	368,6	408,3	456,2	523,3	582,2	663,0	682,4	765,4	849,2	957,6
Deals surrent (LDA)	0	A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1063,0	1177,0	1391,0	1583,0
Peak current (LRA)	A	A	23.0	23.0	23.0	23.0	23.0	23.0	23.0	498.0	23.0	592.0	23.0	641.0	689.0	837.0	934.0	1124.0	1287.0	1063.0	1177.0	1391.0	1583.0

MODEL PERFORMANCE DATA (H) - FOR TEMPERATURES WATER PRODUCED UP TO +65°C

WFGI 1101 - 3201 - model (H) version A - gas R1234ze

Size		1101	1251	1401	1601	1801	2101	2401	2801	3201
Model: H										
Cooling performance 12 °C / 7 °C (1)										
Cooling capacity	kW	220,0	254,8	289,6	327,4	357,5	399,0	482,6	542,2	593,6
Input power	kW	41,7	49,5	57,4	64,3	73,6	83,0	96,5	109,7	118,6
Cooling total input current	A	76,0	87,0	99,0	109,0	123,0	138,0	158,0	181,0	197,0
EER	W/W	5,28	5,14	5,04	5,09	4,85	4,81	5,00	4,94	5,00
Water flow rate source side	l/h	44780	52069	59378	67087	73813	82562	99166	111592	122023
Pressure drop source side	kPa	30	33	29	26	22	21	24	24	21
Water flow rate system side	l/h	37844	43840	49813	56306	61471	68609	82982	93228	102044
Pressure drop system side	kPa	22	24	24	15	18	13	20	26	14
Heating performance 40 °C / 45 °C (2)										
Heating capacity	kW	242,3	283,1	322,4	364,4	402,1	448,3	537,9	604,7	657,2
Input power	kW	50,8	60,1	69,5	77,0	88,8	100,0	114,2	129,4	134,3
Heating total input current	A	91,0	105,0	118,0	130,0	148,0	165,0	186,0	211,0	222,0
COP	W/W	4,77	4,71	4,64	4,73	4,53	4,48	4,71	4,67	4,89
Water flow rate system side	I/h	42056	49149	55968	63270	69832	77853	93424	105035	114165
Pressure drop system side	kPa	27	29	26	23	19	19	22	22	19
Water flow rate source side	l/h	55990	65269	74006	83856	91549	101626	123761	139042	152399
Pressure drop source side	kPa	48	54	54	33	40	28	45	59	32

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WFGI 2502 - 9603 - model (H) version A - gas R1234ze

Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H													
Cooling performance 12 °C/7 °C(1)													
Cooling capacity	kW	511,3	581,3	664,4	741,3	869,2	988,5	1083,6	1218,4	1312,3	1450,5	1588,3	1759,4
Input power	kW	100,0	114,5	129,9	146,9	170,3	191,3	214,6	243,5	249,2	279,2	314,2	360,4
Cooling total input current	A	182,0	205,0	225,0	248,0	291,0	326,0	370,0	411,0	449,0	491,0	556,0	651,0
EER	W/W	5,11	5,08	5,11	5,04	5,10	5,17	5,05	5,00	5,27	5,20	5,06	4,88
Water flow rate source side	l/h	104337	118851	135775	151933	177734	201586	222077	249762	267707	296196	325814	363151
Pressure drop source side	kPa	61	55	46	30	45	50	36	51	11	24	23	22
Water flow rate system side	l/h	87940	99961	114232	127463	149434	169953	186288	209453	225564	249326	273015	302384
Pressure drop system side	kPa	45	35	33	41	32	44	34	43	26	31	29	17
Heating performance 40 °C / 45 °C (2)													
Heating capacity	kW	563,1	641,8	731,2	822,8	961,9	1089,6	1200,8	1381,7	1445,1	1599,5	1759,3	1964,0
Input power	kW	120,6	137,4	154,1	177,9	203,8	229,4	255,3	289,7	297,6	333,6	372,8	425,2
Heating total input current	А	216,0	243,0	263,0	295,0	344,0	385,0	434,0	479,0	530,0	579,0	651,0	763,0
COP	W/W	4,67	4,67	4,75	4,63	4,72	4,75	4,70	4,77	4,86	4,79	4,72	4,62
Water flow rate system side	I/h	97770	111434	126975	142910	167067	189246	208586	239997	251090	277882	305657	341230
Pressure drop system side	kPa	54	49	41	26	40	44	31	47	10	22	20	20
Water flow rate source side	l/h	130239	148043	169179	189222	222144	252647	276929	320765	334856	370130	405298	448896
Pressure drop source side	kPa	99	76	73	90	70	96	74	100	56	69	64	37
T													

www.aermec.com

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WFGI 6703 - 9603 - model (H) version ° - gas R1234ze

Size		6703	7203	8403	9603
Model: H					
Cooling performance 12 °C / 7 °C (1)					
Cooling capacity	kW	1298,6	1433,8	1544,1	1739,6
Input power	kW	252,7	280,5	312,9	362,4
Cooling total input current	A	449,0	491,0	553,0	649,0
EER	W/W	5,14	5,11	4,93	4,80
Water flow rate source side	l/h	265376	293300	317856	359510
Pressure drop source side	kPa	44	39	34	41
Water flow rate system side	l/h	223228	246460	265406	299001
Pressure drop system side	kPa	27	29	22	26
Heating performance 40 °C / 45 °C (2)					
Heating capacity	kW	1433,5	1584,7	1718,0	1945,1
Input power	kW	300,7	334,3	369,6	428,4
Heating total input current	A	530,0	579,0	649,0	761,0
COP	W/W	4,77	4,74	4,65	4,54
Water flow rate system side	l/h	249013	275290	298460	337909
Pressure drop system side	kPa	39	35	30	36
Water flow rate source side	l/h	331388	365876	394002	443875
Pressure drop source side	kPa	59	64	49	58

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

Energy indices (Reg. 2016/2281 EU)

7									
	1101	1251	1401	1601	1801	2101	2401	2801	3201
%	314,30	316,20	304,40	314,40	296,40	301,70	310,30	314,20	317,80
W/W	7,93	7,98	7,69	7,94	7,49	7,62	7,83	7,93	8,02
W/W	9,10	9,00	8,70	8,90	8,40	8,40	8,80	8,60	8,90
	% W/W	% 314,30 W/W 7,93	% 314,30 316,20 W/W 7,93 7,98	1101 1251 1401 % 314,30 316,20 304,40 W/W 7,93 7,98 7,69	1101 1251 1401 1601 % 314,30 316,20 304,40 314,40 W/W 7,93 7,98 7,69 7,94	1101 1251 1401 1601 1801 % 314,30 316,20 304,40 314,40 296,40 W/W 7,93 7,98 7,69 7,94 7,49	1101 1251 1401 1601 1801 2101 % 314,30 316,20 304,40 314,40 296,40 301,70 W/W 7,93 7,98 7,69 7,94 7,49 7,62	1101 1251 1401 1601 1801 2101 2401 % 314,30 316,20 304,40 314,40 296,40 301,70 310,30 W/W 7,93 7,98 7,69 7,94 7,49 7,62 7,83	1101 1251 1401 1601 1801 2101 2401 2801 % 314,30 316,20 304,40 314,40 296,40 301,70 310,30 314,20 W/W 7,93 7,98 7,69 7,94 7,49 7,62 7,83 7,93

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with VARIABLE water flow rate.

Size			2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H														
SEER - 12/7 (EN14825: 2018) (1)														
Consend off sion or	0	%	-	-	-	-	-	-	-	-	287.7%	286.9%	287.6%	281.6%
Seasonal efficiency	Α	%	294.9%	295.7%	300.5%	291.4%	301.0%	304.5%	309.3%	298.9%	302.4%	297.7%	302.9%	295.0%
CLLD	0	W/W	-	-	-	-	-	-	-	-	7,27	7,25	7,27	7,12
SEER	A	W/W	7,45	7,47	7,59	7,36	7,60	7,69	7,81	7,55	7,64	7,52	7,65	7,45
SEPR - (EN 14825: 2018) High temperatu	re (2)													
SEPR	0	W/W	-	-	-	-	-	-	-	-	8,20	8,20	8,30	8,30
SEPK	A	W/W	8,60	8,60	8,50	8,60	8,50	8,60	8,50	8,60	8,60	8,50	8,70	8,70

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with VARIABLE water flow rate.

Size			1101	1251	1401
Model: H	·				
UE 813/2013 performance in average amb	oient conditions (a	verage) - 55 °C - Pdesignh ≤ 400	kW (1)		
Ddaaiank	٥	kW	-	-	-
Pdesignh -	Α	kW	296,00	348,00	395,00
COD	۰	W/W	-	-	=
GCOP -	Α	W/W	5,45	5,43	5,23
- L	0	%	-	-	-
sh -	A	%	210,00	209,00	201,00

⁽¹⁾ Efficiencies for average temperature applications (55 °C)

Electric data

Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H																							
Electric data																							
Marianum aumant (FLA)	0	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	853,0	939,0	1047,0	1178,0
Maximum current (FLA)	A	Α	155,0	177,0	201,0	222,0	262,0	296,0	349,0	343,0	390,0	389,0	415,0	422,0	488,0	559,0	644,0	719,0	797,0	853,0	939,0	1047,0	1178,0
Deals surrent (LDA)	0	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1179,0	1297,0	1527,0	1737,0
Peak current (LRA)	A	Α	23,0	23,0	23,0	23,0	23,0	23,0	23,0	494,0	23,0	545,0	23,0	661,0	730,0	885,0	1002,0	1198,0	1357,0	1179,0	1297,0	1527,0	1737,0

PERFORMANCE SPECIFICATIONS EVAPORATING UNITS

Model performance data (°) - for condensing temperatures up to 55°C

Model output data WFGI° - AE - gas R1234ze

Size		1101	1251	1401	1601	1801	2101	2401	2801	3201
Model: °										
Cooling performance 12 °C/7 °C - gas R1234ze (1)										-
Cooling capacity	kW	198,0	231,1	256,8	292,1	326,6	363,6	437,8	493,2	519,6
Input power	kW	51,6	61,8	66,8	75,1	88,4	100,0	109,4	123,5	136,2
Cooling total input current	А	92,0	108,0	115,0	128,0	151,0	168,9	184,0	206,0	227,0
EER	W/W	3,83	3,74	3,85	3,89	3,69	3,64	4,00	3,99	3,82
Evaporator water flow rate	l/h	34021	39713	44127	50189	56115	62473	75211	84731	89274
Pressure drop evaporator side	kPa	17	20	19	12	15	11	17	21	12
Length of refrigerant lines from/to 0 - 10 m										
Gas line (C1)	Ø	54,0	67,0	67,0	67,0	76,0	76,0	89,0	89,0	89,0
Gas line (C2)	Ø	-	-	-	-	-	-	-	-	-
Gas line (C3)	Ø	-	-	-	-	-	-	-	-	-
Liquid line (C1)	Ø	35,0	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	-	-	-	-	-	-	-	-	-
Liquid line (C3)	Ø	-	-	-	-	-	-	-	-	-

(1) Service side water 12 °C / 7 °C; Condensing temperature 45 °C

Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: °													
Cooling performance 12 °C / 7 °C - gas R1234ze (1)													
Cooling capacity	kW	453,9	510,4	593,1	659,9	765,6	890,9	975,6	1082,9	1179,9	1316,9	1449,4	1574,0
Input power	kW	116,3	128,9	149,1	172,3	195,5	215,5	242,5	277,6	290,6	321,6	361,5	409,6
Cooling total input current	Α	207,0	229,0	256,0	293,0	327,0	370,0	411,0	471,0	488,0	555,0	616,0	700,0
EER	W/W	3,90	3,96	3,98	3,83	3,92	4,13	4,02	3,90	4,06	4,09	4,01	3,84
Evaporator water flow rate	I/h	77982	87695	101893	113381	131535	153062	167617	186047	202720	226251	249032	270431
Pressure drop evaporator side	kPa	36	28	26	33	27	35	26	33	20	26	25	14
Length of refrigerant lines from/to 0 - 10 m													
Gas line (C1)	Ø	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	-	-	-	-	-	-	-	42,0	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	-	-	-	-	-	-	-	-	54,0	54,0	54,0	54,0

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

Model output data WFGI° - °E - gas R1234ze

Size		6703	7203	8403	9603
Model: °					
Cooling performance 12 °C/7 °C - gas R1234ze (1)					
Cooling capacity	kW	1146,9	1278,8	1388,3	1517,0
Input power	kW	291,2	322,2	361,3	409,8
Cooling total input current	A	489,0	556,0	615,0	700,0
EER	W/W	3,94	3,97	3,84	3,70
Evaporator water flow rate	l/h	197057	219704	238518	260630
Pressure drop evaporator side	kPa	20	23	17	21
Length of refrigerant lines from/to 0 - 10 m					
Gas line (C1)	Ø	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	54,0	54,0	54,0	54,0

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

Model performance data (H) - for condensing temperatures up to 60°C

I/h

kPa

Ø

Ø

Ø

Ø

Ø

77982

67,0

67,0

42,0

42,0

87695

67,0

67,0

42,0

42,0

101893

67,0

67,0

42,0

42,0

113381

76,0

76,0

42,0

42,0

131535

76,0

76,0

54,0

54,0

153062

88,9

88,9

54,0

54,0

167617

88,9

88,9

54,0

54,0

186047

88,9

88,9

42,0

54,0

54,0

202720

76,0

76,0

76,0

54,0

54,0

54,0

226251

88,9

88,9

88,9

54,0

54,0

54,0

249032

88,9

88,9

88,9

54,0

54,0

54,0

270431

14

88,9

88,9

88,9

54,0

54,0

54,0

Model output data - model WFGIH - AE - gas R1234ze

													
Size			1101	1251	1401	1	601	1801	2101	2401	2	801	3201
Model: H													
Cooling performance 12 °C / 7 °C - gas R1234ze (1)													
Cooling capacity	kW		198,0	231,1	256,8	29	92,1	326,6	363,6	437,8	4	93,2	519,6
Input power	kW		51,6	61,8	66,8	7	5,1	88,4	100,0	109,4	1	23,5	136,2
Cooling total input current	A		92,0	108,0	115,0	12	28,0	151,0	168,9	184,0	2	06,0	227,0
EER	W/W		3,83	3,74	3,85	3	,89	3,69	3,64	4,00		3,99	3,82
Evaporator water flow rate	l/h		34021	39713	44127	50)189	56115	62473	75211	8	4731	89274
Pressure drop evaporator side	kPa		17	20	19		12	15	11	17		21	12
Length of refrigerant lines from/to 0 - 10 m													
Gas line (C1)	Ø		54,0	67,0	67,0	6	7,0	76,0	76,0	89,0		89,0	89,0
Gas line (C2)	Ø		-	-	-		-	-	-	-		-	-
Gas line (C3)	Ø		-	-	-		-	-	-	-		-	-
Liquid line (C1)	Ø		35,0	42,0	42,0	4	2,0	42,0	54,0	54,0		54,0	54,0
Liquid line (C2)	Ø		-	-	-		-	-	-	-		-	-
Liquid line (C3)	Ø		-	-	-		-	-	-	-		-	-
(1) Service side water 12 °C / 7 °C; Condensing temperatu	re 45 °C									'			
Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H													
Cooling performance 12 °C/7 °C - gas R1234ze (1)													
Cooling capacity	kW	453,9	510,4	593,1	659,9	765,6	890,9	975,6	1082,9	1179,9	1316,9	1449,4	1574,0
Input power	kW	116,3	128,9	149,1	172,3	195,5	215,5	242,5	277,6	290,6	321,6	361,5	409,6
Cooling total input current	Α	207,0	229,0	256,0	293,0	327,0	370,0	411,0	471,0	488,0	555,0	616,0	700,0
EER	W/W	3,90	3,96	3,98	3,83	3.92	4,13	4.02	3,90	4.06	4.09	4,01	3,84

Liquid line (G) \emptyset (1) Service side water 12 °C / 7 °C; Condensing temperature 45 °C

Evaporator water flow rate

Gas line (C1)

Gas line (C2)

Gas line (C3)

Liquid line (C1)

Liquid line (C2)

Pressure drop evaporator side

Length of refrigerant lines from/to 0 - 10 m

Model output data - model WFGIH - °E - gas R1234ze

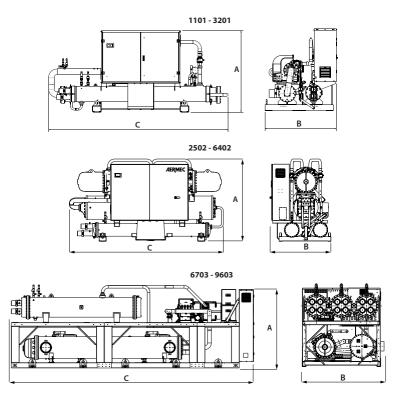
Size		6703	7203	8403	9603
Model: H					
Cooling performance 12 °C / 7 °C - gas R1234ze (1)					
Cooling capacity	kW	1146,9	1278,8	1388,3	1517,0
Input power	kW	291,2	322,2	361,3	409,8
Cooling total input current	A	489,0	556,0	615,0	700,0
EER	W/W	3,94	3,97	3,84	3,70
Evaporator water flow rate	l/h	197057	219704	238518	260630
Pressure drop evaporator side	kPa	20	23	17	21
Length of refrigerant lines from/to 0 - 10 m					
Gas line (C1)	Ø	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	54,0	54,0	54,0	54,0

(1) Service side water 12 $^{\circ}$ C / 7 $^{\circ}$ C; Condensing temperature 45 $^{\circ}$ C

GENERAL TECHNICAL DATA

Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Compressor																							
Туре	°,A	type											Screw										
Compressor regulation	°,A	Туре	- 1	- 1	- 1	- 1	- 1	- 1		1/1		1/1		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
Number	°,A	no.	1	1	1	1	1	1	1	2	1	2	1	2	2	2	2	2	2	3	3	3	3
Circuits	°,A	no.	1	1	1	1	1	1	1	2	1	2	1	2	2	2	2	2	2	3	3	3	3
Refrigerant	°,A	type											R1234z	2									
Defrigarant load circuit 1 (1)	۰	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	107,0	115,0	136,0	157,0
Refrigerant load circuit 1 (1)	A	kg	59,0	57,0	72,0	66,0	61,0	85,0	81,0	50,0	110,0	53,0	104,0	81,0	71,0	70,0	123,0	124,0	121,0	106,0	104,0	110,0	120,0
Defrigurant load circuit 2 (1)	٥	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	107,0	115,0	136,0	157,0
Refrigerant load circuit 2 (1)	A	kg	-	-	-	-	-	-	-	50,0	-	53,0	-	81,0	71,0	70,0	123,0	124,0	121,0	106,0	104,0	110,0	120,0
Definement lead singuit 2 (1)	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	107,0	115,0	136,0	157,0
Refrigerant load circuit 3 (1)	A	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	106,0	104,0	110,0	120,0
System side heat exchanger																							
Туре	°,A	type										She	ell and t	ube									
Number	°,A	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,A	Туре										Gro	oved jo	ints									
Source side heat exchanger																							
Туре	°,A	type										She	ell and t	ube									
Number	°,A	no.	1	1	1	1	1	1	1	2	1	2	1	2	2	2	2	2	2	3	3	3	3
Connections (in/out)	°,A	Туре										Gro	oved jo	ints									

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.


SOUND DATA

Sound data calculated with functioning in cooling mode - R1234ze gas

Size		1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Refrigerant gas: °																						
Standard equipment																						
Sound power level (1)	dB(A)	94,0	95,8	96,1	97,0	97,1	97,2	97,3	97,3	97,3	97,7	98,0	98,8	98,8	98,9	98,9	99,3	100,0	99,5	100,6	101,0	102,0
Silenced equipment																						
Sound power level (1)	dB(A)	90,0	91,8	92,1	93,0	93,1	93,2	93,3	93,3	93,3	93,7	94,0	94,8	94,8	94,9	94,9	95,3	96,0	95,5	96,6	97,0	98,0

⁽¹⁾ Sound power: calculated in agreement with the Standard UNI EN ISO 9614-2, in compliance with that requested by Eurovent certification.

DIMENSIONS

Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H, °																							
Dimensions and weights - standard confi	guration																						
Α	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2250	2250	2250	2250
A	Α	mm	1720	1790	1865	1865	1865	1887	1887	2131	1920	2131	1920	2195	2195	2340	2455	2440	2432	2250	2250	2250	2250
D	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2200	2200	2200	2200
В	A	mm	1510	1560	1610	1610	1610	1610	1610	1645	1630	1645	1630	1675	1675	1685	1875	1875	2000	2200	2200	2200	2200
-	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5650	5650	5650	5650
	A	mm	3460	3463	3585	4100	4100	4140	4240	4320	4290	4345	4290	4380	4380	4395	4500	4580	4580	5650	5650	5650	5650
	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8740	9680	9900	10000
Empty weight	A	kg	2020	2030	2230	2410	2450	2670	3090	3710	3530	3980	3570	5160	5220	5710	6440	6680	6770	9730	11440	11980	12060
Dimensions and weights - quiet configura	ation																						
	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2250	2250	2250	2250
A	A	mm	1720	1790	1865	1865	1865	1887	1887	2131	1920	2131	1920	2195	2195	2340	2455	2440	2432	2250	2250	2250	2250
	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2200	2200	2200	2200
В	A	mm	1525	1560	1610	1610	1610	1615	1615	1645	1630	1645	1630	1675	1675	1685	1875	1875	2000	2200	2200	2200	2200
	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5650	5650	5650	5650
	A	mm	3460	3463	3585	4100	4100	4140	4240	4320	4290	4345	4290	4630	4630	4600	5015	5060	5060	5650	6840	6840	6840
	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9270	10240	10510	10610
Empty weight	A	ka	2180	2190	2390	2570	2610	2830	3280	4020	3720	4290	3760	5500	5560	6050	6810	7080	7170	10260	12000	12590	12670

[■] For the sizes of D-T-E versions please contact the factory.

WFGN

Water cooled heat pump reversible water side

Cooling capacity 136 ÷ 1727 kW Heating capacity 153 ÷ 1921 kW

- Production of hot water up to 55°C.
- Production of negative chilled water down to -8°C.

DESCRIPTION

Units for internal installation offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

Compact and flexible, perfect alignment to the requested load thanks to an accurate control algorithm.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

FEATURES

Operating field

Production of chilled water up to 16 °C of water produced on the evaporator side, but also suitable for use in heat pump mode with condenser water temperature up to 55 °C.

With option Z (double electronic expansion valve) the unit is capable to produce chilled water temperature from -8°C up to 10°C.

Mono, bi-tri circuit unit

Unit with 1-2-3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

They are equipped with screw compressors and system and source side shell and tube heat exchangers dedicated to use of the new HFO R1234ze gas (A2L).

The R515B refrigerant with this type of gas is also available on the configurator. Performances do not vary when the refrigerant gas available on the configurator varies.

For further details refer to the technical documentation or to the Magellano selection program.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit. Standard for all sizes.

CONTROL PCO.

Microprocessor adjustment, with 4.3", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

Adjustment includes complete management of the alarms and their log. The possibility to controll several units in Master - Slave parallel mode up to a maximum of 4 compressors.

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AER485P1 x n° 2: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AER485P1 x n° 3: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

AERSET: It makes it possible to automatically compensate for the operation setting of the unit to which it is connected, based on a 0-10V MODBUS input signal. Mandatory accessory MODU-485BL.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ISG: Insulation kit for condensers. Mandatory accessory for machine functioning in heat pump; standard in units with desuperheater or with heat recovery.

ACCESSORIES COMPATIBILITY

Model	Ver	0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
AER485P1	A		•			•	•	•		•	•				•										
AER485P1 x n° 2 (1)	A											•		•		•	•	•	•	•	•				
AER485P1 x n° 3 (1)	°,A																					•	•	•	•
AFDDACD	0																								
AERBACP	A	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AFDNIFT	0																					•	•	•	
AERNET	A		•	•	•	•	•		•	•	•		•	•	•	•	•	•	•		•		•	•	
AERSET	A	•	•	•	•	•	•	•		•	•				•										
MULTICULUED EVO	0																							•	
MULTICHILLER-EVO	A	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•		•		•	•		•
DCD1	0																								
PGD1	A				•								•		•										

(1) x Indicates the quantity of accessories to match.

Antivibration

Version	Set-up	Heat recovery	0701	0801	0901	1101	1251
٥	°,L	°, D, T	-	-	-	-	-
Α	°,L	0	AVX680	AVX680	AVX680	AVX681	AVX681
A	°,L	D, T	-	-	-	-	-
Version	Set-up	Heat recovery	1401	1601	1801	2101	2401
0	°,L	°, D, T	-	-	-	-	-
A	٥	0	AVX681	AVX682	AVX682	AVX683	AVX683
A	L	0	AVX681	AVX682	AVX685	AVX683	AVX683
A	°,L	D, T	-	-	-	-	-
Version	Set-up	Heat recovery	2502	2801	2802	3201	3202
0	°,L	°, D, T	-	-	-	-	-
A	٥	0	AVX673	AVX683	AVX674	AVX683	AVX679
A	L	0	AVX674	AVX683	AVX674	AVX683	AVX678
A	0	D	AVX674	-	AVX674	-	AVX679
A	0	T	AVX674	-	AVX674	-	AVX678
A	L	D, T	AVX674	-	AVX674	-	AVX678
Version	Set-up	Heat recovery	3602	4202	4802	5602	6402
0	°,L	°, D, T	-	-	-	-	-
A	0	°, D	AVX679	AVX678	AVX678	AVX678	AVX678
A	0	T	AVX678	AVX678	AVX678	AVX678	AVX678
A	L	°, D	AVX678	AVX678	AVX678	AVX678	AVX678
A	L	T	AVX678	AVX678	AVX676	AVX676	AVX676
Version	Set-up	Heat recovery		6703	7203	8403	9603
٥	°,L	°, D, T		Contact us.	Contact us.	Contact us.	Contact us.
A	°,L	°, D, T		Contact us.	Contact us.	Contact us.	Contact us.

Power factor correction

Ver	0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801
A	RIFWFN0701	RIFWFN0801	RIFWFN0901	RIFWFN1101	RIFWFN1251	RIFWFN1401	RIFWFN1601	RIFWFN1801	RIFWFN2101	RIFWFN2401	RIFWFN2502	RIFWFN2801
Ver	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
0	-	-	-	-	-	-	-	-	RIFWFN6703	RIFWFN7203	RIFWFN8403	RIFWFN9603
A	RIFWFN2802	RIFWFN3201	RIFWFN3202	RIFWFN3602	RIFWFN4202	RIFWFN4802	RIFWFN5602	RIFWFN6402	RIFWFN6703	RIFWFN7203	RIFWFN8403	RIFWFN9603

For the size of the units with the RIF accessory we ask you to contact the headquarters.

Isolating kit

Ver	0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801
A	ISG10	ISG10	ISG10	ISG10	ISG11	ISG12	ISG13	ISG13	ISG14	ISG14	ISG1	ISG15
Ver	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
0	-	-	-	-	-	-	-	-	ISG5	ISG5	ISG6	ISG6
٨	ISG1	ISG15	ISG2	ISG2	ISG2	ISG3	ISG3	ISG3	ISG7	ISG8	ISG8	ISG8

CONFIGURATOR

Field	Description
1,2,3,4	WFGN
5,6,7,8	Size 0701, 0801, 0901, 1101, 1251, 1401, 1601, 1801, 2101, 2401, 2502, 2801, 2802, 3201, 3202, 3602, 4202, 4802, 5602, 6402, 6703, 7203, 8403, 9603
9	Model
٥	Heat pump reversible on the water side
10	Version
•	Standard (1)
A	High efficiency
11	Operating field
X	Electronic thermostatic expansion valve
Z	Double electronic thermostatic for low temperature
12	Set-up
K	Super low noise with hood (2)
L	Silenced with hood
0	Standard
13	Heat recovery
D	With desuperheater (3)
T	With total recovery (3)
۰	Without heat recovery
14	Evaporator
E	Evaporating unit
٥	Standard
15	Power supply
2	230V/3/50Hz with fuses on compressors and magnet circuit breakers on auxiliary circuit (4)
4	230V/3/50Hz with magnet circuit breakers on compressors and auxiliary circuit (4)
5	500V/3/50Hz with fuses on compressors and magnet circuit breakers on auxiliary circuit (4)
8	400V/3/50Hz with magnet circuit breakers on compressors and auxiliary circuit
9	500V/3/50Hz with magnet circuit breakers on compressors and auxiliary circuit (4)
0	400V/3/50Hz with fuses on compressors and magnet circuit breakers on auxiliary circuit
16	Refrigerant gas (5)
G	R515B
0	R1234ze

PERFORMANCE SPECIFICATIONS

WFGN 0701-3201 - version A - gas R1234ze

Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Cooling performance 12 °C / 7 °C (1)													
Cooling capacity	kW	136,1	154,8	173,8	221,3	239,8	272,3	335,7	370,1	434,3	490,7	545,3	596,9
Input power	kW	26,0	29,7	33,8	41,4	45,0	51,2	61,5	69,0	78,1	88,5	100,0	109,9
Cooling total input current	Α	52,0	57,0	63,0	70,0	83,0	96,0	107,0	119,0	130,0	156,0	173,0	193,0
EER	W/W	5,24	5,21	5,15	5,35	5,33	5,32	5,46	5,37	5,56	5,55	5,45	5,43
Water flow rate system side	I/h	23410	26632	29906	38077	41247	46844	57740	63636	74675	84359	93748	102619
Pressure drop system side	kPa	22	25	24	22	21	22	16	20	15	21	25	15
Water flow rate source side	l/h	27751	31586	35551	44983	48779	55416	68103	75234	87855	99259	110576	121174
Pressure drop source side	kPa	21	20	19	24	21	18	18	18	19	19	19	18
Heating performance 40 °C / 45 °C (2)													
Heating capacity	kW	153,1	172,4	196,2	245,2	267,2	303,2	369,1	408,3	478,4	547,5	601,0	663,0
Input power	kW	32,6	37,2	42,4	51,8	56,4	64,2	76,0	85,4	96,3	109,6	123,2	137,5
Heating total input current	Α	64,0	71,0	79,0	87,0	103,0	119,0	131,0	146,0	160,0	191,0	210,0	240,0
COP	W/W	4,69	4,63	4,63	4,74	4,73	4,73	4,86	4,78	4,97	4,99	4,88	4,82
Water flow rate system side	I/h	26569	29919	34065	42555	46384	52636	64078	70908	83096	95098	104400	115170
Pressure drop system side	kPa	20	18	17	22	19	16	16	16	17	18	17	17
Water flow rate source side	l/h	35233	39544	45008	56537	61580	69831	85443	94274	111358	127787	139586	153205
Pressure drop source side	kPa	49	55	55	48	47	48	34	44	34	48	57	34

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WFGN-HP-W_Y_UN50_07

⁽¹⁾ Only for sizes from 6703 to 9603(2) Only for units with R515B(3) Not available for the condenserless "E"

⁽⁴⁾ The 230V and 500V power supplies are only available for sizes 0701 - 0801 - 0901 - 1101 - 1251 - 1401 - 2502 - 2802
(5) Performances do not vary when the refrigerant gas available on the configurator varies.

WFGN 2502-9603 - version A - gas R1234ze

Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Cooling performance 12 °C / 7 °C (1)													
Cooling capacity	kW	489,1	556,6	675,8	750,2	879,3	995,4	1100,3	1217,3	1315,3	1454,9	1594,7	1727,0
Input power	kW	91,4	103,5	125,1	138,3	159,8	180,3	202,1	225,0	236,7	262,9	296,7	326,6
Cooling total input current	Α	166,0	192,0	214,0	237,0	261,0	312,0	346,0	388,0	386,0	466,0	515,0	577,0
EER	W/W	5,35	5,38	5,40	5,42	5,50	5,52	5,45	5,41	5,56	5,53	5,38	5,29
Water flow rate system side	I/h	84115	95704	116204	128995	151168	171142	189154	209277	226089	250084	274117	296820
Pressure drop system side	kPa	42	33	34	42	35	44	33	41	25	31	30	17
Water flow rate source side	l/h	99161	112842	136932	152026	177654	200961	222817	246414	266044	294386	324122	352026
Pressure drop source side	kPa	53	50	49	31	51	51	42	62	19	18	18	21
Heating performance 40 °C / 45 °C (2)													
Heating capacity	kW	545,1	618,4	747,2	833,5	967,0	1093,6	1204,7	1333,7	1457,0	1601,3	1761,4	1921,0
Input power	kW	116,1	130,9	155,9	173,0	198,3	224,8	248,9	277,7	293,3	326,6	365,9	400,0
Heating total input current	Α	208,0	240,0	264,0	291,0	320,0	383,0	421,0	473,0	473,0	571,0	627,0	702,0
COP	W/W	4,70	4,73	4,79	4,82	4,88	4,87	4,84	4,80	4,97	4,90	4,81	4,80
Water flow rate system side	l/h	94650	107376	129767	144768	167936	189943	209256	231650	253135	278220	306025	333765
Pressure drop system side	kPa	49	45	44	28	45	46	37	55	17	16	16	19
Water flow rate source side	l/h	126174	143007	173413	193793	225352	255129	279883	310087	339613	372508	407744	443369
Pressure drop source side	kPa	95	74	77	96	79	98	73	91	56	70	66	37

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WFGN 6703-9603 - version ° - gas R1234ze

c:		(703	7202	0402	0603
Size		6703	7203	8403	9603
Cooling performance 12 °C / 7 °C (1)					
Cooling capacity	kW	1300,7	1439,0	1554,8	1692,4
Input power	kW	239,3	265,4	297,1	329,6
Cooling total input current	A	396,0	475,0	525,0	588,0
EER	W/W	5,44	5,42	5,23	5,13
Water flow rate system side	l/h	223578	247357	267235	290895
Pressure drop system side	kPa	26	29	22	26
Water flow rate source side	l/h	263609	291721	317119	346049
Pressure drop source side	kPa	39	39	33	39
Heating performance 40 °C / 45 °C (2)					
Heating capacity	kW	1444,7	1588,0	1725,3	1890,3
Input power	kW	296,0	328,4	364,3	404,7
Heating total input current	A	485,0	583,0	639,0	716,0
COP	W/W	4,88	4,83	4,74	4,67
Water flow rate system side	l/h	250963	275857	299728	328385
Pressure drop system side	kPa	36	35	29	35
Water flow rate source side	l/h	335840	368447	397507	434518
Pressure drop source side	kPa	59	65	48	58

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

ENERGY INDICES (REG. 2016/2281 EU)

Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801
SEER - 12/7 (EN14825: 2018) (1)												
SEER	W/W	6,71	6,96	6,87	6,43	6,80	6,79	6,69	6,69	7,01	6,99	6,58
Seasonal efficiency	%	265,30	275,30	271,70	254,00	269,00	268,40	264,60	264,70	277,20	276,70	260,30
SEPR - (EN 14825: 2018) High temperature (2)												
SEPR	W/W	8,20	8,00	8,20	8,00	8,00	8,00	8,00	7,90	8,10	8,10	8,10
(2) 61 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with VARIABLE water flow rate.

Size			6703	7203	8403	9603
SEER - 12/7 (EN14825: 2018) (1)						
SEER	°,A	W/W	7,11	7,14	7,03	6,94
Seasonal efficiency	°,A	%	281,30	282,50	278,30	274,40
SEPR - (EN 14825: 2018) High ten	nperature (2)					

8,10

8,20

8,20

8,30

W/W

Size			0701	0801	0901	1101	1251	1401
UE 813/2013 performance in average amb	ient condition	s (average) - 55 °C -	Pdesignh ≤ 400 kW (1)					
Datainah	0	kW	-	-	-	-	-	-
Pdesignh -	A	kW	197,00	219,00	253,00	312,00	339,00	384,00
COD	0	W/W	-	-	-	-	-	-
GCOP -	A	W/W	4,65	4,70	4,65	4,75	5,00	4,98
	0	%	-	-	-	-	-	-
ısh -	Α	%	178,00	180,00	178,00	182,00	192,00	191,00

⁽¹⁾ Efficiencies for average temperature applications (55 °C)

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with VARIABLE water flow rate.

PERFORMANCE SPECIFICATIONS EVAPORATING UNITS

WFGN - version AE - gas R1234ze

Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Evaporator: E													
Cooling performance 12 °C/7 °C - gas R1234ze (1)													
Cooling capacity	kW	121,0	137,5	154,5	196,6	214,1	243,2	297,4	329,0	390,9	442,4	480,9	529,0
Input power	kW	31,4	35,9	40,9	50,0	54,7	62,2	74,1	83,1	93,9	106,2	119,1	131,5
Cooling total input current	А	58,0	65,0	73,0	83,0	97,0	111,0	125,0	140,0	154,0	183,0	203,0	226,0
EER	W/W	3,85	3,83	3,77	3,93	3,92	3,91	4,02	3,96	4,16	4,17	4,04	4,02
Evaporator water flow rate	l/h	20792	23621	26548	33776	36780	41778	51103	56534	67168	76005	110092	90893
Pressure drop evaporator side	kPa	31	35	35	31	31	32	22	29	22	30	35	21
Length of refrigerant lines from/to 0 - 10 m													
Gas line (C1)	Ø	42,0	54,0	54,0	54,0	67,0	67,0	67,0	76,0	76,0	89,0	89,0	89,0
Gas line (C2)	Ø	-	-	-	-	-	-	-	-	-	-	-	-
Gas line (C3)	Ø	-	-	-	-	-	-	-	-	-	-	-	-
Liquid line (C1)	Ø	28,0	35,0	35,0	35,0	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	-	-	-	-	-	-	-	-	-	-	-	-
Liquid line (C3)	Ø	-	-	-	-	-	-	-	-	-	-	-	_
(1) Service side water 12 °C / 7 °C; Condensing temperatu	ire 45 °C												
Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Evaporator: E													
Cooling performance 12 °C/7 °C - gas R1234ze (1)													
Cooling capacity	kW	435,2	495,4	598,4	665,6	796,3	895,9	964,3	1068,0	1165,6	1325,4	1443,9	1565,4
Input power	kW	109,2	124,2	148,1	164,9	188,7	212,3	238,2	262,9	279,7	316,3	354,8	392,2
Cooling total input current	A	193,0	222,0	250,0	279,0	310,0	365,0	405,0	451,0	459,0	545,0	603,0	673,0
EER	W/W	3,99	3,99	4,04	4,04	4,22	4,22	4,05	4,06	4,17	4,19	4,07	3,99
Evaporator water flow rate	l/h	74770	85110	102813	114362	136819	153933	165685	183500	200259	227721	248077	268953
Pressure drop evaporator side	kPa	60	48	49	63	50	63	45	56	34	46	43	24
Length of refrigerant lines from/to 0 - 10 m													
Gas line (C1)	Ø	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9	76,0	88,9	88,9	88,9
			_	_	_	-	-	-	42,0	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	-	-										
Gas line (C3) Liquid line (C1)	Ø	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
		42,0 42,0				54,0 54,0							
Liquid line (C1)	Ø		42,0	42,0	42,0								

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

WFGN - version °E - gas R1234ze

Size		6703	7203	8403	9603
Evaporator: E		1			
Cooling performance 12 °C / 7 °C - gas R1234ze (1)					
Cooling capacity	kW	1129,2	1283,0	1378,4	1504,1
Input power	kW	282,3	319,1	356,8	394,8
Cooling total input current	A	463,0	549,0	606,0	676,0
EER	W/W	4,00	4,02	3,86	3,81
Evaporator water flow rate	l/h	194017	220439	236821	258428
Pressure drop evaporator side	kPa	35	41	30	36
Length of refrigerant lines from/to 0 - 10 m					
Gas line (C1)	Ø	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	54,0	54,0	54,0	54,0

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

ELECTRIC DATA

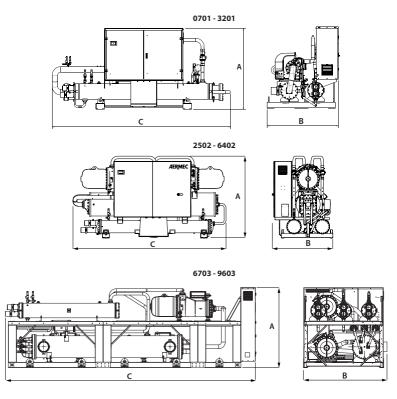
Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402
Electric data																					
Maximum current (FLA)	A	106,0	119,0	136,0	162,0	183,0	208,0	243,0	275,0	305,0	350,0	365,0	389,0	416,0	427,0	486,0	549,0	609,0	700,0	777,0	854,0
Peak current (LRA)	A	163	192	229	300	314	341	436	465	586	650	440	805	486	917	601	650	792	890	1070	1210
Size	l						67	03			72	03			84	03			96	603	
Electric data																					
Maximum current (FLA)	°.A		F	1			91:	3.0			105	0.0			116	6.0			128	31,0	

GENERAL TECHNICAL DATA

Size			0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201
Compressor																
Туре	°,A	type							Scr	ew						
Compressor regulation	°,A	Туре							On-	-Off						
Number	°,A	no.	1	1	1	1	1	1	1	1	1	1	2	1	2	1
Circuits	°,A	no.	1	1	1	1	1	1	1	1	1	1	2	1	2	1
Refrigerant	°,A	type							R12	34ze						
Defrigarant load circuit 1 (1)	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Refrigerant load circuit 1 (1)	A	kg	41,0	41,0	38,0	59,0	57,0	72,0	66,0	61,0	85,0	81,0	50,0	110,0	53,0	104,0
Deficience the design it 2 (1)	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Refrigerant load circuit 2 (1)	A	kg	-	-	-	-	-	-	-	-	-	-	50,0	-	53,0	-
Refrigerant load circuit 3 (1)	°,A	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-
System side heat exchanger																
Туре	°,A	type							Shell a	nd tube						
Number	°,A	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,A	Туре							Groove	d joints						
Source side heat exchanger																
Туре	°,A	type							Shell a	nd tube						
Number	°,A	no.	1	1	1	1	1	1	1	1	1	1	2	1	2	1
Connections (in/out)	°,A	Туре							Groove	d joints						

(1) The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

Size			3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Compressor												
Туре	°,A	type					Scr	ew				
Compressor regulation	°,A	Туре					On-	-Off				
Number	°,A	no.	2	2	2	2	2	2	3	3	3	3
Circuits	°,A	no.	2	2	2	2	2	2	3	3	3	3
Refrigerant	°,A	type					R12	34ze				
Definement lead singuit 1 (1)	0	kg	-	-	-	-	-	-	107,0	115,0	136,0	157,0
Refrigerant load circuit 1 (1)	A	kg	81,0	71,0	70,0	123,0	124,0	121,0	106,0	104,0	110,0	120,0
Definement lead singuit 2 (1)	0	kg	-	-	-	-	-	-	107,0	115,0	136,0	157,0
Refrigerant load circuit 2 (1)	A	kg	81,0	71,0	70,0	123,0	124,0	121,0	106,0	104,0	110,0	120,0
D. f	0	kg	-	-	-	-	-	-	107,0	115,0	136,0	157,0
Refrigerant load circuit 3 (1)	A	kg	-	-	-	-	-	-	106,0	104,0	110,0	120,0
System side heat exchanger												
Туре	°,A	type					Shell a	nd tube				
Number	°,A	no.	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,A	Туре					Groove	d joints				
Source side heat exchanger												
Туре	°,A	type					Shell a	nd tube				
Number	°,A	no.	2	2	2	2	2	2	3	3	3	3
Connections (in/out)	°,A	Туре					Groove	d joints				


⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

SOUND DATA

Size				0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Refrigerant gas: °	'																										
Standard equipment																											
C		0	dB(A)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	97,0	97,2	99,5	100,0
Sound power level (1)		4	dB(A)	87,7	88,0	87,7	89,1	90,3	91,3	90,5	90,7	93,2	92,5	93,5	94,8	94,0	94,2	94,0	94,5	95,0	95,5	97,5	98,0	97,0	97,2	99,5	100,0
Silenced equipment																											
Cound november (1)	(0	dB(A)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	93,0	93,2	95,5	96,0
Sound power level (1)		4	dB(A)	83,7	84,0	83,7	85,1	86,3	87,3	86,5	86,7	89,2	88,5	89,5	90,8	90,0	90,2	90,0	90,5	91,0	91,5	93,5	94,0	93,0	93,2	95,5	96,0

⁽¹⁾ Sound power: calculated in agreement with the Standard UNI EN ISO 9614-2, in compliance with that requested by Eurovent certification.

DIMENSIONS

Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402
Set-up: L		V/ VI	0001	3701		1271	1701	1001	1001	2101	4771	2302	2001	2002	7201	7202	3002	72.02	1002	3002	3702
Dimensions and weights																					
A	mm	1720	1720	1720	1720	1790	1865	1865	1865	1887	1887	2000	1920	2075	1920	2195	2195	2340	2432	2440	2432
В	mm	1450	1450	1450	1540	1600	1610	1610	1610	1630	1630	1500	1645	1500	1645	1575	1575	1585	1775	1775	1820
(mm	3480	3480	3480	3470	3445	3560	4100	4100	4140	4252	4320	4290	4345	4290	4650	4650	4600	5015	5150	5150
Empty weight	kg	1770	1790	1790	2280	2290	2510	3120	3170	3450	3510	4120	4030	4410	4080	6050	6120	6670	7040	7420	7490
Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402
Set-up: °																					
Dimensions and weights																					
A	mm	1720	1720	1720	1720	1790	1865	1865	1865	1887	1887	2000	1920	2075	1920	2195	2195	2340	2432	2440	2432
B	mm	1450	1450	1450	1510	1550	1610	1610	1610	1610	1610	1500	1630	1500	1630	1575	1575	1585	1775	1775	1820
(mm	3480	3480	3480	3470	3445	3560	4100	4100	4140	4252	4320	4290	4345	4290	4380	4380	4395	4535	4605	4605
Empty weight	kg	1610	1630	1630	2120	2130	2350	2940	2980	3260	3320	3810	3820	4100	3870	5690	5750	6300	6670	6970	7070
Size	1						67	03			72	03			84	03			96	03	
Set-up: L																					
Dimensions and weights																					
A	°,A		m	m			22	50			22	50			22	50			22	50	
В	°,A		m	m			22	00			22	00			22	00			22	00	
ſ	•		m	m			56	50			56	50			56	50			56	50	
	A		m	m			68	40			68	40			68	40			68	40	
Empty weight			k]			98				104					760				330	
	A		k]			108	380			122	230			129	950			129	990	
Size							67	03			72	03			84	03			96	03	
Set-up: °																					
Dimensions and weights																					
A	°,A		m	m			22	50			22	50			22	50			22	50	
В	°,A		m	m			22	00			22	00			22	00			22	00	
	•		m	m			56	50			56	50			56	50			56	50	
	A		m	m			68	40			68	40			68	40			68	40	
Empty weight	•		k]			93	30			99	10			10	130			102	200	
Limpty weight	A		k]			103	320			116	570			122	270			12:	360	

■ For the sizes of D-T-E versions please contact the factory.

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

WFI

Water cooled heat pump reversible water side

Cooling capacity 291 ÷ 2406 kW Heating capacity 326 ÷ 2664 kW

- Condenser side hot water production up to 60°C.
- Production of negative chilled water down to -8°C.
- · Available also with R513A refrigerant

DESCRIPTION

Units for internal installation offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

Compact and flexible, perfect alignment to the requested load thanks to an accurate control algorithm.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

FEATURES

Operating field

Production of chilled water up to 16°C of water produced on the evaporator side, but also suitable for use in heat pump mode with condenser water temperature up to 60°C depending on the model.

With option Z (double electronic expansion valve) the unit is capable to produce chilled water temperature from -8°C up to 10°C.

Mono, bi-tri circuit unit

Unit with 1-2-3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

All units are equipped with an inverter compressor combined with an onoff compressor (two-circuit sizes) or two on/off compressors (three-circuit sizes) with R134a refrigerant.

The R513A (XP10) refrigerant with this type of gas is also available on the configurator. On average, the units have a yield >2% and an EER <3% compared to the same size with R134a.

For further details refer to the technical documentation or to the Magellano selection program.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit. Standard for all sizes.

CONTROL PCO.

Microprocessor adjustment, with 4.3", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

Adjustment includes complete management of the alarms and their log. The possibility to controll several units in Master - Slave parallel mode up to a maximum of 4 compressors.

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AER485P1 x n° 2: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AER485P1 x n° 3: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ISG: Insulation kit for condensers. Mandatory accessory for machine functioning in heat pump; standard in units with desuperheater or with heat recovery.

ACCESSORIES COMPATIBILITY

Model	Ver	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
AER485P1	А	•	•	•	•	•	•	•		•		•										
AER485P1 x n° 2 (1)	А								•		•		•	•	•	•	•	•				
AER485P1 x n° 3 (1)	°,A																			•	•	•
AERBACP —	0																		•	•	•	•
AERBACP —	A		•			•		•			•	•	•	•	•	•	•	•	•	•	•	•
AERNET —	0																		•	•	•	•
AEKNEI —	A		•	•	•	•	•		•	•			•			•	•	•	•	•	•	•
MULTICULU ED EVO	0																		•	•	•	•
MULTICHILLER-EVO —	A	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
DCD1	0																				•	•
PGD1 —	A																					

(1) x Indicates the quantity of accessories to match.

Antivibration

Version	Set-up	Heat recovery	1101	1251	1401
0	°, K, L	°, D, T	-	-	-
A	0	0	AVX680	AVX680	AVX681
A	K	0	AVX681	AVX681	AVX688
A	L	0	AVX681	AVX681	AVX681
A	°, K, L	D, T	-	_	-
Version	Set-up	Heat recovery	1601	1801	2101
0	°, K, L	°, D, T	-	-	-
A	0	o o	AVX687	AVX687	AVX682
A	K	0	AVX682	AVX682	AVX685
A	L	0	AVX682	AVX682	AVX682
A	°, K, L	D, T	-	-	-
Version	Set-up	Heat recovery	2401	2502	2801
0	°, K, L	°, D, T	-	-	-
A	0	0	AVX685	AVX673	AVX683
A	K	0	AVX683	Contact us.	AVX683
A	L	0	AVX683	AVX674	AVX683
A	°,L	D, T	-	AVX674	-
A	K	D, T	-	Contact us.	-
Version	Set-up	Heat recovery	2802	3201	3202
0	°, K, L	°, D, T	-	-	-
A	°,L	0	AVX674	AVX683	AVX679
A	K	0	Contact us.	AVX683	Contact us.
A	°,L	D, T	AVX674	-	AVX679
A	K	D, T	Contact us.	-	Contact us.
Version	Set-up	Heat recovery	3602	4202	4802
0	°, K, L	°, D, T	-	-	-
A	0	°, D	AVX679	AVX679	AVX678
A	L	0	AVX679	AVX679	AVX678
A	K	°, D, T	Contact us.	Contact us.	Contact us.
A	0	Ţ	AVX679	AVX678	AVX678
A	L	D, T	AVX679	AVX678	AVX678
Version	Set-up	Heat recovery	5602	6402	6703
0	°, K, L	°, D, T	-	-	Contact us.
A	°,L	°, D, T	AVX678	AVX678	Contact us.
A	K	°, D, T	Contact us.	Contact us.	Contact us.
Version	Set-up	Heat recovery	7203	8403	9603
0	°, K, L	°, D, T	Contact us.	Contact us.	Contact us.
A	°, K, L	°, D, T	Contact us.	Contact us.	Contact us.

not available

Power factor correction

Ver	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201
A	-	-	-	-	-	-	-	RIFWFI2502	-	RIFWFI2802	-

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
0	-	-	-	-	-	-	RIFWFI6703	RIFWFI7203	RIFWFI8403	RIFWFI9603
A	RIFWFI3202	RIFWFI3602	RIFWFI4202	RIFWFI4802	RIFWFI5602	RIFWFI6402	RIFWFI6703	RIFWFI7203	RIFWFI8403	RIFWFI9603

A grey background indicates the accessory must be assembled in the factory

For the size of the units with the RIF accessory we ask you to contact

Isolating kit

Ver	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201
A	ISG10	ISG11	ISG12	ISG13	ISG13	ISG14	ISG14	ISG1	ISG15	ISG1	ISG15
A grey background inc	dicates the accessory	must be assemble	d in the factory								
Ver	3202	3602	4202	4802	5602	(5402	6703	7203	8403	9603
0	-	-	-	-	-		-	ISG5	ISG5	ISG6	ISG6
Δ	ISG2	ISG2	ISG2	ISG3	ISG3		ISG3	ISG7	ISG8	ISG8	ISG8

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	WFI
4,5,6,7	Size 1101, 1251, 1401, 1601, 1801, 2101, 2401, 2502, 2801, 2802, 3201, 3202, 3602, 4202, 4802, 5602, 6402, 6703, 7203, 8403, 9603
8	Model
Н	Optimised for high condensation
0	Standard condensation
9	Version
۰	Standard (1)
Α	High efficiency
10	Operating field
Χ	Electronic thermostatic expansion valve (2)
Z	Double electronic thermostatic for low temperature (3)
11	Set-up
K	Super silenced
L	Silenced with hood
0	Standard without hood
12	Heat recovery
D	With desuperheater (4)
T	With total recovery (4)
0	Without heat recovery
13	Evaporator
0	Standard
14	Power supply
8	400V ~ 3 50Hz with magnet circuit breakers (5)
•	400V ~ 3 50Hz with fuses
15	Refrigerant gas
G	R513A (XP10) (6)
•	R134a

MODEL PERFORMANCE DATA (°) - FOR TEMPERATURES WATER PRODUCED UP TO +55°C

WFI 1101 - 3201 - model (°) version A - gas R134a

Size		1101	1251	1401	1601	1801	2101	2401	2801	3201
Model: °										
Cooling performance 12 °C / 7 °C - gas R134a (1)										
Cooling capacity	kW	291,4	339,7	388,2	433,5	496,2	552,0	635,3	714,7	783,3
Input power	kW	55,9	66,5	75,6	85,1	98,6	111,6	122,5	138,9	148,8
Cooling total input current	Α	95,0	111,0	125,0	140,0	161,0	181,0	199,0	223,0	241,0
EER	W/W	5,21	5,11	5,13	5,09	5,03	4,95	5,19	5,15	5,26
Water flow rate source side	l/h	59350	69394	79271	88730	101760	113566	129637	145972	159590
Pressure drop source side	kPa	42	41	36	32	30	30	33	33	31
Water flow rate system side	l/h	50123	58428	66772	74535	85331	94907	109229	122894	134668
Pressure drop system side	kPa	38	43	45	27	32	24	35	45	26
Heating performances 40 °C / 45 °C - gas R134a (2)										
Heating capacity	kW	326,0	387,7	437,0	490,2	566,3	631,1	707,9	798,2	873,1
Input power	kW	74,3	88,1	97,5	106,3	126,9	143,0	156,9	178,5	189,7
Heating total input current	Α	125,0	144,0	158,0	173,0	204,0	230,0	251,0	281,0	305,0
COP	W/W	4,39	4,40	4,48	4,61	4,46	4,41	4,51	4,47	4,60
Water flow rate system side	l/h	56587	67319	75890	85131	98344	109614	122953	138630	151661
Pressure drop system side	kPa	39	39	33	29	28	28	30	29	28
Water flow rate source side	l/h	74024	88235	99938	112439	128897	142918	161620	182106	199956
Pressure drop source side	kPa	83	98	101	61	74	54	76	98	57

⁽¹⁾ Only for sizes from 6703 to 9603 (2) Water produced from 0 °C \div 16 °C (3) Water produced from -8 °C up to 10 °C

⁽⁴⁾ Not available for the condenserless "E" (5) Not available for 1101, 1251, 1401, 1601, 1801, 2101, 2401, 2801, 3201 size (6) For further details refer to the technical documentation or to the Magellano selection program.

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WFI 2502 - 9603 - model (°) version A - gas R134a

Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: °													
Cooling performance 12 °C / 7 °C - gas R134a (1)													
Cooling capacity	kW	670,0	757,4	889,1	1002,3	1143,6	1304,6	1441,8	1621,2	1771,2	1940,6	2167,0	2406,5
Input power	kW	127,4	144,9	168,9	192,8	218,4	244,5	275,3	309,9	327,6	362,0	410,0	458,2
Cooling total input current	Α	214,0	244,0	277,0	315,0	351,0	399,0	446,0	497,0	527,0	597,0	667,0	751,0
EER	W/W	5,26	5,23	5,26	5,20	5,24	5,34	5,24	5,23	5,41	5,36	5,29	5,25
Water flow rate source side	l/h	136129	154084	180866	204404	232973	264813	293658	330152	359034	393872	440716	490182
Pressure drop source side	kPa	55	58	48	46	44	47	48	48	38	31	32	40
Water flow rate system side	l/h	115215	130225	152866	172295	196591	224275	247834	278670	304461	333577	372486	413608
Pressure drop system side	kPa	53	43	38	27	31	44	31	39	45	54	57	33
Heating performances 40 °C / 45 °C - gas R134a (2)													
Heating capacity	kW	746,2	839,5	979,7	1112,5	1270,4	1441,8	1597,0	1815,3	1951,6	2145,2	2391,0	2664,3
Input power	kW	165,1	183,8	210,4	242,5	276,5	310,2	346,1	394,1	414,4	459,6	518,3	573,6
Heating total input current	Α	273,0	305,0	341,0	394,0	441,0	499,0	556,0	624,0	656,0	743,0	826,0	931,0
COP	W/W	4,52	4,57	4,66	4,59	4,59	4,65	4,61	4,61	4,71	4,67	4,61	4,64
Water flow rate system side	l/h	129578	145788	170162	193225	220670	250442	277422	315345	339051	372698	415418	462891
Pressure drop system side	kPa	50	51	42	41	40	42	43	44	34	28	28	36
Water flow rate source side	l/h	171302	192864	225753	254786	291203	332319	366559	417106	451025	495203	550498	612203
Pressure drop source side	kPa	118	95	82	60	67	97	69	88	98	118	125	73

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WFI 6703 - 9603 - model (°) version ° - gas R134a

WF1 0703 - 9003 - Illodel () Version - gas k 13					
Size		6703	7203	8403	9603
Model: °					
Cooling performance 12 °C/7 °C - gas R134a (1)					
Cooling capacity	kW	1723,4	1905,7	2114,5	2327,9
Input power	kW	331,7	366,9	409,8	463,6
Cooling total input current	A	522,0	592,0	659,0	744,0
EER	W/W	5,20	5,19	5,16	5,02
Water flow rate source side	l/h	350768	387913	431371	476493
Pressure drop source side	kPa	73	69	58	71
Water flow rate system side	l/h	296246	327572	363441	400118
Pressure drop system side	kPa	47	51	39	46
Heating performances 40 °C / 45 °C - gas R134a (2)					
Heating capacity	kW	1909,4	2114,9	2342,8	2593,9
Input power	kW	418,2	463,2	513,0	581,3
Heating total input current	A	651,0	737,0	817,0	922,0
COP	W/W	4,57	4,57	4,57	4,46
Water flow rate system side	I/h	331680	367403	407019	450652
Pressure drop system side	kPa	65	62	52	63
Water flow rate source side	I/h	438855	486287	537130	592236
Pressure drop source side	kPa	103	112	85	102

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

Energy indices (Reg. 2016/2281 EU)

Energy marces (neg. 2010	/ZZOT EG	'																					
Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: °																							
SEER - 12/7 (EN14825: 2018) . refrigerant	gas R134a (1)																					
Social officiency	0	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	319,80	319,20	318,20	313,60
Seasonal efficiency	A	%	337,10	343,20	342,80	348,90	348,20	350,10	347,00	339,20	351,20	340,00	355,00	341,70	340,20	337,90	340,30	343,50	344,30	343,10	341,00	340,50	342,50
CEED	0	W/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8,07	8,06	8,03	7,92
SEER	A	W/W	8,50	8,66	8,65	8,80	8,78	8,83	8,75	8,56	8,86	8,58	8,95	8,62	8,58	8,52	8,58	8,66	8,68	8,65	8,60	8,59	8,64
SEPR - (EN 14825: 2018) High temperatu	re - refrigerar	nt gas R'	134a (2)																			
CEDD	0	W/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8,60	8,60	8,40	8,40
SEPR	A	W/W	9,40	9,40	9,30	8,70	9,30	8,90	9,10	9,10	9,00	9,00	8,90	8,90	8,80	8,90	8,80	8,90	8,90	9,00	8,80	8,60	8,80

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with VARIABLE water flow rate.

Electric data

		1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
0	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	862,9	965,5	1077,5	1211,4
Α	Α	163,0	189,0	206,0	226,0	262,0	300,0	329,0	354,5	371,0	395,1	405,0	447,5	511,1	576,7	647,2	724,3	824,0	862,9	965,5	1077,5	1211,4
0	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1176,0	1301,0	1533,0	1744,0
Α	Α	23,0	23,0	23,0	23,0	23,0	23,0	23,0	506,0	23,0	550,0	23,0	666,0	730,0	889,0	982,0	1179,0	1355,0	1176,0	1301,0	1533,0	1744,0
	° A ° A		° A - A A 163,0 ° A -	° A A A 163,0 189,0 ° A	° A A A 163,0 189,0 206,0 ° A	° A A A 163,0 189,0 206,0 226,0 ° A	° A A A 163,0 189,0 206,0 226,0 262,0 ° A	° A A A 163,0 189,0 206,0 226,0 262,0 300,0 ° A	° A A A 163,0 189,0 206,0 226,0 262,0 300,0 329,0 ° A	° A -	° A	° A -	° A	° A -	° A	° A	° A	° A	° A	° A	° A 862,9 965,5 A A 163,0 189,0 206,0 226,0 262,0 300,0 329,0 354,5 371,0 395,1 405,0 447,5 511,1 576,7 647,2 724,3 824,0 862,9 965,5 ° A 1176,0 1301,0	A A 163,0 189,0 206,0 226,0 262,0 300,0 329,0 354,5 371,0 395,1 405,0 447,5 511,1 576,7 647,2 724,3 824,0 862,9 965,5 1077,5

MODEL PERFORMANCE DATA (H) - FOR TEMPERATURES WATER PRODUCED UP TO +60°C

WFI 1101 - 3201 - model (H) version A - gas R134a

Size		1101	1251	1401	1601	1801	2101	2401	2801	3201
Model: H										
Cooling performance 12 °C / 7 °C - gas R134a (1)										
Cooling capacity	kW	294,7	338,4	389,7	436,1	479,8	540,5	637,9	703,6	781,8
Input power	kW	57,3	67,1	79,0	87,4	98,3	110,3	127,2	142,1	162,7
Cooling total input current	A	98,0	112,0	129,0	143,0	159,0	177,0	206,0	228,0	262,0
EER	W/W	5,15	5,05	4,94	4,99	4,88	4,90	5,02	4,95	4,80
Water flow rate source side	l/h	60130	69281	80074	89564	98879	111372	130851	144597	161585
Pressure drop source side	kPa	44	41	37	32	30	30	33	32	33
Water flow rate system side	l/h	50692	58217	67029	74994	82505	92934	109677	120988	134409
Pressure drop system side	kPa	39	44	46	26	32	24	35	43	27
Heating performances 40 °C / 45 °C - gas R134a (2)										
Heating capacity	kW	325,5	376,9	434,9	486,7	538,4	604,0	709,5	783,3	871,3
Input power	kW	70,4	82,2	96,5	105,2	119,3	133,5	151,5	168,8	185,2
Heating total input current	A	118,0	135,0	155,0	170,0	190,0	212,0	241,0	265,0	295,0
COP	W/W	4,63	4,58	4,51	4,63	4,51	4,52	4,68	4,64	4,71
Water flow rate system side	l/h	56513	65431	75521	84523	93497	104898	123224	136049	151346
Pressure drop system side	kPa	39	37	33	29	27	27	29	29	29
Water flow rate source side	l/h	74998	86674	99584	111688	122874	137657	163575	180444	200734
Pressure drop source side	kPa	86	97	100	58	71	52	78	97	59

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WFI 2502 - 9603 - model (H) version A - gas R134a

Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H													
Cooling performance 12 °C / 7 °C - gas R134a (1)													
Cooling capacity	kW	672,4	770,8	886,7	999,1	1145,7	1305,1	1454,0	1620,1	1770,6	1939,2	2161,5	2375,7
Input power	kW	132,4	153,1	173,5	195,9	224,6	254,6	288,9	327,3	340,1	376,7	435,1	482,5
Cooling total input current	Α	226,0	257,0	285,0	316,0	364,0	415,0	475,0	543,0	567,0	621,0	715,0	806,0
EER	W/W	5,08	5,04	5,11	5,10	5,10	5,13	5,03	4,95	5,21	5,15	4,97	4,92
Water flow rate source side	l/h	137384	157768	181226	204349	234273	266548	297970	332858	360998	396033	443977	488997
Pressure drop source side	kPa	53	55	48	48	49	48	50	46	36	32	32	38
Water flow rate system side	l/h	115641	132532	152452	171756	196959	224366	249941	278496	304349	333335	371531	408313
Pressure drop system side	kPa	54	44	36	27	32	44	32	40	46	54	51	30
Heating performances 40 °C / 45 °C - gas R134a (2)													
Heating capacity	kW	741,6	852,1	975,8	1106,1	1267,8	1441,2	1611,1	1842,1	1948,7	2138,6	2398,1	2642,8
Input power	kW	160,3	184,4	206,0	235,2	268,6	305,3	343,0	388,6	408,5	453,9	520,2	571,4
Heating total input current	Α	268,0	305,0	334,0	376,0	431,0	490,0	558,0	633,0	669,0	732,0	838,0	945,0
COP	W/W	4,63	4,62	4,74	4,70	4,72	4,72	4,70	4,74	4,77	4,71	4,61	4,62
Water flow rate system side	l/h	128783	147970	169486	192116	220216	250335	279872	320004	338539	371554	416652	459154
Pressure drop system side	kPa	47	48	42	42	44	43	44	42	32	28	29	33
Water flow rate source side	l/h	171266	196282	225782	254976	292792	333536	371554	426498	451814	494844	551546	606152
Pressure drop source side	kPa	118	96	80	60	71	97	71	93	101	118	113	66

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WFI 6703 - 9603 - model (H) version ° - gas R134a

Size		6703	7203	8403	9603
Model: H					
Cooling performance 12 °C / 7 °C - gas R134a (1)					
Cooling capacity	kW	1706,6	1904,2	2109,2	2298,6
Input power	kW	343,5	381,7	434,3	486,5
Cooling total input current	A	561,0	616,0	705,0	796,0
EER	W/W	4,97	4,99	4,86	4,72
Water flow rate source side	l/h	349811	390073	434460	475234
Pressure drop source side	kPa	73	70	59	70
Water flow rate system side	l/h	293360	327313	362530	395080
Pressure drop system side	kPa	47	51	38	46
Heating performances 40 °C / 45 °C - gas R134a (2)					
Heating capacity	kW	1891,1	2108,3	2348,6	2571,3
Input power	kW	411,1	457,6	515,2	578,0
Heating total input current	A	662,0	727,0	826,0	933,0
COP	W/W	4,60	4,61	4,56	4,45
Water flow rate system side	l/h	328503	366257	408016	446727
Pressure drop system side	kPa	64	62	52	62
Water flow rate source side	l/h	435501	485905	538185	586506
Pressure drop source side	kPa	104	112	85	101

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

Energy indices (Reg. 2016/2281 EU)

Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H																							
SEER - 12/7 (EN14825: 2018) . refrigerant	gas R134a (1))																					
Consonal officion or	0	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	279,70	281,00	284,80	278,60
Seasonal efficiency	А	%	306,80	310,90	296,50	309,10	297,30	306,60	308,50	298,00	314,60	297,10	315,60	301,30	295,40	301,80	303,60	307,30	298,00	297,80	295,60	296,90	297,50
CLLD	0	W/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7,07	7,10	7,20	7,04
SEER	A	W/W	7,75	7,85	7,49	7,80	7,51	7,74	7,79	7,53	7,94	7,50	7,97	7,61	7,46	7,62	7,67	7,76	7,53	7,52	7,47	7,50	7,51
SEPR - (EN 14825: 2018) High temperatu	re - refrigeran	t gas R	134a (2)																			
CEDD	0	W/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8,40	8,30	8,20	8,10
SEPR	Α	W/W	9,20	9,10	9,10	8,50	9,00	8,60	8,80	8,80	8,80	8,80	8,70	8,60	8,40	8,60	8,50	8,60	8,60	8,70	8,60	8,40	8,50

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with VARIABLE water flow rate.

Electric data

Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H																							
Gas R134a																							
Maximum aument (FLA)	0	A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	954,0	1052,0	1180,0	1290,0
Maximum current (FLA)	A	A	165,0	190,0	216,0	237,0	274,0	308,0	356,0	378,0	387,0	428,0	418,0	473,0	535,0	616,0	704,0	787,0	864,0	954,0	1357,0	1180,0	1290,0
Deals surrent (LDA)	0	A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1234,0	1357,0	1595,0	1784,0
Peak current (LRA)	A	A	23,0	23,0	23,0	23,0	23,0	23,0	23,0	507,0	23,0	560,0	23,0	676,0	742,0	897,0	1009,0	1203,0	1359,0	1234,0	1052,0	1595,0	1784,0

PERFORMANCE SPECIFICATIONS EVAPORATING UNITS

Model performance data (°) - for condensing temperatures up to 55°C

Model output data - model WFI° - AE - gas R134a

Size			1101	1251	1401	1	601	1801	2101	2401	<u> </u>	2801	3201
Model: °										'			
Cooling performance 12 °C/7 °C - gas R134a (1)					-		-						
Cooling capacity	k۷	V	261,4	307,5	351,6	39	93,3	441,4	493,3	571,0	5 6	542,9	693,1
Input power	k۷	V	68,4	80,8	90,0	10	00,3	117,7	133,8	145,8	3 1	164,9	178,0
Cooling total input current	A		119,0	139,0	152,0	16	58,0	197,0	222,0	240,0) 2	269,0	292,0
EER	W/	W	3,82	3,81	3,91	3	,92	3,75	3,69	3,92		3,90	3,89
Evaporator water flow rate	I/I	h	44906	52830	60402	67	574	75833	84756	9820	6 1	10455	119091
Pressure drop evaporator side	kP	a	31	36	37		21	27	20	28		36	21
Length of refrigerant lines from/to 0 - 10 m													
Gas line (C1)	Ø		54,0	67,0	67,0	6	7,0	76,0	76,0	89,0		89,0	89,0
Gas line (C2)	Ø		-	-	-		-	-	-	-		-	-
Gas line (C3)	0	1	-	-	-		-	-	-	-		-	-
Liquid line (C1)	Ø		35,0	42,0	42,0	4	2,0	42,0	54,0	54,0		54,0	54,0
Liquid line (C2)	Ø	i	-	-	-		-	-	-	-		-	-
Liquid line (C3)	Ø	<u> </u>	-	-	-		-	-	-	-		-	-
(1) Service side water 12 °C / 7 °C; Condensing temperat	ure 45 °C												
Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: °													
Cooling performance 12 °C/7 °C - gas R134a (1)				-									-
Cooling capacity	kW	603,1	688,5	797,4	899,3	1008,4	1169,8	1287,8	1439,2	1558,1	1742,4	1896,4	2110,0
Input power	kW	152,9	171,4	198,1	229,9	259,8	287,4	323,9	364,6	386,3	431,2	481,0	540,3
Cooling total input current	A	261,4	292,5	330,2	380,6	424,7	476,4	532,4	600,3	631,3	709,7	792,6	891,2
EER	W/W	3,94	4,02	4,03	3,91	3,88	4,07	3,98	3,95	4,03	4,04	3,94	3,91
Evaporator water flow rate	l/h	103615	118287	137003	154508	173247	200980	221262	247268	267705	299365	325826	362526
Pressure drop evaporator side	kPa	43	35	29	22	25	35	25	31	35	43	39	24
Length of refrigerant lines from/to 0 - 10 m													
Gas line (C1)	Ø	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	-	-	-	-	-	-	-	42,0	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
		10.0	12.0	12.0	42.0	F4.0	F4.0	54,0	54.0	54.0	54,0	54,0	54,0
Liquid line (C2)	Ø	42,0	42,0	42,0	42,0	54,0	54,0	34,0	34,0	34,0	34,0	34,0	J 4 ,0

⁽¹⁾ Service side water 12 $^{\circ}$ C / 7 $^{\circ}$ C; Condensing temperature 45 $^{\circ}$ C

Model output data - model WFI° - °E - gas R134a

Size		6703	7203	8403	9603
Model: °					
Cooling performance 12 °C/7 °C - gas R134a (1)					
Cooling capacity	kW	1515,4	1689,7	1833,1	2021,9
Input power	kW	387,7	429,0	481,0	541,3
Cooling total input current	A	633,0	713,0	793,0	893,0
EER	W/W	3,91	3,94	3,81	3,74
Evaporator water flow rate	I/h	260358	290307	314947	347392
Pressure drop evaporator side	kPa	37	40	29	35
Length of refrigerant lines from/to 0 - 10 m					
Gas line (C1)	Ø	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	54,0	54,0	54,0	54,0

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

Model performance data (H) - for condensing temperatures up to 60°C

Model output data - model WFIH - AE - gas R134a

Size		1101	1251	1401	1601	1801	2101	2401	2801	3201
Model: H										
Cooling performance 12 °C / 7 °C - gas R134a (1)										
Cooling capacity	kW	260,1	304,6	351,5	393,7	432,7	485,1	579,1	638,3	697,1
Input power	kW	65,4	76,0	88,4	97,7	111,1	123,1	143,8	158,6	176,5
Cooling total input current	A	113,0	129,0	148,0	162,0	180,0	200,0	235,0	257,0	290,0
EER	W/W	3,98	4,01	3,98	4,03	3,89	3,94	4,03	4,02	3,95
Evaporator water flow rate	l/h	44694	52328	60399	67637	74335	83339	99495	109670	119762
Pressure drop evaporator side	kPa	31	35	37	21	26	19	29	36	21
Length of refrigerant lines from/to 0 - 10 m										
Gas line (C1)	Ø	54,0	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	-	-	-	-	-	-	-	-	-
Gas line (C3)	Ø	-	-	-	-	-	-	-	-	-
Liquid line (C1)	Ø	35,0	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	-	-	-	-	-	-	-	-	-
Liquid line (C3)	Ø	-	-	-	-	-	-	-	-	-
(1) Service side water 12 °C / 7 °C; Condensing temperature 4.	5 °C		•		•					

(1) Service side water 12 C/7	C; Condensing temperature 45 C	
Size		_

Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H													
Cooling performance 12 °C / 7 °C - gas R134a (1)													
Cooling capacity	kW	602,3	690,5	794,5	897,8	1009,4	1177,8	1297,5	1436,1	1566,5	1750,8	1908,3	2101,3
Input power	kW	147,9	170,4	193,3	218,4	248,4	284,6	324,0	361,7	383,8	424,1	485,5	536,4
Cooling total input current	A	256,5	291,2	322,9	358,5	412,8	473,1	536,1	602,7	646,0	707,3	806,6	899,1
EER	W/W	4,07	4,05	4,11	4,11	4,06	4,14	4,01	3,97	4,08	4,13	3,93	3,92
Evaporator water flow rate	l/h	103477	118635	136501	154254	173418	202354	222930	246737	269151	300804	327864	361031
Pressure drop evaporator side	kPa	43	35	29	22	25	36	26	31	36	44	40	24
Length of refrigerant lines from/to 0 - 10 m													
Gas line (C1)	Ø	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	-	-	-	-	-	-	-	42,0	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	-	-	-	-	-	-	-	-	54,0	54,0	54,0	54,0

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

89,4 88,4 89,8 90,0

Model output data - model WFIH - °E - gas R134a

Size		6703	7203	8403	9603
Model: H					
Cooling performance 12 °C / 7 °C - gas R134a (1)					
Cooling capacity	kW	1524,4	1698,4	1844,7	2016,4
Input power	kW	383,7	425,2	483,3	533,7
Cooling total input current	A	645,8	709,0	803,3	895,1
EER	W/W	3,97	3,99	3,82	3,78
Evaporator water flow rate	l/h	261912	291802	316947	346444
Pressure drop evaporator side	kPa	38	40	29	35
Length of refrigerant lines from/to 0 - 10 m					
Gas line (C1)	Ø	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	54,0	54,0	54,0	54,0

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

GENERAL TECHNICAL DATA

Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Compressor	'																						
Туре	°,A	type											Screw										
Compressor regulation	°,A	Туре	T	-	Ι	- 1	Ι	Ι	ı	l+1		l+1	1	1+I	1+1	1+1	1+1	1+1	1+1	2+1	2+1	2+1	2+1
Number	°,A	no.	1	1	1	1	1	1	1	2	1	2	1	2	2	2	2	2	2	3	3	3	3
Circuits	°,A	no.	1	1	1	1	1	1	1	2	1	2	1	2	2	2	2	2	2	3	3	3	3
Refrigerant	°,A	type											R134a										
D. f	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	106,0	104,0	110,0	120,0
Refrigerant load circuit 1 (1)	A	kg	59,0	57,0	72,0	66,0	61,0	85,0	81,0	50,0	110,0	53,0	104,0	81,0	71,0	70,0	123,0	124,0	121,0	106,0	104,0	110,0	120,0
D. C	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	106,0	104,0	110,0	120,0
Refrigerant load circuit 2 (1)	A	kg	-	-	-	-	-	-	-	50,0	-	53,0	-	81,0	71,0	70,0	123,0	124,0	121,0	106,0	104,0	110,0	120,0
Refrigerant load circuit 3 (1)	°,A	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	106,0	104,0	110,0	120,0
System side heat exchanger																							
Туре	°,A	type										She	ell and to	ıbe									
Number	°,A	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,A	Туре										Gro	oved joi	nts									
Source side heat exchanger																							
Туре	°,A	type										She	ell and to	ıbe									
Number	°,A	no.	1	1	1	1	1	1	1	2	1	2	1	2	2	2	2	2	2	3	3	3	3
Connections (in/out)	°,A	Туре										Gro	oved joi	nts									

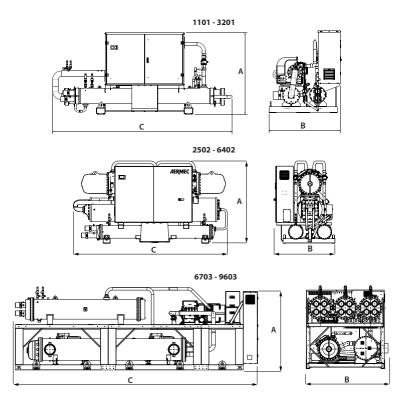
⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

SOUND DATA

Sound power level (1)

Size

Sound data calculated with functioning in cooling mode - R134a gas


Model: H																							
Standard equipment																							
Cound named (1)	0	dB(A)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	99,5	100,6	101,0	102,0
Sound power level (1)	A	dB(A)	94,0	95,8	96,1	97,0	97,1	97,2	97,3	97,3	97,3	97,7	98,0	98,8	98,8	98,9	98,9	99,3	100,0	99,5	100,6	101,0	102,0
Silenced equipment																							
C	0	dB(A)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	94,4	94,6	94,6	94,9
Sound power level (1)	A	dB(A)	86,1	88,0	88,2	89,1	89,2	89,3	89,3	89,5	89,3	90,0	89,8	91,6	91,9	92,7	92,4	92,5	92,6	94,4	94,6	94,6	94,9
Super silenced equipment																							
C	0	dB(A)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	91,5	91,6	91,6	91,9
Sound power level (1)						063	06.3	06.4	07.3	07.5	07.4	87.0	86,8	88,6	89,0	89.7	00.5	00.7	00.0	01 5	01.6	01.6	01.0
Sound power level (1)	Α	dB(A)	83,1	85,0	85,3	86,2	86,3	86,4	86,3	86,5	86,4	07,0	00,0	00,0	09,0	07,1	89,5	89,6	90,0	91,5	91,6	91,6	91,9
(1) Sound power: calculated in agreeme				,-		,			,-			- , ,	00,0	00,0	09,0	09,/	89,3	89,0	90,0	91,3	91,0	91,0	91,9
				14-2, ir	compli	,	ith that	request	,-		certific	- , ,	3201	3202	3602	4202		5602					
(1) Sound power: calculated in agreeme			V ISO 96	14-2, ir	compli	iance w	ith that	request	ed by E	urovent	certific	ation.											
(1) Sound power: calculated in agreeme			V ISO 96	14-2, ir	compli	iance w	ith that	request	ed by E	urovent	certific	ation.											
(1) Sound power: calculated in agreeme Size Model: ° Standard equipment			V ISO 96	14-2, ir	compli	iance w	ith that	request	ed by E	urovent	certific	ation.											9603
(1) Sound power: calculated in agreeme Size Model: °	ent with the Stand	ard UNI EN	V ISO 96	14-2, ir	compli	iance w	ith that	request	ed by E	urovent	certific	ation.								6703	7203	8403	9603
(1) Sound power: calculated in agreeme Size Model: ° Standard equipment	ent with the Stand	dB(A)	1101 -	14-2, ir 1251	1401 -	1601	1801	request 2101	2401	2502 -	2801	ation. 2802	3201	3202	3602	4202	4802	5602	6402	99,2	7203 98,9	8403	9603
(1) Sound power: calculated in agreeme Size Model: ° Standard equipment Sound power level (1) Silenced equipment	ent with the Stand	dB(A)	1101 -	14-2, ir 1251	1401 -	1601	1801	request 2101	2401	2502 -	2801	ation. 2802	3201	3202	3602	4202	4802	5602	6402	99,2	7203 98,9	8403	9603
(1) Sound power: calculated in agreeme Size Model: ° Standard equipment Sound power level (1)	ent with the Stand	dB(A)	1101 -	14-2, ir 1251	1401 -	1601	1801	request 2101	2401	2502 -	2801	ation. 2802	3201	3202	3602	4202	4802	5602	6402	99,2 99,2	7203 98,9 98,9	100,0 100,0	9603 100,5 100,5
(1) Sound power: calculated in agreeme Size Model: ° Standard equipment Sound power level (1) Silenced equipment	ent with the Stand	dB(A) dB(A)	1101 - 94,0	1251 - 95,8	1401 - 96,1	1601 - 97,0	1801 - 97,1	- 97,2	- 97,3	2502 - 96,9	2801 - 97,3	2802 - 97,4	- 98,0	- 97,9	- 98,0	4202 - 98,8	- 98,8	- 98,6	- 98,9	99,2 99,2 92,3	98,9 98,9 91,3	100,0 100,0 92,8	9603 100,5 100,5 93,0

1101 1251 1401 1601 1801 2101 2401 2502 2801 2802 3201 3202 3602 4202 4802 5602 6402 6703 7203 8403 9603

dB(A) 83,1 85,0 85,3 86,2 86,3 86,4 86,3 86,4 86,3 86,4 86,7 86,8 87,4 87,5 88,5 88,1 88,2 88,8 89,4 88,4 89,8 90,0

dB(A)

⁽¹⁾ Sound power: calculated in agreement with the Standard UNI EN ISO 9614-2, in compliance with that requested by Eurovent certification.

Unit dimensions and weights °/H in standard configuration

onit uniferisions and weights	/11 III 3ta	iiuai	COII	ngui	atioi	l .																	
Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H, °																							
Dimensions and weights - standard confi	guration																						
Δ.	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2250	2250	2250	2250
A	A	mm	1720	1790	1865	1865	1865	1887	1887	2131	1920	2131	1920	2195	2195	2340	2455	2440	2432	2250	2250	2250	2250
P	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2200	2200	2200	2200
Ь	A	mm	1510	1560	1610	1610	1610	1610	1610	1645	1630	1600	1630	1675	1675	1685	1875	1900	1950	2200	2200	2200	2200
	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5650	5650	5650	5650
	A	mm	3460	3463	3585	4100	4100	4140	4240	4320	4290	4345	4290	4380	4380	4395	4500	4580	4580	5650	5650	5650	5650
Empty weight	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8740	9680	9900	10000
Empty weight	A	kg	2020	2030	2230	2410	2450	2670	3090	3710	3530	3980	3570	5160	5220	5710	6440	6680	6770	9730	11440	11980	12060

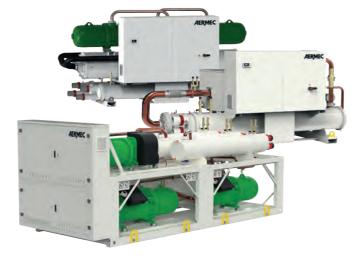
Unit dimensions and weights °/H in silenced configuration

Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H, °																							
Dimensions and weights - quiet configu	ıration																						
	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2250	2250	2250	2250
A	A	mm	1720	1790	1865	1865	1865	1887	1887	2131	1920	2131	1920	2195	2195	2340	2455	2440	2432	2250	2250	2250	2250
n	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2200	2200	2200	2200
В	A	mm	1525	1560	1610	1610	1610	1615	1615	1645	1630	1600	1630	1675	1675	1685	1875	1900	1950	2200	2200	2200	2200
	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5650	5650	5650	5650
C	A	mm	3460	3463	3585	4100	4100	4140	4240	4320	4290	4345	4290	4630	4630	4600	5015	5060	5060	5650	6840	6840	6840
5	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9270	10240	10510	10610
Empty weight	A	kg	2180	2190	2390	2570	2610	2830	3280	4020	3720	4290	3760	5500	5560	6050	6810	7080	7170	10260	12000	12590	12670
Super silenced equipment dimensions a	nd weights																						
A	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2250	2250	2250	2250
A	A	mm	1720	1790	1865	1865	1865	1887	1887	2131	1920	2131	1920	2195	2195	2340	2455	2440	2432	2250	2250	2250	2250
-	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2200	2200	2200	2200
В	Α	mm	1525	1560	1610	1610	1610	1615	1615	1645	1630	1600	1630	1675	1675	1685	1875	1900	1950	2200	2200	2200	2200
	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5650	5650	5650	5650
C	Α	mm	3460	3463	3585	4100	4100	4140	4240	4320	4290	4345	4290	4630	4630	4600	5015	5060	5060	5650	5650	5650	5650
F	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	9890	10890	11230	11330
Empty weight	Α	ka	2370	2380	2580	2760	2800	3020	3500	4400	3940	4670	3980	5910	5970	6460	7240	7550	7640	10880	12650	13310	13390

[■] For the sizes of D-T-E versions please contact the factory.

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com


WFN

Water cooled heat pump reversible water side

Cooling capacity 182 ÷ 2349 kW Heating capacity 205 ÷ 2610 kW

- Production of hot water up to 55°C.
- Production of negative chilled water down to -8°C.

DESCRIPTION

Units for internal installation offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

Compact and flexible, perfect alignment to the requested load thanks to an accurate control algorithm.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

FEATURES

Operating field

Production of chilled water up to 16 °C of water produced on the evaporator side, but also suitable for use in heat pump mode with condenser water temperature up to 55 °C.

With option Z (double electronic expansion valve) the unit is capable to produce chilled water temperature from -8°C up to 10°C.

Mono, bi-tri circuit unit

Unit with 2-3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

They are equipped with screw compressors and system and source side shell and tube heat exchangers with R134a refrigerant.

The R513A (XP10) refrigerant with this type of gas is also available on the configurator. On average, the units have a yield > 2% and an EER < 3% compared to the same size with R134a.

For further details refer to the technical documentation or to the Magellano selection program.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit. Standard for all sizes.

CONTROL PCO₅

Microprocessor adjustment, with 4.3", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

Adjustment includes complete management of the alarms and their log. The possibility to controll several units in Master - Slave parallel mode up to a maximum of 4 compressors.

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AER485P1 x n° 2: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AER485P1 x n° 3: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

 $\textbf{AVX:} \ \textbf{Spring anti-vibration supports.}$

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ISG: Insulation kit for condensers. Mandatory accessory for machine functioning in heat pump; standard in units with desuperheater or with heat recovery.

ACCESSORIES COMPATIBILITY

Model	Ver	0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
AER485P1	A	•	•	•	•	•	•	•	•	•	•		•		•										
AER485P1 x n° 2 (1)	A											•		•		•		•	•	•	•				
AER485P1 x n° 3 (1)	°,A																					•	•	•	
AERBACP	0																					•	•	•	•
AERDACF	Α	•	•	•	•	•	•	•	•	•		•	•	•		•		•		•		•	•	•	•
AERNET	0																					•	•	•	•
AERINEI	A	•	•	•	•	•	•	•		•	•	•	•	•		•		•	•	•			•	•	
MULTICHILLER-EVO	0																					•	•	•	•
MULTICHILLER-EVO	А	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PGD1	0																					•		•	•
Pani	A		•		•																				•

(1) x Indicates the quantity of accessories to match.

Version	Set-up	Heat recovery	0701	0801	0901	1101	1251
version	°, K, L	°, D, T		- 0001	- 0901	- 1101	- 1231
A	°, K, L	, U, I	AVX680	AVX680	AVX680	AVX681	AVX681
A	°, K, L	D, T	AVA000	AVA000	- AVA000	AVAU01	AVAUOT
A		ν, ι			-	-	
Version	Set-up	Heat recovery	1401	1601	1801	2101	2401
0	°, K, L	°, D, T	-	-	-	-	-
A	0	0	AVX681	AVX682	AVX682	AVX683	AVX683
A	K	0	AVX688	AVX683	AVX683	AVX683	AVX683
A	L	0	AVX681	AVX682	AVX685	AVX683	AVX683
A	°, K, L	D, T	-	-	-	-	-
Version	Set-up	Heat recovery	2502	2801	2802	3201	3202
0	°, K, L	°, D, T	-	-	-	-	-
A	0	0	AVX673	AVX683	AVX674	AVX683	AVX679
A	K	0	Contact us.	AVX686	Contact us.	AVX686	Contact us.
A	L	0	AVX674	AVX683	AVX674	AVX683	AVX678
A	0	D	AVX674	-	AVX674	-	AVX679
Α	0	T	AVX674	-	AVX674	-	AVX678
A	L	D, T	AVX674	-	AVX674	-	AVX678
A	K	D, T	Contact us.	-	Contact us.	-	Contact us.
Version	Set-up	Heat recovery	3602	4202	4802	5602	6402
0	°, K, L	°, D, T	-	-	-	-	-
A	0	°, D	AVX679	AVX678	AVX678	AVX678	AVX678
A	K	°, D, T	Contact us.	Contact us.	Contact us.	Contact us.	Contact us
A	0	T	AVX678	AVX678	AVX678	AVX678	AVX678
A	L	°, D	AVX678	AVX678	AVX678	AVX678	AVX678
A	L	T	AVX678	AVX678	AVX676	AVX676	AVX676
Version	Set-up	Heat recovery		6703	7203	8403	9603
0	°, K, L	°, D, T	(Contact us.	Contact us.	Contact us.	Contact us.
A	°, K, L	°, D, T		Contact us.	Contact us.	Contact us.	Contact us.

not available

Power factor correction

Ver	0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801
A	RIFWFN0701	RIFWFN0801	RIFWFN0901	RIFWFN1101	RIFWFN1251	RIFWFN1401	RIFWFN1601	RIFWFN1801	RIFWFN2101	RIFWFN2401	RIFWFN2502	RIFWFN2801
A grey background indicates the accessory m	ust be assemble	ed in the factor	y									
Ver	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
0	-	-	-	-	-	-	-	-	RIFWFN6703	RIFWFN7203	RIFWFN8403	RIFWFN9603
A	RIFWFN2802	RIFWFN3201	RIFWFN3202	RIFWFN3602	RIFWFN4202	RIFWFN4802	RIFWFN5602	RIFWFN6402	RIFWFN6703	RIFWFN7203	RIFWFN8403	RIFWFN9603

A grey background indicates the accessory must be assembled in the factory $% \left(1\right) =\left(1\right) \left(1\right)$

Isolating kit

Ver	0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ISG5	ISG5	ISG6	ISG6
A	ISG10	ISG10	ISG10	ISG10	ISG11	ISG12	ISG13	ISG13	ISG14	ISG14	ISG1	ISG15	ISG1	ISG15	ISG2	ISG2	ISG2	ISG3	ISG3	ISG3	ISG7	ISG8	ISG8	ISG8

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	WFN
4,5,6,7	Size 0701, 0801, 0901, 1101, 1251, 1401, 1601, 1801, 2101, 2401, 2502, 2801, 2802, 3201, 3202, 3602, 4202, 4802, 5602, 6402, 6703, 7203, 8403, 9603
8	Model
0	Heat pump reversible on the water side
9	Version
0	Standard (1)
A	High efficiency
10	Operating field
χ	Electronic thermostatic expansion valve (2)
Z	Double electronic thermostatic for low temperature (3)
11	Set-up
K	Super silenced
L	Silenced with hood
0	Standard
12	Heat recovery
D	With desuperheater (4)
T	With total recovery (4)
0	Without heat recovery

Field	Description
13	Evaporator
E	Evaporating unit
0	Standard
14	Power supply
2	230V/3/50Hz with fuses on compressors and magnet circuit breakers on auxiliary circuit (5)
4	230V/3/50Hz with magnet circuit breakers on compressors and auxiliary circuit (5)
5	500V/3/50Hz with fuses on compressors and magnet circuit breakers on auxiliary circuit
8	400V/3/50Hz with magnet circuit breakers on compressors and auxiliary circuit
9	500V/3/50Hz with magnet circuit breakers on compressors and auxiliary circuit (5)
0	400V/3/50Hz with fuses on compressors and magnet circuit breakers on auxiliary circuit (5)
15	Refrigerant gas
G	R513A (XP10)
0	R134a

PERFORMANCE SPECIFICATIONS

WFN 0701 - 3201 - version A - gas R134a

Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Cooling performance 12 °C / 7 °C (1)													
Cooling capacity	kW	182,1	207,2	232,9	295,9	322,1	370,3	448,8	504,1	579,3	655,9	719,6	788,4
Input power	kW	35,2	40,2	45,6	55,9	60,5	68,8	83,9	95,0	106,4	120,6	136,6	149,7
Cooling total input current	A	63,0	71,0	79,0	91,0	104,0	120,0	138,0	156,0	170,0	200,0	223,0	248,0
EER	W/W	5,18	5,16	5,11	5,30	5,32	5,38	5,35	5,31	5,45	5,44	5,27	5,27
Water flow rate system side	I/h	31347	35658	40063	50900	55401	63688	77171	86683	99596	112777	123733	135542
Pressure drop system side	kPa	40	46	46	40	40	41	28	35	27	37	45	27
Water flow rate source side	l/h	37125	42261	47577	60109	65418	75101	91161	102491	117368	132862	146434	160587
Pressure drop source side	kPa	37	37	34	44	37	33	33	33	33	34	33	32
Heating performance 40 °C / 45 °C (2)													
Heating capacity	kW	204,8	230,6	262,5	327,5	358,1	410,4	494,2	556,2	639,5	733,2	796,8	879,7
Input power	kW	44,4	50,8	57,8	70,4	76,6	87,1	104,0	118,2	131,8	150,4	169,5	188,1
Heating total input current	A	78,0	88,0	98,0	113,0	130,0	149,0	170,0	191,0	209,0	246,0	272,0	308,0
COP	W/W	4,61	4,54	4,54	4,65	4,68	4,71	4,75	4,70	4,85	4,87	4,70	4,68
Water flow rate system side	l/h	35533	40021	45575	56858	62177	71260	85815	96600	111065	127339	138391	152791
Pressure drop system side	kPa	34	33	31	40	33	29	30	29	30	31	29	29
Water flow rate source side	l/h	47178	52944	60295	75577	82711	94940	114197	128417	148521	170834	184231	202358
Pressure drop source side	kPa	90	101	103	88	89	91	61	78	61	85	101	60

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WFN 2502 - 9603 - version A - gas R134a

Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Cooling performance 12 °C / 7 °C (1)													
Cooling capacity	kW	652,3	746,8	905,7	1024,5	1164,3	1325,5	1446,9	1589,7	1721,1	1960,7	2149,5	2349,3
Input power	kW	121,4	137,8	167,7	189,5	213,7	242,9	270,4	296,6	317,6	359,9	406,3	445,4
Cooling total input current	A	208,0	239,0	275,0	310,0	341,0	401,0	447,0	493,0	509,0	598,0	667,0	739,0
EER	W/W	5,37	5,42	5,40	5,41	5,45	5,46	5,35	5,36	5,42	5,45	5,29	5,28
Water flow rate system side	I/h	112179	128411	155723	176117	200144	227870	248717	273259	295856	337027	369472	403784
Pressure drop system side	kPa	51	41	38	29	33	45	32	38	83	55	51	30
Water flow rate source side	l/h	132175	151199	183520	207646	235653	268115	293728	322600	348857	396964	437212	478412
Pressure drop source side	kPa	49	50	49	49	50	49	48	46	34	32	32	36
Heating performance 40 °C / 45 °C (2)													
Heating capacity	kW	726,4	828,1	1001,4	1138,6	1283,2	1459,8	1589,2	1809,3	1911,8	2159,8	2376,5	2610,0
Input power	kW	154,8	174,8	209,3	234,9	264,8	302,9	332,5	371,1	396,0	450,7	504,3	547,7
Heating total input current	A	260,0	298,0	339,0	381,0	418,0	492,0	545,0	606,0	624,0	733,0	812,0	900,0
COP	W/W	4,69	4,74	4,78	4,85	4,85	4,82	4,78	4,88	4,83	4,79	4,71	4,77
Water flow rate system side	l/h	126142	143812	173923	197757	222889	253571	276062	314312	332129	375231	412895	453465
Pressure drop system side	kPa	45	45	44	45	45	44	43	44	31	28	28	32
Water flow rate source side	I/h	168271	191878	232387	264585	298364	339696	368017	421779	444410	502013	549582	603144
Pressure drop source side	kPa	114	92	85	65	73	101	70	91	97	122	112	66

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

⁽¹⁾ Only for sizes from 6703 to 9603
(2) Water produced from 0 °C ÷ 16 °C
(3) Water produced from -8 °C up to 10 °C
(4) Not available for the condenserless "E"
(5) The 230V and 500V power supplies are only available for sizes 0701 - 0801 - 0901 - 1101 - 1251 - 1401 - 2502 - 2802

WFN 6703 - 9603 - version ° - gas R134a

Size		6703	7203	8403	9603
Cooling performance 12 °C/7 °C (1)					
Cooling capacity	kW	1691,1	1925,6	2120,1	2310,0
Input power	kW	322,4	364,9	407,2	452,6
Cooling total input current	A	505,0	594,0	660,0	733,0
EER	W/W	5,00	5,00	5,00	5,00
Water flow rate system side	l/h	290696	330989	364406	397041
Pressure drop system side	kPa	46	52	39	46
Water flow rate source side	l/h	343740	390980	431894	471655
Pressure drop source side	kPa	70	70	58	69
Heating performance 40 °C / 45 °C (2)					
Heating capacity	kW	1885,5	2129,2	2348,8	2575,2
Input power	kW	401,0	454,4	501,6	558,6
Heating total input current	A	619,0	728,0	803,0	893,0
COP	W/W	5,00	5,00	5,00	5,00
Water flow rate system side	l/h	327527	369895	408061	447398
Pressure drop system side	kPa	64	63	52	62
Water flow rate source side	l/h	436659	493020	542047	593071
Pressure drop source side	kPa	105	115	86	103

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

Size			0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Refrigerant gas: °		'												
SEER - 12/7 (EN14825: 2018) . refrigerant	gas R134a (1)												
SEER	0	W/W	-	-	-	-	-	-	-	-	-	-	-	-
JEEK	А	W/W	6,64	6,87	6,80	6,55	6,76	6,83	6,79	6,85	6,94	6,94	6,62	6,75
Sassanal officiones	0	%	-	-	-	-	-	-	-	-	-	-	-	-
Seasonal efficiency	А	%	262,60	271,70	269,00	259,00	267,50	270,00	268,40	270,90	274,50	274,50	261,70	267,10
(1) Calculation performed with VARIABLE wa	ater flow rate a	ind VARIABLE	outlet tempe	rature.										
Size			2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Refrigerant gas: °														
SEER - 12/7 (EN14825: 2018) . refrigerant	gas R134a (1)					-							
SEER	0	W/W	-	-	-	-	-	-	-	-	6,85	7,02	6,98	6,88
SEEK	Α	W/W	7,06	7,19	7,07	7,23	7,24	7,18	7,01	7,14	7,37	7,44	7,31	7,34
Seasonal efficiency	0	%	-	-	-	-	-	-	-	-	270.8%	277.7%	276.2%	272.3%
Seasonal eniciency	A	%	279.5%	284.6%	279.8%	296.3%	286.5%	284.3%	277.3%	282.4%	291.9%	294.5%	289.5%	290.4%
(1) Calculation performed with VARIABLE was	ater flow rate a	ind VARIABLE	outlet tempe	rature.										
Size					070)1		0801		0	901		1101	
Refrigerant gas: °														
UE 813/2013 performance in average am	bient conditi	ons (average	e) - 55 °C - Pd	esignh ≤ 40	00 kW (1)									
Ddacianh	0		kW		-			-			-		-	
Pdesignh	A		kW		264,	00		294,00		33	39,00		417,00	
CCOD	0		W/W		-			-			-		-	
SCOP	A		W/W		4,5	8		4,63		1	4,55		4,73	
neh	0		%		-			-			-		-	
ηsh	Α		%		175.	00		177.00		17	74.00		181.00	

⁽¹⁾ Efficiencies for average temperature applications (55 °C)

PERFORMANCE SPECIFICATIONS EVAPORATING UNITS

WFN - AE- gas R134a

Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Evaporator: E													
Cooling performance 12 °C/7 °C - gas R134a (1)													
Cooling capacity	kW	162,7	185,3	208,6	264,5	289,4	331,9	398,9	449,2	519,2	588,2	640,8	701,8
Input power	kW	41,4	47,2	53,8	65,8	71,8	81,7	98,8	111,7	125,2	141,5	158,8	175,4
Cooling total input current	Α	74,0	83,0	94,0	109,0	124,0	141,0	164,0	185,0	203,0	236,0	263,0	290,0
EER	W/W	3,93	3,92	3,88	4,02	4,03	4,06	4,04	4,02	4,15	4,16	4,03	4,00
Evaporator water flow rate	l/h	27948	31843	35845	45444	49721	57032	68528	77175	89209	101057	110092	120581
Pressure drop evaporator side	kPa	32	36	37	32	32	33	22	28	22	30	36	21
Length of refrigerant lines from/to 0 - 10 m													
Gas line (C1)	Ø	42,0	54,0	54,0	54,0	67,0	67,0	67,0	76,0	76,0	89,0	89,0	89,0
Gas line (C2)	Ø	-	-	-	-	-	-	-	-	-	-	-	-
Gas line (C3)	Ø	-	-	-	-	-	-	-	-	-	-	-	-
Liquid line (C1)	Ø	28,0	35,0	35,0	35,0	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	-	-	-	-	-	-	-	-	-	-	-	-
Liquid line (C3)	Ø	-	-	-	-	-	-	-	-	-	-	-	-

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Evaporator: E													
Cooling performance 12 °C/7 °C - gas R134a (1)													
Cooling capacity	kW	584,6	668,6	803,3	911,8	1043,5	1186,8	1284,6	1414,9	1544,3	1758,8	1912,5	2076,9
Input power	kW	143,3	163,2	196,5	222,8	249,8	283,2	317,9	349,1	373,7	422,6	474,7	523,3
Cooling total input current	Α	246,7	282,2	326,3	368,7	405,5	472,6	525,9	578,3	606,7	705,8	785,6	867,1
EER	W/W	4,08	4,10	4,09	4,09	4,18	4,19	4,04	4,05	4,13	4,16	4,03	3,97
Evaporator water flow rate	l/h	100443	114870	138020	156649	179280	203906	220716	243093	265322	302189	328596	356829
Pressure drop evaporator side	kPa	41	33	30	23	27	36	25	30	35	44	40	23
Length of refrigerant lines from/to 0 - 10 m													
Gas line (C1)	Ø	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	-	-	-	-	-	-	-	42,0	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	-	-	-	-	-	-	-	-	54,0	54,0	54,0	54,0

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

WFN - °E - gas R134a

Size		6703	7203	8403	9603
Evaporator: E					
Cooling performance 12 °C / 7 °C - gas R134a (1)					
Cooling capacity	kW	1500,1	1704,7	1830,1	1998,5
Input power	kW	375,4	424,4	474,7	524,9
Cooling total input current	A	609,0	708,0	786,0	869,0
EER	W/W	4,00	4,02	3,86	3,81
Evaporator water flow rate	I/h	257735	292888	314432	343357
Pressure drop evaporator side	kPa	36	41	29	35
Length of refrigerant lines from/to 0 - 10 m					
Gas line (C1)	Ø	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	76,0	88,9	88,9	88,9
iquid line (C1)	Ø	54,0	54,0	54,0	54,0
iquid line (C2)	Ø	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	54,0	54,0	54,0	54,0

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

ELECTRIC DATA

Size			0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Electric data														
Maximum current (FLA)		Α	106,0	119,0	136,0	162,0	183,0	208,0	243,0	275,0	305,0	350,0	389,0	427,0
Peak current (LRA)		A	166,0	195,0	232,0	303,0	317,0	344,0	439,0	468,0	589,0	653,0	808,0	920,0
Size			2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Electric data														
Marinarina sumant (FLA)	٥	Α	-	-	-	-	-	-	-	-	913,0	1050,0	1166,0	1281,0
Maximum current (FLA)	A	A	365,0	416,0	486,0	549,0	609,0	700,0	777,0	854,0	913,0	1050,0	1166,0	1281,0
D I	0	A	-	-	-	-	-	-	-	-	1198,0	1353,0	1585,0	1774,0
Peak current (LRA)	A	A	500,0	552,0	682,0	743,0	894,0	1003,0	1197,0	1347,0	1198,0	1353,0	1585,0	1774,0

GENERAL TECHNICAL DATA

WFN - A

Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Compressor													
Туре	type						Scr	ew					
Compressor regulation	Туре						On-	-Off					
Number	no.	1	1	1	1	1	1	1	1	1	1	1	1
Circuits	no.	1	1	1	1	1	1	1	1	1	1	1	1
Refrigerant	type						R1:	34a					
Refrigerant load circuit 1 (1)	kg	41,0	41,0	38,0	59,0	57,0	72,0	66,0	61,0	85,0	81,0	110,0	104,0
System side heat exchanger													
Туре	type						Shell ar	nd tube					
Number	no.	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	Туре						Groove	d joints					
Sizes (in/out)	Ø	4"	4"	4"	4"	5"	6"	6"	6"	6"	6"	8"	8"
Source side heat exchanger													
Туре	type						Shell ar	nd tube					
Number	no.	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	Туре						Groove	d joints					
Sizes (in/out)	Ø	3"	3"	3"	3"	4"	4"	4"	4"	5"	5"	6"	6"

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

Size			2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Compressor														
Туре	°,A	type						Sci	ew					
Compressor regulation	°,A	Туре						0n	-Off					
Number	°,A	no.	2	2	2	2	2	2	2	2	3	3	3	3
Circuits	°,A	no.	2	2	2	2	2	2	2	2	3	3	3	3
Refrigerant	°,A	type						R1	34a					
Refrigerant load circuit 1 (1)	0	kg	-	-	-	-	-	-	-	-	107,0	115,0	136,0	157,0
Keirigeralit loau tirtuit 1 (1)	A	kg	50,0	53,0	81,0	71,0	70,0	123,0	124,0	121,0	106,0	104,0	110,0	120,0
Defrigerant lead circuit 2 (1)	0	kg	-	-	-	-	-	-	-	-	107,0	115,0	136,0	157,0
Refrigerant load circuit 2 (1)	A	kg	50,0	53,0	81,0	71,0	70,0	123,0	124,0	121,0	106,0	104,0	110,0	120,0
Defii nevent leed sinsuit 2 (1)	0	kg	-	-	-	-	-	-	-	-	107,0	115,0	136,0	157,0
Refrigerant load circuit 3 (1)	A	kg	-	-	-	-	-	-	-	-	106,0	104,0	110,0	120,0
System side heat exchanger														
Туре	°,A	type						Shell a	nd tube					
Number	°,A	no.	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,A	Туре						Groove	d joints					
Sizes (in/out)	°,A	Ø	8"	8"	8"	8"	10"	10"	10"	10"	10"	10"	10"	10"
Source side heat exchanger														
Туре	°,A	type						Shell a	nd tube					
Number	°,A	no.	2	2	2	2	2	2	2	2	3	3	3	3
Connections (in/out)	°,A	Туре						Groove	d joints					
Cinco (in /out)	0	Ø	-	-	-	-	-	-	-	-	5"	5"	6"	6"
Sizes (in/out)	A	Ø	4"	4"	4"	4"	5"	6"	6"	6"	-	-	-	-

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

SOUND DATA

Sound data calculated with functioning in cooling mode - R134a gas

Size			0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Set-up: K														
Sound data calculated in cooling mode (1)														
Constanting	0	dB(A)	-	-	-	-	-	-	-	-	-	-	-	-
Sound power level –	Α	dB(A)	78,0	78,2	77,9	79,8	80,4	80,9	81,1	81,5	84,3	82,6	85,1	84,5

(1) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Size			0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Set-up: L														
Sound data calculated in cooling mode (1)													
Cound normal land	0	dB(A)	-	-	-	-	-	-	-	-	-	-	-	-
Sound power level –	A	dB(A)	81,0	81,2	80,9	82,8	83,4	83,9	84,1	84,5	87,3	85,5	88,1	87,5

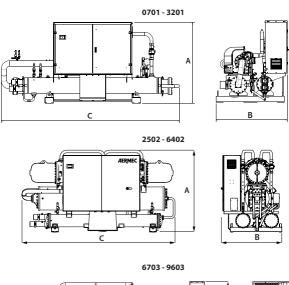
(1) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

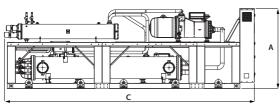
Size			0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Set-up: °														
Sound data calculated in cooling mode (1)														
Country and a second second	٥	dB(A)	-	-	-	-	-	-	-	-	-	-	-	-
Sound power level —	Λ	YD(V)	07.7	00 N	07.7	90.1	00.2	01.2	00.5	00.7	02.2	02.5	07 /	010

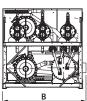
(1) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Size			2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Set-up: K														
Sound data calculated in cooling mode (1))													
Country work and	٥	dB(A)	-	-	-	-	-	-	-	-	88,1	87,3	89,8	90,3
Sound power level –	Α	dB(A)	83,6	83,6	84,5	85,2	86,1	85,6	87,8	88,3	88,1	87,3	89,8	90,3

(1) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).


Size			2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Set-up: L														
Sound data calculated in cooling mode (1)														
Country and a supplier of	0	dB(A)	-	-	-	-	-	-	-	-	91,1	90,2	92,8	93,3
Sound power level —	A	dB(A)	86.6	86.6	87.5	88.2	89,1	88.5	90.8	91,3	91.1	90.2	92,8	93.3


(1) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).


Size			2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Set-up: °														
Sound data calculated in cooling mode (1)														
Cound nouse level	0	dB(A)	-	-	-	-	-	-	-	-	97,0	97,2	99,5	100,0
Sound power level –	Α	dB(A)	93,5	94,0	94,0	94,5	95,0	95,5	97,5	98,0	97,0	97,2	99,5	100,0

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

WFN 0701-9603 ver. A

WFN 0701-9603 ver. A													
Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Dimensions and weights - standard configuration													
A	mm	1720	1720	1720	1720	1790	1865	1865	1865	1887	1887	1920	1920
В	mm	1450	1450	1450	1510	1550	1610	1610	1610	1610	1610	1630	1630
<u>C</u>	mm	3480	3480	3480	3470	3445	3560	4100	4100	4140	4252	4290	4290
Empty weight	kg	1610	1630	1630	2120	2130	2350	2940	2980	3260	3320	3820	3870
Dimensions and weights - quiet configuration													
A	mm	1720	1720	1720	1720	1790	1865	1865	1865	1887	1887	1920	1920
В	mm	1450	1450	1450	1540	1600	1610	1610	1610	1630	1630	1645	1645
C	mm	3480	3480	3480	3470	3445	3560	4100	4100	4140	4252	4290	4290
Empty weight	kg	1770	1790	1790	2280	2290	2510	3120	3170	3450	3510	4030	4080
Super silenced equipment dimensions and weights													
A	mm	1720	1720	1720	1720	1790	1865	1865	1865	1887	1887	1920	1920
В	mm	1450	1450	1450	1540	1600	1610	1610	1610	1630	1630	1645	1645
C	mm	3480	3480	3480	3470	3445	3560	4100	4100	4140	4252	4290	4290
Empty weight	kg	1960	1980	1980	2470	2480	2700	3340	3390	3670	3730	4280	4330
Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Dimensions and weights - standard configuration													
A	mm	2000	2075	2195	2195	2340	2432	2440	2432	2250	2250	2250	2250
<u>B</u>	mm	1500	1500	1575	1575	1585	1845	1800	1800	2200	2200	2200	2200
C	mm	4320	4345	4380	4380	4395	4535	4605	4605	6840	6840	6840	6840
Empty weight	kg	3810	4100	5690	5750	6300	6670	6970	7070	10320	11670	12270	12360
Dimensions and weights - quiet configuration													
A	mm	2000	2075	2195	2195	2340	2432	2440	2432	2250	2250	2250	2250
В	mm	1500	1500	1575	1575	1585	1845	1800	1800	2200	2200	2200	2200
C	mm	4320	4345	4650	4650	4600	5015	5150	5150	6840	6840	6840	6840
Empty weight	kg	4120	4410	6050	6120	6670	7040	7420	7490	10880	12230	12950	12990
Super silenced equipment dimensions and weights													
A	mm	2000	2075	2195	2195	2340	2432	2440	2432	2250	2250	2250	2250
												2222	2200
В	mm	1500	1500	1575	1575	1585	1845	1800	1800	2200	2200	2200	2200
B C	mm mm	1500 4320	1500 4345	1575 4650	1575 4650	1585 4600	1845 5015	1800 5150	1800 5150	2200 6840	2200 6840	6840	6840

WFN 6703-9603 ver. $^{\circ}$

Size		6703	7203	8403	9603
Dimensions and weights - standard configuration					
A	mm	2250	2250	2250	2250
В	mm	2200	2200	2200	2200
C	mm	5650	5650	5650	5650
Empty weight	kg	9330	9910	10130	10200
Dimensions and weights - quiet configuration					
1	mm	2250	2250	2250	2250
3	mm	2200	2200	2200	2200
	mm	5650	5650	5650	5650
mpty weight	kg	9890	10470	10760	10830
Super silenced equipment dimensions and weights					
1	mm	2250	2250	2250	2250
}	mm	2200	2200	2200	2200
	mm	5650	5650	5650	5650
Empty weight	kg	10540	11120	11510	11580

[■] For the sizes of D-T-E versions please contact the factory.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

[■] For the size of the units with the RIF accessory we ask you to contact the headquarters.

WMX

Water-water chiller

Cooling capacity 280,1 ÷ 324,2 kW

- Compact design
- Extremely flexible and reliable

DESCRIPTION

Indoor unit for the production of chilled water, equipped with magnetic levitation centrifugal compressors and system side, flooded source heat exchangers that guarantee a 50% reduction of the refrigerant load in comparison to conventional flooded heat exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

The technological choices made, always oriented to the highest quality and efficiency can reach 5.71 EER values (class A for the working conditions Eurovent).

EFFICIENCY

A High efficiency

U Very high efficiency

Both units can be silenced.

FEATURES

- 5 times lighter than an equivalent screw compressor.
- Extremely compact wide to allow access through a standard doorway.
- High efficiency with generously sizes heat exchanger.

Two-stage, oil-free centrifugal compressor with latest-

generation magnetic levitation

Oil-free operation without mechanical friction it is possible thanks to the use of magnetic levitation bearings that also ensure the total absence of vibration and low frequency noise.

Provided with inverter technology that permits capacity modulation down to 30% A version.

Built-in device to reduce starting current (only 6 Amps!)

Operating field

Water produced from 20 °C up to 45 °C on Condenser side and from 5 °C up to 20 °C on Evaporator side.

Acoustic chiller enclosure (option)

in galvanised sheet metal of suitable thickness insulated on the inside with sound-proofing material.

CONTROL

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the

operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

CONFIGURATOR

Field	Description	
1,2,3	WMX	
4,5,6	Size 300	
7	Efficiency	
Α	High efficiency	

Field		Description
	U	Very high efficiency
8		Version
	0	Standard
	L	Silenced

PERFORMANCE SPECIFICATIONS

Size			300
Efficiency: A			
Cooling performance 12 °C/7 °C(1)			
Cooling capacity	°,L	kW	324,2
Input power	°,L	kW	60,3
Cooling total input current	°,L	A	94,0
EER	°,L	W/W	5,37
Water flow rate system side	°,L	l/h	55761
Pressure drop system side	°,L	kPa	34
Water flow rate source side	°,L	l/h	65750
Pressure drop source side	°,L	kPa	41
(1) Date 14511:2022; Water user side 12 °C / 7 °C; V	Vater source side 30 °C / 35 °C		

Size			300
Efficiency: U			
Cooling performance 12 °C / 7 °C (1)			
Cooling capacity	°,L	kW	280,1
Input power	°,L	kW	48,9
Cooling total input current	°,L	A	78,0
EER	°,L	W/W	5,72
Water flow rate system side	°,L	l/h	48180
Pressure drop system side	°,L	kPa	25
Water flow rate source side	°,L	l/h	56338
Pressure drop source side	°,L	kPa	30

(1) Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C

ENERGY INDICES (REG. 2016/2281 EU)

Size			300
SEER - 12/7 (EN14825: 2018) (1)			·
CLLD	A	W/W	8,99
SEER	U	W/W	9,04
Cassanal afficiency	A	%	356,6%
Seasonal efficiency	U	%	358,5%
SEPR - (EN 14825: 2018) High te	emperature (2)		
CEDD	A	W/W	9,70
SEPR	U	W/W	10,35
(4) 4 1 1 4 4 4 1 4 1 4 1			

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Calculation performed with FIXED water flow rate.

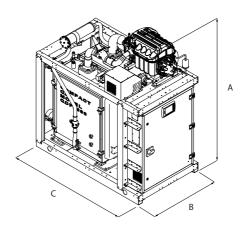
ELECTRIC DATA

Size	-		300
Efficiency: A, U			·
Electric data			
Maximum current (FLA)	°,L	A	135,0
Peak current (LRA)	°,L	A	6,0

GENERAL TECHNICAL DATA

Size			300
Efficiency: A, U	'		
Compressor			
Туре	°,L	type	Centrifugal
Compressor regulation	°,L	Туре	Inverter
Number	°,L	no.	1
Circuits	°,L	no.	1
Refrigerant	°,L	type	R134a
Source side heat exchanger			
Туре	°,L	type	Shell and tube - flooded compact
Number	°,L	no.	1
Connections (in/out)	°,L	Туре	Grooved joints
Sizes (in/out)	°,L	Ø	4"
System side heat exchanger			
Туре	°,L	type	Shell and tube - flooded compact with Spray system
Number	°,L	no.	1
Connections (in/out)	°,L	Туре	Grooved joints
Sizes (in/out)	°,L	Ø	4"
Size			300
Efficiency: A			
Sound data calculated in cooling	mode (1)		
Cound nouser lovel	0	dB(A)	90,0
Sound power level	L	dB(A)	84,0
(1) Sound power calculated on the external surface (in compliance	basis of measurements made in accord with UNI EN ISO 3744).	ance with UNI EN ISO 9614-2, as required for Eurovent o	certification. Sound pressure (cold functioning) measured in free field, 10m away from the uni
Size	,		300
Efficiency: U			

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).


dB(A)

dB(A)

DIMENSIONS

Sound power level

Sound data calculated in cooling mode (1)

Size			300
Efficiency: A, U			
Dimensions and weights			
Λ	0	mm	1905
A	L	mm	1942
В	°,L	mm	1041
(°,L	mm	1770
Emptywoight	0	kg	2025
Empty weight	L	kg	2210

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

85,0

78,0

WMG

Water-water chiller

Cooling capacity 282,3 ÷ 312,4 kW

- High efficiency also at partial loads ESEER 8,4
- Compact design
- Extremely flexible and reliable

DESCRIPTION

Indoor unit for the production of chilled water, equipped with magnetic levitation centrifugal compressors and system side, flooded source heat exchangers that guarantee a 50% reduction of the refrigerant load in comparison to conventional flooded heat exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

The technological choices made, always oriented to the highest quality and efficiency can reach 5.71 EER values (class A for the working conditions Eurovent).

EFFICIENCY

A High efficiency

U Very high efficiency

Both units can be silenced.

FEATURES

- 5 times lighter than an equivalent screw compressor.
- Extremely compact wide to allow access through a standard doorway.
- High efficiency with generously sizes heat exchanger.

HFO R1234ze refrigerant gas

HFO R1234ze is a mixture featuring:

da ODP = 0 e GWP (Global Warming Potential) = 7, R134a GWP = 1430; with thermodynamic properties that guarantee and sometimes improve efficiencies achieved with HFC refrigerants.

Two-stage, oil-free centrifugal compressor with latestgeneration magnetic levitation

Oil-free operation without mechanical friction it is possible thanks to the use of magnetic levitation bearings that also ensure the total absence of vibration and low frequency noise.

Provided with inverter technology that permits capacity modulation down to 30% A version.

Built-in device to reduce starting current (only 6 Amps!)

Operating field

Water produced from 20 °C up to 55 °C on Condenser side and from 5 °C up to 20 °C on Evaporator side.

Acoustic chiller enclosure (option)

in galvanised sheet metal of suitable thickness insulated on the inside with sound-proofing material.

CONTROL

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

CONFIGURATOR

Field	Description
1,2,3	WMG
1 5 6	Size
4,5,6	300
7	Efficiency
Α	High efficiency

Field	Description
U	Very high efficiency
8	Version
0	Standard
L	Silenced

48548

25

56739

29

PERFORMANCE SPECIFICATIONS

Cooling performance 12 °C/7 °C(1)	Size			300
Cooling capacity	Efficiency: A			
Input power °,L kW 57,6 Cooling total input current °,L A 85,0 EER °,L W/W 5,42 Water flow rate system side °,L I/h 53731 Pressure drop system side °,L I/h 63303 Pressure drop source side °,L I/h 63303 Pressure drop source side °,L I/h 63303 Pressure drop source side °,L kPa 36 (1) Date 14511:2022; Water user side 12 °C/7 °C; Water source side 30 °C/35 °C Size 300 Efficiency: U Cooling performance 12 °C/7 °C(1) Cooling capacity °,L kW 282,3 Input power °,L kW 49,1	Cooling performance 12 °C / 7 °C (1)			
Cooling total input current Cooling capacity Cooling capacity Cooling total input current A 85,0 84,0 Social Soc	Cooling capacity	°,L	kW	312,4
## FEER	Input power	°,L	kW	57,6
Water flow rate system side °,L Pressure drop system side °,L Water flow rate source side °,L I/h 63303 Pressure drop source side °,L I/h 63303 RPa 36 (1) Date 14511:2022; Water user side 12 °C/7 °C; Water source side 30 °C/35 °C Size	Cooling total input current	°,L	A	85,0
Pressure drop system side	EER	°,L	W/W	5,42
Water flow rate source side ',L I/h 63303 Pressure drop source side ',L kPa 36 (1) Date 14511:2022; Water user side 12 °C/7 °C; Water source side 30 °C/35 °C 300 Efficiency: U Cooling performance 12 °C/7 °C(1) Cooling capacity ',L kW 282,3 Input power ',L kW 49,1	Water flow rate system side	°,L	l/h	53731
Pressure drop source side °,L kPa 36 (1) Date 14511:2022; Water user side 12 °C/7 °C; Water source side 30 °C/35 °C 300 Size 300 Efficiency: U Cooling performance 12 °C/7 °C(1) Cooling capacity °,L kW 282,3 Input power °,L kW 49,1	Pressure drop system side	°,L	kPa	31
(1) Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C Size	Water flow rate source side	°,L	l/h	63303
Size 300 Efficiency: U Cooling performance 12 °C/7 °C(1) Cooling capacity °,L kW 282,3 Input power °,L kW 49,1	Pressure drop source side	°,L	kPa	36
Efficiency: U Cooling performance 12 °C/7 °C(1) Cooling capacity °,L kW 282,3 Input power °,L kW 49,1	(1) Date 14511:2022; Water user side 12 $^{\circ}$ C / 7 $^{\circ}$ C; Wa	ter source side 30 °C / 35 °C		
Cooling performance 12 °C/7 °C(1) Cooling capacity °,L kW 282,3 Input power °,L kW 49,1	Size			300
Cooling capacity °,L kW 282,3 Input power °,L kW 49,1	Efficiency: U			
Input power °,L kW 49,1	Cooling performance 12 °C/7 °C(1)			
	Cooling capacity	°,L	kW	282,3
Cooling total input current °,L A 74,0	Input power	°,L	kW	49,1
	Cooling total input current	°,L	A	74,0
EER °,L W/W 5,75	EER	°,L	W/W	5,75

I/h

kPa

I/h

kPa

(1) Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C

°,L

ENERGY INDICES (REG. 2016/2281 EU)

Size			300
SEER - 12/7 (EN14825: 2018) (1)	· ·		
SEER	A	W/W	8,88
DEEK	U	W/W	8,91
Concornal officioness	A	%	352,0%
Seasonal efficiency	U	%	353,4%
SEPR - (EN 14825: 2018) High temp	perature (2)		
SEPR	A	W/W	9,96
JETR	U	W/W	10,37

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Water flow rate system side Pressure drop system side

Water flow rate source side

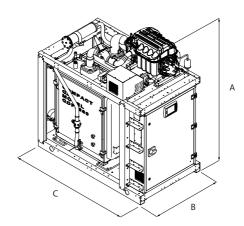
Pressure drop source side

Size			300
Efficiency: A, U			
Electric data			
Maximum current (FLA)	°,L	A	150,0
Peak current (LRA)	°,L	A	6,0

GENERAL TECHNICAL DATA

Size			300
Efficiency: A, U			
Compressor			
Туре	°,L	type	Centrifugal
Compressor regulation	°,L	Туре	Inverter
Number	°,L	no.	1
Circuits	°,L	no.	1
Refrigerant	°,L	type	R1234ze
Source side heat exchanger			
Туре	°,L	type	Shell and tube - flooded compact
Number	°,L	no.	1
Connections (in/out)	°,L	Туре	Grooved joints
Sizes (in/out)	°,L	Ø	4"
System side heat exchanger			
Туре	°,L	type	Shell and tube - flooded compact with Spray system
Number	°,L	no.	1
Connections (in/out)	°,L	Туре	Grooved joints
Sizes (in/out)	°,L	Ø	4"
Size			300
Efficiency: A	'		
Sound data calculated in cooling i	mode (1)		
Cound namer land	0	dB(A)	90,0
Sound power level	L	dB(A)	85,0
(1) Sound power calculated on the be external surface (in compliance v	pasis of measurements made in accord with UNI EN ISO 3744).	ance with UNI EN ISO 9614-2, as required for Eurovent co	ertification. Sound pressure (cold functioning) measured in free field, 10m away from the unit
Size	,		300
Efficiency: U			

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).


dB(A)

dB(A)

DIMENSIONS

Sound power level

Sound data calculated in cooling mode (1)

Size			300
Efficiency: A, U			
Dimensions and weights			
Λ.	0	mm	1905
A	L	mm	1942
В	°,L	mm	1041
C	°,L	mm	1770
Empty weight	0	kg	2065
Empty weight	L	kg	2250

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. 0442633111 - Telefax 044293577 www.aermec.com

84,0

78,0

WTX

Water-water chiller

Cooling capacity 222,9 ÷ 1958,4 kW

- Extended operating range
- Possibility of selecting between heat exchangers with 1 or 2 passes on water side

DESCRIPTION

Indoor unit producing chilled water equiped with magnetic levitation centrifugal compressors and shell & tube heat exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

The technological choices made always focus on maximum quality and efficiency, thereby achieving EER > 6 values (class A for Eurovent operating conditions).

EFFICIENCY

A High efficiency
U Very high efficiency
Both units can be silenced.

EEATLIDES

Two-stage, oil-free centrifugal compressor with latestgeneration magnetic levitation

Oil-free operation without mechanical friction it is possible thanks to the use of magnetic levitation bearings that also ensure the total absence of vibration and low frequency noise.

The compressor is equipped with an inverter for continuous load modulation by varying rpm (from 30% to 100%).

Built-in device to reduce starting current (only 6 Amps!)

Operating field

Water produced from 15 °C up to 50 °C on Condenser side and from 5 °C up to 25 °C on Evaporator side.

Flooded Evaporator with subcooler

Subcooler effect

- Superheats compressor gas intake;
- Subcools thermostatic valve fluid intake;
- Increases chiller yield and ensures gas suction from compressor.

Condenser

— With refrigerant on shell side and water on pipe side

Acoustic chiller enclosure (option)

in galvanised sheet metal of suitable thickness insulated on the inside with sound-proofing material.

CONTROL

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

FL: Flow switch

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

AVX: Spring anti-vibration supports.

ACCESSORIES COMPATIBILITY

Model	Ver	1300	1350	2300	2350	3300	3325	3350	4325	4350
AER485P1	A,U	•	•	•	•	•	•	•	•	•
AERBACP	A,U	•	•				•	•		•
FL	A,U	•	•	•			•	•	•	•
MULTICHILLER-EVO	A.U									•

■ With the MULTICHILLER_EVO accessory, it is necessary to add AER485P1 for each connected unit.

Antivibration

Ver	1300	1350	2300	2350	3300	3325	3350	4325	4350
A, U	AVX. (1)								

(1) Contact us.

CONFIGURATOR

Field	Description
1,2,3	WTX
4,5,6,7	Size 1300, 1350, 2300, 2350, 3300, 3325, 3350, 4325, 4350
8	Efficiency
Α	High efficiency
U	Very high efficiency
9	Exchanger
1	One pass on water side (1)

EXCHANGERS

Over-sized tube core exchangers ensure excellent performances at full and partial loads.

Flooded evaporator: with level adjustment through an electronic valve controlled by a level sensor.

Backflow condenser: with refrigerant on shell side and water on tube side.

■ From size 1300 to 2350, heat exchangers have 2 passes on the water side

Field	Description
2	Two passes on water side
10	Version
0	Standard
L	Silenced
11	Power supply
0	400V ~ 3 50Hz with circuit breakers on compressors and auxiliary circuit

(1) Option available only for size from 3300 to 4350.

Starting from size WTX 3300, heat exchangers are available as versions with one or two passes on the water side, to meet any plant installation requirement. The dimensions of the two configurations ensure similar performances (same approach to heat exchangers). The difference is that the version with two passes on the water side due offers the convenience of water connections all on the same side, against a generally higher but nonetheless limited drop in pressure compared to the version with one pass on the water side.

PERFORMANCE SPECIFICATIONS

WTX - A

WIV-V										
Size		1300	1350	2300	2350	3300	3325	3350	4325	4350
Exchanger: 1										
Cooling performance 12 °C/7 °C (1)										
Cooling capacity	kW	-	-	-	-	1054,4	1214,3	1466,1	1716,2 (2)	1955,0 (2)
Input power	kW	-	-	-	-	211,4	219,9	281,6	315,3	375,1
Cooling total input current	А	-	-	-	-	317,0	356,0	435,0	503,0	580,0
EER	W/W	-	-	-	-	4,99	5,52	5,21	5,44	5,21
Water flow rate system side	l/h	-	-	-	-	181266	208751	252017	294970	336022
Pressure drop system side	kPa	-	-	-	-	32	39	31	24	31
Water flow rate source side	l/h	-	-	-	-	218376	247239	301544	350417	402059
Pressure drop source side	kPa	-	-	-	-	31	38	31	42	31

(1) Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C
(2) Sizes 4325 and 4350 not included in the EUROVENT certification programme because Cooling capacity > 1500 kW

Size		1300	1350	2300	2350	3300	3325	3350	4325	4350
Exchanger: 2										
Cooling performance 12 °C/7 °C(1)										
Cooling capacity	kW	351,3	488,5	702,8	899,4	1054,3	1215,9	1466,0	1715,9 (2)	1958,4 (2)
Input power	kW	70,8	94,3	141,8	164,1	212,6	220,6	283,8	318,8	380,0
Cooling total input current	A	106,0	145,0	212,0	255,0	317,0	356,0	435,0	503,0	580,0
EER	W/W	4,96	5,18	4,96	5,48	4,96	5,51	5,17	5,38	5,15
Water flow rate system side	l/h	60422	84006	120844	154630	181266	209053	252017	294970	336647
Pressure drop system side	kPa	32	30	40	33	54	77	54	60	82
Water flow rate source side	l/h	72792	100515	145584	183481	218376	247235	301544	350417	402062
Pressure drop source side	kPa	31	33	35	28	28	35	33	41	53

WTX - U

Size		1300	1350	2300	2350	3300	3325	3350	4325	4350
Exchanger: 1										
Cooling performance 12 °C/7 °C (1)									
Cooling capacity	kW	-	-	-	-	669,0	869,6	1002,7	1179,6	1336,9
Input power	kW	-	-	-	-	112,2	144,9	166,9	195,3	222,3
Cooling total input current	A	-	-	-	-	180,0	237,0	273,0	316,0	364,0
EER	W/W	-	-	-	-	5,96	6,00	6,01	6,04	6,01
Water flow rate system side	l/h	-	-	-	-	115004	149476	172333	202737	229777
Pressure drop system side	kPa	-	-	-	-	12	18	14	10	14
Water flow rate source side	l/h	-	-	-	-	135049	175273	202156	237660	269542
Pressure drop source side	kPa	-	-	-	-	12	17	13	17	13
(1) Date 14511:2022; Water user side	12 °C / 7 °C; Water so	urce side 30 °C / 35	°C							
Size		1300	1350	2300	2350	3300	3325	3350	4325	4350
Exchanger: 2										
Cooling performance 12 °C / 7 °C (1	1)							-		

Size		1300	1330	2300	2330	3300	5525	3330	4323	4330
Exchanger: 2										
Cooling performance 12 °C	/7°C(1)									
Cooling capacity	kW	222,9	334,1	445,9	559,7	669,0	840,1	1006,1	1191,4	1342,6
Input power	kW	37,5	55,9	75,1	94,3	112,5	140,7	167,2	198,4	223,4
Cooling total input current	A	60,0	91,0	120,0	158,0	180,0	237,0	273,0	316,0	364,0
EER	W/W	5,95	5,98	5,94	5,93	5,95	5,97	6,02	6,01	6,01
Water flow rate system side	l/h	38335	57444	76669	96214	115004	144425	172942	204799	230804
Pressure drop system side	kPa	12	13	16	12	21	32	24	26	37
Water flow rate source side	I/h	45016	67385	90033	113067	135049	169344	202690	240041	270255
Pressure drop source side	kPa	12	14	13	10	10	15	14	18	23
(4) 0										

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C

ENERGY INDICES (REG. 2016/2281 EU)

Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Exchanger: 1											
SEER - 12/7 (EN14825: 2018) (1)											
CEED	A	W/W	-	-	-	-	8,25	8,64	8,78	8,76	8,95
SEER	U	W/W	-	-	-	-	9,70	9,54	9,85	9,59	9,92
Consend off size as	A	%	-	-	-	-	326,8%	342,6%	348,2%	347,2%	354,8%
Seasonal efficiency	U	%	-	-	-	-	384,8%	378,4%	390,8%	380,6%	393,7%
SEPR - (EN 14825: 2018) High temperatu	ure (2)										
SEPR	A	W/W	-	-	-	-	8,75	9,92	9,33	9,71	9,35
DELK	U	W/W	-	-	-	-	11,80	11,36	11,44	11,49	11,47

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C
(2) Sizes 4325 and 4350 not included in the EUROVENT certification programme because Cooling capacity > 1500 kW

Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Exchanger: 2											
SEER - 12/7 (EN14825: 2018) (1)											
SEER	A	W/W	8,40	8,59	8,19	8,76	8,03	8,34	8,45	8,32	8,39
SEEK	U	W/W	9,69	9,07	9,47	9,73	9,54	9,31	9,66	9,28	9,60
Concernal officiency	A	%	332,9%	340,6%	324,5%	347,3%	318,1%	330,4%	334,9%	329,8%	332,6%
Seasonal efficiency	U	%	384,4%	359,9%	375,6%	386,3%	378,6%	369,5%	383,5%	368,1%	380,8%
SEPR - (EN 14825: 2018) High temperatu	ure (2)										
SEPR	А	W/W	8,26	9,17	8,25	9,70	8,64	9,75	9,17	9,48	9,08
SEPK	U	W/W	11,65	11,34	11,62	11,17	11,70	11,20	11,37	11,30	11,31

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Electric data											
Maximum current (FLA)	A,U	Α	135,0	210,0	270,0	420,0	405,0	405,0	630,0	630,0	630,0
Peak current (LRA)	A,U	Α	6,0	6,0	141,0	216,0	276,0	276,0	426,0	426,0	426,0

Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Compressor											
Туре	A,U	type					Centrifugal - Oil Fre	2			
Compressor regulation	A,U	Туре					Inverter				
Number	A,U	no.	1	1	2	2	3	3	3	4	4
Circuits	A,U	no.	1	1	1	1	1	1	1	1	1
Refrigerant	A,U	type					R134a		,		
Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Exchanger: 1											
System side heat excl	nanger										
Туре	A,U	type	-	-	-	-	Shell and tube	Shell and tube	Shell and tube	Shell and tube	Shell and tube
Number	A,U	no.	-	-	-	-	1	1	1	1	1
Connections (in/out)	A,U	Туре	-	-	-	-	Grooved joints	Grooved joints	Grooved joints	Grooved joints	Grooved joints
Sizes (in/out)	A,U	Ø	-	-	-	-	6"	10"	10"	6"	8"
Source side heat exch	anger										
Туре	A,U	type	-	-	-	-	Shell and tube	Shell and tube	Shell and tube	Shell and tube	Shell and tube
Number	A,U	no.	-	_	-	-	1	1	1	1	1
Connections (in/out)	A,U	Туре	-	-	-	-	Grooved joints	Grooved joints	Grooved joints	Grooved joints	Grooved joints
Sizes (in/out)	A,U	Ø	-	-	-	-	6"	6"	10"	8"	8"
Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Exchanger: 2											
System side heat excl	nanger										
Туре	A,U	type	Shell and tube	Shell and tube	Shell and tube	Shell and tube	Shell and tube				
Number	A,U	no.	1	1	1	1	1	1	1	1	1
Connections (in/out)	A,U	Туре	Grooved joints	Grooved joints	Grooved joints	Grooved joints	Grooved joints				
Sizes (in/out)	A,U	Ø	5″	5"	5"	6"	6"	10"	6"	8"	8"
Source side heat exch	anger										
Туре	A,U	type	Shell and tube	Shell and tube	Shell and tube	Shell and tube	Shell and tube				
Number	A,U	no.	1	1	1	1	1	1	1	1	1
Connections (in/out)	A,U	Туре	Grooved joints	Grooved joints	Grooved joints	Grooved joints	Grooved joints				
Sizes (in/out)	A,U	Ø	5"	5"	6"	6"	6"	6"	8"	8"	8"

SOUND DATA

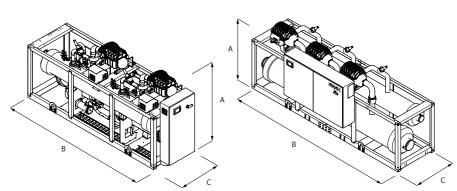
Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Efficiency: A											
Sound data calculated in cooling mode (1)										
Country work and	0	dB(A)	90,0	91,0	93,0	93,5	96,0	95,5	97,0	98,5	100,0
Sound power level -	L	dB(A)	84,0	85,0	87,0	87,5	90,0	89,5	91,0	92,5	94,0

(1) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Efficiency: U											
Sound data calculated in cooling mode (1)										
Count manual land	٥	dB(A)	87,0	88,0	90,0	88,0	90,0	91,0	94,0	94,0	97,0
Sound power level -	L	dB(A)	81.0	82.0	84.0	82.0	84.0	85.0	88.0	88.0	91.0

(1) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Efficiency: A											
Sound data calculated in cooling mode (1	1)										
Country would be a	0	dB(A)	90,0	91,0	93,0	93,5	96,0	95,5	97,0	98,5	100,0
Sound power level	L	dB(A)	84,0	85,0	87,0	87,5	90,0	89,5	91,0	92,5	94,0


(1) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Efficiency: U											
Sound data calculated in cooling mode (1))										
Carried an account level	٥	dB(A)	87,0	88,0	90,0	88,0	90,0	91,0	94,0	94,0	97,0
Sound power level –	L	dB(A)	81.0	82.0	84.0	82,0	84,0	85.0	88,0	88,0	91.0

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

WTX 1300 - 2350 WTX 3300 - 4350

Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Exchanger: 1	'										
Dimensions and weights											
A	A,U	mm	-	-	-	-	1970	2010	2010	2010	2280
В	A,U	mm	-	-	-	-	4966	4966	4966	4966	4966
C	A,U	mm	-	-	-	-	1640	1640	1640	1640	1732
Empty weight	A,U	kg	-	-	-	-	4090	4430	5120	5690	6640
Weight functioning	A,U	kg	-	-	-	-	4430	4810	5620	6250	7450
Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Exchanger: 2											
Dimensions and weights											
A	A,U	mm	1850	1950	1970	2010	2240	2280	2280	2280	2280
В	A,U	mm	3040	3040	3340	3440	3990	3990	3990	4966	4966
B C					3340 1240	3440 1240	3990 1732	3990 1732	3990 1836	4966 1836	4966 1836
B C Empty weight	A,U	mm	3040	3040							

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.

Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

WTG

Water-water chiller

Cooling capacity 246,6 ÷ 1959,4 kW

- Extended operating range
- Possibility of selecting between heat exchangers with 1 or 2 passes on water side

Indoor unit producing chilled water equiped with magnetic levitation centrifugal compressors and shell & tube heat exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

The technological choices made always focus on maximum quality and efficiency, thereby achieving EER > 6 values (class A for Eurovent operating conditions).

EFFICIENCY

A High efficiency **U** Very high efficiency Both units can be silenced.

Two-stage, oil-free centrifugal compressor with latestgeneration magnetic levitation

Oil-free operation without mechanical friction it is possible thanks to the use of magnetic levitation bearings that also ensure the total absence of vibration and low frequency noise.

The compressor is equipped with an inverter for continuous load modulation by varying rpm (from 30% to 100%).

Built-in device to reduce starting current (only 6 Amps!)

Water produced from 15 °C up to 50 °C on Condenser side and from 5 °C up to 25 °C on Evaporator side.

Flooded Evaporator

Evaporator

Low charge content

Condenser

With refrigerant on shell side and water on pipe side

Acoustic chiller enclosure (option)

in galvanised sheet metal of suitable thickness insulated on the inside with sound-proofing material.

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board. FL: Flow switch.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

AVX: Spring anti-vibration supports.

ACCESSORIES COMPATIBILITY

Model	Ver	1310	1490	2310	2490	3310	3400	3490	4400	4490
AER485P1	A,U	•	•	•	•	•	•	•	•	•
AERBACP	A,U	•						•	•	
FL	A,U	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	A.U									•

■ With the MULTICHILLER_EVO accessory, it is necessary to add AER485P1 for each connected unit.

Antivibration

Ver	1310	1490	2310	2490	3310	3400	3490	4400	4490
A, U	AVX. (1)								

(1) Contact us.

CONFIGURATOR

Field	Description
1,2,3	WTG
4,5,6,7	Size 1310, 1490, 2310, 2490, 3310, 3400, 3490, 4400, 4490
8	Version
Α	High efficiency
U	Very high efficiency
9	Exchanger
1	One pass on water side

Fiel	d	Description
	2	Two passes on water side
10		Set-up
	L	Silenced
	0	Standard
11		Power supply
	0	400V ~ 3 50Hz with circuit breakers on compressors and auxiliary circuit
12		Refrigerant gas
	0	R1234ze

EXCHANGERS

Over-sized tube core exchangers ensure excellent performances at full and partial loads.

Flooded evaporator: with level adjustment through an electronic valve controlled by a level sensor.

Backflow condenser: with refrigerant on shell side and water on tube side.

■ From size 1310 to 2490, heat exchangers have 2 passes on the water side

Starting from size WTG 3310, heat exchangers are available as versions with one or two passes on the water side, to meet any plant installation requirement. The dimensions of the two configurations ensure similar performances (same approach to heat exchangers). The difference is that the version with two passes on the water side due offers the convenience of water connections all on the same side, against a generally higher but nonetheless limited drop in pressure compared to the version with one pass on the water side.

PERFORMANCE SPECIFICATIONS

WTG - A

Size		1310	1490	2310	2490	3310	3400	3490	4400	4490
Exchanger: 1										
Cooling performance 12 °C/7 °C(1)		,		,						
Cooling capacity	kW	-	-	-	-	1049,5	1199,4	1409,4	1679,3 (2)	1955,0 (2)
Input power	kW	-	-	-	-	194,3	202,4	245,0	286,4	334,3
Cooling total input current	A	-	-	-	-	310,0	324,0	389,0	457,0	532,0
EER	W/W	-	-	-	-	5,40	5,93	5,75	5,86	5,85
Water flow rate system side	l/h	-	-	-	-	180402	206174	242254	288643	336022
Pressure drop system side	kPa	-	-	-	-	24	32	27	29	28
Water flow rate source side	l/h	-	-	-	-	213103	240238	283553	336857	392518
Pressure drop source side	kPa	-	-	-	-	23	23	24	27	19

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C
(2) Sizes 4400 and 4490 not included in the EUROVENT certification programme because Cooling capacity > 1500 kW

Size		1310	1490	2310	2490	3310	3400	3490	4400	4490
Exchanger: 2										
Cooling performance 12 °C / 7 °C (1)										
Cooling capacity	kW	349,7	469,7	699,6	899,3	1049,3	1199,2	1409,2	1679,2 (2)	1958,5 (2)
Input power	kW	66,4	81,4	132,2	158,8	196,5	204,4	248,0	290,2	339,1
Cooling total input current	Α	106,0	130,0	211,0	250,0	310,0	324,0	389,0	457,0	532,0
EER	W/W	5,27	5,77	5,29	5,66	5,34	5,87	5,68	5,79	5,78
Water flow rate system side	l/h	60134	80751	120268	154630	180402	206174	242254	288643	336647
Pressure drop system side	kPa	24	14	22	50	45	49	40	44	46
Water flow rate source side	l/h	71250	94518	142500	181033	213103	240238	283553	336857	393148
Pressure drop source side	kPa	23	18	23	32	33	32	42	47	39

WTG - U

Size		1310	1490	2310	2490	3310	3400	3490	4400	4490
Exchanger: 1										
Cooling performance 12 °C / 7 °C (1)										
Cooling capacity	kW	-	-	-	-	736,7	869,6	999,1	1159,6	1336,9
Input power	kW	-	-	-	-	120,2	140,2	153,5	186,2	211,9
Cooling total input current	A	-	-	-	-	205,0	233,0	254,0	311,0	349,0
EER	W/W	-	-	-	-	6,13	6,20	6,51	6,23	6,31
Water flow rate system side	l/h	-	-	-	-	126626	149476	171729	199301	229777
Pressure drop system side	kPa	-	-	-	-	12	17	14	14	13
Water flow rate source side	I/h	-	-	-	-	147066	173222	197868	230962	265867
Pressure drop source side	kPa	-	-	-	-	16	22	18	19	18

(1) Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 3	30 ℃ / 35 ℃
--	-------------

Size		1310	1490	2310	2490	3310	3400	3490	4400	4490
Exchanger: 2										
Cooling performance 12 °C/7 °C (1)										
Cooling capacity	kW	246,4	334,3	492,9	669,8	736,6	869,5	999,1	1159,5	1342,8
Input power	kW	40,1	50,9	80,1	105,5	120,7	140,3	154,1	187,0	212,7
Cooling total input current	А	69,0	85,0	137,0	173,0	205,0	233,0	254,0	311,0	349,0
EER	W/W	6,15	6,57	6,16	6,35	6,10	6,20	6,48	6,20	6,31
Water flow rate system side	l/h	42371	57462	84741	115160	126626	149476	171729	199301	230804
Pressure drop system side	kPa	12	7	11	28	22	26	20	21	22
Water flow rate source side	l/h	49186	66178	98371	132989	147066	173222	197868	230962	266902
Pressure drop source side	kPa	11	9	11	17	16	16	20	22	18

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C

ELECTRIC DATA

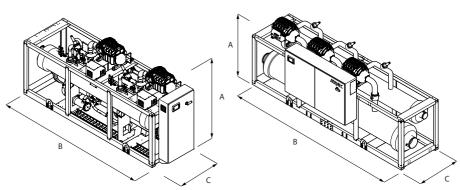
Size			1310	1490	2310	2490	3310	3400	3490	4400	4490
Electric data											
Maximum current (FLA)	A,U	Α	150,0	217,0	300,0	434,0	450,0	651,0	651,0	868,0	868,0
Peak current (LRA)	A,U	A	6,0	6,0	156,0	223,0	306,0	440,0	440,0	657,0	657,0

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C
(2) Sizes 4400 and 4490 not included in the EUROVENT certification programme because Cooling capacity > 1500 kW

GENERAL TECHNICAL DATA

Size			1310	1490	2310	2490	3310	3400	3490	4400	4490
Compressor											
Туре	A,U	type					Centrifugal - Oil Fr	ee			
Compressor regulation	A,U	Туре					Inverter				
Number	A,U	no.	1	1	2	2	3	3	3	4	4
Circuits	A,U	no.	1	1	1	1	1	1	1	1	1
Refrigerant	A,U	type					R1234ze				
Size			1310	1490	2310	2490	3310	3400	3490	4400	4490
Exchanger: 1											
System side heat exchanger											
Туре	A,U	type	-	-	-	-	Shell and tube	Shell and tube	Shell and tube	Shell and tube	Shell and tube
Number	A,U	no.	-	-	-	-	1	1	1	1	1
Source side heat exchanger											
Туре	A,U	type	-	-	-	-	Shell and tube	Shell and tube	Shell and tube	Shell and tube	Shell and tube
Number	A,U	no.	-	-	-	_	1	1	1	1	1
Size			1310	1490	2310	2490	3310	3400	3490	4400	4490
Exchanger: 2											
System side heat exchanger											
Туре	A,U	type					Shell and tube				
Number	A,U	no.	1	1	1	1	1	1	1	1	1
Source side heat exchanger											
Туре	A,U	type					Shell and tube				
Number	A,U	no.	1	1	1	1	1	1	1	1	1

SOUND DATA


Size			1310	1490	2310	2490	3310	3400	3490	4400	4490
Set-up: °											
Sound data calculated in cooling mode (1))										
County and a county level	А	dB(A)	89,0	91,0	92,0	94,0	94,0	93,0	96,0	94,0	97,0
Sound power level –	U	dB(A)	86.0	88.0	89.0	91.0	91.0	93.0	93.0	94.0	94.0

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

WTG 1310 - 2490

WTG 3310 - 4490

Size			1310	1490	2310	2490	3310	3400	3490	4400	4490
Exchanger: 1											
Dimensions and weights											
A	A,U	mm	-	-	-	-	2010	2010	2010	2280	2280
В	A,U	mm	-	-	-	-	4966	4966	4966	4966	4966
C	A,U	mm	-	-	-	-	1640	1640	1640	1732	1732
Size			1310	1490	2310	2490	3310	3400	3490	4400	4490
Exchanger: 2											
Dimensions and weights											
A	A,U	mm	1850	1970	2010	2280	2280	2280	2280	2280	2280
В	A,U	mm	3040	3040	3340	4390	3990	3990	4966	4966	4966
U											

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

MULTI-PURPOSE

Thanks to the special architecture of the refrigerant circuit and advanced control logic, the multi-purpose heat pump is able to simultaneously satisfy different installation requirements and to independently modulate the power delivered on each of them.

The ability to simultaneously meet the demand of the hot and cold circuit, whatever the proportion of the load on the two circuits may be, derives from the capacity of its control to switch the operation between the various possible modes.

MULTI-PURP	OSE	Air flow rate (m3/h)	(kW)	Heat. Cap. (kW)	Page
NRP 0200-0750	Air-water multipurpose (plate heat exchanger)		43-185	46-205	858
NRP 0804-2406	Air-water multipurpose (plate heat exchanger)	-	207-639	208-662	865
NPG 0800-3600	Air-water multipurpose (plate heat exchanger)	-	206,5-657,8	212,0-670,8	872
CPS	Multifunction unit with multiple temperature level capability	-	164-491	176-505	882
NXP 0500-1650	Water-water multipurpose (plate heat exchanger)		108-502	122-549	887

NRP 0200-0750

Air-water multipurpose

Cooling capacity 43 ÷ 185 kW Heating capacity 46 ÷ 205 kW

- · High efficiency also at partial loads
- Units designed for 2 or 4-pipe systems
- Simultaneous and independent production of hot and chilled water
- Compact dimensions

DESCRIPTION

Multipurpose external units designed for 2 or 4-pipe systems. With just one unit simultaneous and independent requests for hot and chilled water can be accommodated all year round.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Working at full load up to -15 $^{\circ}$ C outside air temperature in winter, and up to 46 $^{\circ}$ C in summer. Hot water production up to 55 $^{\circ}$ C (for more details refer to the selection software and technical documentation).

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Option integrated hydronic kit

To obtain a solution that offers economic savings and easy installation, these units can be configured with an integrated hydronic kit on both the service side and the recovery side.

The kit contains the main hydraulic components, and is available in various configurations with a single pump or a standby pump too, so the customer can choose the right useful head.

CONTROL PCO⁵

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night mode: only in the non-silenced versions is it possible to set a silenced operating mode, which is useful for example at night for greater acoustic comfort but always guarantees performance even at peak load times.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

GP: Anti-intrusion grid.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ACCESSORIES COMPATIBILITY

Model	Ver	0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
AER485P1	A							•	•	•	•	•	•
AER403PT	E				•	•		•	•	•	•		
AFDDACD	A							•	•	•	•	•	•
AERBACP	E		•	•	•	•	•	•	•	•	•		
AFDNET	A							•	•	•	•	•	•
AERNET	E	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER-EVO	A							•	•	•	•		
MULTICHILLER-EVU	E	•	•	•	•	•	•	•	•	•	•	•	•
PGD1	A							•	•	•	•	•	•
רטעו	F	•											

Anti-intrusion grid

Ver	0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
A	-	-	-	-	-	-	GP2 x 2 (1)	GP2 x 3 (1)	GP10 x 3 (1)			
E	GP3	GP3	GP3	GP4	GP4	GP4	GP2 x 2 (1)	GP2 x 3 (1)	GP10 x 3 (1)			

⁽¹⁾ x_i indicates the quantity to buy

Antivibration

Version	System side - pumps	Recovery side - pumps	0200	0240	0280
А	00	00, R1, R2, R3, R4	-	-	-
Α	01, 02, 03, 04, 05, 06, 07, 08	00	-	-	-
Α	P1, P2, P3, P4	00, R1, R2, R3, R4	-	-	-
E	00, P1, P2, P3, P4	00, R1, R2, R3, R4	VT17	VT17	VT17
E	01, 02, 03, 04, 05, 06, 07, 08	00	VT13	VT13	VT13
Version	System side - pumps	Recovery side - pumps	0300	0330	0350
A	00	00, R1, R2, R3, R4	-	-	-
A	01, 02, 03, 04, 05, 06, 07, 08	00	-	-	-
A	P1, P2, P3, P4	00, R1, R2, R3, R4	-	-	-
E	00, P1, P2, P3, P4	00, R1, R2, R3, R4	VT17	VT17	VT17
E	01, 02, 03, 04, 05, 06, 07, 08	00	VT13	VT13	VT13
Version	System side - pumps	Recovery side - pumps	0500	0550	0600
A	00	00, R1, R2, R3, R4	VT11	VT11	VT11
Α	01, 02, 03, 04, 05, 06, 07, 08	00	VT11	VT11	VT11
Α	P1, P2, P3, P4	00, R1, R2, R3, R4	VT11	VT11	VT11
E	00	00, R1, R2, R3, R4	VT11	VT11	VT11
E	01, 02, 03, 04, 05, 06, 07, 08	00	VT11	VT11	VT11
E	P1, P2, P3, P4	00, R1, R2, R3, R4	VT11	VT11	VT11
Version	System side - pumps	Recovery side - pumps	0650	0700	0750
A	00	00, R1, R2, R3, R4	VT11	VT22	VT23
A	01, 02, 03, 04, 05, 06, 07, 08	00	VT11	VT22	VT23
Α	P1, P2, P3, P4	00, R1, R2, R3, R4	VT11	VT22	VT23
E	00	00, R1, R2, R3, R4	VT11	VT22	VT23
E	01, 02, 03, 04, 05, 06, 07, 08	00	VT11	VT22	VT23
E	P1, P2, P3, P4	00, R1, R2, R3, R4	VT11	VT22	VT23

not available

Device for peak current reduction

Ver	0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Power supply: °												
A	-	-	-	-	-	-	DRE501 (1)	DRE551 (1)	DRE601 (1)	DRE651 (1)	DRE701 (1)	DRE751 (1)
E	DRE281 (1)	DRE281 (1)	DRE281 (1)	DRE301 (1)	DRE331 (1)	DRE351 (1)	DRE501 (1)	DRE551 (1)	DRE601 (1)	DRE651 (1)	DRE701 (1)	DRE751 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
A	-	-	-	-	-	-	RIF52	RIF52	RIF53	RIF53	RIF53	RIF53
E	RIF54	RIF54	RIF50	RIF50	RIF50	RIF51	RIF52	RIF52	RIF53	RIF53	RIF53	RIF53

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NRP
4,5,6,7	Size 0200, 0240, 0280, 0300, 0330, 0350, 0500, 0550, 0600, 0650, 0700, 0750
8	Version
Α	High efficiency
E	Silenced high efficiency (1)
9	System type
2	2-pipe system
4	4-pipe system
10	Coils
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
•	Copper-aluminium
11	Fans
J	Inverter (2)
M	Oversized (3)
۰	Standard (4)
12	Power supply
1	220V ~ 3 50Hz with magnet circuit breakers (5)
0	400V ~ 3N 50Hz with magnet circuit breakers
13,14	System side - pumps
00	Without hydronic kit
01	Storage tank with low head pump
02	Storage tank with low head pump + stand-by pump
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
05	Storage tank with holes for heaters and single low head pump (6)
06	Storage tank with holes for heaters and pump low head + stand-by pump (6)
07	Storage tank with holes for heaters and single high head pump (6)
08	Storage tank with holes for heaters and pump high head + stand-by pump (6)
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump
15,16	Recovery side - pumps
00	Without hydronic kit
R1	Single pump low head
R2	Pump low head + stand-by pump
R3	Single pump high head
R4	Pump high head + stand-by pump

(1) The size up 0200 to 0350 are only available in the silenced versions (E)
(2) Standard for size from 0200 to 0350 without useful static pressure, option for other sizes
(3) Available only for size from 0200 to 0350
(4) As standard in sizes fom 0500 to 0750
(5) Not available for size 0750
(6) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.

PERFORMANCE SPECIFICATIONS

NRP - 2-pipe system version A

Size		0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Cooling system side 2-pipe system (1)													
Cooling capacity	kW	-	-	-	-	-	-	99,8	103,7	123,7	140,7	159,7	184,6
Input power	kW	-	-	-	-	-	-	32,4	36,0	44,1	50,5	55,2	64,6
Cooling total input current	A	-	-	-	-	-	-	55,0	59,0	72,0	82,0	88,0	113,0
EER	W/W	-	-	-	-	-	-	3,08	2,89	2,80	2,79	2,89	2,86
Water flow rate system side	l/h	-	-	-	-	-	-	17181	17868	21305	24225	27490	31785
Pressure drop system side	kPa	-	-	-	-	-	-	37	39	37	48	56	67
Heating system side 2-pipe system (2)													
Heating capacity	kW	-	-	-	-	-	-	106,3	112,3	137,3	152,3	173,3	205,4
Input power	kW	-	-	-	-	-	-	32,6	35,1	41,3	45,8	53,8	62,8
Heating total input current	A	-	-	-	-	-	-	55,0	59,0	72,0	82,0	88,0	113,0
COP	W/W	-	-	-	-	-	-	3,26	3,20	3,33	3,33	3,22	3,27
Water flow rate system side	l/h	-	-	-	-	-	-	18423	19466	23810	26417	30067	35629
Pressure drop system side	kPa	-	-	-	-	-	-	43	46	46	57	67	84
Heating domestic hot water side 2-pipe system	1 (3)												
Heating capacity	kW	-	-	-	-	-	-	106,2	112,2	137,3	152,3	173,4	205,3
Input power	kW	-	-	-	-	-	-	32,5	34,9	41,3	45,7	53,5	62,3
Heating total input current	A	-	-	-	-	-	-	55,0	59,0	72,0	82,0	88,0	113,0
COP	W/W	-	-	-	-	-	-	3,27	3,21	3,32	3,34	3,24	3,29
Water flow rate domestic hot water side	I/h	-	-	-	-	-	-	18423	19466	23810	26417	30067	35629
Pressure drop domestic hot water side	kPa	-	-	-	-	-	-	30	34	51	48	35	49
Simultaneous operation (heating + cooling), 2	pipes (4)												
Cooling capacity	kW	-	-	-	-	-	-	103,3	111,3	133,8	148,5	169,2	202,7
Recovered heating power	kW	-	-	-	-	-	-	132,2	142,2	174,3	193,3	218,4	261,3
Input power	kW	-	-	-	-	-	-	30,8	32,9	43,2	48,0	52,5	63,0
Water flow rate system side	l/h	-	-	-	-	-	-	17181	17868	21305	24225	27490	31785
Pressure drop system side	kPa	-	-	-	-	-	-	37	39	37	48	56	67
Water flow rate domestic hot water side	l/h	-	-	-	-	-	-	18423	19466	23810	26417	30067	35629
Pressure drop domestic hot water side	kPa	-	-	-	-	-	-	30	34	51	48	35	49

- (1) Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C; All units are Eurovent certified
 (2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b./6 °C w.b.
 (3) Water exchanger to the total recovery side 40 °C/45 °C;
 (4) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

NRP - 2-pipe system version E

Size		0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Cooling system side 2-pipe system (1)													
Cooling capacity	kW	42,9	49,9	55,9	63,9	67,9	79,8	94,8	98,8	115,8	130,7	152,7	178,7
Input power	kW	13,9	16,5	18,9	20,8	23,2	27,0	35,2	38,9	48,3	55,5	61,9	70,6
Cooling total input current	Α	28,0	33,0	38,0	41,0	45,0	52,0	60,0	64,0	79,0	91,0	99,0	120,0
EER	W/W	3,08	3,02	2,97	3,07	2,93	2,96	2,70	2,54	2,40	2,35	2,47	2,53
Water flow rate system side	I/h	7388	8591	9621	10996	11683	13745	16322	17009	19930	22507	26287	30754
Pressure drop system side	kPa	26	37	22	29	22	31	34	35	32	41	51	63
Heating system side 2-pipe system (2)													
Heating capacity	kW	46,1	53,2	60,1	75,2	80,2	84,2	106,3	112,3	137,3	152,3	173,3	205,4
Input power	kW	13,3	15,6	17,7	22,4	23,9	25,6	32,6	35,1	41,3	45,7	53,8	62,8
Heating total input current	Α	28,0	33,0	38,0	41,0	45,0	52,0	60,0	64,0	79,0	91,0	99,0	120,0
COP	W/W	3,47	3,42	3,40	3,36	3,36	3,28	3,26	3,20	3,33	3,33	3,22	3,27
Water flow rate system side	l/h	7995	9211	10428	13035	13904	14599	18423	19466	23812	26417	30067	35629
Pressure drop system side	kPa	30	43	26	41	31	35	43	46	46	56	67	85
Heating domestic hot water side 2-pipe system (3)													
Heating capacity	kW	46,1	53,1	60,1	75,2	80,2	84,1	106,2	112,2	137,3	152,3	173,4	205,3
Input power	kW	13,2	15,4	17,7	22,3	24,0	25,5	32,5	34,9	41,3	45,7	53,5	62,3
Heating total input current	Α	28,0	33,0	38,0	41,0	45,0	52,0	60,0	64,0	79,0	91,0	99,0	120,0
COP	W/W	3,49	3,44	3,40	3,37	3,35	3,30	3,27	3,21	3,32	3,34	3,24	3,29
Water flow rate domestic hot water side	l/h	7995	9211	10428	13035	13904	14599	18423	19466	23810	26417	30067	35629
Pressure drop domestic hot water side	kPa	13	17	21	33	38	19	30	34	51	48	35	49
Simultaneous operation (heating + cooling), 2 pipes	(4)												
Cooling capacity	kW	45,6	52,4	58,3	68,9	74,0	87,1	103,3	111,4	133,9	148,5	169,2	202,7
Recovered heating power	kW	58,1	67,1	75,1	88,2	95,2	111,1	132,2	142,2	174,3	193,3	218,4	261,3
Input power	kW	13,2	15,5	17,8	20,5	22,5	25,5	30,7	32,8	43,1	47,9	52,5	62,9
Water flow rate system side	l/h	7388	8591	9621	10996	11683	13745	16322	17009	19930	22507	26287	30754
Pressure drop system side	kPa	26	37	22	29	22	31	34	35	32	41	51	63
Water flow rate domestic hot water side	l/h	7995	9211	10428	13035	13904	14599	18423	19446	23810	26417	30067	35629
Pressure drop domestic hot water side	kPa	13	17	21	33	38	19	30	34	51	48	35	49

- (1) Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C; All units are Eurovent certified
 (2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b.
 (3) Water exchanger to the total recovery side 40 °C/45 °C;
 (4) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

NRP - 4-pipe system version A

Size		0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Cooling system side 4-pipe system (1)													
Cooling capacity	kW	-	-	-	-	-	-	99,8	103,7	123,7	140,7	159,7	184,6
Input power	kW	-	-	-	-	-	-	32,4	36,0	44,1	50,5	55,2	64,6
Cooling total input current	A	-	-	-	-	-	-	55,0	59,0	72,0	82,0	88,0	113,0
EER	W/W	-	-	-	-	-	-	3,08	2,89	2,80	2,79	2,89	2,86
Water flow rate system side	I/h	-	-	-	-	-	-	17181	17868	21305	24225	27490	31785
Pressure drop system side	kPa	-	-	-	-	-	-	37	39	37	48	56	67
Heating system side 4-pipe system (2)													
Heating capacity	kW	-	-	-	-	-	-	106,2	112,2	137,3	152,3	173,4	205,3
Input power	kW	-	-	-	-	-	-	32,5	39,9	41,3	45,7	53,5	62,3
Heating total input current	A	-	-	-	-	-	-	55,0	59,0	72,0	82,0	88,0	113,0
COP	W/W	-	-	-	-	-	-	3,27	3,21	3,32	3,34	3,24	3,29
Water flow rate system side	l/h	-	-	-	-	-	-	18423	19466	23810	26417	30067	35629
Pressure drop system side	kPa	-	-	-	-	-	-	30	34	51	48	35	49
Simultaneous operation (heating + cooling), 4 pi	pes (3)			-					-				
Cooling capacity	kW	-	-	-	-	-	-	103,3	111,3	133,8	148,5	169,2	202,7
Recovered heating power	kW	-	-	-	-	-	-	132,2	142,2	174,3	193,3	218,4	261,3
Input power	kW	-	-	-	-	-	-	30,8	32,9	43,2	48,0	52,5	63,0
Water flow rate cold side	l/h	-	-	-	-	-	-	17181	17868	21305	24225	27490	31785
Pressure drop cold side	kPa	-	-	-	-	-	-	37	39	37	48	56	67
Water flow rate hot side	l/h	-	-	-	-	-	-	18423	19466	23810	26417	30067	35629
Pressure drop hot side	kPa	-	-	-	-	-	-	30	34	51	48	35	49

NRP - 4-pipe system version E

intr - 4-pipe system version E													
Size		0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Cooling system side 4-pipe system (1)													
Cooling capacity	kW	42,9	49,9	55,9	63,9	67,9	79,8	94,8	98,8	115,8	130,7	152,7	178,7
Input power	kW	13,9	16,5	18,9	20,8	23,2	27,0	35,2	38,9	48,3	55,5	61,9	70,6
Cooling total input current	A	28,0	33,0	38,0	41,0	45,0	52,0	60,0	64,0	79,0	91,0	99,0	120,0
EER	W/W	3,08	3,02	2,97	3,07	2,93	2,96	2,70	2,54	2,40	2,35	2,47	2,53
Water flow rate system side	l/h	7388	8591	9621	10996	11683	13745	16322	17009	19930	22507	26287	30754
Pressure drop system side	kPa	26	37	22	29	22	31	34	35	32	41	51	63
Heating system side 4-pipe system (2)													
Heating capacity	kW	46,1	53,1	60,1	75,2	80,2	84,1	106,2	112,2	137,3	152,3	173,4	205,3
Input power	kW	13,2	15,4	17,7	22,3	24,0	25,5	32,5	34,9	41,3	45,7	53,5	62,3
Heating total input current	A	28,0	33,0	38,0	41,0	45,0	52,0	60,0	64,0	79,0	91,0	99,0	120,0
COP	W/W	3,49	3,44	3,40	3,37	3,35	3,30	3,27	3,21	3,32	3,34	3,24	3,29
Water flow rate system side	l/h	7995	9211	10428	13035	13904	14599	18423	19466	23810	26417	30067	35629
Pressure drop system side	kPa	13	17	21	33	38	19	30	34	51	48	35	49
Simultaneous operation (heating + cooling), 4 pi	ipes (3)												
Cooling capacity	kW	45,6	52,4	58,3	68,9	74,0	87,1	103,3	111,4	133,9	148,5	169,2	202,7
Recovered heating power	kW	58,1	67,1	75,1	88,2	95,2	111,1	132,2	142,2	174,3	193,3	218,4	261,3
Input power	kW	13,2	15,5	17,8	20,5	22,5	25,5	30,7	32,8	43,1	47,9	52,5	62,9
Water flow rate cold side	l/h	7388	8591	9621	10996	11683	13745	16322	17009	19930	22507	26287	30754
Pressure drop cold side	kPa	26	37	22	29	22	31	34	35	32	41	51	63
Water flow rate hot side	l/h	7995	9211	10428	13035	13904	14599	18423	19466	23810	26417	30067	35629
Pressure drop hot side	kPa	13	17	21	33	38	19	30	34	51	48	35	49

ENERGY DATA

Size			0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Cooling capacity with low leaving water t	temp (UE n° 2	016/2281)												
SEER	Α	W/W	-	-	-	-	-	-	3,62	3,34	3,78	3,83	3,86	3,92
SEEK	E	W/W	3,78	3,74	3,77	3,70	3,74	4,00	3,53	3,29	3,67	3,72	3,75	3,76
mee.	Α	%	-	-	-	-	-	-	141,60	130,60	148,00	150,10	151,30	153,70
ηςς	E	%	148,20	146,50	147,70	145,00	146,50	157,10	138,10	128,50	143,60	145,70	146,90	147,50
UE 813/2013 performance in average am	bient conditi	ons (average) - 35 °C - Pd	esignh ≤ 40	0 kW (1)									
Pdesignh	A	kW	-	-	-	-	-	-	90,00	95,00	116,00	129,00	147,00	174,00
ruesigiiii	E	kW	39,00	45,00	51,00	64,00	68,00	71,00	90,00	95,00	116,00	129,00	147,00	174,00
SCOP	Α	W/W	-	-	-	-	-	-	3,53	3,50	3,60	3,68	3,55	3,60
SCOP	E	W/W	3,60	3,53	3,55	3,50	3,50	3,43	3,53	3,50	3,70	3,68	3,55	3,60
ηsh	Α	%	-	-	-	-	-	-	138,00	137,00	145,00	144,00	139,00	141,00
	E	%	141,00	138,00	139,00	137,00	137,00	134,00	138,00	137,00	145,00	144,00	139,00	141,00

⁽¹⁾ Efficiencies for low temperature applications (35 °C)

⁽¹⁾ Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C
(2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b.
(3) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

⁽¹⁾ Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C
(2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b.
(3) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

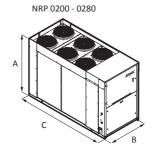
ELECTRIC DATA

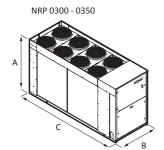
Size			0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Electric data														
Maximum current (FLA) -	A	A	-	-	-	-	-	-	76,0	81,0	100,0	112,0	122,0	144,0
widaliifulii cuitciic (i LA)	E	A	36,0	41,0	46,0	53,0	58,0	63,0	76,0	81,0	100,0	112,0	122,0	144,0
Peak current (LRA) -	A	A	-	-	-	-	-	-	214,0	220,0	232,0	243,0	261,0	320,0
Cak current (ERA)	E	A	119,0	150,0	155,0	184,0	190,0	200,0	214,0	220,0	232,0	243,0	261,0	320,0
GENERAL TECHNIC	AL DAT	Ά												
Size			0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Compressor														
· · ·	A	type	-	-	-	-	-	-	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll
Туре	E	type						Sc	roll					
N	А	no.	-	-	-	-	-	-	3	3	4	4	4	4
Number -	E	no.	2	2	2	2	2	2	3	3	4	4	4	4
Circuita	Α	no.	-	-	-	-	-	-	2	2	2	2	2	2
Circuits -	Е	no.	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E	type						R4	10A					
Pofrigorant charge (1)	A	kg	-	-	-	-	-	-	33,0	33,0	40,0	40,0	48,0	72,0
Refrigerant charge (1)	E	kg	16,0	16,0	16,0	20,0	20,0	20,0	33,0	33,0	40,0	40,0	48,0	72,0
2-pipe system - System side hea	nt exchanger	(hot/cold)												
	A	type	-	-	_	-	-	-	Brazed plate	Brazed p				
Type -	E	type						Braze	d plate					
Number -	Α	no.	-	-	_	-	-	-	1	1	1	1	1	1
TUITIDE!	E	no.	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	A	Туре	-	-	-	-	-	-	G.s.	G.s.	G.s.	G.s.	G.s.	G.s.
connections (m/out)	E	Туре		.,				G	.S.					
Size (in) -	Α	Ø	-	-	-	-	-	-	2"1/2	2"1/2	2" 1/2	2"1/2	2"1/2	3"
512E (III)	E	Ø	2"1/2	2"1/2	2″1/2	2" 1/2	2"1/2	2" 1/2	2"1/2	2"1/2	2"1/2	2″1/2	2″1/2	3"
iize (out) -	Α	Ø	-	-	-	-	-	-	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"
	E	Ø	2"1/2	2"1/2	2"1/2	2" 1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"
2-pipe system - Recovery side h	eat exchange	er (domestic l	not water)											
Гуре -	A	type	-	-	-	-	-	-		Brazed plate	Brazed plate	Brazed plate	Brazed plate	Brazed pl
	E	type						Braze	d plate					
Number -	A	no.	-	-	-	-	-	-	2	2	2	2	2	2
Tullibel	E	no.	2	2	2	2	2	2	2	2	2	2	2	2
Manifold connection (in/out) -	Α	Туре	-	-	-	-	-	-	-	G.s.	G.s.	G.s.	G.s.	G.s.
mannoid connection (m/ode)	E	Туре						G	.S.					
Manifold diameter (in)	A	Ø	-	-	-	-	-	-	2"1/2	2″1/2	2″1/2	2″1/2	2″1/2	3"
mannoid diameter (iii)	E	Ø	2"1/2	2″1/2	2″1/2	2" 1/2	2"1/2	2"1/2	2" 1/2	2"1/2	2″1/2	2″1/2	2"1/2	3"
Manifold diameter (out)	A	Ø	-	-	-	-	-	-	2"1/2	2″1/2	2″1/2	2"1/2	2″1/2	3"
	E	Ø	2″1/2	2″1/2	2″1/2	2″1/2	2″1/2	2″1/2	2"1/2	2″1/2	2″1/2	2" 1/2	2″1/2	3"
4-pipe system - System side hea	nt exchanger	(cold side)												
Type -	A	type	-	-			-	-	•	Brazed plate	Brazed plate	Brazed plate	Brazed plate	Brazed pl
	E	type						Braze	d plate					
Number -	A	no.	-	-	-	-	-	-	1	1	1	1	1	1
Tana Mari	E	no.	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out) -	A	Туре	-	-	-	-	-	-	G.s.	G.s.	G.s.	G.s.	G.s.	G.s.
	E	Туре							.S.					
Size (in) -	A	Ø	-	-	-	-	-	-	2″1/2	2″1/2	2"1/2	2″1/2	2″1/2	3"
1)	E	Ø	2″1/2	2″1/2	2″1/2	2″1/2	2″1/2	2″1/2	2″1/2	2″1/2	2″1/2	2″1/2	2″1/2	3″
Size (out) -	A	Ø	-	-	-	-	-	-	2" 1/2	2″1/2	2″1/2	2″1/2	2″1/2	3"
	E	Ø	2"1/2	2″1/2	2″1/2	2"1/2	2″1/2	2″1/2	2"1/2	2″1/2	2"1/2	2″1/2	2″1/2	3″
l-pipe system - Recovery side h										_	_	_	_	
ype -	A	type	-	-	-	-	-	-		Brazed plate	Brazed plate	Brazed plate	Brazed plate	Brazed pl
Nt .	E	type							d plate					
lumber -	A	no.	-	-	-	-	-	-	2	2	2	2	2	2
	E	no.	2	2	2	2	2	2	2	2	2	2	2	2
Manifold connection (in/out) -	A	Туре	-	-	-	-	-	-	-	G.s.	G.s.	G.s.	G.s.	G.s.
namora connection (m/out/	E	Туре						G	.S.					
Manifold diameter (in)	A	Ø	-	-	-	-	-	-	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"
viannolu ulainetel (III)	E	Ø	2"1/2	2"1/2	2"1/2	2" 1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"
Manifold diameter (out)	A	Ø	-	-	-	-	-	-	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"
wiaiiiiolu uidiiietef (OUL)	E	Ø	2"1/2	2"1/2	2"1/2	2" 1/2	2"1/2	2"1/2	2" 1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"

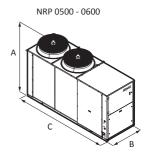
⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

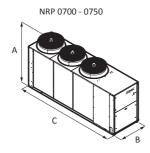
G.s. = Grooved joints

FANS DATA


Size			0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Fan														
Tuna	A	type	-	-	-	-	-	-	Axial	Axial	Axial	Axial	Axial	Axial
Туре	E	type	Axial											
Number	A	no.	-	-	-	-	-	-	2	2	2	2	3	3
Nulliper	E	no.	6	6	6	8	8	8	2	2	2	2	3	3
Air flow rate cooling mode	A,E	m³/h	-	-	-	-	-	-	-	-	-	-	-	-
Air flow rate heating mode	A,E	m³/h	-	-	-	-	-	-	-	-	-	-	-	-
Size			0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Fans: J														
Fan														
Toma	Α	type	-	-	-	-	-	-	Axial	Axial	Axial	Axial	Axial	Axial
Туре	E	type	Axial											
Noveber	A	no.	-	-	-	-	-	-	2	2	2	2	3	3
Number	E	no.	6	6	6	8	8	8	2	2	2	2	3	3
Air fann make earling mande	A	m³/h	-	-	-	-	-	-	37000	37000	36500	36500	58000	48000
Air flow rate cooling mode	E	m³/h	20000	20000	20000	26000	26000	26000	20200	21100	21400	22400	31900	34600
Air flann make benetican mende	A	m³/h	-	-	-	-	-	-	37000	37000	36500	36500	58000	48000
r flow rate heating mode	E	m³/h	20000	20000	20000	26000	26000	26000	37000	37000	36500	36500	58000	48000


SOUND DATA


Size			0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Sound data calculated in cooling mode (I)													
Country construct	А	dB(A)	-	-	-	-	-	-	82,0	82,0	82,0	83,0	85,0	85,0
Sound power level	E	dB(A)	74,0	74,0	74,0	75,0	75,0	76,0	74,0	74,0	74,0	75,0	77,0	77,0
County and a second level (10 m)	А	dB(A)	-	-	-	-	-	-	50,0	50,0	50,0	51,0	53,0	53,0
Sound pressure level (10 m)	E	dB(A)	42,0	42,0	42,0	43,0	43,0	44,0	42,0	42,0	42,0	43,0	45,0	45,0


⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Dimensions and weights														
A	A	mm	-	-	-	-	-	-	1875	1875	1875	1875	1875	1975
	E	mm	1606	1606	1606	1606	1606	1606	1875	1875	1875	1875	1875	1975
В	A	mm	-	-	-	-	-	-	1100	1100	1100	1100	1100	1500
	E	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1500
C	A	mm	-	-	-	-	-	-	3342	3342	3342	3342	4342	4350
	E	mm	2700	2700	2700	3200	3200	3200	3342	3342	3342	3342	4342	4350
Empty weight	A	kg	-	-	-	-	-	-	1233	1237	1359	1378	1591	1939
	E	kg	788	790	792	862	872	894	1233	1237	1359	1378	1591	1939

The weights are for standard units with plate heat exchangers and no hydronic kit.

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.

Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRP 0804-2406

Air-water multipurpose

Cooling capacity 207 ÷ 639 kW Heating capacity 208 ÷ 662 kW

- Units designed for 2 or 4-pipe systems
- · High efficiency also at partial loads
- Simultaneous and independent production of hot and chilled water
- Also available with Shell and tube heat exchanger

DESCRIPTION

Multipurpose external units designed for 2 or 4-pipe systems. With just one unit simultaneous and independent requests for hot and chilled water can be accommodated all year round.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Working at full load up to -15 $^{\circ}$ C outside air temperature in winter, and up to 50 $^{\circ}$ C in summer. Hot water production up to 55 $^{\circ}$ C (for more details refer to the selection software and technical documentation).

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Exchangers

All the units have plate heat exchangers on service and recovery as standard but, upon request, they can be supplied with a shell & tube heat exchanger as well

If the customer chooses a unit with tube core exchangers, it is not possible to add a hydronic kit.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Option integrated hydronic kit

To obtain a solution that offers economic savings and easy installation, these units can be configured with an integrated hydronic kit on both the service side and the recovery side.

The kit contains the main hydraulic components, and is available in various configurations with a single pump or a standby pump too, so the customer can choose the right useful head.

The flow switch is available as an accessory for both the system side and the recovery side, and is compulsory; if it is not installed, the warranty will be considered invalid.

CONTROL PCO⁵

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night mode: only in the non-silenced versions is it possible to set a silenced operating mode, which is useful for example at night for greater acoustic comfort but always guarantees performance even at peak load times

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ACCESSORIES COMPATIBILITY

A,E	2406	2206	2006	1805	1604	1414	1204	1104	1004	0904	0804	Ver		Model
A,E	•	•	•	•	•	•	•	•	•	•	•	A,E		ER485P1
Marchitematical Nation Marchitematical Nat	•	•	•	•	•	•		•	•	•	•	A,E		ERBACP
MUTICHILLER-EVO	•	•	•	•	•	•	•	•	•	•	•	A,E		ERNET
A E		•		•		•	•	•	•		•	A,E	-	L
The Image The	•	•	•	•	•	•	•	•	•	•	•	A,E		ULTICHILLER-EVO
IDR IMP	•	•	•	•	•	•	•	•	•	•	•	A,E		GD1
A OO OO AVX882 AVX887 AVX887 AVX887 AVX887 PA-DJ OO AVX886 AVX887 AVX887 AVX887 AVX887 OO RA-SJ AVX886 AVX887 AVX887 AVX883 AVX883 PA-DJ RA-SJ AVX870 AVX883 AVX883 AVX883 AVX883 PA-DJ OO AVX886 AVX871 AVX871 AVX872 AVX872 PA-DJ OO AVX886 AVX872 AVX872 AVX872 AVX872 AVX872 AVX873 AVX873 AVX873 AVX873 AVX873 AVX873 PA-DJ RA-SJ AVX870 AVX873 AVX874 AVX874 AVX874 AV BA-SJ AVX870 AVX874 AVX874 AVX874 AVX874 AV BA-SJ AVX871 AVX875 AVX875 AVX877 AVX877 AV BA-DJ AV AVX872 AVX875 AVX876 AVX877 AVX885 <	1414		1204		1104		1004	0904		0804				
PA-DJ 00												IDR REC	IDR IMP	
DO	AVX871	A	AVX887		AVX887	7	AVX88	NX887	A	AVX882		00	00	
PA-DJ RA-SJ AVX870 AVX883 AVX883 AVX883 AVX883 E 00 00 AVX886 AVX871 AVX871 AVX871 AVX871 PA-DJ 00 AVX886 AVX872 AVX872 AVX872 AVX872 00 RA-SJ AVX870 AVX873 AVX873 AVX873 AVX873 PA-DJ RA-SJ AVX870 AVX874 AVX874 AVX874 AVX874 A IDR IMP IDR REC IDR REC VX877 AVX875 AVX877 AVX877 A PA-DJ 00 AVX872 AVX875 AVX875 AVX877 AVX885 00 RA-SJ AVX873 AVX875 AVX876 AVX877 AVX885 PA-DJ RA-SJ AVX873 AVX876 AVX876 AVX885 AVX885 PA-DJ RA-SJ AVX874 AVX876 AVX885 AVX885 PA-DJ RA-SJ AVX874 AVX876 AVX885 AVX885	AVX872	A	AVX887		AVX887	AVX887		VX887	AVX887			00	PA-DJ	Α
E 00 00 AVX886 AVX871 AVX871 AVX871 AVX871 AVX871 AVX871 AVX871 AVX871 AVX872 AVX872 AVX872 AVX872 AVX872 AVX872 AVX873 AVX873 AVX873 AVX873 AVX873 AVX873 AVX873 AVX873 AVX874 AVX877 AVX877 AVX877 AVX877 AVX885 D0 D0 AVX877 AVX876 AVX886 AVX885 AVX885 AVX885 D0 D0 AVX877 AVX878 AVX886 AVX885 AVX885	AVX873	Α	AVX883		AVX887	AVX887		AVX887		AVX886		RA-SJ	00	
FA-DJ 00 AVX886 AVX872 AVX872 AVX872 AVX873 AVX873 AVX873 AVX873 AVX873 AVX873 AVX873 AVX873 AVX873 AVX874 AVX877 AVX877 AVX877 AVX877 AVX885 DO 00 AVX877 AVX876 AVX886 AVX885 AVX885 PA-DJ RA-SJ AVX874 AVX876 AVX876 AVX885 AVX885 PA-DJ RA-SJ AVX874 AVX876 AVX884 AVX885 AVX885 PA-DJ RA-SJ AVX877 AVX878 AVX888 AVX885 AVX885	AVX874		AVX883	AVX883 AVX883		AVX883		AVX883		AVX870		RA-SJ	PA-DJ	
PA-DJ 00 AVX886 AVX872 AVX872 AVX872 AVX872 AVX873 AVX873 AVX873 AVX873 AVX873 AVX873 AVX873 AVX873 AVX874 AVX877 AVX877 AVX877 AVX877 AVX885 DO 00 AVX877 AVX876 AVX886 AVX885 AVX885 PA-DJ RA-SJ AVX874 AVX876 AVX886 AVX885 AVX885 PA-DJ RA-SJ AVX874 AVX876 AVX886 AVX885 AVX885 DO O AVX877 AVX878 AVX888 AVX866 AVX866 <td>AVX875</td> <td>Λ</td> <td>AV/V071</td> <td></td> <td>A\/V071</td> <td>1</td> <td>AV/V07</td> <td>WV071</td> <td></td> <td>MVOOC</td> <td></td> <td>00</td> <td>00</td> <td></td>	AVX875	Λ	AV/V071		A\/V071	1	AV/V07	WV071		MVOOC		00	00	
E 00 RA-SJ AVX870 AVX873 AVX873 AVX873 AVX873 PA-DJ RA-SJ AVX870 AVX874 AVX874 AVX874 AVX874 1604 1805 2006 2206 2406 200 00 AVX871 AVX875 AVX875 AVX877 AVX877 A PA-DJ 00 AVX872 AVX875 AVX884 AVX877 AVX885 00 RA-SJ AVX873 AVX876 AVX876 AVX885 AVX885 PA-DJ RA-SJ AVX874 AVX876 AVX884 AVX885 AVX885 PA-DJ RA-SJ AVX874 AVX876 AVX884 AVX885 AVX885 PA-DJ RA-SJ AVX874 AVX876 AVX884 AVX885 AVX885	AVX875													
PA-DJ RA-SJ AVX870 AVX874 AVX875 AVX877 AVX877 AVX877 AVX877 AVX877 AVX885 DO O AVX877 AVX878 AVX878 AVX866 AVX866	AVX876						·							Ε -
1604 1805 2006 2206 2406	AVX876													
IDR IMP IDR REC	AVAOTO		AVAO7T		AVAO7T	T	AVAOA	17/10/ 4		AVAO70		III J	1 1 1 1 1	
00 00 AVX871 AVX875 AVX875 AVX877 AVX877 PA-DJ 00 AVX872 AVX875 AVX884 AVX877 AVX885 00 RA-SJ AVX873 AVX876 AVX876 AVX885 AVX885 PA-DJ RA-SJ AVX874 AVX876 AVX884 AVX885 AVX885 00 00 AVX877 AVX878 AVX878 AVX866 AVX866			2406		2206		2006	1805		1604				
A PA-DJ 00 AVX872 AVX875 AVX884 AVX877 AVX885 00 RA-SJ AVX873 AVX876 AVX876 AVX885 AVX885 PA-DJ RA-SJ AVX874 AVX876 AVX884 AVX885 AVX885 00 00 AVX877 AVX878 AVX878 AVX866 AVX866												IDR REC	IDR IMP	_
00 RA-SJ AVX873 AVX876 AVX876 AVX885 AVX885 PA-DJ RA-SJ AVX874 AVX876 AVX884 AVX885 AVX885 00 00 AVX877 AVX878 AVX878 AVX866 AVX866			AVX877		AVX877	5	AVX87	NX875	A	AVX871		00	00	
PA-DJ RA-SJ AVX874 AVX876 AVX884 AVX885 AVX885 00 00 AVX877 AVX878 AVX878 AVX866 AVX866			AVX885		AVX877	4	AVX88	WX875	A	AVX872		00	PA-DJ	Α
00 00 AVX877 AVX878 AVX878 AVX866 AVX866			AVX885		AVX885	6	AVX87	WX876	A	AVX873		RA-SJ	00	
			AVX885		AVX885	4	AVX88	WX876	A	AVX874		RA-SJ	PA-DJ	
			MVOCC		AVV066	0	AVVOT	WV070		A1/V077		00	00	
PA-III III AVXX// AVXX/X AVXX65 AVXX66 AVXX66														
E 00 RA-SJ AVX867 AVX865 AVX867 AVX867														Ε -

Device for peak current reduction

Ver	0804	0904	1004	1104	1204	1414
ΔF	DRENRP0804	DRENRPO904	DRENRP1004	DRENRP1104	DRFNRP1204 (1)	DRFNRP1404 (2)

AVX879

AVX865

AVX867

AVX867

(1) Only for power supply 400V 3N ~ 50Hz e 400V 3 ~ 50Hz.
(2) Only for supplies of 400V 3N ~ 50Hz and 400V 3 ~ 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

RA-SJ

AVX877

Ver	1604	1805	2006	2206	2406
A, E	DRENRP1604 (1)	DRENRP1805	DRENRP2006	DRENRP2206	DRENRP2406

(1) Only for power supply 400V 3N \sim 50Hz e 400V 3 \sim 50Hz. A grey background indicates the accessory must be assembled in the factory

PA-DJ

Power factor correction

Ver	0804	0904	1004	1104	1204	1414
A	RIFNRP0804A	RIFNRP0904A	RIFNRP1004A	RIFNRP1104A	RIFNRP1204A	RIFNRP1404
E	RIFNRP0804E	RIFNRP0904E	RIFNRP1004E	RIFNRP1104E	RIFNRP1204E	RIFNRP1404

A grey background indicates the accessory must be assembled in the factory

Ver	1604	1805	2006	2206	2406
A, E	RIFNRP1604	RIFNRP1805	RIFNRP2006	RIFNRP2206	RIFNRP2406

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	0804	0904	1004	1104	1204	1414
A	GP2VN	GP3VN	GP3VN	GP3VN	GP3VN	GP4VN
E	GP3VN	GP4VN	GP4VN	GP4VN	GP4VN	GP5VN

A grey background indicates the accessory must be assembled in the factory $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =$

Ver	1604	1805	2006	2206	2406
A	GP4VN	GP5VN	GP5G	GP6V	GP6V
E	GP6V	GP7V	GP7V	GP8V	GP8V

A grey background indicates the accessory must be assembled in the factory

Ver	0804	0904	1004	1104	1204	1414
A, E	BRC1 (1)					

(1) Condensate drip tray. Consider 1 for each V-block.

A grey background indicates the accessory must be assembled in the factory

3 7	,				
Ver	1604	1805	2006	2206	2406
A, E	BRC1 (1)				

⁽¹⁾ Condensate drip tray. Consider 1 for each V-block.
A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

CONF	IGURATOR
Field	Description
1,2,3	NRP
4,5,6,7	Size 0804, 0904, 1004, 1104, 1204, 1414, 1604, 1805, 2006, 2206, 2406
8	Version
Α	High efficiency (1)
E	Silenced high efficiency
9	System type
2	2-pipe system
4	4-pipe system
10	Coils
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
0	Copper-aluminium
11	Fans
J	EC Inverter motors
0	AC standard
12	Power supply
0	400V ~ 3 50Hz with magnet circuit breakers
13,14	System side - pumps
00	Without hydronic kit
DA	Pump A + stand-by pump
DB	·
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump

Field	Description
PA	Pump A
PB	Pump B
PC	Pump C
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
15,16	Recovery side - pumps
00	Without hydronic kit
RA	Pump A
RB	Pump B
RC	Pump C
RD	Pump D
RE	Pump E
RF	Pump F
RG	Pump G
RH	Pump H
RI	Pump I
SA	Pump A + stand-by pump
SB	Pump B + stand-by pump
SC	Pump C + stand-by pump
SD	Pump D + stand-by pump
SE	Pump E + stand-by pump
SF	Pump F + stand-by pump
SG	Pump G + stand-by pump
SH	Pump H + stand-by pump
SI	Pump I + stand-by pump

 $^{(1) \ \} Unit 804\,version\,A\,cannot\,be\,configured\,with\,a\,twin\,pump\,on\,both\,the\,system\,side\,and\,the\,recovery\,side.$

PERFORMANCE SPECIFICATIONS

NRP - 2-pipe system version A

Size		0804	0904	1004	1104	1204	1414	1604	1805	2006	2206	2406
Cooling system side 2-pipe system (1)												
Cooling capacity	kW	206,7	230,6	259,2	299,6	332,2	386,3	426,2	490,5	544,3	598,2	638,8
Input power	kW	69,4	76,3	86,1	99,5	116,2	128,1	146,7	165,5	189,8	202,0	220,3
Cooling total input current	A	124,0	138,0	155,0	172,0	195,0	218,0	247,0	280,0	319,0	341,0	371,0
EER	W/W	2,98	3,02	3,01	3,01	2,86	3,02	2,91	2,96	2,87	2,96	2,90
Water flow rate system side	l/h	35565	39671	44593	51536	57151	66430	73295	84370	93611	102896	109845
Pressure drop system side	kPa	24	33	34	42	43	36	36	49	54	64	47
Heating system side 2-pipe system (2)												
Heating capacity	kW	209,9	246,0	272,7	306,2	340,5	396,2	437,6	504,8	562,7	618,6	660,8
Input power	kW	66,8	79,6	85,5	95,7	107,8	125,7	136,8	159,6	180,8	199,7	209,7
Heating total input current	A	120,0	143,0	154,0	166,0	183,0	214,0	233,0	272,0	306,0	337,0	356,0
COP	W/W	3,14	3,09	3,19	3,20	3,16	3,15	3,20	3,16	3,11	3,10	3,15
Water flow rate system side	I/h	36426	42701	47339	53155	59117	68781	75976	87653	97701	107407	114743
Pressure drop system side	kPa	25	34	39	50	41	52	35	47	51	62	47
Heating domestic hot water side 2-pipe system (3)												
Heating capacity	kW	209,9	246,0	272,7	306,2	340,6	396,2	437,6	504,9	562,7	618,7	660,8
Input power	kW	66,9	79,8	85,6	95,7	108,3	125,4	137,0	159,8	180,9	199,9	209,9
Heating total input current	A	120,0	143,0	154,0	166,0	183,0	214,0	233,0	272,0	306,0	337,0	356,0
COP	W/W	3,14	3,08	3,19	3,20	3,15	3,16	3,19	3,16	3,11	3,10	3,15
Water flow rate domestic hot water side	I/h	36426	42701	47339	53155	59117	68781	75976	87653	97701	107407	114743
Pressure drop domestic hot water side	kPa	34	47	39	49	61	42	44	53	55	66	50
Simultaneous operation (heating + cooling), 2 pipes	(4)											
Cooling capacity	kW	211,2	236,7	258,2	306,9	350,5	398,0	446,2	510,6	584,4	630,2	680,0
Recovered heating power	kW	270,3	304,4	331,0	392,1	448,5	510,5	570,1	653,9	749,6	810,9	871,0
Input power	kW	62,8	72,4	77,7	91,3	105,2	120,2	132,4	153,7	177,2	194,7	204,6
TER	W/W	7,67	7,48	7,58	7,66	7,60	7,56	7,68	7,58	7,53	7,40	7,58
Water flow rate system side	l/h	35565	39671	44593	51536	57151	66430	73295	84370	93611	102896	109845
Pressure drop system side	kPa	24	33	34	42	43	36	36	49	54	64	47
Water flow rate domestic hot water side	I/h	36426	42701	47339	53155	59117	68781	75976	87653	97701	107407	114743
Pressure drop domestic hot water side	kPa	34	47	39	49	61	42	44	53	55	66	50

⁽¹⁾ Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C; All units are Eurovent certified (2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Water exchanger to the total recovery side 40 °C/45 °C; (4) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

NRP - 2-pipe system version E

Size	1	0804	0904	1004	1104	1204	1414	1604	1805	2006	2206	2406
Cooling system side 2-pipe system (1)												
Cooling capacity	kW	200,7	225,7	255,3	296,9	332,7	382,2	427,0	487,6	549,9	598,5	639,4
Input power	kW	66,0	73,4	83,2	96,4	113,0	125,6	139,1	159,0	182,6	195,9	214,0
Cooling total input current	A	113,0	125,0	142,0	159,0	182,0	203,0	225,0	256,0	294,0	315,0	344,0
EER	W/W	3,04	3,07	3,07	3,08	2,94	3,04	3,07	3,07	3,01	3,05	2,99
Water flow rate system side	l/h	34534	38826	43915	51070	57226	65736	73434	83856	94585	102947	109954
Pressure drop system side	kPa	25	33	34	43	44	37	38	49	54	64	48
Heating system side 2-pipe system (2)												
Heating capacity	kW	207,4	240,7	262,4	300,7	338,4	389,4	436,7	503,3	567,2	618,5	661,8
Input power	kW	63,8	74,6	80,5	92,8	104,9	121,1	134,3	155,5	181,7	199,3	209,7
Heating total input current	A	109,0	126,0	136,0	153,0	170,0	195,0	217,0	250,0	293,0	320,0	338,0
COP	W/W	3,25	3,22	3,26	3,24	3,23	3,22	3,25	3,24	3,12	3,10	3,16
Water flow rate system side	l/h	35981	41776	45554	52195	58753	67603	75830	87384	98488	107379	114913
Pressure drop system side	kPa	25	33	37	48	40	50	35	46	52	62	47
Heating domestic hot water side 2-pipe system	(3)											
Heating capacity	kW	207,3	240,7	262,4	300,7	338,5	389,4	436,8	503,3	567,3	618,5	661,8
Input power	kW	64,0	74,8	80,5	92,8	105,4	120,8	134,6	155,7	181,9	199,5	209,9
Heating total input current	A	109,0	126,0	136,0	153,0	170,0	195,0	217,0	250,0	293,0	320,0	338,0
COP	W/W	3,24	3,22	3,26	3,24	3,21	3,22	3,24	3,23	3,12	3,10	3,15
Water flow rate domestic hot water side	l/h	35981	41776	45554	52195	58753	67603	75830	87384	98488	107379	114913
Pressure drop domestic hot water side	kPa	34	45	38	48	60	41	44	53	55	66	50
Simultaneous operation (heating + cooling), 2	pipes (4)											
Cooling capacity	kW	211,0	236,8	258,3	306,6	350,0	397,8	445,0	509,9	583,9	630,2	679,9
Recovered heating power	kW	270,0	304,5	331,0	391,9	448,2	510,5	569,2	653,4	749,1	810,9	871,0
Input power	kW	62,8	72,3	77,6	91,4	105,3	120,3	132,7	153,9	177,3	194,7	204,7
TER	W/W	7,66	7,49	7,59	7,64	7,58	7,55	7,64	7,56	7,52	7,40	7,58
Water flow rate system side	l/h	34534	38826	43915	51070	57226	65736	73434	83856	94585	102947	109954
Pressure drop system side	kPa	25	33	34	43	44	37	38	49	54	64	48
Water flow rate domestic hot water side	l/h	35981	41776	45554	52195	58753	67603	75830	87384	98488	107379	114913
Pressure drop domestic hot water side	kPa	34	45	38	48	60	41	44	53	55	66	50

⁽¹⁾ Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C; All units are Eurovent certified (2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b./6 °C w.b. (3) Water exchanger to the total recovery side 40 °C/45 °C; Water to the system side heat exchanger */ 7 °C; (4) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */ 7 °C;

NRP - 4-pipe system version A

Size		0804	0904	1004	1104	1204	1414	1604	1805	2006	2206	2406
Cooling system side 4-pipe system (1)												
Cooling capacity	kW	206,7	230,6	259,2	299,6	332,2	386,3	426,2	490,5	544,3	598,2	638,8
Input power	kW	69,4	76,3	86,1	99,5	116,2	128,1	146,7	165,5	189,8	202,0	220,3
Cooling total input current	A	124,0	138,0	155,0	172,0	195,0	218,0	247,0	280,0	319,0	341,0	371,0
EER	W/W	2,98	3,02	3,01	3,01	2,86	3,02	2,91	2,96	2,87	2,96	2,90
Water flow rate system side	I/h	35565	39671	44593	51536	57151	66430	73295	84370	93611	102896	109845
Pressure drop system side	kPa	24	33	34	42	43	36	36	49	54	64	47
Heating system side 4-pipe system (2)												
Heating capacity	kW	209,9	246,0	272,7	306,2	340,6	396,2	437,6	504,9	562,7	618,7	660,8
Input power	kW	66,9	79,8	85,6	95,7	108,3	125,4	137,0	159,8	180,9	199,9	209,9
Heating total input current	A	120,0	143,0	154,0	166,0	183,0	214,0	233,0	272,0	306,0	337,0	356,0
COP	W/W	3,14	3,08	3,19	3,20	3,15	3,16	3,19	3,16	3,11	3,10	3,15
Water flow rate system side	I/h	36426	42701	47339	53155	59117	68781	75976	87653	97701	107407	114743
Pressure drop system side	kPa	34	47	39	49	61	42	44	53	55	66	50
Simultaneous operation (heating + cooling), 4 pipes	s (3)											
Cooling capacity	kW	211,2	236,7	258,2	306,9	350,5	398,0	446,2	510,6	584,4	630,2	680,0
Recovered heating power	kW	270,3	304,4	331,0	392,1	448,5	510,5	570,1	653,9	749,6	810,9	871,0
Input power	kW	62,8	72,4	77,7	91,3	105,2	120,2	132,4	153,7	177,2	194,7	204,6
TER	W/W	7,67	7,48	7,58	7,66	7,60	7,56	7,68	7,58	7,53	7,40	7,58
Water flow rate cold side	l/h	35565	39671	44593	51536	57151	66430	73295	84370	93611	102896	109845
Pressure drop cold side	kPa	24	33	34	42	43	36	36	49	54	64	47
Water flow rate hot side	l/h	36426	42701	47339	53155	59117	68781	75976	87653	97701	107407	114743
Pressure drop hot side	kPa	34	47	39	49	61	42	44	53	55	66	50

NRP - 4-pipe system version E

Size		0804	0904	1004	1104	1204	1414	1604	1805	2006	2206	2406
Cooling system side 4-pipe system (1)												
Cooling capacity	kW	200,7	225,7	255,3	296,9	332,7	382,2	427,0	487,6	549,9	598,5	639,4
Input power	kW	66,0	73,4	83,2	96,4	113,0	125,6	139,1	159,0	182,6	195,9	214,0
Cooling total input current	Α	113,0	125,0	142,0	159,0	182,0	203,0	225,0	256,0	294,0	315,0	344,0
EER	W/W	3,04	3,07	3,07	3,08	2,94	3,04	3,07	3,07	3,01	3,05	2,99
Water flow rate system side	l/h	34534	38826	43915	51070	57226	65736	73434	83856	94585	102947	109954
Pressure drop system side	kPa	25	33	34	43	44	37	38	49	54	64	48
Heating system side 4-pipe system (2)												
Heating capacity	kW	207,3	240,7	262,4	300,7	338,5	389,4	436,8	503,3	567,3	618,5	661,8
Input power	kW	64,0	74,8	80,5	92,8	105,4	120,8	134,6	155,7	181,9	199,5	209,9
Heating total input current	Α	109,0	126,0	136,0	153,0	170,0	195,0	217,0	250,0	293,0	320,0	338,0
COP	W/W	3,24	3,22	3,26	3,24	3,21	3,22	3,24	3,23	3,12	3,10	3,15
Water flow rate system side	I/h	35981	41776	45554	52195	58753	67603	75830	87384	98488	107379	114913
Pressure drop system side	kPa	34	45	38	48	60	41	44	53	55	66	50
Simultaneous operation (heating + cooling), 4 pipes (3	3)											
Cooling capacity	kW	211,0	236,8	258,3	306,6	350,0	397,8	445,0	509,9	583,9	630,2	679,9
Recovered heating power	kW	270,0	304,5	331,0	391,9	448,2	510,5	569,2	653,4	749,1	810,9	871,0
Input power	kW	62,8	72,3	77,6	91,4	105,3	120,3	132,7	153,9	177,3	194,7	204,7
TER	W/W	7,66	7,49	7,59	7,64	7,58	7,55	7,64	7,56	7,52	7,40	7,58
Water flow rate cold side	l/h	34534	38826	43915	51070	57226	65736	73434	83856	94585	102947	109954
Pressure drop cold side	kPa	25	33	34	43	44	37	38	49	54	64	48
Water flow rate hot side	l/h	35981	41776	45554	52195	58753	67603	75830	87384	98488	107379	114913
Pressure drop hot side	kPa	34	45	38	48	60	41	44	53	55	66	50

ENERGY DATA

Size			0804	0904	1004	1104	1204	1414	1604	1805	2006	2206	2406
Fans: J													
Cooling capacity with low leaving water	temp (UE n° 2	016/2281)											
CLED	A	W/W	4,25	4,36	4,32	4,21	4,35	4,47	4,55	4,56	4,58	4,58	4,59
SEER	E	W/W	4,56	4,64	4,55	4,40	4,45	4,59	4,58	4,62	4,61	4,62	4,62
	A	%	167,20	171,40	169,70	165,20	171,10	175,80	179,00	179,50	180,10	180,20	180,40
ηςς	E	%	179,50	182,80	178,80	173,10	174,90	180,60	180,30	181,80	181,50	181,90	181,70
UE 813/2013 performance in average am	bient conditi	ons (average)	- 35 °C - Pdes	ignh ≤ 400 k	:W (1)								
SCOP	Α	W/W	3,53	3,27	3,44	3,49	3,60	3,53	3,66	-	-	-	-
SCOP	E	W/W	3,71	3,59	3,69	3,70	3,82	3,70	3,75	-	-	-	-
	A	%	138,30	127,70	134,50	136,70	140,90	138,40	143,60	-	-	-	-
ηsh	E	%	145,50	140,60	144,70	144,90	149,70	145,20	147,20	-	-	_	-

⁽¹⁾ Efficiencies for low temperature applications (35 °C)

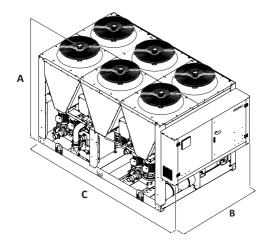
⁽¹⁾ Data 14511:2022; System side water heat exchanger 12 °C / 7 °C; External air 35 °C
(2) Data 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.
(3) Water exchanger to the total recovery side * / 45 °C; Water to the system side heat exchanger * / 7 °C;

⁽¹⁾ Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C
(2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b.
(3) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

Size			0804	0904	1004	1104	1204	1414	1604	1805	2006	2206	2406
Fans: °													
Cooling capacity with low leaving water	temp (UE n° 2	2016/2281)											
SEER	A	W/W	3,94	4,04	4,00	3,89	4,03	4,14	4,21	4,23	4,24	4,24	4,25
SEEK	E	W/W	4,22	4,30	4,21	4,08	4,12	4,25	4,24	4,28	4,27	4,28	4,28
nce	Α	%	154,60	158,50	156,90	152,80	158,20	162,50	165,50	166,00	166,60	166,60	166,80
ηςς	E	%	166,00	169,00	165,40	160,10	161,70	167,00	166,80	168,20	167,80	168,20	168,00
UE 813/2013 performance in average am	bient conditi	ons (average)	- 35 °C - Pdes	ignh ≤ 400 k	:W (1)								
CCOR	А	W/W	3,53	3,27	3,44	3,49	3,60	3,53	3,66	-	-	-	-
SCOP	E	W/W	3,71	3,59	3,69	3,70	3,82	3,70	3,75	-	-	-	-
	А	%	138,30	127,70	134,50	136,70	140,90	138,40	143,60	-	-	-	-
ηsh	E	%	145,50	140,60	144,70	144,90	149,70	145,20	147,20	-	-	-	-

⁽¹⁾ Efficiencies for low temperature applications (35 °C)

ELECTRIC DATA


Size			0804	0904	1004	1104	1204	1414	1604	1805	2006	2206	2406
Electric data													
Maximum aurent (FLA)	А	Α	163,0	188,0	205,0	233,0	261,0	303,0	337,0	386,0	427,0	468,0	502,0
Maximum current (FLA)	E	A	170,0	196,0	213,0	241,0	269,0	311,0	352,0	401,0	442,0	484,0	518,0
Deal, surrent (LDA)	А	А	368,0	431,0	449,0	485,0	513,0	636,0	670,0	638,0	679,0	801,0	835,0
Peak current (LRA)	E	A	376,0	439,0	456,0	493,0	521,0	644,0	685,0	653,0	694,0	817,0	851,0

GENERAL TECHNICAL DATA

Size			0804	0904	1004	1104	1204	1414	1604	1805	2006	2206	2406
Compressor													
Туре	A,E	type						Scroll					
Number	A,E	no.	4	4	4	4	4	4	4	5	6	6	6
Circuits	A,E	no.	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E	type						R410A					
Potential global heating	A,E	GWP						2088kgCO₂eq				,	
Refrigerant charge (1)	A	kg	41,1	61,0	61,4	62,7	62,8	83,6	83,6	106,1	107,6	129,2	129,2
	E	kg	61,0	80,8	81,2	82,9	83,0	103,9	124,1	147,2	149,3	170,9	170,9
2-pipe system - System side heat exc	hanger (hot/cold)												
Туре	A,E	type						Brazed plate					
Number	A,E	no.	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	A,E	Туре						Grooved joints					
Size (in)	A,E	Ø	3″	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"
Size (out)	A,E	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"	5″
2-pipe system - Recovery side heat e	cchanger (domesti	ic hot water)											
Туре	A,E	type						Brazed plate					
Number	A,E	no.	2	2	2	2	2	2	2	2	2	2	2
Manifold connection (in/out)	A,E	Туре						G.s.					
Manifold diameter (in)	A,E	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"
Manifold diameter (out)	A,E	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"
4-pipe system - System side heat exc	hanger (cold side)												
Туре	A,E	type						Brazed plate					
Number	A,E	no.	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	A,E	Туре						Grooved joints	i				
Size (in)	A,E	Ø	3″	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"
Size (out)	A,E	Ø	3″	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"
4-pipe system - Recovery side heat e	cchanger (hot side)											
Туре	A,E	type						Brazed plate					
Number	A,E	no.	2	2	2	2	2	2	2	2	2	2	2
Manifold connection (in/out)	A,E	Туре						Grooved joints					
Manifold diameter (in)	A,E	Ø	3″	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"
Manifold diameter (out)	A,E	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"
Fan													
Туре	A,E	type						Axial					
Fan motor	A,E	type						On-Off					
Number	A	no.	4	6	6	6	6	8	8	10	10	12	12
Number	E	no.	6	8	8	8	8	10	12	14	14	16	16
Air flau rata	A	m³/h	80000	120000	120000	120000	120000	160000	160000	200000	200000	240000	240000
Air flow rate	E	m³/h	80000	110000	110000	110000	110000	130000	160000	180000	180000	210000	210000
Sound data calculated in cooling mo	de (2)						-						
	A	dB(A)	89,5	91,6	91,6	91,6	91,6	93,1	93,1	94,2	94,2	95,1	95,1
Sound power level	E	dB(A)	84,6	86,1	86,1	86,1	86,1	87,2	88,2	89,4	89,9	91,1	91,6

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0804	0904	1004	1104	1204	1414	1604	1805	2006	2206	2406
Dimensions and weights			0001	0704	1004	1101	1201	1717	1001	1003	2000	2200	2100
A	A,E	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	Á	mm	2780	3970	3970	3970	3970	4760	4760	5950	6350	7140	7140
(E	mm	3970	4760	4760	4760	4760	5950	7140	8330	8330	9520	9520
Size			0804	0904	1004	1104	1204	1414	1604	1805	2006	2206	2406
System type: 2													
Weights													
	A	kg	2642	3152	3262	3452	3722	4409	4569	5419	5829	6479	6756
Empty weight	E	kg	3072	3712	3822	4012	4282	4879	5449	6359	6789	7469	7736
Size			0804	0904	1004	1104	1204	1414	1604	1805	2006	2206	2406
System type: 4													
Weights													
	A	kg	2632	3132	3252	3442	3692	4379	4539	5389	5799	6449	6716
Empty weight	E	kg	3052	3692	3812	4002	4252	4849	5419	6319	6759	7429	7706

[■] The weights are for standard units with plate heat exchangers and no hydronic kit.

NPG 0800-3600

Air-water multipurpose

Cooling capacity 206,8 ÷ 937,3 kW Heating capacity 211,7 ÷ 977,6 kW

- Units designed for 2 or 4-pipe systems
- High efficiency also at partial loads
- Simultaneous and independent production of hot and chilled water

DESCRIPTION

Multipurpose external units designed for 2 or 4-pipe systems. With just one unit simultaneous and independent requests for hot and chilled water can be accommodated all year round.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Working at full load up to -15 °C outside air temperature in winter, and up to 49,0 °C in summer. Hot water production up to 60,0 °C (for more information refer to the the selection program Magellano or dedicated documentations).

Refrigerant HFC R32

Use refrigerant fluid R32, whose classification according to ISO 817 is A2L (non-toxic, odourless and slightly flammable refrigerant).

The environmental impact of the units is reduced considerably owing to the last generation R32 refrigerant.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO₂ values.

■ Refrigerant gas detector is supplied as per standard.

Unit with 2/3 cooling circuits

Unit with 2/3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy seasonal efficiency of the unit.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

■ Sizes 2600 to 3600 are available with a standard J fan.

Option integrated hydronic kit

To obtain a solution that offers economic savings and easy installation, these units can be configured with an integrated hydronic kit on both the service side and the recovery side.

The kit contains the main hydraulic components, and is available in various configurations with a single pump or a standby pump too, so the customer can choose the right useful head.

■ The flow switch is available as an accessory for both the system side and the recovery side, and is compulsory; if it is not installed, the warranty will be considered invalid.

CONTROL PCO₅

The units from size 0800 to 2400 have 1 control card, while the units from size 2600 to 3600 have 2 control cards.

Microprocessor adjustment, with 7", touch screen keyboard which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and the ad adjustment includes complete management of the alarms and their log.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- "EASYLOG" data logger as per standard: allows all operating data read by the pCO5 to be stored on an SD card.
- Night mode: only in the non-silenced versions is it possible to set a silenced operating mode, which is useful for example at night for greater acoustic comfort but always guarantees performance even at peak load times.
- Possibility to control two units in a Master-Slave configuration (from size 0800 to 2400)

In the 'BMS card' port, the compatible accessories are:

- AER485P1
- AERBACP
- MULTICHILLER-EVO + AER485P1

In the 'J25-BMS2' port, the compatible accessories are:

- AERNET
- Note:
- "BMS card" and "J25-BMS2" are two ports on the unit's control board.
 Only one accessory can be connected to each port.

- An 'EASYLOG' diagnostic device may be present in port 'J25-BMS2', possibly disconnect it to connect the accessory AERNET.
- For other requirements, please contact the company.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP: Anti-intrusion grid kit

BRC1: Condensate drip tray. Consider 1 for each V-block.

ACCESSORIES COMPATIBILITY

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
AER485P1	A,E	•	•	•	•	•	•	•	•	•	•	•						
AED 40ED4 2	A												•				•	
AER485P1 x no. 2	E												•	•	•	•		
AERBACP	A,E																	
AFDDACD	A												•	•	•		•	
AERBACP x no. 2	E												•	•	•	•		
AFDNET	A		•	•	•	•		•	•	•	•	•	•	•	•	•	•	
AERNET	E		•							•	•	•	•					
г	A		•	•	•		•		•	•	•	•	•	•	•	•	•	•
FL	E	•	•	•	•					•	•	•	•	•		•		
MULTICUUL ED EVO	A																	
MULTICHILLER-EVO																		

Antivibration

Version	System side - pumps	Recovery side - pumps	0800	0900	1000	1100	1200	1400
А	00	00	AVX1210	AVX1212	AVX1212	AVX1212	AVX1214	AVX1214
		MA, MB, MC, MD, ME,						
		MF, MG, MH, MI, NA, NB,						
A	00	NC, ND, NE, NF, NG, NH,	AVX1211	AVX1213	AVX1213	AVX1213	AVX1215	AVX1215
А	00	NI, RA, RB, RC, RD, RE, RF,	AVAIZII	AVAIZIS	AVAIZIO	AVAIZIS	AVAIZIS	AVAIZIS
		RG, RH, RI, RJ, SA, SB, SC,						
		SD, SE, SF, SG, SH, SI, SJ						
	DA, DB, DC, DD, DE, DF,	00, MA, MB, MC, MD, ME,						
	DG, DH, DI, DJ, IA, IB, IC,	MF, MG, MH, MI, NA, NB,						
A	ID, IE, IF, IG, IH, II, JA, JB,	NC, ND, NE, NF, NG, NH,	AVX1211	AVX1213	AVX1213	AVX1213	AVX1215	AVX1215
А	JC, JD, JE, JF, JG, JH, JI,	NI, RA, RB, RC, RD, RE, RF,	AVAIZII	AVAIZIS	AVAIZIS	AVAIZIS	AVAIZIS	AVAIZIS
	PA, PB, PC, PD, PE, PF, PG,	, RG, RH, RI, RJ, SA, SB, SC,						
	PH, PI, PJ	SD, SE, SF, SG, SH, SI, SJ						
E	00	00	AVX1212	AVX1214	AVX1214	AVX1214	AVX1217	AVX1217
		MA, MB, MC, MD, ME,						
		MF, MG, MH, MI, NA, NB,						
Е	00	NC, ND, NE, NF, NG, NH,	AVX1213	AVX1215	AVX1215	AVX1215	AVX1219	AVX1219
L	00	NI, RA, RB, RC, RD, RE, RF,	AVAIZIO	AVAIZIS	AVAIZIJ	AVAIZIJ	AVAIZIS	AVAIZIS
		RG, RH, RI, RJ, SA, SB, SC,						
		SD, SE, SF, SG, SH, SI, SJ						
	DA, DB, DC, DD, DE, DF,	00, MA, MB, MC, MD, ME,						
	DG, DH, DI, DJ, IA, IB, IC,	MF, MG, MH, MI, NA, NB,						
E	ID, IE, IF, IG, IH, II, JA, JB,	NC, ND, NE, NF, NG, NH,	AVX1213	AVX1215	AVX1215	AVX1215	AVX1219	AVX1219
С		NI, RA, RB, RC, RD, RE, RF,	AVA IZ ID	AVAIZIO	AVAIZIO	AVAIZIO	AVAIZIS	AVAIZIY
	PA, PB, PC, PD, PE, PF, PG,	, RG, RH, RI, RJ, SA, SB, SC,						
	PH, PI, PJ	SD, SE, SF, SG, SH, SI, SJ						

A	System side - pumps	Recovery side - pumps	1600		1800	2000	22	200	2400	2600
	00	00	AVX1216		AVX1217	AVX1217	AVX	1219	AVX1219	AVX1270
A	00	MA, MB, MC, MD, ME, MF, MG, MH, MI, NA, NB, NC, ND, NE, NF, NG, NH, NI, RA, RB, RC, RD, RE, RF, RG, RH, RI, RJ, SA, SB, SC, SD, SE, SF, SG, SH, SI, SJ	AVX1215		AVX1219	AVX1219	AVX	1219	AVX1219	AVX1271
A	DG, DH, DI, DJ, IA, IB, IC, ID, IE, IF, IG, IH, II, JA, JB, JC, JD, JE, JF, JG, JH, JI,	00, MA, MB, MC, MD, ME, MF, MG, MH, MI, NA, NB, NC, ND, NE, NF, NG, NH, NI, RA, RB, RC, RD, RE, RF, RG, RH, RI, RJ, SA, SB, SC, SD, SE, SF, SG, SH, SI, SJ	AVX1215		AVX1219	AVX1219	AVX	1219	AVX1219	AVX1271
E	00	00	AVX1219		AVX1220	AVX1220	AVX	1222	AVX1222	AVX1274
E	00	MA, MB, MC, MD, ME, MF, MG, MH, MI, NA, NB, NC, ND, NE, NF, NG, NH, NI, RA, RB, RC, RD, RE, RF, RG, RH, RI, RJ, SA, SB, SC, SD, SE, SF, SG, SH, SI, SJ	AVX1219		AVX1221	AVX1221	AVX	1222	AVX1222	AVX1275
E	DG, DH, DI, DJ, IA, IB, IC, ID, IE, IF, IG, IH, II, JA, JB, JC, JD, JE, JF, JG, JH, JI,	00, MA, MB, MC, MD, ME, MF, MG, MH, MI, NA, NB, NC, ND, NE, NF, NG, NH, NI, RA, RB, RC, RD, RE, RF, RG, RH, RI, RJ, SA, SB, SC, SD, SE, SF, SG, SH, SI, SJ	AVX1219		AVX1221	AVX1221	AVX	1222	AVX1222	AVX1275
Version	System side - pur	nps Recovery side - p	umps	2800	3	000	3200	34	100	3600
A	00	00		AVX1272	AV)	(1272	AVX1272	AVX	1274	AVX1274
А	00	MA, MB, MC, MD, I MG, MH, MI, NA, NB NE, NF, NG, NH, NI, RC, RD, RE, RF, RG, RJ, SA, SB, SC, SD, SI SH, SI, SJ	, NC, ND, RA, RB, RH, RI,	AVX1273	AV	(1273	AVX1273	AVX	1275	AVX1275
A	DA, DB, DC, DD, DE, D DH, DI, DJ, IA, IB, IC, IC IG, IH, II, JA, JB, JC, JD JG, JH, JI, PA, PB, PC, I PF, PG, PH, PI, P), IE, IF, MF, MG, MH, MI, NA , JE, JF, ND, NE, NF, NG, NH , PD, PE, RI, RI, SA, SR, SC, SI	, NB, NC, NI, RA, RG, RH, D, SE, SF,	AVX1273	AV	(1273	AVX1273	AVX	1275	AVX1275
E	00, DA, DB, DC, DD, D DG, DH, DI, DJ, IA, IB, IE, IF, IG, IH, II, JA, JB, JE, JF, JG, JH, JI, PA, P PD, PE, PF, PG, PH, F	00, MA, MB, MC, N IC, ID, JC, JD, B, PC, RI, RI, SA, SB, SC, SI	ID, ME, , NB, NC, NI, RA, RG, RH,), SE, SF,	AVX1276	AV	(1276	AVX1276		-	-
	10,12,11,10,111,1	SG, SH, SI, S	J							
not available		3G, SH, SI, S	<u> </u>							
			<u> </u>							
evice for pea	k current reductio	n	,	1000	1100	1200	1400	1600	1800	2000
evice for pea V	k current reductio		0	1000 NPG1000	1100 DRENPG1100	1200 DRENPG1200	1400 DRENPG1400	1600 DRENPG1600	1800 DRENPG1800	2000 DRENPG200
evice for pea V	k current reductio	0800 090 DRENPG0800 DRENPG	10 50900 DRE						_	
evice for pea V A grey background ind	k current reductio er , E [0800 090 DRENPG0800 DRENPG	10 50900 DRE			DRENPG1200			_	
Pevice for pea V A grey background ind	k current reduction er ,E [icates the accessory must b	0800 090 ORENPG0800 DRENPG e assembled in the factory 2200	0 0 50900 DRE	NPG1000	DRENPG1100	DRENPG1200	DRENPG1400	DRENPG1600	DRENPG1800	DRENPG200
evice for pea V A grey background ind	k current reduction er , E [iicates the accessory must be	0800 090 DRENPG0800 DRENP e assembled in the factory 2200 DRENPG2200 DRI	00 50900 DRE 2400	NPG1000 2600	DRENPG1100	DRENPG1200 D 30 2800 DREN	DRENPG1400 D00 PG3000	DRENPG1600 3200	DRENPG1800 3400	DRENPG200
Pevice for pea V A grey background ind V	k current reduction er , E [iicates the accessory must ber er	0800 090 DRENPG0800 DRENP e assembled in the factory 2200 DRENPG2200 DRI DRENPG2200 DRI DRENPG2200 DRI	00 50900 DRE 2400 :NPG2400	2600 DRENPG2600	DRENPG1100 280 DRENPG	DRENPG1200 D 30 2800 DREN	DRENPG1400 D00 PG3000	DRENPG1600 3200 DRENPG3200	DRENPG1800 3400	3600 DRENPG3600
vevice for pea V A grey background ind V grey background ind	k current reductioner E E G E C C C C C C C C C C C C	0800 090 DRENPG0800 DRENP e assembled in the factory 2200 DRENPG2200 DRI DRENPG2200 DRI DRENPG2200 DRI	00 50900 DRE 2400 :NPG2400	2600 DRENPG2600	DRENPG1100 280 DRENPG	DRENPG1200 D 30 2800 DREN	DRENPG1400 D00 PG3000	DRENPG1600 3200 DRENPG3200	DRENPG1800 3400	3600 DRENPG3600
evice for pea V A grey background ind V grey background ind ower factor c	k current reduction er , E [icates the accessory must be er A E icates the accessory must b	ORENPG0800 DRENPG e assembled in the factory 2200 DRENPG2200 DRI DRENPG2200 DRI e assembled in the factory	0 50900 DRE 2400 NPG2400 NPG2400	2600 DRENPG2600 DRENPG2600	DRENPG1100 280 DRENPG DRENPG	DRENPG1200 D 30 2800 DREN 2800 DREN	DRENPG1400 000 PG3000 PG3000	3200 3200 DRENPG3200 DRENPG3200	3400 DRENPG3400 -	3600 DRENPG3600
y A grey background ind grey background ind ower factor c	k current reduction er ,E [icates the accessory must be accessory	ORENPG0800 DRENPG e assembled in the factory 2200 DRENPG2200 DRI DRENPG2200 DRI e assembled in the factory	00 50900 DRE 2400 NPG2400 NPG2400	2600 DRENPG2600 DRENPG2600	280 DRENPG DRENPG DRENPG	DRENPG1200 D 30 2800 DREN 2800 DREN 1200	DRENPG1400 000 PG3000 PG3000 1400	3200 DRENPG3200 DRENPG3200 DRENPG3200	3400 DRENPG3400 	3600 DRENPG3600
evice for pea V A grey background ind V grey background ind ower factor co	k current reduction er , E [icates the accessory must beer A E icates the accessory must boorrection er , E [icates the accessory must boorrection er , E [icates the accessory must boorrection er , E [icates the accessory must boorrection er , E [icates the accessory must boorrection er , E [icates the accessory must boorrection er , E [icates the accessory must boorrection er , E [icates the accessory must boorrection er , E [icates the accessory must boorrection er , E [icates the accessory must boorrection er]	ORENPG0800 DRENPG e assembled in the factory 2200 DRENPG2200 DRI DRENPG2200 DRI e assembled in the factory 0800 090 RIFNPG8000 RIFNPG	00 50900 DRE 2400 NPG2400 NPG2400	2600 DRENPG2600 DRENPG2600	DRENPG1100 280 DRENPG DRENPG	DRENPG1200 D 30 2800 DREN 2800 DREN	DRENPG1400 000 PG3000 PG3000	3200 3200 DRENPG3200 DRENPG3200	3400 DRENPG3400 -	3600 DRENPG3600
grey background ind ower factor co A grey background ind grey background ind	k current reduction er ,E ,E Gricates the accessory must beer A E Gricates the accessory must beorrection er ,E Gricates the accessory must beorrection er ,E	ORENPG0800 DRENPG e assembled in the factory 2200 DRENPG2200 DRI DRENPG2200 DRI DRENPG2200 DRI e assembled in the factory 0800 090 RIFNPG0800 RIFNPC e assembled in the factory	2400 NPG2400 NPG2400 NPG2400 RPG2400	2600 2600 DRENPG2600 DRENPG2600 1000 NPG1000	280 DRENPG DRENPG DRENPG 1100 RIFNPG1100	DRENPG1200 0 33 2800 DREN 2800 DREN 1200 RIFNPG1200	DRENPG1400 D00 PG3000 PFG3000 1400 RIFNPG1400	DRENPG1600 3200 DRENPG3200 DRENPG3200 1600 RIFNPG1600	3400 DRENPG3400 - 1800 RIFNPG1800	3600 DRENPG3600 - - 2000 RIFNPG200
grey background ind ower factor co A grey background ind ower factor co V A grey background ind	k current reductioner LE [LE	ORENPG0800 DRENPG e assembled in the factory 2200 DRENPG2200 DRI DRENPG2200 DRI DRENPG2200 DRI e assembled in the factory 0800 090 RIFNPG0800 RIFNPG e assembled in the factory	2400 DRE 2400 NPG2400 NPG2400 NPG2400 NPG2400 2400	2600 DRENPG2600 DRENPG2600 DRENPG2600 1000 NPG1000	280 DRENPG DRENPG DRENPG 1100 RIFNPG1100	DRENPG1200 D 30 2800 DREN 2800 DREN 1200 RIFNPG1200 D 31	DRENPG1400 DOO PG3000 PG3000 1400 RIFNPG1400	3200 DRENPG3200 DRENPG3200 T600 RIFNPG1600	3400 DRENPG3400 1800 RIFNPG1800	3600 DRENPG3600 DRENPG3600 2000 RIFNPG200
grey background ind ower factor co A grey background ind ower factor co V A grey background ind	k current reduction er , E	ORENPG0800 DRENPG e assembled in the factory 2200 DRENPG2200 DRI DRENPG2200 DRI DRENPG2200 DRI GRIFNPG2800 RIFNPG e assembled in the factory 200 RIFNPG0800 RIFNPG e assembled in the factory 2200 RIFNPG2200 RIF	2400 DRE 2400 NPG2400 NPG2400 NPG2400 NPG2400 NPG2400 NPG2400	2600 DRENPG2600 DRENPG2600 DRENPG2600 1000 NPG1000 RIFNPG2600	280 DRENPG DRENPG DRENPG 1100 RIFNPG1100	DRENPG1200 D 30 2800 DREN 2800 DREN 1200 RIFNPG1200 D 30 2800 RIFNI	DRENPG1400 D00 PG3000 PG3000 1400 RIFNPG1400 D00 PG3000	DRENPG1600 3200 DRENPG3200 DRENPG3200 1600 RIFNPG1600 3200 RIFNPG3200	3400 DRENPG3400 - 1800 RIFNPG1800	3600 DRENPG3600
grey background ind ower factor c A grey background ind	k current reduction er E icates the accessory must beer A E icates the accessory must borrection er E icates the accessory must borrection er A E	ORENPGO800 DRENPG PRENPGO800 DRENPG PRENPGO800 DRENPG PRENPG2200 DRENPG2200 DRENPG2200 DRENPG2200 DRENPG2200 DRENPG2200 DRENPG2200 RIFNPGO800 RIFRPRG2200 RIF	2400 DRE 2400 NPG2400 NPG2400 NPG2400 NPG2400 NPG2400 NPG2400 NPG2400 NPG2400	2600 DRENPG2600 DRENPG2600 DRENPG2600 1000 NPG1000	280 DRENPG DRENPG DRENPG 1100 RIFNPG1100	DRENPG1200 D 30 2800 DREN 2800 DREN 1200 RIFNPG1200 D 30 2800 RIFNI	DRENPG1400 DOO PG3000 PG3000 1400 RIFNPG1400	3200 DRENPG3200 DRENPG3200 T600 RIFNPG1600	3400 DRENPG3400 1800 RIFNPG1800	3600 DRENPG3600 DRENPG3600 2000 RIFNPG200
evice for pea V A grey background ind ower factor c V A grey background ind V grey background ind grey background ind	k current reduction er E iicates the accessory must beer A E iicates the accessory must borrection er E iicates the accessory must borrection er E iicates the accessory must beer A E iicates the accessory must beer A E iicates the accessory must beer	ORENPGO800 DRENPG PRENPGO800 DRENPG PRENPGO800 DRENPG PRENPG2200 DRENPG2200 DRENPG2200 DRENPG2200 DRENPG2200 DRENPG2200 DRENPG2200 RIFNPGO800 RIFRPRG2200 RIF	2400 DRE 2400 NPG2400 NPG2400 NPG2400 NPG2400 NPG2400 NPG2400 NPG2400 NPG2400	2600 DRENPG2600 DRENPG2600 DRENPG2600 1000 NPG1000 RIFNPG2600	280 DRENPG DRENPG DRENPG 1100 RIFNPG1100	DRENPG1200 D 30 2800 DREN 2800 DREN 1200 RIFNPG1200 D 30 2800 RIFNI	DRENPG1400 D00 PG3000 PG3000 1400 RIFNPG1400 D00 PG3000	DRENPG1600 3200 DRENPG3200 DRENPG3200 1600 RIFNPG1600 3200 RIFNPG3200	3400 DRENPG3400 1800 RIFNPG1800	3600 DRENPG3600
grey background ind ower factor co A grey background ind ower factor co V A grey background ind ower factor co ind ower factor	k current reduction er E iicates the accessory must beer A E iicates the accessory must borrection er E iicates the accessory must borrection er A E iicates the accessory must beer	ORENPG0800 DRENPI e assembled in the factory 2200 DRENPG2200 DRI DRENPG2200 DRI e assembled in the factory 0800 099 RIFNPG0800 RIFNPC e assembled in the factory 2200 RIFNPG2200 RIF	2400 NPG2400 NPG2400 NPG2400 NPG2400 NPG2400 NPG2400 NPG2400	2600 DRENPG2600 DRENPG2600 DRENPG2600 1000 NPG1000 RIFNPG2600 RIFNPG2600	280 DRENPG DRENPG T100 RIFNPG1100 280 RIFNPG1100	DRENPG1200 0 31 2800 DREN 2800 DREN 1200 RIFNPG1200 0 31 2800 RIFNI 2800 RIFNI	DRENPG1400 D00 PG3000 PG3000 1400 RIFNPG1400 D00 PG3000 PG3000	DRENPG1600 3200 DRENPG3200 DRENPG3200 1600 RIFNPG1600 3200 RIFNPG3200 RIFNPG3200 RIFNPG3200	3400 DRENPG3400 - 1800 RIFNPG1800 3400 RIFNPG3400 -	3600 RIFNPG200 3600 RIFNPG3600
grey background ind Ower factor C A grey background ind Ower factor C V A grey background ind V I I I I I I I I I I I I	k current reduction er E iicates the accessory must beer A E iicates the accessory must borrection er E iicates the accessory must borrection er E iicates the accessory must beer A E iicates the accessory must beer A E iicates the accessory must beer	ORENPGO800 DRENPG PRENPGO800 DRENPG PRENPGO800 DRENPG PRENPG2200 DRENPG2200 DRENPG2200 DRENPG2200 DRENPG2200 DRENPG2200 DRENPG2200 RIFNPGO800 RIFRPRG2200 RIF	2400 NPG2400 NPG2400 NPG2400 NPG2400 NPG2400 NPG2400 NPG2400 NPG2400	2600 DRENPG2600 DRENPG2600 DRENPG2600 1000 NPG1000 RIFNPG2600	280 DRENPG DRENPG DRENPG 1100 RIFNPG1100	DRENPG1200 D 30 2800 DREN 2800 DREN 1200 RIFNPG1200 D 30 2800 RIFNI	DRENPG1400 D00 PG3000 PG3000 1400 RIFNPG1400 D00 PG3000	DRENPG1600 3200 DRENPG3200 DRENPG3200 1600 RIFNPG1600 3200 RIFNPG3200	3400 DRENPG3400 1800 RIFNPG1800	3600 DRENPG3600

A grey background indicates the accessory must be assembled in the factory

Ver	2200	2400	2600	2800	3000	3200	3400	3600
A	GP6G	GP6G	GP16G	GP17G	GP17G	GP17G	GP18G	GP18G
E	GP8G	GP8G	GP18G	GP19G	GP19G	GP19G	-	-

A grey background indicates the accessory must be assembled in the factory GP2VN becomes GP2VNA if configured with a hydronic kit for size 0800 A

Condensate drip.

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000
A	BRC1 x 2 (1)	BRC1 x 3 (1)	BRC1 x 3 (1)	BRC1 x 3 (1)	BRC1 x 4 (1)	BRC1 x 4 (1)	BRC1 x 4 (1)	BRC1 x 5 (1)	BRC1 x 5 (1)
E	BRC1 x 3 (1)	BRC1 x 4 (1)	BRC1 x 4 (1)	BRC1 x 4 (1)	BRC1 x 5 (1)	BRC1 x 5 (1)	BRC1 x 6 (1)	BRC1 x 7 (1)	BRC1 x 7 (1)

(1) Condensate drip tray. Consider 1 for each V-block.
A grey background indicates the accessory must be assembled in the factory

Ver	2200	2400	2600	2800	3000	3200	3400	3600
A	BRC1 x 6 (1)	BRC1 x 6 (1)	BRC1 x 7 (1)	BRC1 x 8 (1)	BRC1 x 8 (1)	BRC1 x 8 (1)	BRC1 x 9 (1)	BRC1 x 9 (1)
E	BRC1 x 8 (1)	BRC1 x 8 (1)	BRC1 x 9 (1)	BRC1 x 10 (1)	BRC1 x 10 (1)	BRC1 x 10 (1)	-	-

(1) Condensate drip tray. Consider 1 for each V-block.
A grey background indicates the accessory must be assembled in the factory

CO	NFI	GURATOR
Field	d	Description
1,2,	3	NPG
4,5,	6,7	Size 0800, 0900, 1000, 1100, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, 3200, 3400, 3600
8		Version
	Α	High efficiency
	Ε	Silenced high efficiency (1)
9		System type
	2	2-pipe system
	4	4-pipe system
10		Coils
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	٧	Copper pieps-Coated aluminium fins
	0	Copper-aluminium
11		Fans
	J	Inverter
	0	Standard with DCPX (2)
12		Power supply
	0	$400V \sim 350$ Hz with magnet circuit breakers
13,1	4	System side - pumps
	00	Without hydronic kit
		Pump n° 1 pump + stand-by pump
	DA	Pump A + stand-by pump (2)
	DB	Pump B + stand-by pump (2)
	DC	Pump C + stand-by pump (2)
	DD	Pump D + stand-by pump (2)
	DE	Pump E + stand-by pump (2)
	DF	Pump F + stand-by pump
	DG	Pump G + stand-by pump
	DH	Pump H + stand-by pump
	DI	Pump I + stand-by pump
	DJ	Pump J + stand-by pump (3)
		Kit with n° 1 inverter pump to fixed speed
	IA	Pump A equipped with inverter device to work at fixed speed (2)
	IB	Pump B equipped with inverter device to work at fixed speed (2)
	IC	Pump C equipped with inverter device to work at fixed speedr (2)
	ID	Pump D equipped with inverter device to work at fixed speed (2)
	ΙE	Pump E equipped with inverter device to work at fixed speed (2)
	IF	Pump F equipped with inverter device to work at fixed speed (4)
	IG	Pump G equipped with inverter device to work at fixed speed (4)
	IH	Pump H equipped with inverter device to work at fixed speed (4)
	II	Pump I equipped with inverter device to work at fixed speed (4)
		Kit with n° 1 inverter pump + stand-by pump to fixed speed
	JA	Pump A+stand-by pump, both equipped with inverter to work at fixed speed (2)
	JB	Pump B+stand-by pump, both equipped with inverter to work at fixed speed (2)
	JC	Pump C+stand-by pump, both equipped with inverter to work at fixed speed (2)
	JD	Pump D+stand-by pump, both equipped with inverter to work at fixed speed (2)
	JE	Pump E+stand-by pump, both equipped with inverter to work at fixed speed (2)
	JF	Pump F+stand-by pump, both equipped with inverter to work at fixed speed (5)
	JG	Pump G+stand-by pump, both equipped with inverter to work at fixed speed (5)
	JH	Pump H+stand-by pump, both equipped with inverter to work at fixed speed (5)

ield	Description
JI	Pump I+stand-by pump, both equipped with inverter to work at fixed speed (5
	Kit with n° 1 pump
PA	Pump A (2)
PB	Pump B (2)
PC	Pump C (2)
PD	Pump D (2)
PE	Pump E (2)
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J (3)
5,16	Recovery side - pumps
00	Without hydronic kit
00	Kit with n° 1 inverter pump to fixed speed
MA	Pump A equipped with inverter device to work at fixed speed (2)
MB	Pump B equipped with inverter device to work at fixed speed (2)
MC	
	Pump C equipped with inverter device to work at fixed speedr (2)
MD	Pump D equipped with inverter device to work at fixed speed (2)
ME	Pump E equipped with inverter device to work at fixed speed (2)
MF	Pump F equipped with inverter device to work at fixed speed (4)
MG	Pump G equipped with inverter device to work at fixed speed (4)
MH	Pump H equipped with inverter device to work at fixed speed (4)
MI	Pump I equipped with inverter device to work at fixed speed (4)
	Kit with n° 1 inverter pump + stand-by pump to fixed speed
NA	Pump A+stand-by pump, both equipped with inverter to work at fixed speed (
NB	Pump B+stand-by pump, both equipped with inverter to work at fixed speed (
NC	Pump C+stand-by pump, both equipped with inverter to work at fixed speed (
ND	Pump D+stand-by pump, both equipped with inverter to work at fixed speed (
NE	Pump E+stand-by pump, both equipped with inverter to work at fixed speed (
NF	Pump F+stand-by pump, both equipped with inverter to work at fixed speed (
NG	Pump G+stand-by pump, both equipped with inverter to work at fixed speed (
NH	Pump H+stand-by pump, both equipped with inverter to work at fixed speed (
NI	Pump I+stand-by pump, both equipped with inverter to work at fixed speed (5
	Kit with n° 1 pump
RA	Pump A (2)
RB	Pump B (2)
RC	Pump C (2)
RD	Pump D (2)
RE	Pump E (2)
RF	Pump F
RG	Pump G
RH	Pump H
RI	Pump I
RJ	Pump J (3)
	Pump n° 1 pump + stand-by pump
SA	Pump A + stand-by pump (2)
SB	Pump B + stand-by pump (2)
	Pump C + stand-by pump (2)
SC	
SD	Pump D + stand-by pump (2)

Field	Description
SF	Pump F + stand-by pump
SG	Pump G + stand-by pump
SH	Pump H + stand-by pump
SI	Pump I + stand-by pump
SJ	Pump J + stand-by pump (3)

- Not available for sizes 3400-3600.
 Not available for the sizes 2600-3600.
 Contact the factory
 Hydronic kit not available with sizes 0800-1600 version A, 0800-1100 version E.
 Hydronic kit not compatible with machines 0800-2000 version A, 0800-1400 version E. Not compatible with sizes 2600-3600.

PERFORMANCE SPECIFICATIONS

NPG - 2 TUBI - version A

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: J																		
Cooling system side 2-pipe system (1)																		
Cooling capacity	kW	206,5	238,8	262,1	298,1	349,6	385,1	424,0	492,6	549,2	601,9	634,7	692,2	759,1	828,4	864,7	900,0	936,4
Input power	kW	72,5	78,2	87,8	105,5	116,8	134,0	151,5	172,2	199,9	209,9	227,0	248,1	269,1	297,2	315,4	326,0	342,9
Cooling total input current	A	128,2	142,2	158,3	183,6	202,9	228,0	254,2	291,8	337,3	355,1	381,1	409,6	446,6	492,8	513,9	527,0	553,0
EER	W/W	2,85	3,06	2,98	2,83	2,99	2,87	2,80	2,86	2,75	2,87	2,80	2,79	2,82	2,79	2,74	2,76	2,73
Water flow rate system side	l/h	35537	41084	45096	51279	60134	66248	72915	84728	94449	103520	109133	119060	130559	142477	148710	154781	161041
Pressure drop system side	kPa	30	41	37	43	47	48	38	47	51	50	36	81	92	97	105	116	102
Heating system side 2-pipe system (2)																		
Heating capacity	kW	212,0	246,3	270,7	308,5	363,1	401,6	436,7	507,2	565,1	617,3	654,9	714,1	787,0	840,5	877,7	928,9	965,9
Input power	kW	67,3	79,4	86,7	99,8	116,0	129,1	138,3	161,0	179,3	195,0	208,9	230,5	253,2	270,9	284,3	301,4	315,6
Heating total input current	A	121,0	142,8	155,8	175,1	201,1	221,1	235,4	275,9	307,8	334,6	355,0	379,9	419,2	450,0	468,6	494,3	515,3
COP	W/W	3,15	3,10	3,12	3,09	3,13	3,11	3,16	3,15	3,15	3,17	3,13	3,10	3,11	3,10	3,09	3,08	3,06
Water flow rate system side	l/h	36787	42745	46996	53553	63027	69719	75833	88058	98099	107197	113726	124010	136667	145942	152400	161305	167715
Pressure drop system side	kPa	26	35	35	45	56	39	35	47	61	37	42	46	55	63	68	77	83
Heating domestic hot water side 2-pipe system (3)																	
Heating capacity	kW	212,6	247,4	272,1	309,6	361,5	399,4	433,8	508,6	565,9	607,8	644,6	719,4	796,4	850,0	888,2	941,1	978,5
Input power	kW	64,9	76,7	83,1	95,4	110,8	123,0	132,9	156,0	175,8	186,5	198,8	223,5	246,9	265,2	278,3	295,8	309,0
Heating total input current	A	118,5	140,0	152,0	169,7	194,2	213,0	227,9	269,1	303,2	323,1	340,9	370,5	411,8	443,0	461,1	487,7	506,7
COP	W/W	3,28	3,22	3,28	3,25	3,26	3,25	3,26	3,26	3,22	3,26	3,24	3,22	3,23	3,21	3,19	3,18	3,17
Water flow rate domestic hot water side	I/h	36883	42934	47229	53737	62755	69347	75327	88302	98238	105551	111934	124931	138301	147604	154236	163411	169910
Pressure drop domestic hot water side	kPa	26	35	35	45	55	38	35	47	62	36	40	47	56	64	70	79	85
Simultaneous operation (heating + cooling), 2 p	ipes (4)																	
Cooling capacity	kW	203,7	225,7	253,7	292,1	337,7	374,2	424,7	483,4	547,9	592,0	631,0	693,6	751,5	821,0	858,1	897,7	935,3
Recovered heating power	kW	261,4	290,8	325,1	376,1	432,7	481,8	541,8	619,8	703,9	754,4	805,3	889,8	967,1	1054,8	1104,6	1157,1	1207,4
Input power	kW	61,2	69,7	76,2	90,0	102,1	115,2	125,0	146,2	167,7	173,9	186,2	211,5	233,3	253,6	268,0	282,9	296,2
Water flow rate system side	l/h	35537	41084	45096	51279	60134	66248	72915	84728	94449	103520	109133	119060	130559	142477	148710	154781	161041
Pressure drop system side	kPa	30	41	37	43	47	48	38	47	51	50	36	81	92	97	105	116	102
Water flow rate domestic hot water side	l/h	36883	42934	47229	53737	62755	69347	75327	88302	98238	105551	111934	124931	138301	147604	154236	163411	169910
Pressure drop domestic hot water side	kPa	26	35	35	45	55	38	35	47	62	36	40	47	56	64	70	79	85
TER	W/W	7,60	7,41	7,59	7,42	7,55	7,43	7,73	7,55	7,46	7,74	7,71	7,49	7,37	7,40	7,32	7,26	7,23

⁽¹⁾ Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C; All units are Eurovent certified
(2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b./6 °C w.b.
(3) Water exchanger to the total recovery side 40 °C/45 °C;
(4) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

With the fan option $^{\circ}$ the data are equivalent and available from size 0800 to 2400.

NPG - 4 TUBI - version A

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: J																		
Cooling system side 4-pipe system (1)																		
Cooling capacity	kW	206,5	238,8	262,1	298,1	349,6	385,1	424,0	492,6	549,2	601,9	634,7	692,2	759,1	828,4	864,7	900,0	936,4
Input power	kW	72,5	78,2	87,8	105,5	116,8	134,0	151,5	172,2	199,9	209,9	227,0	248,1	269,1	297,2	315,4	326,0	342,9
Cooling total input current	Α	128,2	142,2	158,3	183,6	202,9	228,0	254,2	291,8	337,3	355,1	381,1	409,6	446,6	492,8	513,9	527,0	553,0
EER	W/W	2,85	3,06	2,98	2,83	2,99	2,87	2,80	2,86	2,75	2,87	2,80	2,79	2,82	2,79	2,74	2,76	2,73
Water flow rate system side	l/h	35537	41084	45096	51279	60134	66248	72915	84728	94449	103520	109133	119060	130559	142477	148710	154781	161041
Pressure drop system side	kPa	30	41	37	43	47	48	38	47	51	50	36	81	92	97	105	116	102
Heating system side 4-pipe system (2)																		
Heating capacity	kW	212,6	247,4	272,1	309,6	361,5	399,4	433,8	508,6	565,9	607,8	644,6	719,4	796,4	850,0	888,2	941,1	978,5
Input power	kW	64,9	76,7	83,1	95,4	110,8	123,0	132,9	156,0	175,8	186,5	198,8	223,5	246,9	265,2	278,3	295,8	309,0
Heating total input current	Α	118,5	140,0	152,0	169,7	194,2	213,0	227,9	269,1	303,2	323,1	340,9	370,5	411,8	443,0	461,1	487,7	506,7
COP	W/W	3,28	3,22	3,28	3,25	3,26	3,25	3,26	3,26	3,22	3,26	3,24	3,22	3,23	3,21	3,19	3,18	3,17
Water flow rate system side	l/h	36883	42934	47229	53737	62755	69347	75327	88302	98238	105551	111934	124931	138301	147604	154236	163411	169910
Pressure drop system side	kPa	26	35	35	45	55	38	35	47	62	36	40	47	56	64	70	79	85
Simultaneous operation (heating + cooling), 4	pipes (3)																	
Cooling capacity	kW	203,7	225,7	253,7	292,1	337,7	374,2	424,7	483,4	547,9	592,0	631,0	693,6	751,5	821,0	858,1	897,7	935,3
Recovered heating power	kW	261,4	290,8	325,1	376,1	432,7	481,8	541,8	619,8	703,9	754,4	805,3	889,8	967,1	1054,8	1104,6	1157,1	1207,4
Input power	kW	61,2	69,7	76,2	90,0	102,1	115,2	125,0	146,2	167,7	173,9	186,2	211,5	233,3	253,6	268,0	282,9	296,2
TER	W/W	7,60	7,41	7,59	7,42	7,55	7,43	7,73	7,55	7,46	7,74	7,71	7,49	7,37	7,40	7,32	7,26	7,23
Water flow rate cold side	l/h	35537	41084	45096	51279	60134	66248	72915	84728	94449	103520	109133	119060	130559	142477	148710	154781	161041
Pressure drop cold side	kPa	30	41	37	43	47	48	38	47	51	50	36	81	92	97	105	116	102
Water flow rate hot side	I/h	36883	42934	47229	53737	62755	69347	75327	88302	98238	105551	111934	124931	138301	147604	154236	163411	169910
Pressure drop hot side	kPa	26	35	35	45	55	38	35	47	62	36	40	47	56	64	70	79	85

- (1) Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C (2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

With the fan option ° the data are equivalent and available from size 0800 to 2400.

NPG - 2 TUBI - version E

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: J																		
Cooling system side 2-pipe system (1)																		
Cooling capacity	kW	213,9	243,4	269,6	308,8	360,8	398,4	444,6	512,8	573,9	620,0	657,8	715,9	784,5	846,1	890,0	-	-
Input power	kW	68,7	76,3	85,4	101,5	114,3	130,4	142,5	165,0	189,3	201,0	217,2	234,8	256,9	281,9	301,5	-	-
Cooling total input current	A	121,3	136,1	151,3	174,3	193,9	217,6	235,7	274,9	315,6	334,8	358,6	373,4	414,8	455,7	474,9	-	-
EER	W/W	3,11	3,19	3,16	3,04	3,16	3,06	3,12	3,11	3,03	3,08	3,03	3,05	3,05	3,00	2,95	-	-
Water flow rate system side	I/h	36805	41878	46384	53119	62049	68513	76468	88195	98704	106600	113102	123130	134927	145513	153075	-	-
Pressure drop system side	kPa	33	33	36	41	38	34	42	44	53	34	33	85	90	100	108	-	-
Heating system side 2-pipe system (2)																		
Heating capacity	kW	221,1	252,2	275,3	315,3	365,1	404,5	453,0	521,7	583,4	630,5	670,8	745,3	797,0	858,1	910,4	-	-
Input power	kW	68,9	79,7	87,0	99,8	112,1	124,1	140,1	160,5	179,3	196,0	207,7	234,3	247,8	266,5	289,1	-	-
Heating total input current	A	121,1	139,7	152,7	171,4	190,6	209,0	233,3	269,1	301,7	328,3	345,4	368,2	401,5	433,9	452,1	-	-
COP	W/W	3,21	3,16	3,16	3,16	3,26	3,26	3,23	3,25	3,25	3,22	3,23	3,18	3,22	3,22	3,15	-	-
Water flow rate system side	I/h	38375	43773	47791	54724	63379	70236	78653	90570	101283	109498	116479	129407	138396	148991	158070	-	-
Pressure drop system side	kPa	28	37	36	47	57	39	38	50	65	39	44	60	67	79	88	-	-
Heating domestic hot water side 2-pipe system	n (3)																	
Heating capacity	kW	220,1	250,9	276,7	316,4	365,5	404,7	450,0	522,2	583,4	621,2	660,2	710,9	783,6	843,4	882,8	-	-
Input power	kW	66,3	77,1	83,5	96,3	110,8	123,1	136,1	158,5	178,5	188,1	200,4	218,3	240,4	259,0	272,2	-	-
Heating total input current	A	117,9	136,5	148,4	166,9	188,7	207,4	227,5	266,1	300,3	317,3	335,1	362,1	401,1	432,5	450,6	-	-
COP	W/W	3,32	3,25	3,31	3,28	3,30	3,29	3,31	3,29	3,27	3,30	3,29	3,26	3,26	3,26	3,24	-	-
Water flow rate domestic hot water side	l/h	38186	43543	48035	54917	63434	70267	78140	90658	101283	107870	114640	123441	136056	146449	153287	-	-
Pressure drop domestic hot water side	kPa	28	36	36	47	57	39	38	50	65	37	42	54	65	76	83	-	-
Simultaneous operation (heating $+$ cooling), $\overline{\lambda}$	2 pipes (4)																	
Cooling capacity	kW	203,9	227,9	255,4	294,4	344,0	380,9	424,9	491,4	550,4	595,8	637,5	700,1	766,3	831,0	872,5	-	-
Recovered heating power	kW	261,2	292,9	326,5	378,1	438,7	488,2	541,4	627,4	705,8	757,3	811,0	895,4	981,2	1063,9	1118,1	-	-
Input power	kW	61,0	69,3	75,9	89,7	101,7	114,6	124,7	145,9	167,3	172,6	185,4	211,1	233,0	253,4	267,8	-	-
Water flow rate system side	l/h	36805	41878	46384	53119	62049	68513	76468	88195	98704	106600	113102	123130	134927	145513	153075	-	-
Pressure drop system side	kPa	33	33	36	41	38	34	42	44	53	34	33	85	90	100	108	-	-
Water flow rate domestic hot water side	I/h	38186	43543	48035	54917	63434	70267	78140	90658	101283	107870	114640	123441	136056	146449	153287	-	-
Pressure drop domestic hot water side	kPa	28	36	36	47	57	39	38	50	65	37	42	54	65	76	83	-	-
TER	W/W	7,63	7,51	7,66	7,49	7,70	7,59	7,75	7,67	7,51	7,84	7,81	7,56	7,50	7,48	7,43	-	-

- (1) Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C; All units are Eurovent certified
 (2) Data 14511:2022; System side water heat exchanger 40 °C/ 45 °C; Outside air 7 °C d.b. / 6 °C w.b.
 (3) Water exchanger to the total recovery side 40 °C/ 45 °C;
 (4) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

With the fan option $\ensuremath{^\circ}$ the data are equivalent and available from size 0800 to 2400.

NPG - 4 TUBI - version E

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: J																		
Cooling system side 4-pipe system (1)																		
Cooling capacity	kW	213,9	243,4	269,6	308,8	360,8	398,4	444,6	512,8	573,9	620,0	657,8	715,9	784,5	846,1	890,0	-	-
Input power	kW	68,7	76,3	85,4	101,5	114,3	130,4	142,5	165,0	189,3	201,0	217,2	234,8	256,9	281,9	301,5	-	-
Cooling total input current	A	121,3	136,1	151,3	174,3	193,9	217,6	235,7	274,9	315,6	334,8	358,6	373,4	414,8	455,7	474,9	-	-
EER	W/W	3,11	3,19	3,16	3,04	3,16	3,06	3,12	3,11	3,03	3,08	3,03	3,05	3,05	3,00	2,95	-	-
Water flow rate system side	I/h	36805	41878	46384	53119	62049	68513	76468	88195	98704	106600	113102	123130	134927	145513	153075	-	-
Pressure drop system side	kPa	33	33	36	41	38	34	42	44	53	34	33	85	90	100	108	-	-
Heating system side 4-pipe system (2)																		
Heating capacity	kW	220,1	250,9	276,7	316,4	365,5	404,7	450,0	522,2	583,4	621,2	660,2	710,9	783,6	843,4	882,8	-	-
Input power	kW	66,3	77,1	83,5	96,3	110,8	123,1	136,1	158,5	178,5	188,1	200,4	218,3	240,4	259,0	272,2	-	-
Heating total input current	A	117,9	136,5	148,4	166,9	188,7	207,4	227,5	266,1	300,3	317,3	335,1	362,1	401,1	432,5	450,6	-	-
COP	W/W	3,32	3,25	3,31	3,28	3,30	3,29	3,31	3,29	3,27	3,30	3,29	3,26	3,26	3,26	3,24	-	-
Water flow rate system side	l/h	38186	43543	48035	54917	63434	70267	78140	90658	101283	107870	114640	123441	136056	146449	153287	-	-
Pressure drop system side	kPa	28	36	36	47	57	39	38	50	65	37	42	54	65	76	83	-	-
Simultaneous operation (heating + cooling), 4 p	ipes (3)																	
Cooling capacity	kW	203,9	227,9	255,4	294,4	344,0	380,9	424,9	491,4	550,4	595,8	637,5	700,1	766,3	831,0	872,5	-	-
Recovered heating power	kW	261,2	292,9	326,5	378,1	438,7	488,2	541,4	627,4	705,8	757,3	811,0	895,4	981,2	1063,9	1118,1	-	-
Input power	kW	61,0	69,3	75,9	89,7	101,7	114,6	124,7	145,9	167,3	172,6	185,4	211,1	233,0	253,4	267,8	-	-
TER	W/W	7,63	7,51	7,66	7,49	7,70	7,59	7,75	7,67	7,51	7,84	7,81	7,56	7,50	7,48	7,43	-	-
Water flow rate cold side	I/h	36805	41878	46384	53119	62049	68513	76468	88195	98704	106600	113102	123130	134927	145513	153075	-	-
Pressure drop cold side	kPa	33	33	36	41	38	34	42	44	53	34	33	85	90	100	108	-	-
Water flow rate hot side	I/h	38186	43543	48035	54917	63434	70267	78140	90658	101283	107870	114640	123441	136056	146449	153287	-	-
Pressure drop hot side	kPa	28	36	36	47	57	39	38	50	65	37	42	54	65	76	83	-	-

With the fan option ° the data are equivalent and available from size 0800 to 2400.

ENERGY DATA

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
			0000	0900	1000	1100	1200	1400	1000	1000	2000	2200	2400	2000	2000	3000	3200	3400	3000
Fans: J																			
SEER - 12/7 (EN14825: 2018) (1)																			
SEER	A	W/W	4,20	4,40	4,29	4,19	4,41	4,29	4,43	4,49	4,47	4,56	4,56	4,56	4,59	4,56	4,57	4,57	4,56
JEEN	E	W/W	4,57	4,65	4,63	4,55	4,70	4,60	4,71	4,73	4,68	4,76	4,67	4,65	4,66	4,61	4,59	-	-
Casanal offician au	Α	%	165,03	172,97	168,76	164,40	173,36	168,76	174,26	176,46	175,86	179,30	179,22	179,43	180,62	179,36	179,90	179,63	179,47
Seasonal efficiency	E	%	179,65	183,16	182,27	179,15	185,06	181,08	185,47	186,03	184,37	187,25	183,96	183,11	183,49	181,33	180,56	-	-
SEER - 23/18 (EN14825: 2018) (2)																			
CEED	A	W/W	4,89	5,03	4,96	4,79	4,97	4,86	5,01	5,07	5,08	5,13	5,19	4,84	5,04	5,00	4,98	4,97	5,02
SEER	E	W/W	5,28	5,36	5,28	5,20	5,32	5,26	5,30	5,33	5,23	5,42	5,34	5,06	5,13	5,02	4,96	-	-
	A	%	192,45	198,11	195,26	188,53	195,85	191,60	197,44	199,91	200,14	202,39	204,66	190,78	198,71	196,88	196,19	195,61	197,80
Seasonal efficiency	E	%	208,28	211,38	208,24	205,01	209,61	207,42	208,88	210,16	203,23	213,78	210,79	199,57	202,26	197,68	195,39		
UE 813/2013 performance in average a	mbient condit	ions (avera	age) - 35	°C - Pdes	ianh≤4	00 kW (3	3)							,.			,		
	A	kW	186,20	213.96	236.22	271.27	315.32	351,43	382,83	446,83	497,81	534,41	569.02	608.69	665.85	715.17	748,86	791.03	824.59
Pdesignh	F	kW	190,10	215,96	238,70	275,27	316,62	353,47	392,97	454,77	508,34	542,88	578,33	613,29	668,22	719,87	752,39	-	
	A	W/W	3,87	3,63	3,78	3,76	3,69	3,83	3,95	3,93	3,94	4,00	4,04	4,00	4,01	3,94	3,90	3,82	3,81
SCOP	F	W/W	3,77	3,62	3,70	3,79	3,66	3,77	3,88	3,85	3,86	3,97	3,99	3,99	3,95	3.88	3,85	-	
	Λ	%	151.87	142,21	148,35	147.20	144,52	150.05	154.81	154.14	154.62	157.05	158,56	157.04	157,40	154,48	153.03	149.67	149,54
ηsh			147.93	141.65	145,12	148.62	143,52	147,88	152,37	150.92	151,58	155.88	156,50	156,42	154,93	152,14	150.89	147,07	147,34
IIE 012/2012 novformance in average a	mbiont conditi					-,-		147,00	132,37	130,72	131,30	133,00	130,30	130,42	134,73	132,14	130,03		
UE 813/2013 performance in average a	nbient condit		-					250.10	201.50	207.17	202.42	F22.02	F(7.F)	(02.40	(50.22	700.61	742.05	702.40	016 17
Pdesignh	A	kW	185,78	212,98	235,97	271,79	313,94	350,10	381,59	387,17	392,43	532,03	567,53	602,48	658,22	708,61	742,95	782,40	816,17
	Ŀ	kW	189,21	214,50	237,49	274,43	314,36	350,59	388,48	390,59	396,25	537,99	573,77	604,91	658,86	710,94	744,60	-	
SCOP	A	W/W	3,16	3,03	3,14	3,10	3,05	3,08	3,13	3,22	3,13	3,23	3,25	3,23	3,37	3,37	3,34	3,32	3,34
	E	W/W	3,14	3,03	3,08	3,14	3,07	3,07	3,12	3,18	3,07	3,24	3,24	3,26	3,34	3,35	3,33	-	-
nch	A	%	123,43	118,15	122,48	120,99	119,19	120,37	122,24	125,88	122,33	126,23	126,91	126,16	131,68	131,69	130,60	129,69	130,56
ηsh	E	%	122,51	118,32	120,32	122,74	119,65	119,67	121,63	124,10	119,81	126,61	126,64	127,26	130,52	130,96	130,03	-	-

Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
 Calculation performed with FIXED water flow rate.
 Efficiencies for low temperature applications (35 °C)

⁽¹⁾ Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C (2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: °																			
SEER - 12/7 (EN14825: 2018) (1)																			
CTTD	A	W/W	3,91	4,19	4,10	4,02	4,24	4,11	4,20	4,23	4,17	- (2)	- (2)	-	-	-	-	-	-
SEER	E	W/W	4,28	4,43	4,45	4,37	4,51	4,39	4,53	4,50	4,38	4,56	- (2)	-	-	-	-	-	-
Casanal officians:	A	%	153,42	164,55	160,94	157,62	166,50	161,53	165,09	166,23	163,91	- (2)	- (2)	-	-	-	-	-	-
Seasonal efficiency	E	%	168,35	174,04	174,86	171,66	177,32	172,45	178,03	176,91	172,17	179,53	- (2)	-	-	-	-	-	-
SEER - 23/18 (EN14825: 2018) (3)																			
SEER	Α	W/W	4,55	4,79	4,75	4,59	4,77	4,67	4,76	4,80	4,74	4,79	4,83	-	-	-	-	-	-
SEEK	E	W/W	4,97	5,10	5,07	4,98	5,08	5,02	5,10	5,09	4,93	5,22	5,12	-	-	-	-	-	-
Seasonal efficiency	Α	%	179,15	188,60	186,82	180,78	187,65	183,75	187,30	188,88	186,64	188,56	190,36	-	-	-	-	-	-
Seasonal eniciency	E	%	195,67	201,20	199,97	196,33	200,32	197,97	200,81	200,73	194,03	205,60	201,99	-	-	-	-	-	-
UE 813/2013 performance in average a	mbient condit	ions (aver	age) - 35	°C - Pdes	ignh ≤ 4	00 kW (4	l)												
Ddasianh	A	kW	186,20	213,96	236,22	271,27	315,32	351,43	382,83	387,17	392,43	534,41	569,02	-	-	-	-	-	
Pdesignh	E	kW	190,10	215,96	238,70	275,27	316,62	353,47	392,97	390,59	396,25	542,88	578,33	-	-	-	-	-	-
SCOP	A	W/W	3,75	3,52	3,68	3,66	3,60	3,75	3,86	3,82	3,87	3,90	3,94	-	-	-	-	-	-
Scor	E	W/W	3,65	3,51	3,61	3,70	3,57	3,64	3,79	3,71	3,77	3,85	3,88	-	-	-	-	-	-
ηsh	A	%	147,08	137,96	144,14	143,49	141,02	146,85	151,49	149,87	151,80	153,02	154,74	-	-	-	-	-	-
ıjıı	E	%	143,08	137,31	141,51	144,82	139,84	142,66	148,63	145,46	147,80	151,00	152,20	-	-	-	-	-	-
UE 813/2013 performance in average a	mbient condit	ions (aver	age) - 55	°C - Pdes	ignh ≤ 4	00 kW (5)												
Pdacianh	A	kW	185,78	212,98	235,97	271,79	313,94	350,10	381,59	387,17	392,43	532,03	567,53	-				-	
Pdesignh	E	kW	189,21	214,50	237,49	274,43	314,36	350,59	388,48	390,59	396,25	537,99	573,77	-	-	-	-	-	-
SCOP	A	W/W	3,06	2,94	3,05	3,02	2,98	3,02	3,06	3,12	3,13	3,15	3,17	-	-	-	-	-	-
JCUI	E	W/W	3,03	2,94	3,01	3,06	2,99	2,96	3,04	3,05	3,07	3,14	3,15	-	-	-	-	-	-
ηsh	A	%	119,46	114,54	118,93	117,87	116,20	117,74	119,57	121,93	122,33	122,86	123,75	-	-	-	-	-	-
ibii	E	%	118,39	114,59	117,24	119,51	116,46	115,34	118,58	119,01	119,81	122,48	123,02	-	-	-	-	-	-

- (1) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
 (2) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C / 7°C
 (3) Calculation performed with FIXED water flow rate.
 (4) Efficiencies for low temperature applications (35°C)
 (5) Efficiencies for average temperature applications (55°C)

ELECTRIC DATA

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Electric data																			
Marianum aumant /FLA)	Α	Α	158,8	185,4	204,2	232,0	267,6	295,4	323,2	376,2	421,4	457,0	484,8	542,5	596,1	641,9	669,8	705,5	733,3
Maximum current (FLA)	E	Α	166,6	193,2	212,0	239,8	275,4	303,2	338,8	391,8	437,0	472,6	500,4	558,1	611,7	657,5	685,4	-	-
DI	A	Α	363,0	427,2	446,0	695,0	730,6	758,4	786,2	839,2	884,4	920,0	947,8	1004,8	1058,4	1104,2	1132,1	1167,8	1195,6
Peak current (LRA)	E	Α	370.8	435.0	453.8	702.8	738.4	766.2	801.8	854.8	900.0	935.6	963.4	1020.4	1074.0	1119.8	1147.7	_	-

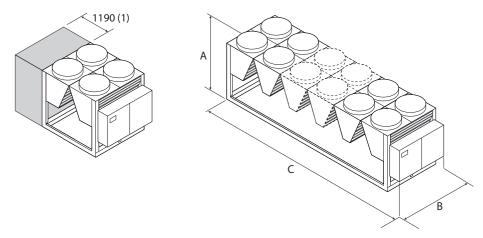
GENERAL TECHNICAL DATA

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Compressor																			
Туре	A,E	type									Scroll								
Compressor regulation	A,E	Туре									On-Off								
Number	A	no.	4	4	4	4	4	4	4	5	6	6	6	7	8	9	9	9	9
Number	E	no.	4	4	4	4	4	4	4	5	6	6	6	7	8	9	9	-	-
Circuits	A	no.	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3
Circuits	E	no.	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	-	-
Refrigerant	A,E	type									R32								
Refrigerant load circuit 1 (1)	A	kg	14,5	19,7	24,6	22,5	29,0	28,0	32,0	38,6	40,9	42,6	43,7	32,0	48,3	51,1	51,1	53,2	54,6
Keingerant load circuit 1 (1)	E	kg	16,0	28,5	29,3	29,7	31,9	30,8	35,2	40,8	42,9	45,0	41,4	35,2	60,2	67,6	67,6	-	-
Definement lead singuit 2 (1)	A	kg	15,0	19,7	24,6	23,0	30,0	28,0	32,0	38,6	40,9	42,6	43,7	32,0	48,3	51,1	51,1	53,2	54,6
Refrigerant load circuit 2 (1)	E	kg	16,5	28,5	29,3	29,3	33,0	30,8	35,2	40,8	42,9	45,0	41,4	35,2	60,2	67,6	67,6	-	-
Refrigerant load circuit 3 (1)	A	kg	-	-	-	-	-	-	-	-	-	-	-	44,0	44,0	44,0	44,0	44,0	44,0
Keirigerant ioad circuit 3 (1)	E	kg	-	-	-	-	-	-	-	-	-	-	-	44,0	44,0	44,0	44,0	-	-
2-pipe system - System side heat excha	nger (hot/cold)																	
Туре	A,E	type								В	Brazed pla	te							
Number	Α	no.	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2
Nulliber	E	no.	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	-	-
Connections (in/out)	A,E	Туре								Gr	rooved joi	nts							
Sizes (in/out)	A	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	5"	5"
Sizes (III/Out)	E	Ø	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	-	-
2-pipe system - Recovery side heat exch	anger (domes	tic hot wa	ter)																
Туре	A,E	type								В	Brazed pla	te							
Number	A	no.	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3
Number	E	no.	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	-	-
Connections (in/out)	A,E	Type Grooved joints																	
Circs (in (out)	A	Ø	3″	3″	3″	3"	3"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	5"	5"
Sizes (in/out)	E	Ø	3″	3″	3"	3"	3"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	-	-

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
4-pipe system - System side heat exchange	er (cold side)																	
Туре	A,E	type								В	Brazed pla	te							
Number -	Α	no.	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2
Number –	E	no.	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	-	-
Connections (in/out)	A,E	Туре	Grooved joints																
Cinca (in Local)	A	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	5"	5"
Sizes (in/out)	E	Ø	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	-	-
4-pipe system - Recovery side heat exchange	ger (hot sid	e)																	
Туре	A,E	type								В	Brazed pla	te							
Normhan	Α	no.	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3
Number –	E	no.	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	-	-
Connections (in/out)	A,E	Туре								Gr	rooved joi	nts							
Cincal (in Local)	Α	Ø	3″	3"	3"	3"	3"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	5"	5"
Sizes (in/out)	Е	Ø	3″	3"	3"	3"	3"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	-	-
Sound data calculated in cooling mode (2)																			
Country and a supplier of	А	dB(A)	90,5	92,2	92,2	92,3	93,6	93,6	93,7	94,6	94,7	95,4	95,5	95,6	96,1	96,1	96,2	96,7	96,8
Sound power level —	E	dB(A)	85,2	86,2	86,2	87,0	88,3	88,8	89,7	90,1	90,2	90,9	91,2	92,2	92,5	92,6	92,8	-	-

FANS DATA


FAINS DATA																			
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: J	'																		
Fan																			
Туре	A,E	type									Axial								
Fan motor	A,E	type									Inverter								
Moundan	A	no.	4	6	6	6	8	8	8	10	10	12	12	14	16	16	16	18	18
Number	E	no.	6	8	8	8	10	10	12	14	14	16	16	18	20	20	20	-	-
A!:- 0	A	m³/h	82403	123609	123609	123605	164779	164779	164779	205996	205998	247152	247152	289826	331230	331230	331230	372633	372633
Air flow rate	E	m³/h	102378	136491	136491	136491	170613	170613	204757	238871	238871	272982	272982	305065	338981	338961	338960	-	-
Size	1		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: °																			
Fan																			
Туре	A,E	type	Axial	Axial	Axial	-	-	-	-	-	-								
Fan motor	A,E	type	- (1)	- (1)	- (1)	- (1)	- (1)	- (1)	- (1)	- (1)	- (1)	- (1)	- (1)	-	-	-	-	-	-
Nk	A	no.	4	6	6	6	8	8	8	10	10	12	12	-	-	-	-	-	-
Number	E	no.	6	8	8	8	10	10	12	14	14	16	16	-	-	-	-	-	-
Air flans make	A	m³/h	82403	123609	123609	123605	164779	164779	164779	205996	205998	247152	247152	-	-	-	-	-	-
Air flow rate	E	m³/h	102378	136491	136491	136491	170613	170613	204757	238871	238871	272982	272982	-	-	-	-	-	-

⁽¹⁾ On-Off with DCPX

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

(1) Additional module needed to contain the hydronic kit with "pump" option in sizes: NPG 0800 A

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Dimensions and weights without hydror	nic kit																		
	A	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
A	E	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	-	-
В	A	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
D	E	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	-	-
	A	mm	2820	4010	4010	4010	5200	5200	5200	6390	6390	7580	7580	9960	11150	11150	11150	12340	12340
	E	mm	4010	5200	5200	5200	6390	6390	7580	8770	8770	9960	9960	12340	13530	13530	13530	-	-
Empty weight	Α	kg	2575	3120	3130	3325	4115	4305	4605	5400	5805	6640	6740	8254	9076	9471	9571	10323	10413
Empty weight	E	kg	3085	3745	3755	3955	4690	4865	5565	6400	6780	7690	7825	9268	10175	10540	10640	-	-
Dimensions and weights with pump/s																			
1	Α	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
A	E	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	-	-
В	Α	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
D	E	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	-	-
•	Α	mm	4010	4010	4010	4010	5200	5200	5200	6390	6390	7580	7580	9960	11150	11150	11150	12340	12340
	E	mm	4010	5200	5200	5200	6390	6390	7580	8770	8770	9960	9960	12340	13530	13530	13530	-	-

CPS

Multifunction unit with multiple temperature level capability

Cooling capacity 164 ÷ 491 kW Heating capacity 176 ÷ 505 kW

- Multipurpose 6 pipes plug and play system
- Simultaneous and independent production of chilled water, medium temperature hot water and high temperature hot water (also suitable for domestic use)
- Uses heat recovery for simultaneous cooling and heating

DESCRIPTION

The multi-purpose 6-pipe units CPS are designed for residential buildings and accommodation facilities that require the simultaneous availability of heating and cooling for the rooms, along with high-temperature water (up to 73°C on the machine outlet) for heating needs and/or DHW production.

Each single service (cooling, medium-temperature heating, high-temperature hot water) can be supplied independently of the request for the others.

The versatile functions, extended operating limits and simplified installation of these units mean that they can also be used in a variety of different industrial processes.

 $\ensuremath{\mathsf{CPS}}$ the ideal solution for both new installations and upgrading existing systems.

FEATURES

Operating field

Possibility to produce water up to 73°C, using mainly free-heating for cooling requests.

2 dual circuit units

Created by combining and optimising, in a single system, an NRP series 4-pipe multifunction air-water unit (with scroll compressors and R410A refrigerant) for the production of chilled water and medium temperature hot water on the heating/cooling circuit side, and a WWB series water-water heat pump (with scroll compressors and R134a refrigerant) for the production of domestic hot water (DHW).

Constructional characteristics of unit

CPS units can be installed and operated even in locations with limit space, offering significant time savings in terms of both system planning and installation, while tried-and-tested, optimised management logic makes it possible to create plug-and-play systems with superior reliability and efficiency.

These units consist of:

4 cooling circuits

- 2 circuits (C1/C2) with R410A gas
- 2 circuits (C2/C3) with R134a gas

3 plate heat exchanger

1 Plate heat exchanger for chilled water

- 1 Plate heat exchanger for medium temperature hot water
- 1 Inspectable stainless steel plate heat exchanger for high temperature hot water production (DHW)

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Option integrated hydronic kit

To create a solution which offers both cost savings and facilitated installation, these units may be configured with an integrated hydronic kit on the chilled water utility side. A hydronic kit must always be used, however, on the medium temperature water side.

These kits include all the main plumbing components necessary, and are available in a variety of configurations with either a single pump or with a backup pump to offer a choice of different total head values.

Flow switches must be installed on both the cold and medium temperature water utility circuits to protect the heat exchangers. Failure to do so will render the warranty null and void.

CONTROL PCO⁵

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: Allows, with continuous fan modulation, to optimize the operation of the unit in any operating point, ensuring an increase in the energy efficiency at partial load. ESEER up to +7% with inverter fans

 Night mode: only in the non-silenced versions is it possible to set a silenced operating mode, which is useful for example at night for greater acoustic comfort but always guarantees performance even at peak load times.

CONFIGURATOR

Field	Description
1,2,3	CPS
4,5,6,7	Size 0704, 1004, 1805
8	Coils
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
0	Copper-aluminium
9	Fans
J	Inverter
0	Asynchronous + DCPX
10	Power supply
S	400V ~ 3 50Hz with soft-start
0	400V ~ 3 50Hz with magnet circuit breakers
11,12	Hydronic kit integrated on chilled water utility side
00	Without hydronic kit
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
PA	Pump A
PB	Pump B

COMPATIBILITY BETWEEN DIFFERENT HYDRONIC KITS

These kits include all the main plumbing components necessary, and are available in a variety of configurations with either a single pump or with a backup pump to offer a choice of different total head values.

Field Description PC Pump C PD Pump D PE Pump E PF Pump F	
PD Pump D PE Pump E PF Pump F	
PE Pump E PF Pump F	
PF Pump F	
PG Pump G	
PH Pump H	
PI Pump I	
13,14 Hydronic kit integrated on medium temperature water utili	ity side
RA Pump A	
RB Pump B	
RC Pump C	
RD Pump D	
RE Pump E	
RF Pump F	
RG Pump G	
RH Pump H	
RI Pump I	
SA Pump A + stand-by pump	
SB Pump B + stand-by pump	
SC Pump C + stand-by pump	
SD Pump D + stand-by pump	
SE Pump E + stand-by pump	
SF Pump F + stand-by pump	
SG Pump G + stand-by pump	
SH Pump H + stand-by pump	
SI Pump I + stand-by pump	

The following table illustrates the compatibility between different unit sizes and the hydronic kits.

All units must be configured with the medium temperature water side hydronic kit.

		CPS0704	CPS1004	CPS1805
	PA-DA	PA-DA		
	PB-DB	PB-DB		
	PC-DC	PC-DC	PC-DC	
	PD-DD	PD-DD	PD-DD	
Pumps - COLD WATER side	PE-DE	PE-DE	PE-DE	PE-DE
COLD WATER SIDE	PF-DF		PF-DF	PF-DF
	PG-DG			PG-DG
	PH-DH			PH-DH
	PI-DI			PI-DI

		CPS0704	CPS1004	CPS1805
	RA-SA	RA-SA		
	RB-SB	RB-SB		
	RC-SC	RC-SC	RC-SC	
Pumps -	RD-SD	RD-SD	RD-SD	
HOT WATER (AVERAGE TEMPERATURE)	RE-SE		RE-SE	RE-SE
side	RF-SF		RF-SF	RF-SF
	RG-SG			RG-SG
	RH-SH			RH-SH
	RI-SI			RI-SI

PERFORMANCE SPECIFICATIONS

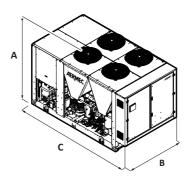
		CPS0704°°°00RA	CPS1004°°°00RC	CPS1805°°°00RE
Household system side cooling (1)			-	
Cooling capacity	kW	163,9	259,2	490,5
Input power	kW	53,2	86,3	165,7
Cooling total input current	A	97,0	128,0	239,0
EER	W/W	3,08	3,00	2,96
Water flow rate system side	l/h	28212	44593	84370
Pressure drop system side	kPa	32	34	49
Medium temperature system heating (2)				
Heating capacity	kW	175,2	271,8	503,5
Input power	kW	55,8	86,5	161,7
Heating total input current	A	104,0	136,0	250,0
COP	W/W	3,14	3,14	3,11
Water flow rate system side	l/h	30521	47339	87653
Useful head system side	kPa	99	120	113
High temperature system side heating (DHW)	(3)			
Heating capacity (DHW)	kW	90,7	177,4	251,9
Input power	kW	48,4	85,3	144,3
Heating total input current	A	88,0	134,0	211,0
COP	W/W	1,87	2,08	1,75
Water flow rate domestic hot water side	l/h	7897	15442	21924
Pressure drop domestic hot water side	kPa	30	40	39
Simultaneous operation (cooling + medium te	mperature heating) (4)			
Cooling capacity	kW	163,3	258,3	466,2
Heating capacity	kW	207,8	330,2	600,6
Input power	kW	48,4	78,7	147,7
Total input current	A	92	136	253
TER	W/W	7,66	7,47	7,22
Water flow rate cold side	I/h	28212	45593	84370
Pressure drop cold side	kPa	32	34	49
Water flow rate hot side	l/h	30521	47339	87653
Useful head system side	kPa	99	120	113
Simultaneous operation (cooling + high tempo	erature DHW production) (
Cooling capacity	kW	160,0	250,0	463,5
Heating capacity (DHW)	kW	90,7	177,4	251,9
Input power	kW	70,7	124,1	217,0
Total input current	A	126	191	333
TER	W/W	3,54	3,45	3,30
Water flow rate cold side	l/h	27536	43003	79720
Pressure drop cold side	kPa	30	31	44
Water flow rate domestic hot water side	l/h	7899	15442	21924
Pressure drop domestic hot water side	kPa	30	40	39
Simultaneous operation (medium temperature	e heating + high tempera	ture DHW production) (6)		
Heating capacity	kW	101,4	129,5	304,2
Heating capacity (DHW)	kW	90,5	177,0	251,3
Input power	kW	73,7	123,9	215,6
Total input current	A	137	196	341
TER	W/W	2,60	2,47	2,58
Water flow rate hot side	l/h	17696	22604	53038
Useful head system side	kPa	158	189	256
Water flow rate domestic hot water side	l/h	7897	15442	21924
Pressure drop domestic hot water side	kPa	30	40	39
Simultaneous operation (cooling + medium te				
Cooling capacity	kW	163,3	258,3	466,2
Heating capacity	kW	134,0	187,9	401,4
Heating capacity (DHW)	kW	90,5	177,0	251,3
Total input power	kW	66,7	116,6	204,1
Total input current	A	125	199	347
TER	W/W	5,81	5,35	5,48
Water flow rate cold side	I/h	28212	44593	84370
Pressure drop cold side	kPa	32	34	49
Water flow rate hot side	I/h	30521	47339	87653
Useful head system side	kPa	99	120	113
Water flow rate domestic hot water side	I/h	7897	15442	21924
Pressure drop domestic hot water side	kPa	30	40	39
(1) Data 14511:2022: System side water heat excha				

⁽¹⁾ Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C
(2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. /6 °C w.b.
(3) Data 14511:2022; Heat exchanger - services side (DHW at high temperature) 55°C /65°C; Outside air 7°C D.B./6°C W.B.
(4) Water exchanger to the total recovery side * / 45 °C; Water to the system side heat exchanger */7 °C;
(5) Data 14511:2022; Heat exchanger water (services side) 12°C/7 °C; Outside air 3°C; Heat exchanger water (DHW side) 55°C /65°C
(6) Data 14511:2022; Heat exchanger water (services side) * °C / 45°C; Outside air 7°C D.B./6°C W.B.; Heat exchanger water (DHW side) 55°C / 65°C
(7) Heat exchanger - services side (cold water) * / 7°C; Heat exchanger - services side (hot water at average temperature) * / 45°C; Heat exchanger - services side (hot water at high temperature) 55°C / 65°C

ENERGY DATA

		CPS0704°°°00RA	CPS1004°°°00RC	CPS1805***00RE
Cooling capacity with low leaving w	rater temp (UE n° 2016/2281)			
SEER	W/W	-	-	4,56
Jsc	%	-	-	180%
JE 813/2013 performance in averag	e ambient conditions (average) - 55 °	C - Pdesignh ≤ 400 kW (1)		
Pdesignh	kW	150	241	-
SCOP .	W/W	2,66	2,76	-
sh	%	103%	107%	-
JE 813/2013 performance in averag	je ambient conditions (average) - 35 °	C - Pdesignh ≤ 400 kW (2)		
² designh	kW	158	246	-
SCOP .	W/W	3,26	3,44	-
ηsh	%	128%	135%	-

⁽¹⁾ Efficiencies for average temperature applications (55 °C)
(2) Efficiencies for low temperature applications (35 °C)


ELECTRIC DATA

		CPS0704°°°00RA	CPS1004°°°00RC	CPS1805°°°00RE
Cooling only mode				
Maximum current (FLA)	A	153,0	220,0	420,0
Peak current (LRA)	A	293,0	459,0	746,0
Medium temperature heating mode ope	eration only			
Maximum current (FLA)	A	153,0	220,0	420,0
Peak current (LRA)	A	293,0	459,0	746,0
High temperature DHW production oper	ating mode only)			
Maximum current (FLA)	A	121,0	203,0	320,0
Peak current (LRA)	A	261	442	645
Simultaneous operation (medium temp	erature heating + cooling)			
Maximum current (FLA)	A	138,0	197,0	381,0
Peak current (LRA)	A	278	436	707
Simultaneous operation (medium temp	erature heating + high temper	ature DHW production)		
Maximum current (FLA)	A	197,0	308,0	549,0
Peak current (LRA)	A	337	547	874
Simultaneous operation (cooling + DHW	production operating)			
Maximum current (FLA)	A	189,0	300,0	533,0
Peak current (LRA)	A	329	539	858
Simultaneous operation (cooling + med	ium temperature heating + hig	Jh temperature DHW production)		
Maximum current (FLA)	A	181,0	284,0	510,0
Peak current (LRA)	A	321	523	835

GENERAL TECHNICAL DATA

		CPS0704°°°00RA	CPS1004°°°00RC	CPS1805***00RE
Compressor - Circuit (C1/C2)				
Туре	type		Scroll	
Number	no.	4	4	5
Circuits	no.	2	2	2
Refrigerant	type		R410A	
Refrigerant charge	kg	45,0	61,0	106,0
Thermostatic expansion valve	type		Meccanica	
Compressor - Circuit (C3/C4)				
Туре	type		Scroll	
Number	no.	2	2	2
Circuits	no.	2	2	2
Refrigerant	type		R134a	
Refrigerant charge	kg	7,0	15,0	20,0
Thermostatic expansion valve	type		Elettronica	
Utility side heat exchanger (cooling)				
Туре	type		Brazed plate	
Number	no.	1	1	1
Connections (in/out)	Туре		Grooved joints	
Sizes (in/out)	Ø	2″1/2	3"	4"
Utility side heat exchanger (medium tem	perature heating)			
Туре	type		Brazed plate	
Number	no.	2	2	2
Manifold connection (in/out)	Туре		Grooved joints	
Manifold diameter (in/out)	Ø	2″1/2	3"	4"
Utility side heat exchanger (high tempera	nture heating)			
Туре	type		Brazed plate	
Number	no.	1	1	1
Connections (in/out)	Туре		Gas	
Sizes (in/out)	Ø		2" M	
Fan				
Туре	type		Axial	
Fan motor	type		Asynchronous with phase cut	
Number	no.	4	6	10
Air flow rate	m³/h	88000	116500	194100

DIMENSIONS

		CPS0704°°°00RA	CPS1004°°°00RC	CPS1805°°°00RE
Dimensions and weights				
A	mm	2450	2450	2450
В	mm	2200	2200	2200
C	mm	3975	5760	8143

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NXP 0500 - 1650

Water-water multipurpose

Cooling capacity 108 ÷ 502 kW Heating capacity 122 ÷ 549 kW

- Units designed for 2 or 4-pipe systems
- High efficiency also at partial loads
- Simultaneous and independent production of hot and chilled water

DESCRIPTION

Multi-purpose indoor model designed for applications with 2 or 4-pipe systems. Just one unit is capable of satisfying the yearly hot and cold water demand simultaneously and independently.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

L Standard silenced

FEATURES

Operating field

Work at full load with chilled water production from 4 to 18° C at the evaporator and hot water at the condenser up to 55° C.

(for more information, refer to the technical documentation).

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Exchangers

All standard units have user-side heat exchangers and plate recovery, optimised to take advantage of the excellent heat exchange characteristics of the RA10A

Option integrated hydronic kit

To obtain a solution that offers economic savings and easy installation, these units can be configured with an integrated hydronic kit on both the service side and the recovery side.

The kit contains the main hydraulic components, and is available in various configurations with a single pump or a standby pump too, so the customer can choose the right useful head.

■ The flow switch is available as an accessory for both the system side and the recovery side, and is compulsory; if it is not installed, the warranty will be considered invalid.

CONTROL PCO⁵

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervising systems with MODBUS protocol. 1 accessory is provided for each unit control board.

AERBACP: Ethernet communication interface for Bacnet/IP, Modbus TCP/IP, SNMP protocols. 1 accessory is provided for each unit control board.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 control boards). Also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER-EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel (max. no. 9), always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

 $\mbox{\bf RIF:}$ Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ACCESSORIES COMPATIBILITY

Model	Ver	0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
AER485P1	°,L		•	•	•	•		•	•	•	•	•	•	•
AERBACP	°,L	•												
AERNET	°,L	•				•		•	•	•	•	•	•	•
FL	°,L	•	•									•		•
MULTICHILLER-EVO	°,L	•				•			•	•	•	•	•	•
PGD1	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•

Antivibration

Version	System side - pumps	Recovery side - pumps	0500	0550	0600	0650	0700	0750	0800
0	0	0	AVX350	AVX350	AVX351	AVX351	AVX351	AVX351	AVX352
0	0	U, V	AVX357	AVX357	AVX358	AVX358	AVX358	AVX359	AVX360
0	M, N	°, U, V, W, Z	AVX357	AVX357	AVX358	AVX358	AVX358	AVX359	AVX360
0	0, P	U, V	AVX357	AVX357	AVX358	AVX358	AVX358	AVX359	AVX360
0	0	W, Z	AVX357	AVX357	AVX359	AVX359	AVX359	AVX359	AVX363
0	0, P	°, W, Z	AVX357	AVX357	AVX359	AVX359	AVX359	AVX359	AVX363
L	0	0	AVX351	AVX351	AVX355	AVX355	AVX355	AVX356	AVX353
L	0	U, V	AVX358	AVX358	AVX359	AVX359	AVX359	AVX360	AVX360
L	M, N	°, U, V	AVX358	AVX358	AVX359	AVX359	AVX359	AVX360	AVX360
L	°, M, N	W, Z	AVX359	AVX359	AVX359	AVX359	AVX359	AVX363	AVX363
L	0, P	°, U, V, W, Z	AVX359	AVX359	AVX359	AVX359	AVX359	AVX363	AVX363
Version	System side - pur	mps Recovery side - p	umps 0900	1000		1250	1400	1500	1650
0	٥	٥	AVX352	AVX353		AVX353	AVX353	AVX354	AVX354

Version	System side - pumps R	Recovery side - pumps	0900	1000	1250	1400	1500	1650
0	0	0	AVX352	AVX353	AVX353	AVX353	AVX354	AVX354
	0	U, V	AVX360	AVX361	AVX361	AVX361	AVX361	AVX361
0	M, N	°, U, V, W, Z	AVX360	AVX361	AVX361	AVX361	AVX361	AVX361
0	0, P	U, V	AVX360	AVX361	AVX361	AVX361	AVX361	AVX361
0	0	W, Z	AVX363	AVX364	AVX364	AVX364	AVX364	AVX364
0	0, P	°, W, Z	AVX363	AVX364	AVX364	AVX364	AVX364	AVX364
L	0	0	AVX353	AVX353	AVX354	AVX354	AVX354	AVX354
L	0	U, V	AVX360	AVX361	AVX361	AVX362	AVX362	AVX362
L	M, N	°, U, V	AVX360	AVX361	AVX361	AVX362	AVX362	AVX362
L	°, M, N	W, Z	AVX364	AVX364	AVX364	AVX364	AVX364	AVX364
L	0, P	°, U, V, W, Z	AVX364	AVX364	AVX364	AVX364	AVX364	AVX364

Device for peak current reduction

Ver	0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
°.	DRF501 (1)	DRF551 (1)	DRF601 (1)	DRF651 (1)	DRF701 (1)	DRF751 (1)	DRF801 (1)	DRF901 (1)	DRF1001 (1)	DRF1251 (1)	DRF1401 (1)	DRF1401 (1)	DRF1401 (1)

⁽¹⁾ Only for supplies of 400V 3N ~ 50Hz and 400V 3 ~ 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
°,L	RIF98	RIF98	RIF95	RIF95	RIF95	RIF95	RIF95	RIF96	RIF97	RIF97	RIF97	RIF97	RIF97

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Configuration options

Field	Description
1,2,3	NXP
4,5,6,7	Size 0500, 0550, 0600, 0650, 0700, 0750, 0800, 0900, 1000, 1250, 1400, 1500, 1650
8	Operating field
0	Standard mechanic thermostatic valve
9	System type
2	2-pipe system
4	4-pipe system
10	Version
0	Standard
L	Standard silenced
11	Power supply
4	220V ~ 3 50Hz with magnet circuit breakers (1)
5	500V ~ 3 50Hz with magnet circuit breakers (2)
0	400V ~ 3 50Hz with magnet circuit breakers
12	System side - pumps
М	Single pump low head
N	Pump low head + stand-by pump
0	Single pump high head
P	Pump high head + stand-by pump
0	Without hydronic kit
13	Recovery side - pumps
U	Single pump low head
V	Pump low head + stand-by pump
W	Single pump high head
Z	Pump high head + stand-by pump
0	Without hydronic kit

⁽¹⁾ Only for sizes from 0500 to 0700 (2) Only for sizes from 0800 to 1000

PERFORMANCE SPECIFICATIONS

NXP - 2-pipe system versions °/L

Size		0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
Cooling system side 2-pipe system (1)														
Cooling capacity	kW	108,9	117,0	141,5	157,5	192,7	218,5	252,2	281,0	305,8	345,2	392,3	447,2	502,4
Input power	kW	24,0	26,1	30,9	35,1	42,6	48,9	56,0	62,5	66,3	75,7	85,2	98,4	110,3
Cooling input current	А	47,0	50,0	58,0	65,0	84,0	90,0	92,0	101,0	106,0	135,0	149,0	169,0	188,0
EER	W/W	4,54	4,48	4,58	4,49	4,52	4,47	4,51	4,50	4,61	4,56	4,60	4,55	4,55
Water flow rate source side	I/h	22711	24436	29455	32877	40143	45586	52705	58706	63673	71963	81633	93177	104621
Pressure drop source side	kPa	33	37	41	50	59	69	28	34	26	32	36	45	49
Water flow rate system side	l/h	18734	20124	24349	27108	33155	37599	43386	48338	52596	59364	67464	76904	86389
Pressure drop system side	kPa	19	21	21	25	27	29	20	25	19	23	26	32	34
Heating system side 2-pipe system (2)														
Heating capacity	kW	122,4	131,0	158,2	175,7	210,0	238,7	289,0	320,9	352,6	383,7	433,5	489,5	549,4
Input power	kW	29,6	32,0	38,5	43,3	51,7	59,6	70,9	79,3	84,0	91,7	103,4	118,6	132,1
Heating input current	Α	54,0	58,0	68,0	76,0	95,0	103,0	112,0	123,0	130,0	154,0	173,0	196,0	217,0
COP	W/W	4,13	4,09	4,11	4,05	4,06	4,00	4,08	4,05	4,20	4,18	4,19	4,13	4,16
Water flow rate source side	l/h	27209	29066	35169	38937	46642	52841	63935	70917	78660	85555	96778	108934	122632
Pressure drop source side	kPa	47	52	58	69	79	92	41	50	39	45	51	62	67
Water flow rate system side	l/h	21232	22726	27452	30476	36453	41427	50177	55720	61233	66632	75270	84987	95403
Pressure drop system side	kPa	25	27	27	32	32	36	27	33	25	29	32	39	42
Heating domestic hot water side 2-pipe system (3)														
Heating capacity	kW	124,5	133,2	161,0	178,8	213,6	242,8	293,3	325,1	354,8	390,1	439,8	496,5	558,6
Input power	kW	29,2	31,6	37,8	42,6	50,9	58,4	70,0	78,4	83,2	91,1	102,6	117,8	131,6
Heating total input current	Α	54,0	57,0	67,0	75,0	95,0	103,0	110,0	122,0	129,0	153,0	171,0	194,0	216,0
COP	W/W	4,26	4,21	4,26	4,20	4,19	4,16	4,19	4,15	4,26	4,28	4,29	4,21	4,24
Water flow rate source side	I/h	27905	29767	36085	39952	47734	54174	65416	72379	79441	87568	98845	111238	125462
Pressure drop source side	kPa	37	42	41	50	53	58	42	50	38	46	52	66	70
Water flow rate domestic hot water side	INI U													
	I/h	21604	23109	27936	31015	37062	42149	50928	56446	61601	67743	76363	86215	96994
Pressure drop domestic hot water side				27936 25	31015 30	37062 33	42149 36	50928 26	56446 32	61601 23	67743 28	76363 33	86215 40	96994 43
Pressure drop domestic hot water side Simultaneous operation (heating + cooling), 2 pipes	I/h kPa	21604	23109											
Simultaneous operation (heating + cooling), 2 pipes Cooling capacity	I/h kPa	21604	23109											
Simultaneous operation (heating + cooling), 2 pipes	I/h kPa s (4)	21604	23109	25	30	33	36	26	32	23	28	33	40	43
Simultaneous operation (heating + cooling), 2 pipes Cooling capacity	I/h kPa s (4) kW	21604 23 96,2	23109 26 102,5	25 124,8	30 138,9	33 165,4	36 190,6	26 225,7	32 250,3	23 282,6	28 308,1	33 340,2	40 392,0	43
Simultaneous operation (heating + cooling), 2 pipes Cooling capacity Recovered heating power	I/h kPa s (4) kW kW	21604 23 96,2 123,3	23109 26 102,5 131,9	25 124,8 160,0	30 138,9 178,4	33 165,4 212,6	36 190,6 244,6	26 225,7 290,8	32 250,3 322,7	282,6 360,1	28 308,1 392,6	33 340,2 435,1	392,0 500,6	444,9 566,0
Simultaneous operation (heating + cooling), 2 pipes Cooling capacity Recovered heating power Input power	I/h kPa s (4) kW kW kW	21604 23 96,2 123,3 28,2	23109 26 102,5 131,9 30,5	25 124,8 160,0 36,5	30 138,9 178,4 40,9	33 165,4 212,6 49,0	36 190,6 244,6 56,2	26 225,7 290,8 67,8	32 250,3 322,7 75,5	282,6 360,1 80,9	308,1 392,6 88,2	33 340,2 435,1 99,2	392,0 500,6 113,9	444,9 566,0 126,6
Simultaneous operation (heating + cooling), 2 pipes Cooling capacity Recovered heating power Input power Water flow rate system side	I/h kPa s (4) kW kW kW	21604 23 96,2 123,3 28,2 18734	23109 26 102,5 131,9 30,5 20124	25 124,8 160,0 36,5 24349	30 138,9 178,4 40,9 27108	33 165,4 212,6 49,0 33155	36 190,6 244,6 56,2 37599	26 225,7 290,8 67,8 43386	32 250,3 322,7 75,5 48338	282,6 360,1 80,9 52596	308,1 392,6 88,2 59364	33 340,2 435,1 99,2 67464	392,0 500,6 113,9 76904	43 444,9 566,0 126,6 86389

- (1) Date 14511:2022; Water user side 1°C/7°C; Water source side 30°C/35°C; All the units are Eurovent certified (2) Date 14511:2022; Water user side 40°C/45°C; Water source side 10°C/7°C (3) Water exchanger to the total recovery side 40°C/45°C; Water source side 10°C/7°C (4) Water exchanger to the total recovery side **/45°C; Water to the system side heat exchanger **/7°C;

NXP - 4-pipe system versions °/L

MAF - 4-pipe system versions /L														
Size		0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
Cooling system side 4-pipe system (1)														
Cooling capacity	kW	108,9	117,0	141,5	154,5	192,7	218,5	252,2	281,0	305,8	345,2	392,3	447,2	502,4
Input power	kW	24,0	26,1	30,9	35,1	42,6	48,9	56,0	62,5	66,3	75,7	85,2	98,4	110,3
Cooling input current	А	47,0	50,0	58,0	65,0	84,0	90,0	92,0	101,0	106,0	135,0	149,0	169,0	188,0
EER	W/W	4,54	4,48	4,58	4,49	4,52	4,47	4,51	4,50	4,61	4,56	4,60	4,55	4,55
Water flow rate source side	l/h	22711	24436	29455	32877	40143	45586	52705	58706	63673	71963	81633	93177	104621
Pressure drop source side	kPa	33	37	41	50	59	69	28	34	26	32	36	45	49
Water flow rate system side	l/h	18734	20124	24349	27108	33155	37599	43386	48338	52596	59364	67464	76904	86389
Pressure drop system side	kPa	19	21	21	25	27	29	20	25	29	23	26	32	34
Heating system side 4-pipe system (2)														
Heating capacity	kW	124,5	133,2	161,0	178,8	213,6	242,8	293,3	325,1	354,8	390,1	439,8	496,5	588,6
Input power	kW	29,2	31,6	37,8	42,6	50,9	58,4	70,0	78,4	83,2	91,1	102,6	117,8	131,6
Heating total input current	A	54,0	57,0	67,0	75,0	95,0	103,0	110,0	122,0	129,0	153,0	171,0	194,0	216,0
COP	W/W	4,26	4,21	4,26	4,20	4,19	4,16	4,19	4,15	4,26	4,28	4,29	4,21	4,24
Water flow rate source side	l/h	27905	29767	36085	39952	47734	54174	65416	72379	79441	87568	98845	111238	125462
Pressure drop source side	kPa	37	42	41	50	53	58	42	50	38	46	52	66	70
Water flow rate system side	I/h	21604	23109	27935	31015	37062	42149	50928	54446	61601	67743	76363	46215	96994
Pressure drop system side	kPa	23	26	25	30	33	36	26	32	23	28	33	40	43
Simultaneous operation (heating + cooling), 4 p	oipes (3)													
Cooling capacity	kW	96,2	102,5	124,8	138,9	165,4	190,6	225,7	250,3	282,6	308,1	340,2	392,0	444,9
Recovered heating power	kW	123,3	131,9	160,0	178,4	212,6	244,6	290,8	322,7	360,1	392,6	435,1	500,6	566,0
Input power	kW	28,2	30,5	36,5	40,9	49,0	56,2	67,8	75,5	80,9	88,2	99,2	113,4	126,6
Water flow rate cold side	l/h	18734	20124	24349	27108	33155	37599	43386	48338	52596	59364	67464	76904	86389
Pressure drop cold side	kPa	19	21	21	25	27	29	20	25	19	23	26	32	34
Water flow rate hot side	I/h	21604	23109	27936	31015	37062	42149	50928	56446	61601	67743	76363	86215	96944

- (1) Date 14511:2022; Water user side $12^{\circ}\text{C}/7^{\circ}\text{C}$; Water source side $30^{\circ}\text{C}/35^{\circ}\text{C}$; All the units are Eurovent certified (2) Date 14511:2022; Water user side $40^{\circ}\text{C}/45^{\circ}\text{C}$; Water source side $10^{\circ}\text{C}/7^{\circ}\text{C}$ (3) Water exchanger to the total recovery side * / 45 °C; Water to the system side heat exchanger * / 7 °C;

891

Size		0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
Pressure drop hot side	kPa	23	26	25	30	33	36	26	32	23	28	33	40	43

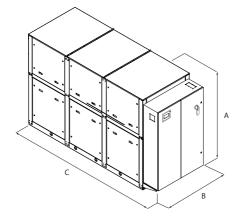
⁽¹⁾ Date 14511:2022; Water user side 12 °C/7 °C; Water source side 30 °C/35 °C; All the units are Eurovent certified (2) Date 14511:2022; Water user side 40 °C/45 °C; Water source side 10 °C/7 °C (3) Water exchanger to the total recovery side * /45 °C; Water to the system side heat exchanger * /7 °C;

ENERGY INDICES (REG. 2016/2281 EU)

Size			0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
SEER - 12/7 (EN14825: 2018) (1)															
SEER	°,L	W/W	5,25	5,44	5,52	5,43	5,52	5,39	5,61	5,82	6,09	6,00	6,05	6,43	6,45
Seasonal efficiency	°,L	%	207,0%	214,6%	217,8%	214,2%	217,8%	212,6%	221.4%	229,9%	240,5%	237,1%	239,1%	254,2%	254,9%
SEPR - (EN 14825: 2018) High temperature	2 (2)														
SEPR	°,L	W/W	-	-	-	-	-	-	-	7,08	7,30	7,21	7,23	-	-
UE 813/2013 performance in average amb	ient conditi	ons (averag	e) - 55 °C - P	designh ≤	400 kW (3)										
Pdesignh	°,L	kW	163	173	212	234	280	318	385	-	-	-	-	-	-
SCOP	°,L	W/W	4,78	4,68	4,78	4,65	4,65	4,58	4,73	-	-	-	-	-	-
ηsh	°,L	%	183.0%	179.0%	183.0%	178.0%	178.0%	175.0%	181.0%	-	-	-	-	-	-
Energy index															
TER	°,L	W/W	7,77	7,68	7,80	7,75	7,71	7,75	7,62	7,59	7,94	7,94	7,82	7,87	7,99

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Calculation performed with FIXED water flow rate. (3) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA


Size			0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
Electric data															
Maximum current (FLA)	°,L	Α	71,0	77,0	91,0	102,0	124,0	135,0	163,0	179,0	195,0	208,0	237,0	266,0	295,0
Peak current (LRA)	٠,١	A	214.0	220.0	206.0	216.0	267.0	323.0	332.0	340.0	356.0	459.0	488.0	600.0	629.0

GENERAL TECHNICAL DATA

Size			0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
Compressor															
Туре	°,L	type							Scroll						
Number	°,L	no.	3	3	4	4	4	4	4	4	4	4	4	4	4
Circuits	°,L	no.	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	°,L	type							R410A						
2-pipe system - System side heat exch	nanger (hot/cold)	1													
Туре	°,L	type							Brazed plate	2					
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,L	Туре						(rooved joint	ts					
Sizes (in/out)	°,L	Ø	2"1/2	2"1/2	2"1/2	2" 1/2	2" 1/2	2" 1/2	3"	3"	3"	3"	3"	3"	3"
2-pipe system - Recovery side heat ex	changer (domes	tic hot wate	r)												
Туре	°,L	type							Brazed plate	2					
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,L	Туре						(rooved joint	ts					
Sizes (in/out)	°,L	Ø	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2" 1/2	3"	3"	3"	3"	3"	3"	3″
4-pipe system - System side heat exch	nanger (cold side)													
Туре	°,L	type							Brazed plate	2					
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,L	Туре							rooved joint	ts					
Sizes (in/out)	°,L	Ø	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3″	3"	3"	3″	3″	3″	3"
4-pipe system - Recovery side heat ex	changer (hot sid	e)													
Туре	°,L	type							Brazed plate	1					
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,L	Type						(rooved joint	ts					
Sizes (in/out)	°,L	Ø	2"1/2	2" 1/2	2" 1/2	2"1/2	2"1/2	2"1/2	3"	3"	3"	3"	3"	3"	3″
Sound data calculated in cooling mod	le (1)														
Sound power level	0	dB(A)	78,0	79,0	79,0	80,0	82,0	86,0	88,0	88,0	88,0	90,0	90,0	92,0	92,0
Journa power rever	L	dB(A)	72,0	73,0	73,0	74,0	76,0	80,0	82,0	82,0	82,0	84,0	84,0	86,0	86,0
Sound pressure level (10 m)	0	dB(A)	46,0	47,0	47,0	48,0	50,0	54,0	56,0	56,0	56,0	58,0	58,0	60,0	60,0
Journa pressure level (10 III)	L	dB(A)	40,0	41,0	41,0	42,0	44,0	48,0	50,0	50,0	50,0	52,0	52,0	54,0	54,0

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size				0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
Dimensions and w	veights															
Α.		0	mm	1976	1976	1976	1976	1976	1976	2021	2021	2021	2021	2021	2021	2021
A		L	mm	2120	2120	2120	2120	2120	2120	2120	2120	2120	2120	2120	2120	2120
В		°,L	mm	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250
(°,L	mm	2600	2600	2600	2600	2600	2600	2600	2600	2600	2600	2600	2600	2600
Dimensions and w	eights with pum															
A				1976	1976	1976	1976	1976	1976	2021	2021	2021	2021	2021	2021	2021
		L		2120		2120	2120	2120	2120	2120	2120	2120	2120	2120	2120	2120
В		°,L		1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250
(3452	3452	3452	3452	3452	3452	3452	3452	3750	3750	3750	3750	3750
		L	mm	3452	3452	3452	3452	3452	3750	3750	3750	3750	3750	2600	2600	2600
	Vanala:	System side	Recovery s	ide			0500		0550	0600		0650		0700)750
	Version	- pumps	- pumps				0500		0550	0600	,	0650		0/00	(J/5U
	•	0	0		kg		990		1000	1110)	1130		1180		1380
		0	U/V		kg		1230		1240	1360		1380		1450		1690
		M/N	°/U/V		kg		1230		1240	1360		1380		1450		1690
		°/M/N	W/Z		kg		1340		1350	1490		1500		1600		1880
Empty weight		0/P	°/U/V/W/	Ζ	kg		1340		1350	1490		1500		1600		1880
Linpty Weight	L	0	0		kg		1230		1230	1340		1360		1420		1570
	L	0	U/V		kg		1560		1570	1690		1710		1780		2020
	L	M/N	°/U/V		kg		1560		1570	1690		1710		1780		2020
	L	°/M/N	W/Z		kg		1670		1680	1820		1830		1930		2210
	L	0/P	°/U/V/W/	<u></u>	kg		1670		1680	1820)	1830		1930		2210
	Version	System side	Recovery side			0800		0900	1000		1250	14	00	1500		1650
		- pumps	- pumps				,	0700								
_	0	0	0	kg		1680		1700	1890		1960	20		2100		2270
-	0	0	U/V	kg		1960		2060	2310		2380	25		2540		2720
-	0	M/N	°/U/V	kg		1960		2060	2310		2380	25		2540		2720
=	0	°/M/N	W/Z	kg		2110		2300	2560		2630	27		2810		3010
_	0	0/P	°/U/V/W/Z	kg		2110		2300	2560		2630		70	2810		3010
Empty weight —	L	0	0	kg		1910		1930	2120		2190	22		2400		2500
	L .		U/V	kg		2290		2390	2660		2730		50	2890		3070
-	L	M/N	°/U/V	kg		2290		2390	2660		2730		50	2890		3070
-	<u> </u>	°/M/N	W/Z	kg		2240		2630	2910		2980	31		3160		3360
-	L	0	°/U/V/W/Z	kg		2240		2630	2910		2980		20	3160		3360
_	L	Р	°/U/V/W	kg		2240		2630	2910		2980	31	20	3160		3360

2440

www.aermec.com

kg

2630

2910

2980

3120

3160

3360

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577

PRECISION AIR CONDITIONERS

Aermec is well established in the data centre market, with a multiple year experience and prestigious projects aimed at reducing the overall cost of ownership of modern data centres.

This process is achieved by applying state of the art product solutions with a strong focus on integrated design and sophisticated analyses of individual data centre customer requirements, with the aim of achieving a personalised and optimised solution for each and every individual installation site.

Air flow rate Cool. Cap. Heat. Cap. Page **PRECISION AIR CONDITIONING** (kW) (kW) (m3/h) P 10-932 Direct expansion (air or water cooled); chilled water 7-160 896 G 070-1342 Direct expansion (air or water cooled); chilled water 50-222 901 R 20-361 Direct expansion (air or water cooled); chilled water 10-37 905

P 10-932

Precision Air Conditioners

Cooling capacity 7 ÷ 160 kW

- Strict control of room temperature and humidity
- High efficiency values
- Wide selection of configurations
- Reduced ground view clearance

Last generation control panel

DESCRIPTION

P series precision air conditioning units have design and operational features suitable for rooms where sensible nature heat loads are prevailing.

CONFIGURATIONS

PXO: upwards flow air conditioners with direct expansion with air or water condensation.

PWO: upwards flow air conditioners with chilled water.

PXU: downwards flow air conditioners with direct expansion with air or water condensation.

PWU: downwards airflow air conditioners with chilled water.

FEATURES

The **P** series precision air conditioning units are designed for precision air conditioning of technological rooms characterized by elevated thermal loads to be eliminated, such as computing centres and other applications where high performances and maximum reliability are required.

Precision Air Conditioning units can be customized as per necessities, in order to offer a complete control of temperature, of humidity and of air quality through accessories such as humidifier, after-heating and high efficiency filters.

In order to guarantee the maximum reliability and flexibility, there are available both solutions with double circuit and solution with different cooling mediums:

Two Sources

The Twin Sources system ensures cooling continuity in case of unavailability, for whatever reason, of the primary source: overhead, maintenance, night or seasonal stop or stop for any emergency.

This system includes the assembly inside the air conditioner of a second cooling source, complete with its regulation and completely independent from the primary one.

They only share the aluminium finned pack, allowing both a high thermal exchange efficiency.

Free Cooling

This system employs external air, a renewable energy source, for cooling the Free Cooling water circuit by an external dry cooler.

The Free Cooling circuit works in place of, or along, the mechanical cooling with direct expansion.

STRUCTURE

The structure consists of a steel frame painted with dark grey epoxy powders (RAL7024) guaranteeing a durable finish. Acoustic insulation self-extinguishing panels covered with anti-friction film.

FANS

Centrifugal fans with backward curved blades (plug fans) with EC motor directly coupled to the electronic control to minimize power consumption and noise emissions.

FILTERS

Corrugated baffle filters, not regenerable, self-extinguishing, G4 efficiency class (according to EN 779).

Differential pressure switch (STANDARD) for dirty filter alarm.

The control of filter dirt conditions via Modbus is available as an option.

ELECTRONIC CONTROLLER

The evolved electronic adjustment maximises energy saving and optimizes all operating modes of the units, both direct expansion and chilled water.

- The controller allows to supervise all main components of the unit, with more than 50 different variables that guarantee real time monitoring of all operating cycles.
- The units have a standard RS485 Modbus board, BACnet, LonWorks and SNMP are available as options, for a simple and quick interface with BMS (Building Management System) supervising systems.
- View of all operating parameters in 8 languages.

CHILLED WATER COILS

Only for W configurations

Large surface batteries, positioned in such a way as to optimise airflow and heat transfer, made of refrigerating quality copper tubes with aluminium louvers mechanically merged, fitted with motorised 3way valve (2way is also available in the selection process).

COMPRESSORS

Only for X configurations

High efficiency scroll compressor with low power consumption.

These units in the direct expansion configurations work with R410A refrigerant, which does not damage the ozone layer.

In dual circuit configuration you can control the power output thanks to electronic adjustment that automatically manages the compressors activation depending on the load request.

ACCESSORIES

Direct expansion

- DC brushless compressors with inverter control
- Electric power supply line for remote condenser
- Electric power supply line with speed adjustment for remote condenser
- Condenser adjustment with 0-10V signal for remote condenser with EC fans
- Water condenser
- Condensate adjustment pressure valve
- "LAC" (Low Ambient Control) valve has the function of bypassing the condenser, injecting warm gas in the liquid piping, to maintain the refrigerant pressure stable. Use is recommended in very cold climates, in case of inverter compressors and in case of oversized condensers with respect to the real necessities of the units.

Chilled water

- Two ways modulating valves
- Inlet and outlet water temperature probes
- "Power Valve" kit: automatic adjustment and balancing valve of the water circuit, which allows to guarantee a constant water flow rate and monitor the efficiency of the unit in real time.

Heating

- Low thermal inertia electric batteries with differentiated stages regulation
- Low thermal inertia electric batteries with modulating regulation
- Water heating batteries with 2 or 3 ways modulating valve (available on request on some models only)

Humidification

- Room humidity probe
- Flow humidity probe
- Submerged electrodes humidifier (also available with low conductivity cylinder)

Water presence detection

 — Available as punctual probe or fabric belt (length 5 m) Allows to have an alarm in case water presence, even partial, is detected.

SMARTNET

The innovative **SMARTNET** system revolutionises the local area network concept.

This system, using the modulation capabilities of its components, allows dividing the workload across all units in the local area network.

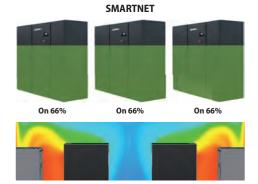
Electronic expansion valve standard on all sizes.

Mechanicals and structural

- Condensate discharge pump
- Condensation and humidifier drain pump
- Flow overpressure dampers
- Motorised damper on suction
- M5 (EU5) efficiency air filter on air supply
- Flow plenum with adjustable grills.
- Sub-base plenum with front grids.
- Plenum Free Cooling: available for direct expansion and downward flow versions, complete with motorised dampers and the external air temperature probe. Used to perform direct Free Cooling taking advantage of external air and will work in place of or supporting the direct expansion mechanical cooling.
- Height adjustable support for raised floor installation
- Grilled panels for front flow
- Closed panels for downwards air intake
- Panels with "sandwich" counter-panels (available on request on some models only)
- Panels with increased soundproof upholstery (available on request on some models only)

Electrical

- The unit has a standard power supply 400V \sim 3N 50Hz. The following voltages are available as an alternative: 400V \sim 3N 60Hz, 230V \sim 3 60Hz, 380V \sim 3N 60Hz
- Electric power supply line without neutral
- "Basic" version automatic transfer switch (ATS)
- Advanced" version automatic transfer switch (ATS)


Regulation

- Constant flow rate ventilation adjustment
- Constant pressure ventilation adjustment
- Local area network configuration and cable
- User terminal for remote installation
- For further details refer to the technical documentation or to the selection program.

Compared to the Duty Stand-by (n+1 o n+n) redundancy system, where the backup units were stopped waiting for a problem to arise, **the SMARTNET system allows to maintain the units connected on the network always active** with various advantages:

- greater efficiency of the units with partial loads;
- optimal air distribution, eliminating the risk of environment hotspots;
- internal system redundancy,

TECHNICAL DATA

PXO: upwards airflow - direct expansion with air or water condensation

		PX0 071	PX0 141	PX0 211	PX0 251	PX0 321	PX0 322	PXO 361	PX0 422	PX0 461	PX0 512	PX0 662	PX0 852	PXO 932
Cooling performances (1)														
Total cooling capacity	kW	8,2	14,7	21,0	27,4	35,2	33,8	38,1	43,7	48,1	57,8	67,3	84,4	94,9
Sensible cooling capacity	kW	7,9	12,9	21,0	25,7	35,2	33,8	38,1	43,7	46,8	53,6	66,2	73,7	86,3
EER (2)	W/W	3,83	3,40	3,30	3,14	3,13	3,34	3,57	3,47	3,63	3,34	3,26	3,27	3,64
Fans														
Туре	type						Plu	g-fan EC inve	rter					
Air flow rate	m³/h	2200	3200	7000	7000	12000	12000	14000	14000	14000	14000	18000	18000	21000
Refrigerant circuit														
Number	no.	1	1	1	1	1	2	1	2	1	2	2	2	2
Sound data														
Sound pressure (3)	dB(A)	51	59	56	57	67	67	58	58	58	59	61	61	61
Possible configurations														
Free Cooling		-	-	-	-	Yes	-	-	-	Yes	-	Yes	Yes	-
Two Sources		-	-	Yes	-	Yes	-	-	-	Yes	Yes	Yes	Yes	Yes
Electric data														
Power supply							4	00V ~ 3N 50I	łz					

- (1) Condensation temperature 45 °C; incoming air 24 °C / 45 % u.r.; external static pressure: 30Pa. Stated performances do not take into account the heat generated by the fans which must be added to the heat load of the system.
 (2) EER: Energy Efficiency Ratio; total cooling capacity / input power to the compressors + the power of fans (excluding air condensers).
 (3) Sound pressure: stated data 2m away, in free field according to UNI EN ISO 3744:2010

PWO: upwards airflow - with chilled water

		PW0 10	PW0 20	PW0 30	PW0 50	PW0 60	PW0 70	PW0 80	PW0 110	PW0 160	PW0 220
Cooling performances (1)											
Total cooling capacity	kW	9,9	17,2	30,0	41,0	52,8	63,1	65,5	80,0	110,0	160,0
Sensible cooling capacity	kW	9,3	14,9	27,8	36,2	47,4	54,2	61,8	73,0	99,7	146,0
EER (2)	W/W	38,26	29,13	30,00	24,54	22,75	24,17	24,79	24,17	29,33	21,17
Fans											
Туре	type					Plug-fan	EC inverter				
Air flow rate	m³/h	2200	3200	7000	8000	12000	12000	16000	18000	24000	36000
Refrigerant circuit											
Number	no.	1	1	1	1	1	1	1	1	1	1
Sound data											
Sound pressure (3)	dB(A)	51	59	56	60	67	68	61	62	62	65
Possible configurations											
Free Cooling		-	-	-	-	-	-	-	-	-	-
Two Sources		-	-	-	Yes	-	-	-	Yes	Yes	-
Electric data											
Power supply						400V ~	3N 50Hz				

- (1) Incoming air 24 °C / 45 % r.h.; water 7 °C / 12 °C; external static pressure: 30 Pa. Stated performances do not take into account the heat generated by the fans which must be added to the heat load of the system.
- (2) EER: Energy Efficiency Ratio; total cooling capacity / input power to the compressors + the power of fans (excluding air condensers).

 (3) Sound pressure: stated data 2m away, in free field according to UNI EN ISO 3744:2010

PXU: downwards airflow - direct expansion with air or water condensation

		PXU 071	PXU 141	PXU 211	PXU 251	PXU 321	PXU 322	PXU 361	PXU 422	PXU 461	PXU 512	PXU 662	PXU 852	PXU 932
Cooling performances (1)														
Total cooling capacity	kW	8,2	14,7	21,0	27,4	35,2	33,8	38,1	43,7	48,1	57,8	67,3	84,4	94,9
Sensible cooling capacity	kW	7,9	12,9	21,0	25,7	35,2	33,8	38,1	43,7	46,8	53,6	66,2	73,7	86,3
EER (2)	W/W	3,74	3,29	3,24	3,10	3,09	3,29	3,50	3,41	3,57	3,30	3,15	3,18	3,59
Fans														
Туре	type						Plu	g-fan EC inve	rter					
Air flow rate	m³/h	2200	3200	7000	7000	12000	12000	14000	14000	14000	14000	18000	18000	21000
Refrigerant circuit														
Number	no.	1	1	1	1	1	2	1	2	1	2	2	2	2
Sound data														
Sound pressure (3)	dB(A)	51	57	62	62	67	68	59	59	59	59	63	63	62
Possible configurations														
Free Cooling		-	-	-	-	Yes	-	-	-	Yes	-	Yes	Yes	-
Two Sources		-	-	Yes	-	Yes	-	-	-	Yes	Yes	Yes	Yes	Yes
Electric data														
Power supply							4	00V ~ 3N 50I	łz					

- (1) Condensation temperature 45 °C; incoming air 24 °C / 45 % u.r.; external static pressure: 30Pa. Stated performances do not take into account the heat generated by the fans which must be added to the heat load of the system.
 (2) EER: Energy Efficiency Ratio; total cooling capacity / input power to the compressors + the power of fans (excluding air condensers).
 (3) Sound pressure: stated data 2m away, in free field according to UNI EN ISO 3744:2010

PWU: downwards airflow - with chilled water

		PWU 10	PWU 20	PWU 30	PWU 50	PWU 60	PWU 70	PWU 80	PWU 110	PWU 160	PWU 220
Cooling performances (1)											
Total cooling capacity	kW	9,9	17,2	30,0	41,0	52,8	63,1	65,4	80,0	110,0	160,0
Sensible cooling capacity	kW	9,3	14,9	27,8	36,2	47,4	54,2	61,8	73,0	99,7	146,0
EER (2)	W/W	32,09	23,54	27,03	20,91	21,28	22,77	23,21	19,80	24,39	19,80
Fans											
Туре	type					Plug-fan	EC inverter				
Air flow rate	m³/h	2200	3200	7400	8200	12000	12000	16000	18000	24000	36000
Refrigerant circuit											
Number	no.	1	1	1	1	1	1	1	1	1	1
Sound data											
Sound pressure (3)	dB(A)	51	60	57	62	68	68	62	63	63	66
Possible configurations											
Free Cooling		-	-	-	-	-	-	-	-	-	-
Two Sources		-	-	-	Yes	-	-	-	Yes	Yes	-
Electric data											
Power supply						400V ~	3N 50Hz				

- (1) Incoming air 24 °C / 45 % r.h.; water 7 °C / 12 °C; external static pressure: 30 Pa. Stated performances do not take into account the heat generated by the fans which must be added to the heat load of the system.
 (2) EER: Energy Efficiency Ratio; total cooling capacity / input power to the compressors + the power of fans (excluding air condensers).
 (3) Sound pressure: stated data 2m away, in free field according to UNI EN ISO 3744:2010

UPWARDS FLOW CONFIGURATIONS

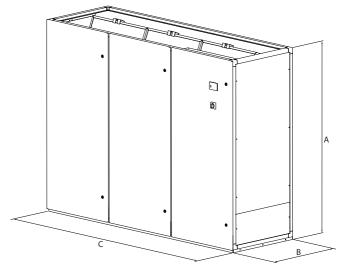
Standard version with frontal air intake and upwards "o w.

Version with front air intake and frontal air ~o w with distribution plenum with grid.

Version with air intake from the bottom, stand for raised "oor, blind front panel and up ow air supply.

DOWNWARDS FLOW CONFIGURATIONS

Standard version with upwards suction and downwards air o w, with sub-base for raised $\tilde{\ }$ ooring .



Version with upwards suction with frontal air "o w with grilled plenum distribution.

Version with upwards suction with frontal air ~o w with grilled front panel.

DIMENSIONS

		PXO 071	PXO 141	PX0 211	PX0 251	PX0 321	PXO 322	PX0 361	PXO 422	PXO 461	PXO 512	PXO 662	PX0 852	PXO 932
Dimensions and weights														
A	mm	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990
В	mm	600	600	880	880	850	850	880	880	880	880	880	880	880
(mm	750	750	860	860	1410	1410	1750	1750	1750	1750	2300	2300	2640
Empty weight	kg	180	210	270	270	365	390	440	450	450	500	640	660	860
		PW0 10	PWC	20	PW0 30	PW0 50	PW0	60 F	W0 70	PW0 80	PW0 11	0 PW	0 160	PW0 220
Dimensions and weights														
A	mm	1990	199	90	1990	1990	1990)	1990	1990	1990	1	990	1990
В	mm	600	60	0	880	880	850		850	880	880	8	880	880
С	mm	750	75	0	860	860	1410)	1410	1750	1750	2	640	3495
Empty weight	kg	155	16	0	220	240	240		260	340	360	5	540	700
		BVIII 4=4												
		PXU 071	PXU 141	PXU 211	PXU 251	PXU 321	PXU 322	PXU 361	PXU 422	PXU 461	PXU 512	PXU 662	PXU 852	PXU 932
Dimensions and weights		PXU 071	PXU 141	PXU 211	PXU 251	PXU 321	PXU 322	PXU 361	PXU 422	PXU 461	PXU 512	PXU 662	PXU 852	PXU 932
Dimensions and weights	mm	1990	PXU 141 1990	PXU 211 1990	PXU 251 1990	PXU 321 1990	PXU 322 1990	PXU 361 1990	PXU 422 1990	PXU 461 1990	PXU 512 1990	PXU 662 1990	PXU 852 1990	PXU 932 1990
1	mm													
A		1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990
A	mm	1990 600	1990 600	1990 880	1990 880	1990 850	1990 850	1990 880	1990 880	1990 880	1990 880	1990 880	1990 880	1990 880
<u>B</u> <u>C</u>	mm mm	1990 600 750	1990 600 750	1990 880 860 270	1990 880 860	1990 850 1410	1990 850 1410	1990 880 1750 440	1990 880 1750	1990 880 1750	1990 880 1750	1990 880 2300 640	1990 880 2300	1990 880 2640
A B C	mm mm	1990 600 750 180	1990 600 750 210	1990 880 860 270	1990 880 860 270	1990 850 1410 365	1990 850 1410 390	1990 880 1750 440	1990 880 1750 450	1990 880 1750 450	1990 880 1750 500	1990 880 2300 640	1990 880 2300 660	1990 880 2640 860
A B C Empty weight	mm mm	1990 600 750 180	1990 600 750 210	1990 880 860 270	1990 880 860 270	1990 850 1410 365	1990 850 1410 390	1990 880 1750 440	1990 880 1750 450	1990 880 1750 450	1990 880 1750 500	1990 880 2300 640 0 PW	1990 880 2300 660	1990 880 2640 860
A B C Empty weight Dimensions and weights	mm mm kg	1990 600 750 180 PWU 10	1990 600 750 210	1990 880 860 270 J 20	1990 880 860 270 PWU 30	1990 850 1410 365 PWU 50	1990 850 1410 390	1990 880 1750 440 60 F	1990 880 1750 450	1990 880 1750 450 PWU 80	1990 880 1750 500 PWU 11	1990 880 2300 640 0 PW	1990 880 2300 660 U 160	1990 880 2640 860 PWU 220
A B C Empty weight Dimensions and weights A	mm mm kg mm	1990 600 750 180 PWU 10	1990 600 750 210 PWU	1990 880 860 270 120	1990 880 860 270 PWU 30	1990 850 1410 365 PWU 50	1990 850 1410 390 PWU (1990 880 1750 440 F	1990 880 1750 450 WU 70	1990 880 1750 450 PWU 80	1990 880 1750 500 PWU 11	1990 880 2300 640 0 PW	1990 880 2300 660 U 160	1990 880 2640 860 PWU 220

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

G 070-1342

Precision Air Conditioners

Cooling capacity 50 ÷ 222 kW

- Separate ventilating section for installation under raised floor
- · Reduced energy consumption of fans
- High ratio between supplied cooling capacity and footprint
- Optimised distribution of air in the raised floor

DESCRIPTION

Precision air conditioners of the series ${\bf G}$ their construction and operating features are suitable to meet the design criteria of last generation Data Centers.

CONFIGURATIONS

GXU: downwards flow air conditioners with direct expansion with air or water condensation.

GWU: downwards flow air conditioners with chilled water.

For the configuration **W** there is also the version **XH** (**Extra Height**). By increasing the height, performance can be enhanced thanks to the larger coil.

FEATURES

Precision air conditioners of the series **G** they are designed for air-conditioning of utility rooms for high power density applications.

In these applications, the structures are characterised by technical floors as high as 1000 mm, creating ample space below to house the flow fans.

The fans are supplied inside a sub-base supplied separately, without increasing the size of the unit, thus optimising the available space with considerable advantages:

- The enlarged coils with ample heat exchange surface enhance performance with less energy consumption.
- Greater filtering surface reducing pressure drops so that less maintenance is needed as they get less dirty.
- Horizontal flow of fans in sub-base with lower pressure drops.

STRUCTURE

The structure consists of a steel frame painted with dark grey epoxy powders (RAL7024) guaranteeing a durable finish. Acoustic insulation self-extinguishing panels covered with anti-friction film.

The ventilating sub-base is supplied separately and must be electrically connected at the worksite or on-site.

EANIC

Centrifugal fans with backward curved blades (plug fans) with EC motor directly coupled to the electronic control to minimize power consumption and noise emissions.

FILTERS

Corrugated baffle filters, not regenerable, self-extinguishing, G4 efficiency class (according to EN 779).

Differential pressure switch (STANDARD) for dirty filter alarm.

The control of filter dirt conditions via Modbus is available as an option.

ELECTRONIC CONTROLLER

The evolved electronic adjustment maximises energy saving and optimizes all operating modes of the units, both direct expansion and chilled water.

- The controller allows to supervise all main components of the unit, with more than 50 different variables that guarantee real time monitoring of all operating cycles.
- The units have a standard RS485 Modbus board, BACnet, LonWorks and SNMP are available as options, for a simple and quick interface with BMS (Building Management System) supervising systems.
- View of all operating parameters in 8 languages.

CHILLED WATER COILS

Only for W configurations

Large surface coils, positioned in such a way as to optimise airflow and heat transfer, made of copper tubes with aluminium louvers mechanically merged, fitted with 2-way modulating valve (3-way is also available in the selection process).

COMPRESSORS

Only for X configurations

High efficiency scroll compressor with low power consumption.

These units in the direct expansion configurations work with R410A refrigerant, which does not damage the ozone layer.

The dual circuit configuration controls the power output thanks to electronic adjustment that automatically manages the compressors activation depending on the load request.

Electronic expansion valve standard on all sizes.

ACCESSORIES

Direct expansion

- DC brushless compressors with inverter control
- Electric power supply line for remote condenser
- Electric power supply line with speed adjustment for remote condenser
- Condenser adjustment with 0-10V signal for remote condenser with EC fans
- Water condenser
- Condensate adjustment pressure valve
- "LAC" (Low Ambient Control) valve has the function of bypassing the condenser, injecting warm gas in the liquid piping, to maintain the refrigerant pressure stable. Use is recommended in very cold climates, in case of inverter compressors and in case of oversized condensers with respect to the real necessities of the units.

Chilled water

- Three-way modulating valves
- Inlet and outlet water temperature probes
- "Power Valve" kit: automatic adjustment and balancing valve of the water circuit, which allows to guarantee a constant water flow rate and monitor the efficiency of the unit in real time.

Heating

- Low thermal inertia electric batteries with differentiated stages regulation

Humidification

- Room humidity probe
- Flow humidity probe
- Submerged electrodes humidifier (also available with low conductivity cylinder)

SMARTNET

The innovative **SMARTNET** system revolutionises the local area network concept.

This system, using the modulation capabilities of its components, allows dividing the workload across all units in the local area network.

Compared to the Duty Stand-by (n+1 o n+n) redundancy system, where the backup units were stopped waiting for a problem to arise, the SMARTNET

Water presence detection

- Available as punctual probe or fabric belt (length 5 m) Allows to have an alarm in case water presence, even partial, is detected.

Mechanicals and structural

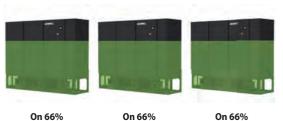
- Condensate discharge pump
- Condensation and humidifier drain pump
- Motorised damper on suction
- M5 (EU5) efficiency air filter on air supply
- Ventilated plenum with panelling for front or rear flow
- Ventilated plenum with panelling for downflow (installation above raised floor)
- Panels with "sandwich" counter-panels (available on request on some models only)
- Panels with increased soundproof upholstery (available on request on some models only)

- The unit has a standard power supply 400V ~ 3N 50Hz. The following voltages are available as an alternative: 400V ~ 3N 60Hz, 460V ~ 3 60Hz, 380V ~ 3N 60Hz
- Electric power supply line without neutral
- "Basic" version automatic transfer switch (ATS)
- Advanced" version automatic transfer switch (ATS)

Regulation

- Constant flow rate ventilation adjustment
- Constant pressure ventilation adjustment
- Local area network configuration and cable
- User terminal for remote installation
- For further details refer to the technical documentation or to the selection program.

system allows to maintain the units connected on the network always active with various advantages:


- greater efficiency of the units with partial loads;
- greater efficiency of the units with partial roads,
 optimal air distribution, eliminating the risk of environment hotspots;
- internal system redundancy,

DUTY / STAND-BY

SMARTNET

G Y UN50 03

TECHNICAL DATA

GXU: downwards airflow - direct expansion with air or water condensation

	'	GXU 932	GXU 1342	
Cooling performances (1)				
Total cooling capacity	kW	91,2	130,5	
Sensible cooling capacity	kW	77,5	121,2	
EER (2)	W/W	3,70	3,81	
Fans				
Туре	type		Plug-fan EC inverter	
Air flow rate	m³/h	18000	31500	
Refrigerant circuit				
Number	no.	2	2	
Sound data				
Sound pressure (3)	dB(A)	56	61	
Electric data				
Power supply			400V ~ 3N 50Hz	

- (1) Condensation temperature 45 °C; incoming air 24 °C / 45 % u.r.; external static pressure: 30Pa. Stated performances do not take into account the heat generated by the fans which must be added to the heat load of the system.
 (2) EER: Energy Efficiency Ratio; total cooling capacity / input power to the compressors + the power of fans (excluding air condensers).
 (3) Sound pressure: stated data 2m away, in free field according to UNI EN ISO 3744:2010

		GWU 070	GWU 150	GWU 230	GWU 300
Cooling performances (1)					
Total cooling capacity	kW	58,6	96,4	143,6	208,8
Sensible cooling capacity	kW	49,0	79,4	118,0	184,3
EER (2)	W/W	31,83	46,92	62,41	33,68
Fans					
Туре	type	Plug-fan EC inverter			
Air flow rate	m³/h	11000	17600	25800	45200
Refrigerant circuit					
Number	no.	2	2	2	2
Sound data					
Sound pressure (3)	dB(A)	58	55	56	62
Electric data					
Power supply			400V ~	3N 50Hz	

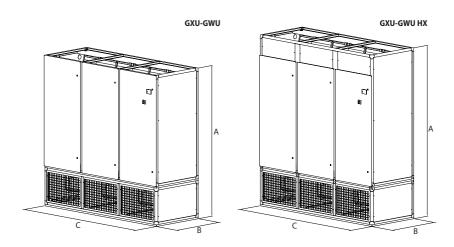
- (1) Incoming air 24 °C / 45 % r.h.; water 7 °C / 12 °C; external static pressure: 30 Pa. Stated performances do not take into account the heat generated by the fans which must be added to the heat load of the system.
 (2) EER: Energy Efficiency Ratio; total cooling capacity / input power to the compressors + the power of fans (excluding air condensers).
 (3) Sound pressure: stated data 2m away, in free field according to UNI EN ISO 3744:2010

·		GWU 150 XH	GWU 230 XH
Cooling performances (1)			
Total cooling capacity	kW	113,2	222,9
Sensible cooling capacity	kW	93,1	178,2
EER (2)	W/W	55,78	79,32
Fans			
Туре	type		Plug-fan EC inverter
Air flow rate	m³/h	20400	36000
Refrigerant circuit			
Number	no.	2	2
Sound data			
Sound pressure (3)	dB(A)	57	63
Electric data			
Power supply			400V ~ 3N 50Hz

- (1) Incoming air 24 °C / 45 % r.h.; water 7 °C / 12 °C; external static pressure: 30 Pa. Stated performances do not take into account the heat generated by the fans which must be added to the heat load of the system.
 (2) EER: Energy Efficiency Ratio; total cooling capacity / input power to the compressors + the power of fans (excluding air condensers).
 (3) Sound pressure: stated data 2m away, in free field according to UNI EN ISO 3744:2010

DOWNWARDS FLOW CONFIGURATIONS

Standard execution for perimeter installation inside Data Centres: the height of the raised "ooring must be minimum 550 mm.



Execution for perimeter installation inside Data Centre. In this case, the sub-base side closure panels must be installed above the "ooring. It is in any case essential to make sure that the height of the ceiling allows good air intake.

Execution for installation outside Data Centre, without raised ~ooring and rear delivery. In this case, the sub-base side closure panels and rear delivery grilles. Installation of the plenum with the rear return system is optional, if there is no channelling system.

DIMENSIONS

		GXU 932	GXU 1342
Dimensions and weights	,		
A	mm	1990	1990
В	mm	921	921
C	mm	2390	3290
Empty weight	kg	870	1000

		GWU 070	GWU 150	GWU 150 XH	GWU 230	GWU 230 XH	GWU 300
Dimensions and weights							_
A	mm	1990	1990	2350	1990	2350	1990
В	mm	921	921	1050	921	1050	921
C	mm	1320	1840	1840	2740	2740	4020
Empty weight	kg	610	750	640	930	950	1250

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.

Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577

R 20-361

Precision Air Conditioners

Cooling capacity 10 ÷ 37 kW

- "In row" installation between the server lines
- Horizontal air flow to offer an effective localised cooling
- Rear and front accessibility for simplified maintenance
- · Front and side air flow

Last generation control panel

DESCRIPTION

Precision air conditioners of the R **Series** have construction features and sizes so that they can be installed next to the servers of the Data Center.

CONFIGURATIONS

RXA: air conditioners with delivery downwards and direct expansion with air or water condensation.

RXU: air conditioners with air delivery horizontal with cooled water. Both configurations are available in compact version with reduced depth.

FEATURES

Precision air conditioners in the **R** series are designed and built to have the same dimensions as the racks, rear intake from the warm corridor and front delivery towards the cold corridor.

Two Sources

The Twin Sources system ensures cooling continuity in case of unavailability, for whatever reason, of the primary source: overhead, maintenance, night or seasonal stop or stop for any emergency.

This system includes the assembly inside the air conditioner of a second cooling source, complete with its regulation and completely independent from the primary one.

They only share the aluminium finned pack, allowing both a high thermal exchange efficiency.

Free Cooling

This system employs external air, a renewable energy source, for cooling the Free Cooling water circuit by an external dry cooler.

The Free Cooling circuit works in place of, or along, the mechanical cooling with direct expansion.

STRUCTURE

The structure consists of a steel frame painted with dark grey epoxy powders (RAL7024) guaranteeing a durable finish. Acoustic insulation self-extinguishing panels covered with anti-friction film.

FANS

Centrifugal fans with backward curved blades (plug fans) with EC motor directly coupled to the electronic control to minimize power consumption and noise emissions.

FILTERS

Corrugated baffle filters, not regenerable, self-extinguishing, G4 efficiency class (according to EN 779).

Differential pressure switch (STANDARD) for dirty filter alarm.

The control of filter dirt conditions via Modbus is available as an option.

ELECTRONIC CONTROLLER

The evolved electronic adjustment maximises energy saving and optimizes all operating modes of the units, both direct expansion and chilled water.

- The controller allows to supervise all main components of the unit, with more than 50 different variables that guarantee real time monitoring of all operating cycles.
- The units have a standard RS485 Modbus board, BACnet, LonWorks and SNMP are available as options, for a simple and quick interface with BMS (Building Management System) supervising systems.
- View of all operating parameters in 8 languages.

CHILLED WATER COILS

Only for U configurations.

Large surface batteries, positioned in such a way as to optimise airflow and heat transfer, made of refrigerating quality copper tubes with aluminium louvers mechanically merged, fitted with motorised 3way valve (2way is also available in the selection process).

COMPRESSORS

Only for A configurations

Single circuit configurations with DC brushless compressor with inverter, which allows to optimise the provided power guaranteeing a low electrical absorption.

These units work with R410A refrigerant, which does not damage the ozone layer.

Electronic expansion valve standard on all sizes.

ACCESSORIES

Direct expansion

- Electric power supply line for remote condenser
- Electric power supply line with speed adjustment for remote condenser
- Condenser adjustment with 0-10V signal for remote condenser with EC fans
- Water condenser
- Condensate adjustment pressure valve
- "LAC" (Low Ambient Control) valve has the function of bypassing the condenser, injecting warm gas in the liquid piping, to maintain the refrigerant pressure stable. Use is recommended in very cold climates, in case of inverter compressors and in case of oversized condensers with respect to the real necessities of the units.

Chilled water

- Two ways modulating valves
- Inlet and outlet water temperature probes
- "Power Valve" kit: automatic adjustment and balancing valve of the water circuit, which allows to guarantee a constant water flow rate and monitor the efficiency of the unit in real time.

Heating

Single stage electric coils with low thermal inertia.

Humidification

- Room humidity probe
- Flow humidity probe
- Submerged electrodes humidifier (also available with low conductivity cylinder)

SMARTNET

The innovative **SMARTNET** system revolutionises the local area network concept.

This system, using the modulation capabilities of its components, allows dividing the workload across all units in the local area network.

Compared to the Duty Stand-by (n+1 o n+n) redundancy system, where the backup units were stopped waiting for a problem to arise, **the SMARTNET**

Water presence detection

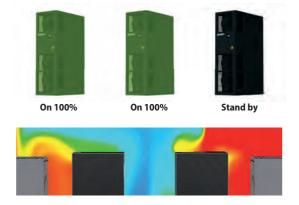
 Available as punctual probe or fabric belt (length 5 m) Allows to have an alarm in case water presence, even partial, is detected.

Mechanicals and structural

- Condensate discharge pump
- M5 (EU5) efficiency air filter on air supply
- Closed front panel for side flow
- Closed side panels for front flow
- Wheels for movement

Electrical

- The unit has a standard power supply 400V \sim 3N 50Hz. The following voltages are available as an alternative: 400V \sim 3N 60Hz, 230V \sim 3 60Hz, 380V \sim 3N 60Hz
- Electric power supply line without neutral
- "Basic" version automatic transfer switch (ATS)
- Advanced" version automatic transfer switch (ATS)


Regulation

- Constant flow rate ventilation adjustment
- Constant pressure ventilation adjustment
- Local area network configuration and cable
- User terminal for remote installation
- For further details refer to the technical documentation or to the selection program.

system allows to maintain the units connected on the network always active with various advantages:

- greater efficiency of the units with partial loads;
- optimal air distribution, eliminating the risk of environment hotspots;
- internal system redundancy,

DUTY / STAND-BY

SMARTNET

TECHNICAL DATA

RXA: horizontal air delivery - direct expansion with air or water condensation

	•	RXA 121	RXA 201	RXA 231	RXA 361
Cooling performances (1)					
Total cooling capacity	kW	9,6	19,3	20,8	32,5
Sensible cooling capacity	kW	9,6	15,1	17,2	26,3
EER (2)	W/W	3,14	3,09	3,36	3,43
Fans					
Туре	type		Plug-fan I	EC inverter	
Air flow rate	m³/h	3200	3600	6000	6600
Refrigerant circuit					
Number	no.	1	1	1	1
Sound data					
Sound pressure (3)	dB(A)	51	54	54	57
Possible configurations					
Free Cooling		-	-	Yes	-
Two Sources		-	-	Yes	-
Electric data					
Power supply			400V ~	3N 50Hz	

- (1) Condensation temperature 45 °C; incoming air 24 °C / 45 % u.r.; external static pressure: 30Pa. Stated performances do not take into account the heat generated by the fans which must be added to the heat load of the system.
 (2) EER: Energy Efficiency Ratio; total cooling capacity / input power to the compressors + the power of fans (excluding air condensers).
 (3) Sound pressure: stated data 2m away, in free field according to UNI EN ISO 3744:2010

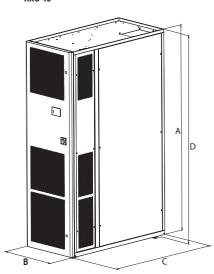
RXU: horizontal air delivery - cooled water

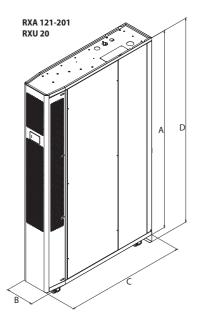
	'	RXU 20	RXU 40	
Cooling performances (1)				
Total cooling capacity	kW	24,9	37,8	
Sensible cooling capacity	kW	22,2	33,9	
EER (2)	W/W	22,81	27,78	
Fans				
Туре	type		Plug-fan EC inverter	
Air flow rate	m³/h	5600	9000	
Refrigerant circuit				
Number	no.	1	1	
Sound data				
Sound pressure (3)	dB(A)	54	62	
Possible configurations				
Free Cooling		-	-	
Two Sources		-	Yes	
Electric data				
Power supply			400V ~ 3N 50Hz	

- (1) Incoming air 24 °C / 45 % r.h.; water 7 °C / 12 °C; external static pressure: 30 Pa. Stated performances do not take into account the heat generated by the fans which must be added to the heat load of the system.
 (2) EER: Energy Efficiency Ratio; total cooling capacity / input power to the compressors + the power of fans (excluding air condensers).
 (3) Sound pressure: stated data 2m away, in free field according to UNI EN ISO 3744:2010

HORIZONTAL FLOW CONFIGURATIONS

Standard execution for "In-row" installation with front and side air delivery (RXA 121-201, RXU 20).


Execution for "In-row" installation with only front air delivery (RXA 231-361, RXU 40).



Execution for "In-row" installation with only side air delivery (RXA 231-361, RXU 40).

DIMENSIONS

RXA 231-361 RXU 40

		RXA 121	RXA 201	RXA 231	RXA 361
Dimensions and weights					
A	mm	1975	1975	1985	1985
В	mm	300	300	600	600
C	mm	1200	1200	1222	1222
D	mm	2045	2045	2015	2015
Empty weight	kg	200	215	215	215

		RXU 20	RXU 40
Dimensions and weights			
A	mm	1975	1985
В	mm	300	600
C	mm	1200	1222
D	mm	2045	2015
Empty weight	kg	120	190

ROOM AIR CONDITIONERS

A complete range of units designed to meet all climate control requirements: Aermec the answer to air conditioning.

A vast choice not only in terms of models but also alternatives and possibilities: state-of-the-art technology such as the inverter that optimises performance at all times according to the set temperature to achieve maximum energy saving; versatile installation options to solve all problems of space.

Quality design and materials, cooling and heating power suited to cover all requirements both in the residential and commercial sector, exclusive elegant design complete the range features, ranking Aermec among the leaders on the market.

ROOM AIR CO	ONDITIONERS	Air flow rate (m3/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Page	
Monobloc						
FK	Monobloc window		2,7-3,6		912	
CMP (COMPACT)	Monobloc without outdoor unit		2,35	2,36	915	
PST	Portable air conditioner	<u> -</u>	3,5	2,9	918	
Monosplit						
SPG	Monosplit		2,5-6,2	2,8-6,5	921	
SGE	Monosplit		2,8-5,9	2,9-6,0	926	
SCG_1	Monosplit	<u> -</u>	7,2-12,5	7,9-14,5	930	
CKG	Monosplit		2,7-6,6	2,9-6,8	934	
LPG	Monosplit	-	3,5-16,0	4,0-17,0	940	
MVAS	Monosplit high head duct		22,4-28,0	24,0-30,0	949	
Multisplit						
MPG	Multisplit	-	4,1-12,1	4,4-13,0	952	
MGE	Multisplit		4,1-7,9	4,4-8,2	969	
MGEHW	Multisplit		7,91	8,21	979	
	Monobloc FK CMP (COMPACT) PST Monosplit SPG SGE SCG_1 CKG LPG MVAS Multisplit MPG MGE	FK Monobloc window CMP (COMPACT) Monobloc without outdoor unit PST Portable air conditioner Monosplit SPG Monosplit SGE Monosplit SCG_1 Monosplit CKG Monosplit LPG Monosplit MVAS Monosplit high head duct Multisplit MPG Multisplit MGE Monosplit	ROOM AIR CONDITIONERS(m3/h)MonoblocFKMonobloc window-CMP (COMPACT)Monobloc without outdoor unit-PSTPortable air conditioner-SPGMonosplit-SGEMonosplit-SCG_1Monosplit-CKGMonosplit-LPGMonosplit-LPGMonosplit high head duct-MVASMonosplit high head duct-MultisplitMPGMultisplit-MPGMultisplit-Multisplit-MISSIPITED TO THE AIR TO THE	ROOM AIR CONDITIONERS (m3/h) (kW) Monobloc FK Monobloc window - 2,7-3,6 CMP (COMPACT) Monobloc without outdoor unit - 2,35 PST Portable air conditioner - 3,5 Monosplit - 2,5-6,2 SGE Monosplit - 2,8-5,9 SCG_1 Monosplit - 2,7-6,6 LPG Monosplit - 2,7-6,6 LPG Monosplit high head duct - 2,7-6,6 LPG Monosplit high head duct - 2,7-2,6 LPG Monosplit high head duct - 2,7-2,6 LPG Monosplit high head duct - 2,2-2,2-2 <th col<="" td=""><td>ROOM AIR CONDITIONERS (kW) (kW) Monobloc FK Monobloc window - 2,7-3,6 - CMP (COMPACT) Monobloc without outdoor unit - 2,35 2,36 PST Portable air conditioner - 3,5 2,9 Monosplit SPG Monosplit - 2,5-6,2 2,8-6,5 SGE Monosplit - 2,8-5,9 2,9-6,0 SCG_1 Monosplit - 2,7-6,6 2,9-6,8 CKG Monosplit - 2,7-6,6 2,9-6,8 LPG Monosplit high head duct - 2,2-4-28,0 24,0-30,0 MVAS Monosplit high head duct - 2,1-12,1 4,4-13,0 MPG Multisplit - 4,1-12,1 4,4-13,0 MGE Multisplit - 4,1-7,9 4,4-8,2</td></th>	<td>ROOM AIR CONDITIONERS (kW) (kW) Monobloc FK Monobloc window - 2,7-3,6 - CMP (COMPACT) Monobloc without outdoor unit - 2,35 2,36 PST Portable air conditioner - 3,5 2,9 Monosplit SPG Monosplit - 2,5-6,2 2,8-6,5 SGE Monosplit - 2,8-5,9 2,9-6,0 SCG_1 Monosplit - 2,7-6,6 2,9-6,8 CKG Monosplit - 2,7-6,6 2,9-6,8 LPG Monosplit high head duct - 2,2-4-28,0 24,0-30,0 MVAS Monosplit high head duct - 2,1-12,1 4,4-13,0 MPG Multisplit - 4,1-12,1 4,4-13,0 MGE Multisplit - 4,1-7,9 4,4-8,2</td>	ROOM AIR CONDITIONERS (kW) (kW) Monobloc FK Monobloc window - 2,7-3,6 - CMP (COMPACT) Monobloc without outdoor unit - 2,35 2,36 PST Portable air conditioner - 3,5 2,9 Monosplit SPG Monosplit - 2,5-6,2 2,8-6,5 SGE Monosplit - 2,8-5,9 2,9-6,0 SCG_1 Monosplit - 2,7-6,6 2,9-6,8 CKG Monosplit - 2,7-6,6 2,9-6,8 LPG Monosplit high head duct - 2,2-4-28,0 24,0-30,0 MVAS Monosplit high head duct - 2,1-12,1 4,4-13,0 MPG Multisplit - 4,1-12,1 4,4-13,0 MGE Multisplit - 4,1-7,9 4,4-8,2

FK

Monobloc window

Cooling capacity 2,7 ÷ 3,6 kW

- New R32 ecological refrigerant gas.
- Flush-mounting installation on the window.
- Plug & Play.

DESCRIPTION

The packed air-conditioners of the FK range, for flush-mounting window installation, are ideal for use in commercial contexts such as shops, hotels, offices, laboratories and prefabricated garages.

FEATURES

Inner and outer side

- Remote control and holder standard supply with each unit.
- Fans with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Clean filter signal function.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- Inner side 3-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- **Sleep** night time function well-being program.
- DC inverter rotary compressor.

General features

- New R32 ecological refrigerant gas with low GWP.
- Monobloc Plug & Play unit equipped with power supply with schuko plug.
- Operating mode: cooling, dehumidification and fan only.
- Condensate discharge tub included.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.

INSTALLATION TYPE

PERFORMANCE SPECIFICATIONS

		FK260	FK360
Nominal cooling performances			
Cooling capacity (1)	kW	2,70	3,65
Cooling input power (1)	kW	0,78	1,03
EER (2)	W/W	3,45	3,54
Moisture removed	l/h	1,0	1,6
Maximum cooling performances			
Cooling input current	A	3,5	4,6
Seasonal efficiency			
SEER	W/W	5,20	5,40
Efficiency energy class (3)		A	A
Pdesignc	kW	2,7	3,7
Annual power consumption	kWh/annum	182	240

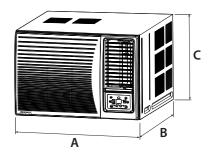
- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m. (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication. (3) Data in accordance with Delegated Regulation (EU) No. 626/2011.

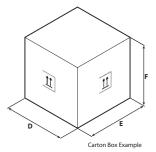
GENERAL DATA

		FK260	FK360
Electric data			
Rated power input (1)	kW	1,10	1,30
Rated current input (1)	A	5,5	6,5
Power supply			
Power supply		220-240V ~ 50Hz	220-240V ~ 50Hz

(1) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

INNER SIDE


		FK260	FK360
Inner side			
Type of fan	Туре	Inverter centrifugal	Inverter centrifugal
Inner side air flow rate			
Maximum	m³/h	400	480
Average	m³/h	360	430
Minimum	m³/h	320	380
Inner side sound pressure			
Maximum	dB(A)	50,0	50,0
Average	dB(A)	48,0	48,0
Minimum	dB(A)	46,0	46,0
Inner side sound power			
Maximum	dB(A)	59,0	59,0
Average	dB(A)	57,0	57,0
Minimum	dB(A)	55,0	55,0


OUTER SIDE

		FK260	FK360
Outer side			
Type of fan	Туре	Inverter axial	Inverter axial
Outer side air flow rate			
Maximum	m³/h	800	1200
Outer side sound power			
Maximum	dB(A)	65,0	65,0
Average	dB(A)	63,0	63,0
Minimum	dB(A)	61,0	61,0
Outer side sound pressure			
Maximum	dB(A)	56,0	56,0
Average	dB(A)	54,0	54,0
Minimum	dB(A)	52,0	52,0
Compressor			
Туре	type	Inverter rotary	Inverter rotary
Compressor			
Refrigerant	type	R32	R32
Refrigerant charge (1)	kg	0,5	0,6
Compressor			
Potential global heating	GWP	675kgCO₂eq	675kgCO₂eq
Equivalent CO ₂	t	0,34	0,43
Outer side			
Protection rating		IPX4	IPX4

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

DIMENSIONS AND WEIGHTS

		FK260	FK360
Dimensions and weights			
A	mm	560	660
3	mm	710	700
[mm	375	428
)	mm	623	739
	mm	806	793
:	mm	425	505
Net weight	kg	43,0	50,0
Weight for transport	kg	47,0	54,0


CMP

Monobloc without outdoor unit

Cooling capacity 2,35 kW Heating capacity 2,36 kW

- Two holes, no outdoor units.
- Modern design to blend with all furnishing styles.
- Extremely thin, with a depth of just 165 mm.

DESCRIPTION

The air-conditioners of the CMP range are of the single-block type and are ideal for heating, cooling, dehumidification or ventilation only, whether in the home or the office.

The absence of an outdoor unit permits installation in all those cases where architectural restraints prevent the positioning of a split air-conditioner. The unit boasts a compressor and a fan with inverter technology.

FEATURES

Unit

Indoor unit designed for installation on internal walls.

- No need for an outdoor unit just make two 162 mm holes in the outer wall so the air-conditioner can exchange heat with the external environment.
- Folding grilles included.
- On-board control panel with display and soft-touch keys.
- Included remote control.

Cooling operation with outside temperatures up to 35 °C. Heating operation with outdoor temperatures down to 7 °C.

Folding grilles

With two folding grilles which, activated by the inlet and outlet air, open when the machine is working and close when the machine is switched off. In this way they guarantee enhanced indoor comfort, less dust, noise and pollution, reduced maintenance and are even less visible from the outside.

Control panel

The on-board control panel with display and soft-touch keys allows you to set the required temperature set-point easily and accurately.

The "heating" function is deactivated by a simple intervention on the control panel: the device then works in "cooling only" mode, without requiring the condensate discharge tube.

The air delivery fin is easily orientated by means of the relative key.

Remote control

Handy remote control that's not too bulky.

Fitted with a practical magnet so it can be fixed to the unit.

All the control panel functions are available via the remote control too.

GENERAL FEATURES

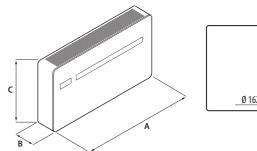
- Condensate drip tray constantly pre-heated in the winter during heat pump operation, without any risk of the water freezing.
- Operating mode: cooling, dehumidification and fan only.
- Particularly quiet operation.
- Microproccessor control.

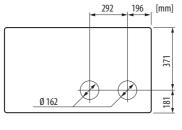
ACCESSORIES AS STANDARD

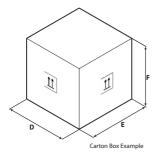
- Condensate drip.
- Two folding grilles.
- Remote control.

PERFORMANCE SPECIFICATIONS

Nominal cooling performances kW 2,35 Cooling capacity (1) kW 0,73 EER (2) W/W 3,22 Maximum cooling performances ***********************************			CMP23I	
Cooling input power (1) kW 0,73 EER (2) W/W 3,22 Maximum cooling performances Cooling capacity kW 3,10 Nominal cooling performances Wilh 1,1 Seasonal efficiency Efficiency energy class (3) A+ Annual power consumption kWh/annum 425 Nominal heating performances Heating capacity (4) kW 2,36 Heating input power (4) kW 0,72 COP (2) W/W 3,28 Maximum heating performances Heating capacity kW 3,05 Seasonal efficiency (temperate climate) KW 3,05	Nominal cooling performances			
EER (2) W/W 3,22 Maximum cooling performances Cooling capacity kW 3,10 Nominal cooling performances Moisture removed I/h 1,1 Seasonal efficiency Efficiency energy class (3) A+ Annual power consumption kWh/annum 425 Nominal heating performances Heating capacity (4) kW 2,36 Heating input power (4) kW 0,72 COP (2) W/W 3,28 Maximum heating performances Heating capacity (4) kW 3,05 Seasonal efficiency (temperate climate)		kW	2,35	
Maximum cooling performances Cooling capacity kW 3,10 Nominal cooling performances Moisture removed I/h 1,1 Seasonal efficiency Efficiency energy class (3) A+ Annual power consumption kWh/annum 425 Nominal heating performances Heating capacity (4) kW 2,36 Heating input power (4) kW 0,72 COP (2) W/W 3,28 Maximum heating performances Heating capacity (4) kW 3,05 Seasonal efficiency (temperate climate)	Cooling input power (1)	kW	0,73	
Cooling capacity kW 3,10 Nominal cooling performances Moisture removed I/h 1,1 Seasonal efficiency Efficiency energy class (3) A+ Annual power consumption kWh/annum 425 Nominal heating performances Heating capacity (4) kW 2,36 Heating input power (4) kW 0,72 COP (2) W/W 3,28 Maximum heating performances W 3,05 Heating capacity kW 3,05 Seasonal efficiency (temperate climate)	EER (2)	W/W	3,22	
Nominal cooling performances Moisture removed I/h 1,1 Seasonal efficiency Efficiency energy class (3) A+ Annual power consumption kWh/annum 425 Nominal heating performances Heating capacity (4) kW 2,36 Heating input power (4) kW 0,72 COP (2) W/W 3,28 Maximum heating performances Heating capacity kW 3,05 Seasonal efficiency (temperate climate)	Maximum cooling performances			
Moisture removed I/h 1,1 Seasonal efficiency Efficiency energy class (3) A+ Annual power consumption kWh/annum 425 Nominal heating performances Heating capacity (4) kW 2,36 Heating input power (4) kW 0,72 COP (2) W/W 3,28 Maximum heating performances Heating capacity kW 3,05 Seasonal efficiency (temperate climate)	Cooling capacity	kW	3,10	
Seasonal efficiency Efficiency energy class (3) A+ Annual power consumption kWh/annum 425 Nominal heating performances W 2,36 Heating capacity (4) kW 0,72 COP (2) W/W 3,28 Maximum heating performances W 3,05 Seasonal efficiency (temperate climate) W 3,05	Nominal cooling performances			
Efficiency energy class (3) A+ Annual power consumption kWh/annum 425 Nominal heating performances Use of the performance of the perfor	Moisture removed	l/h	1,1	
Annual power consumption kWh/annum 425 Nominal heating performances Heating capacity (4) kW 2,36 Heating input power (4) kW 0,72 COP (2) W/W 3,28 Maximum heating performances Heating capacity kW 3,05 Seasonal efficiency (temperate climate)	Seasonal efficiency			
Nominal heating performances Heating capacity (4) kW 2,36 Heating input power (4) kW 0,72 COP (2) W/W 3,28 Maximum heating performances W 3,05 Heating capacity kW 3,05 Seasonal efficiency (temperate climate) W 3,05	Efficiency energy class (3)		A+	
Heating capacity (4) kW 2,36 Heating input power (4) kW 0,72 COP (2) W/W 3,28 Maximum heating performances W 3,05 Heating capacity kW 3,05 Seasonal efficiency (temperate climate) W 3,05	Annual power consumption	kWh/annum	425	
Heating input power (4) kW 0,72 COP (2) W/W 3,28 Maximum heating performances Heating capacity kW 3,05 Seasonal efficiency (temperate climate)	Nominal heating performances			
COP (2) W/W 3,28 Maximum heating performances Heating capacity kW 3,05 Seasonal efficiency (temperate climate)	Heating capacity (4)	kW	2,36	
Maximum heating performances Heating capacity kW 3,05 Seasonal efficiency (temperate climate)	Heating input power (4)	kW	0,72	
Heating capacity kW 3,05 Seasonal efficiency (temperate climate)	COP (2)	W/W	3,28	
Seasonal efficiency (temperate climate)	Maximum heating performances			
	Heating capacity	kW	3,05	
Efficiency energy class (3)	Seasonal efficiency (temperate climate)			
	Efficiency energy class (3)		A	


- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.
 (3) Data in accordance with Delegated Regulation (EU) No. 626/2011.
 (4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.


GENERAL DATA


	CMP23I	
·		
type	Inverter centrifugal	
no.	1	
m³/h	400	
m³/h	320	
m³/h	270	
m³/h	480	
m³/h	390	
m³/h	340	
no.	1	
type	R410A	
kg	0,6	
GWP	2088kgCO₂eq	
dB(A)	58,0	
dB(A)	46,0	
	no. m³/h m³/h m³/h m³/h m³/h m³/h m³/h oo. type kg GWP dB(A)	type Inverter centrifugal no. 1 m³/h 400 m³/h 320 m³/h 270 m³/h 480 m²/h 390 m³/h 340 no. 1 type R410A kg 0,6 GWP 2088kgCO₂eq dB(A) 58,0

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS AND WEIGHTS

		CMP23I	
Dimensions and weights			
A	mm	1030	
В	mm	170	
C	mm	555	
D	mm	1100	
E	mm	260	
F	mm	660	
Net weight	kg	48,0	
Weight for transport	kg	49,0	

PST

Portable air conditioner

Cooling capacity 3,5 kW Heating capacity 2,9 kW

- · New R290 natural refrigerant gas.
- Reversible heat pump.
- Standard Wi-Fi control.
- · Compact, manoeuvrable and silent.
- Modern design to blend with all furnishing styles.
- Special coil with fin golden coating.

DESCRIPTION

PST portable air conditioner, ideal for heating, cooling, dehumidification or ventilation only both at home and at the office.

Adapts to any kind of decor, thanks to its compact and elegant design; it is mounted on wheels and can be used in multiple rooms, and is easily transportable and installable.

Equipped with a specific tank to collect the moisture removed from the environment during cooling, heating or dehumidification.

The on-board control panel with display, allows to easily and precisely set the desired temperature set-points.

FEATURES

Operation

The cooled, heated and/or dehumidified air exits the front grille and directed vertically by movable louvers.

The air to be treated is drawn through filters from the rear.

The exhausted air is expelled through a hose that is attached by means of a special flange on the rear of the portable air conditioner unit.

The air filters are easy to remove and wash.

Special golden fin coil

Unlike normal batteries, this special golden epoxy coating silicon free is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

GENERAL FEATURES

 $\label{lem:lemote control standard supply with each unit.}$

New R290 natural refrigerant gas.

Operating mode: cooling, heating, dehumidification, automatic and fan

Regenerable air filter easy to remove and clean.

Particularly quiet operation.

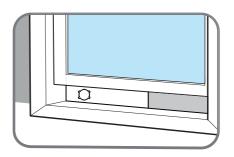
Timer for programming switch-off and switch-on.

Indoor unit front panel with LED display and indicator lights.

3-speed fan, to meet every possible need.

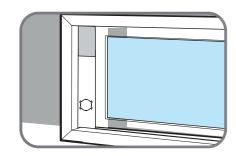
Auto function for a continuous speed variation.

Sleep night time function well-being program.


followMe function for activating the ambient temperature probe inside the remote control, for improved comfort.

Auto-restart function.

ACCESSORIES AS STANDARD


- Air expulsion hose with special joints and collectors.
- Condensate discharge hose, discharge tap and relative fixing accessories.
- Window kit and protection mesh to connect the hot air expulsion hose.
- Cap for the wall and connection for the hot air expulsion hose.
- Remote control.

WINDOW KIT

FLEXIBLE PIPE

		PST350	
Flexible pipe			
Minimum length	mm	330	
Maximum length	mm	1450	
Size (out)	Ø	155	

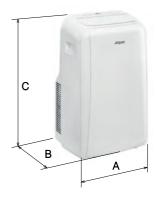
PERFORMANCE SPECIFICATIONS

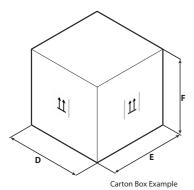
		PST350	
Nominal cooling performances			
Cooling capacity	kW	3,50	
Nominal heating performances			
Heating capacity	kW	2,90	

Rating data Cooling (EN 14511 e EN 14825) Ambient air temperature 35° C d.b. / 24° C w.b. – Max speed Rating data Heating (EN 14511 e EN 14825) Ambient air temperature 20° C d.b./ 12° C w.b. – Max speed

GENERAL DATA

		PST350	
Electric data			
Rated power input	W	1450	
Rated current input	A	0,8	
Power supply			
Power supply		220-240V ~ 50Hz	
Outer side			
Condensate discharge diameter	mm	13,5	
Power supply cable			
Type of power supply cable	Туре	3G1,5 mm²/L= 2,3 m/Schuko plug	


The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN-60335-1 and EN-60335-2-40.


UNIT DATA

		PST350	
Compressor			
Туре	type	Rotary	
Fan			
Туре	type	Centrifugal	
Air flow rate			
Minimum	m³/h	355	
Average	m³/h	370	
Maximum	m³/h	420	
Sound data			
Sound power level	dB(A)	64,0	

Sound Power: measured in reverberation room at a distance of 1,5 - in accordance with EN12102.

DIMENSIONS AND WEIGHTS

		PST350	
Dimensions and weights			
A	mm	467	
В	mm	397	
C	mm	765	
D	mm	512	
E	mm	442	
F	mm	880	
Net weight	kg	33,2	
Weight for transport	kg	37,0	

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

SPG

Monosplit

Cooling capacity 2,5 ÷ 6,2 kW Heating capacity 2,8 ÷ 6,5 kW

- New R32 ecological refrigerant gas.
- Wi-fi control using the relative accessory.
- · Modern design to blend with all furnishing styles.
- Special coil with fin blue coating.
- Indoor units compatible with multisplit systems.

DESCRIPTION

The monosplit air conditioners of the SPG range are combined with SPG_W (Wall) indoor units for wall installation.

Universal indoor units: some indoor units can be combined with both multisplit outdoor units of the series MPG and monosplit outdoor units of the series SPG:

Indoor units			SPG_W		
	SPG200W	SPG250W	SPG350W	SPG500W	SPG700W
Monosplit outdoor units SPG		•	•	•	•
Multisplit utdoor units MPG		•	•	•	

The external unit boasts a compressor and a fan with inverter technology.

FEATURES

Indoor unit

Wall indoor unit designed to be installed on indoor walls.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- **Turbo** function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.

- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.

Monosplit air conditioner.

Reversible air/air heat pump with DC inverter technology.

Compressor and fan with DC inverter technology.

X-fan function

This self-cleaning system foresees that the fan of the indoor unit continues its operation for a few minutes after the unit is turned off, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.

Smart APP Ewpe

Using the specific **accessory**, the system offers wi-fi control thanks to the app for iOS and Android devices (available free on Apple Store and Google Play). The system can be controlled from a distance directly on your smartphone or tablet, or via Cloud with the aid of a wireless router connected to the Internet.

Special blue fin coil

Unlike normal batteries, this special blue epoxy coating is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

General features

- New R32 ecological refrigerant gas with low GWP.
- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Air filter easily removed and cleaned.
- Easy installation and maintenance.

ACCESSORIES

CC2: Centralised control with 7" touchscreen display for managing several indoor units within a number of multisplit systems. The centralised control has an integrated external contact. For more information, refer to the specific documentation. *

WRCA: Wired panel with liquid crystal display and soft-touch buttons. This accessory can be used to control not only the traditional system functions but also a weekly timer with a maximum of 8 daily time bands.

* The CC2 centralised control can manage up to 36 SPG system.

In order to use accessory CC2, for each indoor unit, the WRCA wired panel (accessory) must be installed, with the IC-2P adapter accessory.

DCK: Remote Contact Kit. This accessory allows you to switch the system on and off using an external contact.

WIFIKIT01: Plug & Play module to be installed in the indoor unit for Wi-Fi control, equipped with Bluetooth® connection to ensure a better connection with smart devices. (Cable length 250 mm)

DTG1: Diagnostic tool for indoor and outdoor units of the entire series (tool reserved for service centres or installers).

Accessories compatibility

SPG_W

Accessory		SPG500W		SPG700W	
CC2 (1)		•		•	
WRCA (1)		•		•	
(1) Auto-restart function.					
Accessory		SPG500W	'	SPG700W	
IC-2P		•		•	
Accessory	SPG200W	SPG250W	SPG350W	SPG500W	SPG700W
DCK				•	•
WIFIKIT01	•	•	•	•	•

PERFORMANCE SPECIFICATIONS

Indoor unit		SPG250W	SPG350W	SPG500W	SPG700W
Outdoor unit		SPG250	SPG350	SPG500	SPG700
Indoor unit quantity		1	1	1	1
Outdoor unit quantity		1	1	1	1
Nominal cooling performances					
Cooling capacity (1)	kW	2,50	3,20	4,60	6,20
Cooling input power (1)	kW	0,72	0,99	1,36	1,77
EER (2)	W/W	3,47	3,23	3,39	3,50
Moisture removed	l/h	0,6	1,4	1,8	1,8
Minimum cooling performances					
Cooling capacity	kW	0,50	0,90	1,00	1,60
Cooling input power	kW	0,15	0,22	0,42	0,45
Maximum cooling performances					
Cooling capacity	kW	3,25	3,60	5,30	6,90
Cooling input power	kW	1,30	1,30	1,80	2,20
Cooling input current	A	3,2	4,4	5,9	7,9
Seasonal efficiency					
Annual power consumption	kWh/annum	135	184	251	319
SEER	W/W	6,50	6,10	6,40	6,80
Efficiency energy class (3)		A++	A++	A++	A++
Nominal heating performances					
Heating capacity (4)	kW	2,80	3,40	5,20	6,50
Heating input power (4)	kW	0,75	0,91	1,34	1,65
COP (2)	W/W	3,73	3,71	3,88	3,95
Minimum heating performances					
Heating capacity	kW	0,50	0,90	1,00	1,30
Heating input power	kW	0,14	0,22	0,42	0,45
Maximum heating performances					
Heating capacity	kW	3,50	4,00	5,65	7,91
Heating input power	kW	1,50	1,50	1,90	2,20
Heating input current	A	3,2	4,0	5,8	7,3
Seasonal efficiency (temperate climate)					
Annual power consumption	kWh/annum	875	945	1295	1645
Efficiency energy class (3)		A+	A+	A+	A+
SCOP	W/W	4,00	4,00	4,00	4,00

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.
 (3) Data in accordance with Delegated Regulation (EU) No. 626/2011.
 (4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

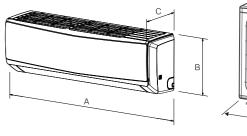
INDOOR UNIT DATA

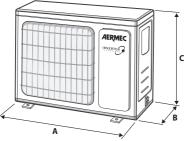
		SPG250W	SPG350W	SPG500W	SPG700W
Indoor unit					
Type of fan	Туре		Inverter o	rentrifugal	
Air flow rate					
Turbo	m³/h	500	590	850	1100
Maximum	m³/h	470	520	800	950
Average	m³/h	390	400	700	750
Minimum	m³/h	270	320	600	650
Sound power (1)					
Turbo	dB(A)	55,0	56,0	54,0	61,0
Maximum	dB(A)	48,0	49,0	52,0	58,0
Average	dB(A)	44,0	45,0	48,0	52,0
Minimum	dB(A)	34,0	38,0	44,0	49,0
Sound pressure (1 m) (2)					
Turbo	dB(A)	38,0	41,0	44,0	47,0
Maximum	dB(A)	36,0	37,0	42,0	44,0
Average	dB(A)	32,0	33,0	38,0	38,0
Minimum	dB(A)	22,0	26,0	34,0	35,0
Indoor unit					
Condensate discharge diameter	mm	16,0	16,0	16,0	16,0
Power supply					
Indoor unit power supply			220-240	V ~ 50Hz	

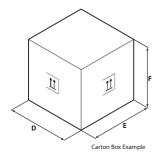
Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.
 Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.

OUTDOOR UNIT DATA

		SPG250	SPG350	SPG500	SPG700
Outdoor unit					
Type of fan	Туре		Invert	er axial	
Air flow rate					
Maximum	m³/h	1950	1950	1950	2800
Sound power (1)					
Maximum	dB(A)	62,0	64,0	63,0	67,0
Sound pressure (1 m) (2)					
Maximum	dB(A)	51,0	51,0	55,0	58,0
Compressor					
Туре	type		Inverte	er rotary	
Refrigerant	type		R	32	
Refrigerant charge	kg	0,50	0,55	0,75	1,30
Potential global heating	GWP		675kg	JCO₂eq	
Equivalent CO ₂	t	0,34	0,37	0,51	0,88
Outdoor unit					
Condensate discharge diameter	mm	16,0	16,0	16,0	16,0


GENERAL DATA


Indoor unit		SPG250W	SPG350W	SPG500W	SPG700W
Outdoor unit		SPG250	SPG350	SPG500	SPG700
Indoor unit quantity		1	1	1	1
Outdoor unit quantity		1	1	1	1
Electric data					
Rated power input (1)	kW	1,50	1,50	1,90	2,20
Rated current input (1)	Α	7,5	7,5	9,0	10,0
Refrigerant lines					
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")
Maximum refrigerant tube length	m	15	20	25	25
Maximum refrigerant line level difference	m	10,0	10,0	10,0	10,0
Maximum length of refrigerant lines without addition		E	г	г	г
of refrigerant	m))))
Refrigerant to be added	g/m	16	16	16	16
Power supply					
Power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz


⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40. For lines longer than 15m it is necessary to add 5ml of refrigerant oil for every additional 5m of pipe.

⁽¹⁾ Sound power calculated in free field, in accordance with UNI EN ISO 3744. (2) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.

DIMENSIONS AND WEIGHTS

		SPG250W	SPG350W	SPG500W	SPG700W
Indoor unit					
A	mm	696	770	972	1081
В	mm	251	251	300	325
[mm	190	190	225	248
)	mm	747	822	1022	1137
E	mm	324	324	374	407
F	mm	262	262	299	334
Net weight	kg	7,5	8,5	13,5	16,5
Weight for transport	kg	9,0	10,0	16,0	19,5
		SPG250	SPG350	SPG500	SPG700
Outdoor unit					
A	mm	732	732	732	873
В	mm	330	330	330	376
(mm	550	550	555	555
D	mm	792	792	794	951
			202	376	431
E	mm	393	393	3/0	431
<u> </u>	mm mm	393 615	393 615	615	620
E F Net weight					

SGE

Monosplit

Cooling capacity 2,8 ÷ 5,9 kW Heating capacity 2,9 ÷ 6,0 kW

- New R32 ecological refrigerant gas.
- Air Purifiers (Cold Plasma).
- Possibility of Wi-Fi control.
- Innovative design sleek curved lines.
- Special coil with fin golden coating.

SGE_Y_UN50_03

DESCRIPTION

The monosplit air conditioners of the SGE range are combined with SGE_W (Wall) indoor units for wall installation.

The external unit boasts a compressor with inverter technology.

FEATURES

Innovative design

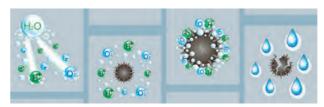
SGE has an elegant and essential design. Its curved lines emphasize a kind of structure with innovative and functional style. The display with working parameters is elegantly integrated in the satin-finish cover and visible only when the unit is on.

Indoor unit

 $\textbf{Wall} \ indoor \ unit \ designed \ to \ be \ installed \ on \ indoor \ walls.$

- Remote control standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- **Turbo** function to attain the desired temperature as quickly as possible.
- Sleep night time function well-being program.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- followMe function for activating the ambient temperature probe inside the remote control, for improved comfort.

Outdoor unit


Monosplit air conditioner.

Reversible air/air heat pump with DC inverter technology.

 $Compressor\ and\ fan\ with\ DC\ inverter\ technology.$

Air Purifiers (Cold Plasma)

Capable of reducing pollutants breaking down their molecules using electric discharges, causing the splitting of the water molecules in the air into positive and negative ions. These ions neutralise the molecules of the gaseous pollutants obtaining products that are normally present in clean air. The device can eliminate 90% of bacteria. The result is clean, ionised air that has no bad odours.

Special golden fin coil

Unlike normal batteries, this special golden epoxy coating silicon free is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

Nethome Plus app

Using the specific **accessory**, the system offers wi-fi control thanks to the app for iOS and Android devices (available free on Apple Store and Google Play). The system can be controlled from a distance directly on your smartphone or tablet, or via Cloud with the aid of a wireless router connected to the Internet.

General features

- New R32 ecological refrigerant gas with low GWP.
- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.Air filter easily removed and cleaned.
- Easy installation and maintenance.

ACCESSORIES

WIFIKEY: Plug & Play module to be installed in the indoor unit for Wi-Fi control.

Accessories compatibility

Accessory	SGE250W	SGE350W	SGE500W	SGE700W
WIFIKEY	•	•	•	•

PERFORMANCE SPECIFICATIONS

Indoor unit		SGE250W	SGE350W	SGE500W	SGE700W
Outdoor unit		SGE250	SGE350	SGE500	SGE700
Indoor unit quantity		1	1	1	1
Outdoor unit quantity		1	1	1	1
Nominal cooling performances					
Cooling capacity (1)	kW	2,77	3,46	5,27	5,86
Cooling input power (1)	kW	0,77	1,06	1,55	1,81
EER (2)	W/W	3,60	3,25	3,40	3,24
Moisture removed	l/h	1,0	1,2	1,8	2,7
Minimum cooling performances					
Cooling capacity	kW	0,91	1,11	3,39	2,08
Cooling input power	kW	0,10	0,13	0,56	0,42
Maximum cooling performances					
Cooling capacity	kW	3,39	4,16	5,83	7,91
Cooling input power	kW	1,24	1,58	2,05	3,15
Cooling input current	A	3,3	4,6	6,7	7,9
Seasonal efficiency					
SEER	W/W	6,30	6,40	7,40	6,80
Efficiency energy class (3)		A++	A++	A++	A++
Annual power consumption	kWh/annum	156	190	247	300
Nominal heating performances					
Heating capacity (4)	kW	2,93	3,57	4,97	6,00
Heating input power (4)	kW	0,73	0,96	1,29	1,61
COP (2)	W/W	4,00	3,71	3,83	3,73
Minimum heating performances					
Heating capacity	kW	0,82	1,08	3,10	1,61
Heating input power	kW	0,12	0,10	0,78	0,30
Maximum heating performances					
Heating capacity	kW	3,37	4,22	5,85	7,91
Heating input power	kW	1,20	1,68	2,00	2,75
Heating input current	A	3,2	4,2	5,6	7,0
Seasonal efficiency (temperate climate)					
SCOP	W/W	4,00	4,00	4,00	4,00
Efficiency energy class (3)		A+	A+	A+	A+
Annual power consumption	kWh/annum	910	945	1435	1818
Seasonal efficiency (hot climate)					
SCOP	W/W	5,10	5,10	5,10	5,00
Efficiency energy class (3)		A+++	A+++	A+++	A++
Annual power consumption	kWh/annum	714	686	1260	1705

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m. (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication. (3) Data in accordance with Delegated Regulation (EU) No. 626/2011. (4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

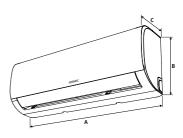
INDOOR UNIT

		SGE250W	SGE350W	SGE500W	SGE700W
Indoor unit					
Type of fan	Туре		Tang	ential	
Air flow rate					
Maximum	m³/h	466	540	840	980
Average	m³/h	360	430	680	817
Minimum	m³/h	325	314	540	662
Sound power (1)					
Maximum	dB(A)	54,0	55,0	56,0	59,0
Sound pressure (1 m) (2)					
Maximum	dB(A)	38,5	40,5	42,5	45,0
Average	dB(A)	32,0	34,5	36,0	40,5
Minimum	dB(A)	25,0	25,0	26,0	36,0

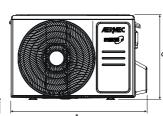
OUTDOOR UNIT

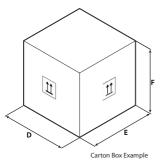
		SGE250	SGE350	SGE500	SGE700
Outdoor unit					
Type of fan	Туре	Axial	Axial	Axial	Axial
Air flow rate					
Maximum	m³/h	1750	1800	2100	3500
Sound power (1)					
Maximum	dB(A)	62,0	63,0	63,0	67,0
Sound pressure (1 m) (2)					
Maximum	dB(A)	55,5	56,0	56,0	59,0
Compressor					
Туре	type	Inverter rotary	Inverter rotary	Inverter rotary	Inverter rotary
Refrigerant	type	R32	R32	R32	R32
Refrigerant charge	kg	0,55	0,55	1,08	1,42
Potential global heating	GWP	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq
Equivalent CO ₂	t	0,37	0,37	0,73	0,96

GENERAL DATA


Indoor unit		SGE250W	SGE350W	SGE500W	SGE700W
Outdoor unit		SGE250	SGE350	SGE500	SGE700
Indoor unit quantity		1	1	1	1
Outdoor unit quantity		1	1	1	1
Electric data					
Rated power input (1)	kW	2,20	2,20	2,50	3,50
Rated current input (1)	Α	10,0	10,0	13,0	15,5
Refrigeration pipework					
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")	15,9 (5/8")
Maximum refrigerant tube length	m	25	25	30	50
Maximum refrigerant line level difference	m	10,0	10,0	20,0	25,0
Refrigerant to be added	g/m	12	12	12	24
Power supply					
Power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.


⁽¹⁾ Sound power calculated in free field, in accordance with UNI EN ISO 3744. (2) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.


⁽¹⁾ Sound power calculated in free field, in accordance with UNI EN ISO 3744. (2) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.

DIMENSIONS AND WEIGHTS

		SGE250W	SGE350W	SGE500W	SGE700W
ndoor unit	1				
A	mm	805	805	957	1040
В	mm	285	285	302	327
	mm	194	194	213	220
)	mm	870	870	1035	1120
	mm	270	270	295	405
:	mm	365	365	385	315
let weight	kg	7,6	7,6	10,0	12,3
Weight for transport	kg	9,7	9,8	13,0	15,8
		SGE250	SGE350	SGE500	SGE700
Outdoor unit					
4	mm	720	720	805	890
3	mm	270	270	330	342
	mm	495	495	554	673
)	mm	835	835	915	995
	mm	300	300	370	398
	111111				
	mm	540	540	615	740
: : let weight		540 23,2	540 23,2	615 32,7	740 42,9

SCG_1

Monosplit

Cooling capacity 7,2 kW ÷ 12,5 kW Heating capacity 7,9 kW ÷ 14,5 kW

- New R32 ecological refrigerant gas.
- Standard Wi-Fi module.
- Modern design to blend with all furnishing styles.
- Easy installation and maintenance.
- Ideal for installations in the service sector: hotels, restaurants, offices.

DESCRIPTION

The monosplit air conditioners of the SCG_1 range are combined with SCG_1V (column) indoor units for floor installation.

Thanks to their compact size, ease of installation and modern design, they are suitable for environments such as shops, restaurants, shopping centers, doctor's offices, etc.

The outdoor unit features a compressor with inverter technology and an electronic valve.

FEATURES

X-fan function

This self-cleaning system foresees that the fan of the indoor unit continues its operation for a few minutes after the unit is turned off, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.

Indoor unit

Indoor unit **column** designed to be installed for indoor floor installation.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- $\ensuremath{\,--\,}$ Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
 3-speed fan, to meet every possible need.
- $\boldsymbol{--}$ $\boldsymbol{\mathsf{Turbo}}$ function to attain the desired temperature as quickly as possible.
- Sleep night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Auto function for a continuous speed variation.

Outdoor unit

Monosplit air conditioner.

Reversible air/air heat pump with DC inverter technology.

- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.

Smart APP Ewpe

This system is fitted **standard** with a wi-fi module that can be used, along with the app for iOS and Android devices (available free on Apple Store and Google Play), to control the system remotely on your smartphone or tablet, or via Cloud with the aid of a wireless router connected to the Internet.

Special blue fin coil

Unlike normal batteries, this special blue epoxy coating is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

General features

- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Air filter easily removed and cleaned.
 Easy installation and maintenance.

ACCESSORIES

DTG1: Diagnostic tool for indoor and outdoor units of the entire series (tool reserved for service centres or installers).

PERFORMANCE SPECIFICATIONS

Indoor unit		SCG701V	SCG1201V	SCG1201VT
Outdoor unit		SCG701	SCG1201	SCG1201T
Indoor unit quantity		1	1	1
Outdoor unit quantity		1	1	1
Nominal cooling performances				
Cooling capacity (1)	kW	7,20	12,30	12,50
Cooling input power	kW	2,05	4,17	3,79
Cooling input current	A	9,0	18,0	5,6
EER (2)	W/W	3,51	2,95	3,30
Moisture removed	l/h	2,5	5,0	5,0
Minimum cooling performances				
Cooling capacity (1)	kW	0,97	1,50	3,10
Cooling input power	kW	0,35	0,55	0,30
Maximum cooling performances				
Cooling capacity (1)	kW	8,40	13,50	14,50
Cooling input power	kW	2,95	5,06	5,70
Seasonal efficiency				
SEER	W/W	6,10	5,70	6,10
Efficiency energy class (3)		A++	-	-
Annual power consumption	kWh/annum	413	-	<u>-</u>
Jsc	%	-	227,00	241,00
Nominal heating performances				
Heating capacity (4)	kW	7,90	12,60	14,50
Heating input power	kW	2,33	3,82	3,86
Heating input current	A	10,5	16,0	5,7
COP (2)	W/W	3,39	3,30	3,76
Minimum heating performances				
Heating capacity (4)	kW	0,64	2,50	3,30
Heating input power	kW	0,39	0,50	0,64
Maximum heating performances				
Heating capacity (4)	kW	8,80	14,00	16,50
Heating input power	kW	3,03	5,06	4,70
Seasonal efficiency (temperate climate)				
SCOP	W/W	3,80	3,70	4,00
Efficiency energy class (3)		A	- -	-
Annual power consumption	kWh/annum	2063	-	- -
ηsh	%	-	146,00	157,00

- (1) Cooling (EN-14511 and EN-14825) Ambient air temperature 27°C D.B. / 19°C W.B.; Outside air temperature 35°C; Max speed; Length of Refrigerant Lines 5m.
 (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.
 (3) Data in accordance with Delegated Regulation (EU) No. 626/2011.
 (4) Heating (EN-14511 and EN-14825) Ambient air temperature 20°C D.B.; Outside air temperature 7°C D.B./6°C W.B.; Max speed; Length of Refrigerant Lines 5m.

INDOOR UNIT DATA

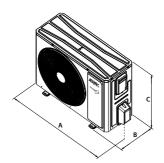
		SCG701V	SCG1201V	SCG1201VT
Indoor unit				
Type of fan	Туре		Centrifugal	
Air flow rate				
Turbo	m³/h	1250	2000	2400
Maximum	m³/h	950	1850	2200
Average	m³/h	850	1700	2000
Minimum	m³/h	750	1580	1800
Sound power (1)				
Turbo	dB(A)	56,0	64,0	66,0
Maximum	dB(A)	52,0	61,0	64,0
Average	dB(A)	50,0	60,0	63,0
Minimum	dB(A)	46,0	58,0	61,0
Sound pressure (2)				
Turbo	dB(A)	45,0	53,0	56,0
Maximum	dB(A)	41,0	51,0	54,0
Average	dB(A)	39,0	50,0	53,0
Minimum	dB(A)	35,0	48,0	51,0

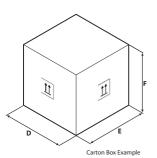
OUTDOOR UNIT DATA

		SCG701	SCG1201	SCG1201T
Outdoor unit				
Type of fan	Туре		Axial	
Air flow rate				
Maximum	m³/h	3600	4000	5200
Sound power (1)				
Maximum	dB(A)	70,0	73,0	74,0
Sound pressure (2)				
Maximum	dB(A)	61,0	63,0	63,0
Compressor				
Туре	type		Rotativo Inverter	
Refrigerant	type		R32	
Potential global heating	GWP		675kgCO₂eq	
Refrigerant charge	kg	1,50	2,00	2,80
Equivalent CO ₂	t	1,01	1,35	1,89

⁽¹⁾ Sound power calculated in free field, in accordance with UNI EN ISO 3744. (2) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

⁽¹⁾ Sound power calculated in free field, in accordance with UNI EN ISO 3744. (2) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.


GENERAL DATA


Indoor unit		SCG701V	SCG1201V	SCG1201VT
Outdoor unit		SCG701	SCG1201	SCG1201T
Indoor unit quantity		1	1	1
Outdoor unit quantity		1	1	1
Electric data				
Rated power input (1)	kW	3,03	5,06	5,70
Rated current input - cooling	Α	14,5	20,0	9,8
Rated current input - heating	A	13,5	22,0	8,1
Refrigerant lines				
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")
Maximum refrigerant tube length	m	25	30	30
Maximum refrigerant line level difference	m	10,0	20,0	20,0
Maximum length of refrigerant lines without addition		E	r.	Ę
of refrigerant	m	3	3	3
Refrigerant to be added	g/m	40	40	40
Power supply				
Power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	380-415V ~ 3N 50Hz

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

DIMENSIONS AND WEIGHTS

		SCG701V	SCG1201V	SCG1201VT
Indoor unit				
A	mm	507	587	587
В	mm	320	394	394
(mm	1770	1882	1882
D	mm	608	718	718
E	mm	410	485	485
F	mm	1983	2128	2128
Net weight	kg	38,0	53,0	57,0
Weight for transport	kg	47,0	65,0	69,0
	1	SCG701	SCG1201	SCG1201T
Outdoor unit			'	
A	mm	958	1000	1020
В	mm	402	427	427
C	mm	660	746	820
D	mm	1032	1080	1093
[456	483	497
L	mm	430		1,71
F	mm mm	737	810	955
F Net weight				

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

CKG

Universal

Cooling capacity 2,7 ÷ 5,2 kW Heating capacity 2,9 ÷ 5,3 kW

- · Standard Wi-Fi module.
- New R32 ecological refrigerant gas.
- · Air Purifiers (Cold Plasma).
- Low cooling function: cooling operation with outdoor temperatures down to -15 °C.
- Low heating function: heating operation with outdoor temperatures down to -22 °C.

DESCRIPTION

The monosplit air conditioners of the CKG_1 range are combined with CK-G_1FS (Console) indoor units with an inverter fan unit, offering twin delivery for optimum air flow control and enhanced environmental comfort.

Universal indoor units:

all indoor units can be combined with both multisplit outdoor units of the series MPG and MLG and monosplit outdoor units of the series CKG_1.

			_
CKG_1FS	CKG261FS	CKG361FS	CKG501FS
Universal indoor units compatible with MPG multisplit system	•	•	•
Universal indoor units compatible with MLG multisplit system	•	•	

The outdoor unit features a compressor with inverter technology, an electronic valve and electric heater to ensure proper winter operation and prevent ice formation on the coil.

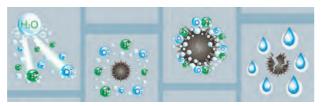
FEATURES

Indoor unit

Console indoor unit designed to be installed on indoor floors.

- Every indoor unit comes with a remote control and a remote control holder
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Indoor unit front panel with LED display and indicator lights.
- 5-speed fan, to meet every possible need.
- Auto function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- $\,$ Sleep night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- **Anti-freeze** function that allows you to keep an inside minimum temperature of 8 $^{\circ}$ C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.

Outdoor unit


Monosplit air conditioner.

Reversible air/air heat pump with DC inverter technology.

- Fitted with a electrical anti-freeze heater (in unit base) to avoid the formation of ice and encourage the drainage of condensate during heating operation.
- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.

Air Purifiers (Cold Plasma)

Capable of reducing pollutants breaking down their molecules using electric discharges, causing the splitting of the water molecules in the air into positive and negative ions. These ions neutralise the molecules of the gaseous pollutants obtaining products that are normally present in clean air. The device can eliminate 90% of bacteria. The result is clean, ionised air that has no bad odours.

X-fan function

This self-cleaning system foresees that the fan of the indoor unit continues its operation for a few minutes after the unit is turned off, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.

Smart APP Ewpe

This system is fitted **standard** with a wi-fi module that can be used, along with the app for iOS and Android devices (available free on Apple Store and Google Play), to control the system remotely on your smartphone or tablet, or via Cloud with the aid of a wireless router connected to the Internet.

General features

- New R32 ecological refrigerant gas with low GWP.
- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Air filter easily removed and cleaned.
- Easy installation and maintenance.

ACCESSORIES COMPATIBILITY

Accessory	CKG261FS	CKG361FS	CKG501FS		
CC2	•	•	•		
WRCA	•	•	•		
The accessory CC2 version 01 is compatible with the indoor units of the CKG_1FS series, from version 01.					
Accessory	CKG261FS	CKG361FS	CKG501FS		
IC-2P					

ACCESSORIES

* The CC2 centralised control can manage up to 36 CKG_1 system.

In order to use accessory CC2, for each indoor unit, the WRCA wired panel (accessory) must be installed, with the IC-2P adapter accessory.

Single air delivery

Dual air delivery (default)

Intake

PERFORMANCE SPECIFICATIONS

Indoor unit		CKG261FS	CKG361FS	CKG501FS
Outdoor unit		CKG261	CKG361	CKG501
Indoor unit quantity		1	1	1
Outdoor unit quantity		1	1	1
Nominal cooling performances				
Cooling capacity (1)	kW	2,70	3,52	5,20
Cooling input power (1)	kW	0,70	0,93	1,45
EER (2)	W/W	3,86	3,80	3,60
Moisture removed	l/h	0,8	1,2	1,8
Cooling input current	A	5,5	7,0	11,5
Minimum cooling performances				
Cooling capacity	kW	0,50	0,80	1,20
Cooling input power	kW	0,15	0,23	0,10
Maximum cooling performances				
Cooling capacity	kW	3,40	4,40	6,20
Cooling input power	kW	1,10	1,55	2,25
Seasonal efficiency				
SEER	W/W	7,80	7,20	7,20
Efficiency energy class (3)		A++	A++	A++
Annual power consumption	kWh/annum	121	175	253
Nominal heating performances				
Heating capacity (4)	kW	2,90	3,80	5,33
Heating input power (4)	kW	0,73	0,96	1,55
Heating input current	A	6,0	7,5	11,5
COP (2)	W/W	3,97	3,96	3,45
Minimum heating performances				
Heating capacity	kW	0,60	1,05	1,10
Heating input power	kW	0,16	0,18	0,20
Maximum heating performances				
Heating capacity	kW	3,65	4,40	6,20
Heating input power	kW	1,20	1,70	2,40
Seasonal efficiency (temperate climate)				
SCOP	W/W	4,20	4,10	4,00
Efficiency energy class (3)		A+	A+	A+
Annual power consumption	kWh/annum	867	1093	1680

⁽¹⁾ Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

(2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.

(3) Data in accordance with Delegated Regulation (EU) No. 626/2011.

(4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

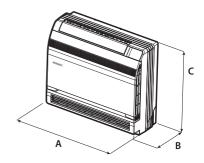
INDOOR UNIT DATA

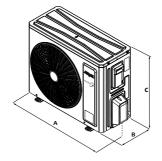
		CKG261FS	CKG361FS	CKG501FS		
Indoor unit						
Input power	W	Powered by the outdoor unit	Powered by the outdoor unit	Powered by the outdoor unit		
Type of fan	Туре	Centrifugal	Centrifugal	Centrifugal		
Air flow rate indoor units						
Quiet	m³/h	250	260	350		
Minimum	m³/h	280	360	430		
Average minimum	m³/h	330	400	470		
Average	m³/h	370	440	520		
Average maximum	m³/h	410	480	600		
Maximum	m³/h	430	520	670		
Turbo	m³/h	500	600	750		
Sound power (1)						
Quiet	db(A)	35,0	36,0	43,0		
Minimum	dB(A)	38,0	40,0	48,0		
Average minimum	dB(A)	41,0	44,0	51,0		
Average	dB(A)	44,0	47,0	53,0		
Average maximum	dB(A)	46,0	49,0	56,0		
Maximum	dB(A)	48,0	51,0	58,0		
<u> Furbo</u>	dB(A)	52,0	55,0	60,0		
Sound pressure (2)						
Quiet	db(A)	23,0	25,0	32,0		
Minimum	dB(A)	26,0	29,0	37,0		
Average minimum	dB(A)	29,0	33,0	40,0		
Average	dB(A)	32,0	36,0	42,0		
Average maximum	dB(A)	34,0	38,0	45,0		
Maximum	dB(A)	36,0	40,0	47,0		
Turbo Turbo	dB(A)	39,0	44,0	49,0		
Sound power (1)						
Quiet	db(A)	34,0	36,0	42,0		
Minimum	dB(A)	37,0	40,0	47,0		
Average minimum	dB(A)	41,0	44,0	49,0		
Average	dB(A)	44,0	47,0	52,0		
Average maximum	dB(A)	46,0	49,0	54,0		
Maximum	dB(A)	48,0	51,0	57,0		
<u> Furbo</u>	dB(A)	52,0	55,0	60,0		
Sound pressure (2)						
Quiet	db(A)	22,0	25,0	33,0		
Minimum	dB(A)	25,0	29,0	38,0		
verage minimum	dB(A) 29,0		33,0	40,0		
verage	dB(A)	32,0	36,0	43,0		
lverage maximum	dB(A)	34,0	38,0	45,0		
Maximum	dB(A)	36,0	40,0	48,0		
Turbo	dB(A)	39,0	44,0	51,0		
Indoor unit						
Condensate discharge diameter	mm	17,0	17,0	17,0		

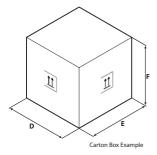
OUTDOOR UNIT DATA

		CKG261	CKG361	CKG501
Outdoor unit				
Type of fan	Туре		Axial	
Air flow rate				
Maximum	m³/h	1950	2200	3600
Sound power (1)				
Maximum	dB(A)	61,0	63,0	65,0
Sound pressure (2)				
Maximum	dB(A)	51,0	53,0	59,0
Compressor				
Туре	type		Rotativo Inverter	
Refrigerant	type		R32 / 675kgCO₂eq	
Refrigerant charge	kg	0,51	0,75	1,00
Potential global heating	GWP			
Equivalent CO ₂	t	0,34	0,51	0,68
Outdoor unit				
Condensate discharge diameter	mm	16,0	16,0	16,0

⁽¹⁾ Sound Power measured in Semi-Anechoic Chamber at 1,0m from the source, according to EN 12102-1:2017 (2) Sound Pressure measured in Semi-Anechoic Chamber at 1,0m from the source, according to EN 12102-1:2017


⁽¹⁾ Sound power calculated in free field, in accordance with UNI EN ISO 3744. (2) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.


GENERAL DATA


Indoor unit		CKG261FS	CKG361FS	CKG501FS
Outdoor unit		CKG261	CKG361	CKG501
Indoor unit quantity		1	1	1
Outdoor unit quantity		1	1	1
Electric data				
Rated power input (1)	kW	0,73	0,96	1,55
Rated current input - cooling	A	5,5	7,0	11,5
Rated current input - heating	A	6,0	7,5	11,5
Refrigerant lines				
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")
Maximum refrigerant tube length	m	15	20	25
Maximum refrigerant line level difference	m	10,0	10,0	10,0
Maximum length of refrigerant lines without addition	m	5	5	5
of refrigerant				
Refrigerant to be added	g/m	16	16	16
Power supply				
Power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

DIMENSIONS AND WEIGHTS

		CKG261FS	CKG361FS	CKG501FS
ndoor unit				
4	mm	700	700	700
}	mm	215	215	215
	mm	600	600	600
)	mm	788	788	788
	mm	283	283	283
:	mm	697	697	697
let weight	kg	15,5	16,0	16,0
Neight for transport	kg	18,5	19,0	19,0
		CKG261	CKG361	CKG501
Outdoor unit				
4	mm	732	802	958
3	mm	330	350	402
	mm	555	555	660
		70.4	872	1032
)	mm	794	0/2	1032
) <u>:</u>	mm mm	794 376	398	456
)				
) : : : !et weight	mm	376	398	456

Monosplit

LPG

Cooling capacity 3,5 ÷ 16,0 kW Heating capacity 4,0 ÷ 17,0 kW

- SEER up to 7.2.
- Wi-fi control using the relative accessory.

DESCRIPTION

The monosplit air conditioners of the LPG range are combined with:

- LPG_D (Duct) for duct type horizontal installation.
- LPG_C / CS (Cassette) for false ceiling installation.
- LPG_F (Floor ceiling) wall and/or ceiling installation.

TYPE OF INDOOR UNIT

Indoor unit LPG_D

Duct indoor unit, designed for indoor duct type horizontal installation.

- Every indoor unit comes with a remote control and a remote control holder.
- WRC50 wired panel standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auto function for a continuous speed variation.
- **Turbo** function to attain the desired temperature as quickly as possible.
- Sleep night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

Indoor unit LPG_CS

Indoor unit **Cassette** of dimensions (570x570 mm) designed to be installed on suspended ceiling indoors.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- Auto function for a continuous speed variation.
 Turbo function to attain the desired temperature as quickly as possible.
- Sleep night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

Indoor unit LPG_C

Indoor unit **Cassette** of dimensions (840x840 mm) designed to be installed on suspended ceiling indoors.

 Every indoor unit comes with a remote control and a remote control holder.

- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- Auto function for a continuous speed variation.
- **Turbo** function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

Indoor unit LPG F

Indoor unit **Floor ceiling** designed to be installed on the wall or ceiling indoors.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- Auto function for a continuous speed variation.
- **Turbo** function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.

General features

- New R32 ecological refrigerant gas with low GWP.
- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Air filter easily removed and cleaned.
- Easy installation and maintenance.

Low cooling function

cooling operation with outdoor temperatures down to -20 °C.

Low heating function

heating with external temperatures up to -20 °C.

X-fan function

This self-cleaning system foresees that the fan of the indoor unit continues its operation for a few minutes after the unit is turned off, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.

Smart APP Ewpe

Using the specific WRC50W panel, the system offers wi-fi control thanks to the app for iOS and Android devices (available free on Apple Store and Google Play). The system can be controlled from a distance directly on your smartphone or tablet, or via Cloud with the aid of a wireless router connected to the Internet.

Special blue fin coil

Unlike normal batteries, this special blue epoxy coating is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

TYPE OF OUTDOOR UNIT

Outdoor unit

Reversible air/air heat pump with DC inverter technology.

- Fitted with a electrical anti-freeze heater (in unit base) to avoid the formation of ice and encourage the drainage of condensate during heating operation.
- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.

ACCESSORIES

CC2: Centralised control with 7" touchscreen display for managing several indoor units within a number of multisplit systems. The centralised control has an integrated external contact. For more information, refer to the specific documentation. *

WRC50: Wired panel with liquid crystal display and soft-touch buttons.

WRC50W: Flush panel with LCD display and Soft-Touch keys. With this accessory it is possible to control not only the traditional system functions but also a weekly timer with daily time slots. It is equipped with WiFi and Bluetooth® connection for better connection stability.

For more information about the accessories and their functions (such as the auto-restart function), refer to the specific documentation of the single accessory.

DCG10: This accessory makes it possible to remotely control the main functions of the unit via the relay externally with third-party loads that are suitably powered and sized.

ECD10: This accessory makes it possible to manage the switching on/off of the indoor units via the ON-OFF device.

GLG 40: Air supply and flow grid with dimensions (950x950 mm) for cassette internal unit.

GLG 40S: Air supply and flow grid with dimensions (620x620 mm) for cassette internal unit.

MINIMODBUS20: Thanks to its compact size, this accessory can be easily installed inside the indoor unit. It allows the units to communicate with each other by providing a ModBus RTU serial on RS485 for supervision with external BMS.

* The CC2 centralised control can manage up to 36 LPG systems.

Accessories compatibility

LPG_D

Accessory	LPG350D	LPG500D	LPG700D	LPG850D	LPG1000D	LPG1200D	LPG1400D	LPG1600D
CC2 (1)	•	•	•	•	•	•	•	•
WRC50W	•	•	•	•	•	•	•	•

(1) Auto-restart function.
The use of the CC2 centralised control requires the installation of 1 MINIMODBUS20 for each indoor unit installed. Wired panel WRC50 standard supply.

Accessory	LPG350D	LPG500D	LPG700D	LPG850D	LPG1000D	LPG1200D	LPG1400D	LPG1600D
DCG10	•	•	•	•	•	•	•	•
ECD10	•	•	•	•	•	•	•	•
MINIMODBUS20 (1)	•	•	•	•	•	•	•	•

(1) The units can only be routed using the wired control panel. For more information about the procedure refer to the user manual.

LPG_C/CS

Accessory	LPG350CS	LPG500CS	LPG700C	LPG850C	LPG1000C	LPG1200C	LPG1400C	LPG1600C
CC2 (1)	•	•	•	•	•	•	•	•
WRC50	•	•	•	•	•	•	•	•
WRC50W	•	•	•		•	•		•

(1) Auto-restart function.
The use of the CC2 centralised control requires the installation of 1 MINIMODBUS20 for each indoor unit installed.

Accessory	LPG350CS	LPG500CS	LPG700C	LPG850C	LPG1000C	LPG1200C	LPG1400C	LPG1600C
DCG10	•	•	•	•		•	•	•
ECD10	•	•	•	•	•	•	•	•
MINIMODRUS20 (1)								

(1) The units can only be routed using the wired control panel. For more information about the procedure refer to the user manual.

Accessory	LPG350CS	LPG500CS	LPG700C	LPG850C	LPG1000C	LPG1200C	LPG1400C	LPG1600C
GLG40 (1)	·		•	•	•	•	•	•
GLG40S (1)	•	•						

(1) Mandatory accessory.

LPG_F

Accessory	LPG350F	LPG500F	LPG700F	LPG850F	LPG1000F	LPG1200F	LPG1400F	LPG1600F
CC2 (1)	•	•	•	•	•	•	•	•
WRC50	•	•	•	•	•	•	•	•
WRC50W	•							•

The use of the CC2 centralised control requires the installation of 1 MINIMODBUS20 for each indoor unit installed.

Accessory	LPG350F	LPG500F	LPG700F	LPG850F	LPG1000F	LPG1200F	LPG1400F	LPG1600F
DCG10	•	•	•	•	•	•	•	•
ECD10	•	•	•	•		•	•	•
MINIMODBUS20 (1)	•	•				•	•	•

⁽¹⁾ The units can only be routed using the wired control panel. For more information about the procedure refer to the user manual.

OUTDOOR UNIT PERFORMANCE DATA

		LPG350	LPG500	LPG700	LPG850	LPG1000	LPG1000T	LPG1200	LPG1200T	LPG1400	LPG1400T	LPG1600T
Outdoor unit												
Type of fan	Туре	Inverter axial										
Air flow rate												
Maximum	m³/h	1800	2200	3600	3600	4800	4800	5200	5200	5200	5200	5500
Sound power (1)												
Maximum	dB(A)	56,0	65,0	69,0	70,0	70,0	70,0	73,0	73,0	73,0	75,0	75,0
Sound pressure (2)												
Maximum	dB(A)	48,0	52,0	55,0	57,0	57,0	57,0	58,0	58,0	59,0	59,0	60,0
Compressor												
Туре	tuno	Inverter										
туре	type	rotary										
Refrigerant	type	R32										
Refrigerant charge	kg	0,57	0,85	1,50	1,50	2,10	2,10	2,25	2,25	2,80	2,80	3,50
Potential global heating	GWP	675kgCO₂eq										
Equivalent CO ₂	t	0,38	0,57	1,01	1,01	1,42	1,42	1,52	1,52	1,89	1,89	2,36
Refrigeration pipework												
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	12,7 (1/2")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")
Maximum refrigerant tube length	m	30	30	30	30	75	75	75	75	75	75	75
Maximum refrigerant line level difference	m	15,0	20,0	20,0	25,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0
Refrigerant to be added	g/m	16	16	20	20	20	20	20	20	35	35	35
Power supply												
Outdoor unit power supply		220-240V ~	380-415V ~	220-240V ~	380-415V ~	220-240V ~	380-415V ~	380-415V ~				
outdoor unit power suppry		50Hz	50Hz	50Hz	50Hz	50Hz	3N 50Hz	50Hz	3N 50Hz	50Hz	3N 50Hz	3N 50Hz

⁽¹⁾ Sound power calculated in free field, in accordance with UNI EN ISO 3744. (2) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

INDOOR UNIT PERFORMANCE DATA

LPG_D

Indoor unit Outdoor unit Indoor unit quantity Outdoor unit quantity Nominal cooling performances Cooling capacity (1) kW	LPG350D LPG350 1 1 3,50	LPG500D LPG500 1 1	LPG700D LPG700 1	LPG850D LPG850	LPG1000D LPG1000	LPG1000D LPG1000T	LPG1200D LPG1200	LPG1200D LPG1200T	LPG1400D LPG1400	LPG1400D LPG1400T	LPG1600D LPG1600T
Indoor unit quantity Outdoor unit quantity Nominal cooling performances Cooling capacity (1) kW	1 1 3,50	1	1				LPG1200	LPG1200T	LPG1400	LPG1400T	LPG1600T
Outdoor unit quantity Nominal cooling performances Cooling capacity (1) kW	3,50			1	4						
Nominal cooling performances Cooling capacity (1) kW	3,50	1	1		1	1	1	1	1	1	1
Cooling capacity (1) kW				1	1	1	1	1	1	1	1
		5,30	7,10	8,50	10,50	10,50	12,10	12,10	13,40	13,40	16,00
Cooling input power (1) kW	1,03	1,51	1,92	2,50	3,00	3,00	3,58	3,58	4,50	4,50	5,40
EER (2) W/W	3,40	3,51	3,70	3,40	3,50	3,50	3,38	3,38	2,98	2,98	2,96
Moisture removed I/h	1,0	1,7	2,4	2,8	3,3	3,3	3,7	3,7	3,9	3,9	4,6
Minimum cooling performances											
Cooling capacity kW	0,90	1,60	2,40	2,90	3,20	3,20	3,60	3,60	4,00	4,00	4,80
Cooling input power kW	0,20	0,30	0,50	0,75	0,90	0,90	1,10	1,10	1,35	1,35	1,50
Maximum cooling performances											
Cooling capacity kW	4,00	5,80	7,60	9,00	11,00	11,00	13,10	13,10	14,20	14,20	17,00
Cooling input power kW	1,30	1,80	2,60	3,30	4,00	4,00	5,30	5,30	5,60	5,60	6,80
Seasonal efficiency											
SEER W/W	6,50	6,30	6,60	6,40	6,40	6,40	6,10	6,10	6,10	6,10	6,10
Efficiency energy class (3)	A++	A++	A++	A++	A++	A++	-	-	-	-	-
Pdesignc kW	3,5	5,3	7,1	8,5	10,5	10,5	-	-	-	-	-
Annual power consumption kWh/annur	n 189	294	377	465	574	574	-	-	-	-	-
Nominal heating performances											
Heating capacity (4) kW	4,00	5,60	8,00	8,80	11,50	11,50	13,50	13,50	15,50	15,50	17,00
Heating input power (4) kW	1,00	1,42	2,00	2,25	2,80	2,80	3,70	3,70	4,50	4,50	4,70
COP (2) W/W	4,00	3,94	4,00	3,91	4,11	4,11	3,65	3,65	3,44	3,44	3,62
Minimum heating performances											
Heating capacity kW	0,90	1,60	2,20	2,50	3,00	3,00	3,60	3,60	3,90	3,90	4,50
Heating input power kW	0,20	0,30	0,50	0,75	0,90	0,90	1,10	1,10	1,35	1,35	1,50
Maximum heating performances											
Heating capacity kW	4,50	6,10	8,60	9,50	12,50	12,50	14,50	14,50	16,00	16,00	18,00
Heating input power kW	1,30	1,80	2,60	3,30	4,00	4,00	5,30	5,30	5,60	5,60	6,80
Seasonal efficiency (temperate climate)											
SCOP W/W	4,00	4,00	4,10	4,10	4,20	4,20	4,10	4,10	4,00	4,00	4,00
Efficiency energy class (3)	A+	A+	A+	A+	A+	A+	-		-	-	-
Pdesignh kW	3,00	3,90	4,70	6,00	7,00	7,00	-	-	-	-	-
Annual power consumption kWh/annu	n 1050	1365	1605	2049	2333	2333	-		-	-	-
Electric data											
Rated power input (5) kW	1,30	1,90	2,80	3,30	4,70	4,40	5,30	5,30	5,60	5,60	6,80
Rated current input (5)	6,0	9,5	14,0	15,0	21,0	7,0	23,0	9,0	25,0	11,0	12,0
Refrigeration pipework											
Diameter of liquid refrigerant connections mm (inch)	6.35 (1/4")	6.35 (1/4")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")
Diameter of refrigerant gas connections mm (inch)	9.52 (3/8")	12.7 (1/2")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")
Nominal length of refrigerant lines m	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	7,5	7,5	7,5
Power supply											
Power supply	220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz	380-415V 3N~ 50/60Hz	220-240V ~ 50Hz	380-415V 3N~ 50/60Hz	220-240V ~ 50Hz	380-415V 3N~ 50/60Hz	380-415V 3N~ 50/60Hz

IDCSEAD

(1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
(2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.
(3) Data in accordance with Delegated Regulation (EU) No. 626/2011.
(4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
(5) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40. LDCENOD

		LPG350D	LPG500D	LPG700D	LPG850D	LPG1000D	LPG1200D	LPG1400D	LPG1600D
Indoor unit									
T.m. offen	T	Inverter							
Type of fan	Туре	centrifugal							
Air flow rate									
Turbo	m³/h	600	900	1100	1400	1700	2000	2300	2600
Maximum	m³/h	550	800	1000	1300	1600	1800	2100	2300
Average	m³/h	500	700	900	1100	1400	1600	1800	2000
Minimum	m³/h	400	600	800	1000	1200	1400	1500	1700
High static pressure									
Nominal	Pa	25	25	25	37	50	50	50	50
Maximum	Pa	80	80	160	160	155	155	200	200
Sound pressure									
Turbo	dB(A)	35,0	36,0	37,0	43,0	39,0	43,0	43,0	46,0
Maximum	dB(A)	33,0	35,0	35,0	41,0	38,0	42,0	42,0	44,0
Average	dB(A)	32,0	33,0	33,0	39,0	37,0	41,0	40,0	42,0
Minimum	dB(A)	30,0	31,0	31,0	37,0	36,0	40,0	38,0	40,0
Indoor unit									
Condensate discharge diameter	mm	26,0	26,0	26,0	26,0	26,0	26,0	26,0	26,0

Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source (1,5m for type Duct and Cassette)

LPG_CS/C

Indoor unit		LPG350CS	LPG500CS	LPG700C	LPG850C	LPG1000C	LPG1000C	LPG1200C	LPG1200C	LPG1400C	LPG1400C	LPG1600C
Outdoor unit		LPG350	LPG500	LPG700	LPG850	LPG1000	LPG1000T	LPG1200	LPG1200T	LPG1400	LPG1400T	LPG1600T
Indoor unit quantity	-	1	1	1	1	1	1	1	1	1	1	1
Outdoor unit quantity		1	1	1	1	1	1	1	1	1	1	1
Nominal cooling performances			<u> </u>		•	•	· ·		· ·		· ·	
Cooling capacity (1)	kW	3,50	5,00	7,10	8,50	10,50	10,50	12,10	12,10	13,40	13,40	14,50
Cooling input power (1)	kW	0,92	1,47	2,03	2,50	3,10	3,10	3,90	3,90	4,60	4,60	5,30
EER (2)	W/W	3,80	3,40	3,50	3,40	3,40	3,40	3,10	3,10	2,91	2,91	2,74
Moisture removed	I/h	1,0	1,7	2,4	2,8	3,3	3,3	3,7	3,7	3,9	3,9	4,8
Minimum cooling performances	7,11	1,0	1,7	2,1	2,0	3,3	3,3	3,1	3,1	3,7	3,7	1,0
Cooling capacity	kW	0,90	1,60	2,40	2,90	3,20	3,20	3,60	3,60	4,00	4,00	4,80
Cooling input power	kW	0,20	0,30	0,50	0,75	0.90	0,90	1,10	1,10	1,35	1,35	1,50
Maximum cooling performances	KII .	0,20	0,50	0,50	0,13	0,70	0,70	1,10	1,10	1,55	1,55	1,50
Cooling capacity	kW	4,00	5,20	7,60	9,00	11,00	11,00	13,10	13,10	14,20	14,20	15,00
Cooling input power	kW	1,30	1,80	2,60	3,30	4,00	4,00	5,30	5,30	5,60	5,60	6,80
Seasonal efficiency	KIT	1,50	1,00	2,00	3,50	1,00	1,00	3,30	3,30	3,00	3,00	0,00
SEER	W/W	7,10	6.60	6,70	6,90	6,60	6,60	6,10	6,10	6,30	6,30	6,10
Efficiency energy class (3)		A++	A++	A++	A++	A++	A++	-	-	-	-	-
Pdesignc	kW	3,5	5,0	7,1	8,5	10,5	10,5			-	-	
Annual power consumption	kWh/annum	173	266	371	432	557	557			_		
Nominal heating performances	,	.,,,	200	3,1	.52	33,	337					
Heating capacity (4)	kW	4,00	5,60	7,80	8,80	11,50	11,50	13,50	13,50	15,50	15,50	17,00
Heating input power (4)	kW	1,00	1,60	2,00	2,25	2,95	2,95	3,97	3,97	4,70	4,70	5,70
COP (2)	W/W	4,00	3,50	3,90	3,90	3,90	3,90	3,40	3,40	3,30	3,30	2,98
Minimum heating performances		.,,,,,	-,							-,	-,	
Heating capacity	kW	0,90	1,60	2,20	2,50	3,00	3,00	3,60	3,60	3,90	3,90	4,50
Heating input power	kW	0,20	0,30	0,50	0,75	0,90	0,90	1,10	1,10	1,35	1,35	1,50
Maximum heating performances		-,	-,	-,	-,	-,,,	-,	.,	.,	1,00	.,	.,
Heating capacity	kW	4,50	6,10	8,60	9,50	12,50	12,50	14,50	14,50	16,00	16,00	17,50
Heating input power	kW	1,30	1,80	2,60	3,30	4,00	4,00	5,30	5,30	5,60	5,60	6,80
Seasonal efficiency (temperate climate)		.,	.,,	_,-,-	-,	.,	.,,,,,	-,	-,	-,	-,	-,
SCOP	W/W	4,20	4,00	4,30	4,30	4,40	4,40	4,10	4,10	4,00	4,00	4,00
Efficiency energy class (3)		A+	A+	A+	A+	A+	A+	-	-	-	-	-
Pdesignh	kW	3,10	3,90	5,00	6,00	7,00	7,00	-	-	-	-	-
Annual power consumption	kWh/annum	1034	1365	1628	1954	2227	2227	-	-	-	-	-
Electric data												
Rated power input (5)	kW	1,30	1,90	2,80	3,30	4,70	4,40	5,30	5,30	5,60	5,60	6,80
Rated current input (5)	A	6,0	9,5	14,0	15,0	21,0	7,0	23,0	9,0	25,0	11,0	12,0
Refrigeration pipework												
Diameter of liquid refrigerant connections	mm (inch)	6.35 (1/4")	6.35 (1/4")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")
Diameter of refrigerant gas connections	mm (inch)	9.52 (3/8")	12.7 (1/2")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")
Nominal length of refrigerant lines	m	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	7,5	7,5	7,5
Power supply											,	
,		220-240V ~	380-415V	220-240V ~	380-415V	220-240V ~	380-415V	380-415V				
Power supply		50Hz	50Hz	50Hz	50Hz	50Hz	3N∼ 50Hz	50Hz	3N∼ 50Hz	50Hz	3N∼ 50Hz	3N∼ 50Hz
		SUHZ	DUHZ	DUHZ	DUHZ	DUHZ	ZHUC ~VIC	DUHZ	ZHUC ~VIC	SUHZ	ZHUC ~VIC	3N~ 5U

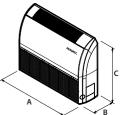
- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.
 (3) Data in accordance with Delegated Regulation (EU) No. 626/2011.
 (4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (5) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

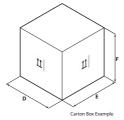
		LPG350CS	LPG500CS	LPG700C	LPG850C	LPG1000C	LPG1200C	LPG1400C	LPG1600C
Indoor unit	'								
Type of fan	Tuno	Inverter							
туре от тап	Туре	centrifugal							
Air flow rate									
Turbo	m³/h	600	720	1100	1400	1500	1700	2000	2300
Maximum	m³/h	550	650	1000	1300	1400	1500	1800	2100
Average	m³/h	500	600	900	1100	1200	1300	1600	1900
Minimum	m³/h	400	500	800	1000	1000	1100	1400	1600
Sound pressure									
Turbo	dB(A)	36,0	43,0	39,0	47,0	43,0	48,0	50,0	52,0
Maximum	dB(A)	35,0	41,0	38,0	46,0	41,0	46,0	48,0	50,0
Average	dB(A)	33,0	39,0	36,0	42,0	39,0	43,0	45,0	48,0
Minimum	dB(A)	29,0	35,0	34,0	38,0	38,0	39,0	41,0	44,0
Indoor unit									
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0

Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source (1,5m for type Duct and Cassette)

LPG_F

<u> </u>												
Indoor unit		LPG350F	LPG500F	LPG700F	LPG850F	LPG1000F	LPG1000F	LPG1200F	LPG1200F	LPG1400F	LPG1400F	LPG1600F
Outdoor unit		LPG350	LPG500	LPG700	LPG850	LPG1000	LPG1000T	LPG1200	LPG1200T	LPG1400	LPG1400T	LPG1600T
Indoor unit quantity		1	1	1	1	1	1	1	1	1	1	1
Outdoor unit quantity		1	1	1	1	1	1	1	1	1	1	1
Nominal cooling performances												
Cooling capacity (1)	kW	3,50	5,30	7,10	8,50	10,00	10,00	12,10	12,10	13,40	13,40	16,00
Cooling input power (1)	kW	0,92	1,56	2,03	2,50	2,94	2,94	3,67	3,67	4,30	4,30	5,30
EER (2)	W/W	3,80	3,40	3,50	3,40	3,40	3,40	3,30	3,30	3,12	3,12	3,02
Moisture removed	I/h	1,1	1,7	2,4	2,8	3,3	3,3	3,7	3,7	3,9	3,9	4,7
Minimum cooling performances												
Cooling capacity	kW	0,90	1,60	2,40	2,90	3,20	3,20	3,60	3,60	4,00	4,00	4,80
Cooling input power	kW	0,20	0,30	0,50	0,75	0,90	0,90	1,10	1,10	1,35	1,35	1,50
Maximum cooling performances												
Cooling capacity	kW	4,00	5,50	7,60	9,00	10,50	10,50	13,10	13,10	14,20	14,20	17,00
Cooling input power	kW	1,30	1,80	2,60	3,30	4,00	4,00	5,30	5,30	5,60	5,60	6,80
Seasonal efficiency												
SEER	W/W	7,20	6,50	7,20	6,80	6,30	6,30	6,30	6,30	6,30	6,30	6,10
Efficiency energy class (3)		A++	A++	A++	A++	A++	A++	-	-	-	-	-
Pdesignc	kW	3,5	5,3	7,1	8,5	10,0	10,0	-	-	-	-	-
Annual power consumption	kWh/annum	170	285	345	438	556	556	-	-	-	-	-
Nominal heating performances												
Heating capacity (4)	kW	4,00	5,60	7,70	8,80	11,50	11,50	13,50	13,50	15,50	15,50	17,00
Heating input power (4)	kW	0,93	1,44	1,95	2,25	2,95	2,95	3,75	3,75	4,20	4,20	4,80
COP (2)	W/W	4,30	3,90	3,95	3,90	3,90	3,90	3,60	3,60	3,69	3,69	3,54
Minimum heating performances												
Heating capacity	kW	0,90	1,60	2,20	2,50	3,00	3,00	3,60	3,60	3,90	3,90	4,50
Heating input power	kW	0,20	0,30	0,50	0,75	0,90	0,90	1,10	1,10	1,35	1,35	1,50
Maximum heating performances												
Heating capacity	kW	4,50	6,10	8,40	9,50	12,00	12,00	14,50	14,50	16,00	16,00	18,00
Heating input power	kW	1,30	1,80	2,60	3,30	4,00	4,00	5,30	5,30	5,60	5,60	6,80
Seasonal efficiency (temperate climate)		,	,		,	,	,	,			,	
SCOP	W/W	4,10	4,20	4,30	4,50	4,20	4,20	4,00	4,00	4,00	4,00	4,00
Efficiency energy class (3)		A+	A+	A+	A+	A+	A+	-	-	-	-	-
Pdesignh	kW	3,10	3,90	4,70	6,00	7,00	7,00	-	-	-	-	-
Annual power consumption	kWh/annum	1059	1300	1530	1867	2333	2333	-	-	-	-	-
Electric data								-				
Rated power input (5)	kW	1,30	1,90	2,80	3,30	4,70	4,40	5,30	5,30	5,60	5,60	6,80
Rated current input (5)	A	6,0	9,5	14,0	15,0	21,0	7,0	23,0	9,0	25,0	11,0	12,0
Refrigeration pipework		.,,	.,.	,		, ,	,				, .	,
Diameter of liquid refrigerant connections	mm (inch)	6.35 (1/4")	6.35 (1/4")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")
Diameter of refrigerant gas connections	mm (inch)	9.52 (3/8")	12.7 (1/2")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")
Nominal length of refrigerant lines	m	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	7,5	7,5	7,5
Power supply		2,0	2,0	210	2,0	2/0	5,10	210	2/0	. 13	. 12	. 13
		220-240V ~	380-415V	220-240V ~	380-415V	220-240V ~	380-415V	380-415V				
Power supply		50Hz	50Hz	50Hz	50Hz	50Hz	3N~ 50Hz	50Hz	3N~ 50Hz	50Hz	3N~ 50Hz	3N~ 50Hz
		JUIL	JUIIZ	JUIL	JUIL	JUIL	2UAC 20UZ	JULIZ	2111 20117	JUIL	7UACNIC	JIM. JOHZ


(1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
(2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.
(3) Data in accordance with Delegated Regulation (EU) No. 626/2011.
(4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
(5) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.


		LPG350F	LPG500F	LPG700F	LPG850F	LPG1000F	LPG1200F	LPG1400F	LPG1600F
Indoor unit	'								
Type of fan	Туре				Inverter	centrifugal			
Air flow rate									
Turbo	m³/h	650	900	1250	1400	1600	1900	2300	2400
Maximum	m³/h	600	800	1100	1300	1500	1800	2100	2200
Average	m³/h	500	700	1000	1200	1400	1600	1800	1900
Minimum	m³/h	400	600	900	1000	1200	1400	1500	1600
Sound pressure									
Turbo	dB(A)	35,0	41,0	41,0	46,0	48,0	45,0	51,0	53,0
Maximum	dB(A)	34,0	40,0	39,0	45,0	46,0	43,0	48,0	51,0
Average	dB(A)	31,0	38,0	37,0	43,0	45,0	40,0	45,0	48,0
Minimum	dB(A)	28,0	36,0	35,0	39,0	43,0	38,0	43,0	44,0
Indoor unit									
Condensate discharge diameter	mm	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0

Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source (1,5m for type Duct and Cassette)

INDOOR UNIT WEIGHTS AND DIMENSIONS

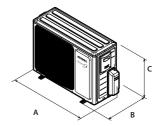
LPG_D

FI 4_P									
		LPG350D	LPG500D	LPG700D	LPG850D	LPG1000D	LPG1200D	LPG1400D	LPG1600D
Indoor unit									
A	mm	710	1000	900	900	1340	1340	1400	1400
В	mm	450	450	655	655	655	655	700	700
C	mm	200	200	260	260	260	260	300	300
Net weight	kg	18,0	24,0	29,5	29,5	43,0	43,0	52,0	55,0
Dimensions and weights for transport									
D	mm	1008	1308	1115	1115	1568	1568	1601	1601
E	mm	568	568	772	772	770	770	813	813
F	mm	275	275	320	320	323	323	365	365
Weight for transport	kg	22,0	29,0	33,5	33,5	49,0	49,0	58,0	62,0

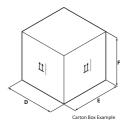
LPG_C/CS

		LPG350CS	LPG500CS	LPG700C	LPG850C	LPG1000C	LPG1200C	LPG1400C	LPG1600C
Indoor unit									
A	mm	570	570	840	840	840	840	840	840
В	mm	570	570	840	840	840	840	840	840
C	mm	260	260	200	200	240	240	290	290
Net weight	kg	17,0	17,0	21,0	21,0	23,0	23,0	25,0	26,0
Dimensions and weights for transport									
D	mm	698	698	943	943	933	933	933	933
E	mm	653	653	923	923	903	903	903	903
F	mm	295	295	245	245	272	272	335	335
Weight for transport	kg	21,0	21,0	27,0	27,0	29,0	29,0	32,0	33,0

LPG_F


		LPG350F	LPG500F	LPG700F	LPG850F	LPG1000F	LPG1200F	LPG1400F	LPG1600F
Indoor unit									
A	mm	870	870	1200	1200	1200	1570	1570	1570
В	mm	235	235	235	235	235	235	235	235
C	mm	665	665	665	665	665	665	665	665
Net weight	kg	24,0	25,0	31,0	32,0	32,0	40,0	42,0	42,0
Dimensions and weights for transport									
D	mm	973	973	1303	1303	1303	1669	1669	1669
E	mm	770	770	770	770	770	770	770	770
F	mm	300	300	300	300	300	300	300	300
Weight for transport	kg	28,0	29,0	36,0	37,0	37,0	47,0	49,0	49,0

Grid dimensions and weights GLG40 - GLG40S


		GLG40	GLG40S
Indoor unit			
A	mm	950	620
В	mm	950	620
(mm	52	48
D	mm	1033	701
E	mm	1038	701
F	mm	112	125
Net weight	kg	6,0	3,0
Weight for transport	kg	10,0	5,0

Mandatory accessory to be provided when ordering.

OUTDOOR UNIT WEIGHTS AND DIMENSIONS

LPG350 - LCGP500 - LPG700 - LPG850 LPG1000 - LPG1000T - LPG1200 LPG1200T LPG1400 - LPG1400T - LP-G1600T

		LPG350	LPG500	LPG700	LPG850	LPG1000	LPG1000T	LPG1200	LPG1200T	LPG1400	LPG1400T	LPG1600T
Outdoor unit		21 0330	21 4500	21 07 00		21 01000	21 010001	21 01200	11 012001	21 41 100	21 01 1001	21 010001
A	mm	732	802	958	958	1020	1020	1020	1020	1020	1020	1070
В	mm	330	350	402	402	427	427	427	427	427	427	427
C	mm	553	555	660	660	820	820	820	820	820	820	960
Net weight	kg	24,5	30,5	41,5	46,0	65,0	75,0	66,0	76,0	73,0	81,0	94,0
Dimensions and weights for transport												
D	mm	794	872	1032	1032	1095	1095	1095	1095	1095	1095	1150
E	mm	376	398	456	456	500	500	500	500	500	500	475
F	mm	605	609	730	730	955	955	955	955	955	955	1095
Weight for transport	kg	27,0	33,0	45,0	50,0	72,0	88,0	73,0	89,0	86,0	94,0	103,0

Monosplit high head duct

Cooling capacity 22,4 ÷ 28,0 kW Heating capacity 24,0 ÷ 30,0 kW

- Suitable for long-distance channels.
- Effective static pressure that can reach 150 Pa.
- Special coil with fin golden coating.

DESCRIPTION

The monosplit air conditioners of the MVAS range are combined with MVA_DH monosplit (high head duct) indoor units for duct type horizontal installation.

The outdoor unit features a compressor with inverter technology, an electronic valve and electric heater to ensure proper winter operation and prevent ice formation on the coil.

FEATURES

Indoor unit

High head duct indoor unit, designed for indoor duct type horizontal installation.

- Every indoor unit comes with a remote control and a remote control holder.
- WRC wired panel standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- 5-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- **Turbo** function to attain the desired temperature as quickly as possible.
- -- Sleep night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.

Outdoor unit

Monosplit air conditioner.

Reversible air/air heat pump with DC inverter technology.

- Fitted with a electrical anti-freeze heater (in unit base) to avoid the formation of ice and encourage the drainage of condensate during heating operation.
- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.

X-fan function

This self-cleaning system foresees that the fan of the indoor unit continues its operation for a few minutes after the unit is turned off, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.

www.aermec.com

Special golden fin coil

Unlike normal batteries, this special golden epoxy coating silicon free is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

General features

- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Air filter easily removed and cleaned.
- Easy installation and maintenance.

ACCESSORIES

MVAGW: This accessory allows you to manage up to 16 MV systems (with a maximum of 255 total indoor units), making available a serial in ModBus RTU protocol on RS485, ModBus TCP or BACnet / IP for supervision with an external BMS.

USBDC / **USBDC1:** The kit includes a converter (from CanBus to ModBus) and the VRF debugger software. IT is designed to meet the requirements of after sales services and qualified technicians who need to carry out control and debugging procedures on the MV_ranges.

WRC: Wired panel with liquid crystal display and soft-touch buttons.

WRC1: Simplified wired panel with liquid crystal display and soft-touch buttons with built-in external contact. This panel is particularly suitable for hotel applications.

For more information about the accessories and their functions (such as the auto-restart function), refer to the specific documentation of the single accessory.

PERFORMANCE SPECIFICATIONS

Indoor unit		MVA2240DH	MVA2800DH
Outdoor unit		MVAS2242T	MVAS2803T
Indoor unit quantity		1	1
Outdoor unit quantity		1	1
Nominal cooling performances			
Cooling capacity (1)	kW	22,40	28,00
Cooling input power (1)	kW	6,12	13,02
Cooling input current	A	10,9	-
EER (2)	W/W	3,66	2,15
Nominal heating performances			
Heating capacity (3)	kW	24,00	28,00
Heating input power (3)	kW	4,90	8,00
Heating input current	A	8,8	-
COP (2)	W/W	4,90	3,50

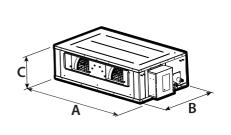
- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m. (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.
- (3) Heating (EN 14511 and EN 14825) ambient air température 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
- **INDOOR UNIT**

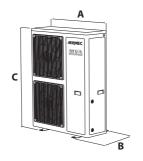
		MVA2240DH	MVA2800DH
Indoor unit			
Type of fan	Туре	Inverter centrifugal	Inverter centrifugal
Air flow rate			
Maximum	m³/h	4000	4400
High static pressure			
Nominal	Pa	150	150
Sound power (1)			
Maximum	dB(A)	64,0	65,0
Average	dB(A)	62,0	62,0
Minimum	dB(A)	59,0	60,0
Sound pressure (2)			
Maximum	dB(A)	54,0	55,0
Average	dB(A)	52,0	52,0
Minimum	dB(A)	49,0	50,0
Indoor unit			
Condensate discharge diameter	mm	30,0	30,0

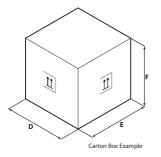
- (1) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
- (2) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

OUTDOOR UNIT

		MVAS 2242T	MVAS 2803T
Outdoor unit			
Type of fan	Туре	Inverter axial	Inverter axial
Sound power (1)			
Maximum	dB(A)	74,0	-
Sound data calculated in cooling mode			
Maximum sound pressure level	dB(A)	58,0	62,0
Maximum sound power level	dB(A)	78,0	80,0
Sound data calculated in heating mode			
Maximum sound pressure level	dB(A)	58,0	64,0
Maximum sound power level	dB(A)	79,0	82,0
Compressor			
Туре	type	Rotary	Rotary
Refrigerant	type	R410A	R410A
Potential global heating	GWP	2088kgCO₂eq	2088kgCO₂eq


⁽¹⁾ Sound power calculated in free field, in accordance with UNI EN ISO 3744.


GENERAL DATA


Indoor unit		MVA2240DH	MVA2800DH
Outdoor unit		MVAS2242T	MVAS2803T
Indoor unit quantity		1	1
Outdoor unit quantity		1	1
Electric data			
Rated power input (1)	kW	9,60	-
Refrigeration pipework			
Type refrigerant connections	Туре	To be soldered	To be soldered
Diameter of liquid refrigerant connections	mm (inch)	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	19,05 (3/4")	22,2 (7/8")
Power supply			
Power supply		380-415V ~ 3N 50/60Hz	380-415V ~ 3N 50/60Hz

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

DIMENSIONS AND WEIGHTS

		MVA2240DH	MVA2800DH
Indoor unit			
A	mm	1483	1686
В	mm	791	870
C	mm	385	450
D	mm	1758	1788
E	mm	883	988
F	mm	470	580
Net weight	kg	82,0	105,0
Weight for transport	kg	104,0	140,0

		MVAS2242T	MVAS2803T
Outdoor unit			
A	mm	940	940
В	mm	320	460
C	mm	1430	1615
D	mm	1038	1038
E	mm	438	578
F	mm	1580	1765
Net weight	kg	133,0	163,0
Weight for transport	kg	144,0	175,0

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

MPG

Multisplit

Cooling capacity 4,1 ÷ 12,1 kW Heating capacity 4,4 ÷ 13,0 kW

- New R32 ecological refrigerant gas.
- Wi-fi control using the relative accessory.
- Modern design to blend with all furnishing styles.
- Wide choice of indoor units available.
- Special coil with fin blue coating.

MPG_D / MPG_DH

MPG_Y_UN50_07

DESCRIPTION

The multisplit air conditioners of the MPG range are combined with:

- **SPG_W Wall**, for wall installation.
- **CKG_FS Console**, for wall installation.
- MLG_F Floor ceiling, for wall and/or ceiling installation.
- MPG_CS and MPG_C Cassette, for false ceiling installation.
- MPG_D and MPG_DH Duct, for duct type horizontal installation.

Outdoor units equipped with base electric resistance to avoid the possible formation of ice and facilitate the disposal of condensate during heating operation, compressor and fan with DC inverter technology and electronic expansion valve.

TYPE OF INDOOR UNIT

SPG_W indoor unit

Wall indoor unit designed to be installed on indoor walls.

Universal indoor units: some indoor units can be combined with both multisplit outdoor units of the series MPG and monosplit outdoor units of the series SPG:

	Indoor units SPG_W							
	SPG200W	SPG250W	SPG350W	SPG500W	SPG700W			
Monosplit outdoor units SPG		•	•	•	•			
Multisplit utdoor units MPG	•		•					

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
 Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.

- **Auto** function for a continuous speed variation.
- **Turbo** function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.

Smart APP Ewpe

Using the specific **accessory**, the system offers wi-fi control thanks to the app for iOS and Android devices (available free on Apple Store and Google Play), the system can be directly controlled from a distance on your smartphone or tablet. Remote control is possible via Cloud, using a wireless router connected to the Internet.

CKG_FS indoor unit

Console indoor unit designed to be installed on indoor floors.

Universal indoor units: all indoor units can be combined with both multi-split outdoor units of the series MPG and monosplit outdoor units of the series CKG.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Indoor unit front panel with LED display and indicator lights.
- 5-speed fan, to meet every possible need.
- Auto function for a continuous speed variation.
- **Turbo** function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Air Purifiers (Cold Plasma) is able to reduce pollutants.
- Standard Wi-Fi module.

Single air delivery

Dual air delivery (default)

Intake

Smart APP Ewpe

The system is equipped standard with the Wi-Fi module; using this module and the app for iOS and Android devices (available free on Apple Store and Google Play, the system can be directly controlled from a distance on your smartphone or tablet. Remote control is possible via Cloud, using a wireless router connected to the Internet.

Air Purifiers (Cold Plasma)

Capable of reducing pollutants breaking down their molecules using electric discharges, causing the splitting of the water molecules in the air into positive and negative ions. These ions neutralise the molecules of the gaseous pollutants obtaining products that are normally present in clean air. The device can eliminate 90% of bacteria. The result is clean, ionised air that has no bad odours.

MLG Findoor unit

Indoor unit **floor ceiling** designed to be installed on the wall or ceiling indoors.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- Auto function for a continuous speed variation.
- **Turbo** function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.

MPG_CS indoor unit

Indoor unit **cassette** of dimensions (570x570 mm) designed to be installed on suspended ceiling indoors.

- Every indoor unit comes with a remote control and a remote control holder
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 7-speed fan, to meet every possible need.
- Auto function for a continuous speed variation.
- **Turbo** function to attain the desired temperature as quickly as possible.
- Sleep night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

MPG_C indoor unit

Indoor unit **cassette** of dimensions (840x840 mm) designed to be installed on suspended ceiling indoors.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 7-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- **Turbo** function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

MPG D indoor unit

Duct indoor unit designed for indoor duct type installation.

- Every indoor unit comes with a remote control and a remote control holder.
- WRCB wired panel standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- 7-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

MPG_DH indoor unit

Duct indoor unit designed for indoor duct type installation.

- Every indoor unit comes with a remote control and a remote control holder.
- **WRCB** wired panel standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- 7-speed fan, to meet every possible need.
- Auto function for a continuous speed variation.
- **Turbo** function to attain the desired temperature as quickly as possible.
- Sleep night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

General features

- New R32 ecological refrigerant gas with low GWP.
- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Air filter easily removed and cleaned.
- Systems with multi-line refrigerant connections, where every indoor unit is connected directly to the outdoor unit via dedicated refrigerant lines.
- Easy installation and maintenance.

X-fan function

This self-cleaning system foresees that the fan of the indoor unit continues its operation for a few minutes after the unit is turned off, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.

Smart APP Ewpe

Using the specific **accessory**, the system offers wi-fi control thanks to the app for iOS and Android devices (available free on Apple Store and Google Play). The system can be controlled from a distance directly on your smartphone or tablet, or via Cloud with the aid of a wireless router connected to the Internet.

Special blue fin coil

unlike normal batteries, this special blue epoxy coating is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

Supplied components for indoor units

Models	SPG_W	CKG_FS	MLG_F	MPG_CS	MPG_C	MPG_D	MPG_DH
Remote control	•	•	•	•	•	•	•
Remote control holder	•	•	•	•	•	•	•
WRCB wired panel WRCB with integrated Wi-Fi module						•	•
Air Purifiers (Cold Plasma)		•					
Wi-Fi module		•					
Condensate discharge pump					•	•	

TYPE OF OUTDOOR UNIT

MPG outdoor unit

 $\label{eq:multisplit} \mbox{Multisplit reversible air/air heat pump with DC inverter technology.}$

Types:

- Dualsplit: outdoor units MPG420 and MPG520 can be combined with 1 or 2 indoor units.
- Trialsplit: outdoor units MPG630 and MPG730 can be combined with 2 or 3 indoor units.
- **Quadrisplit**: outdoor unit MPG840 and MPG1040 can be combined with 2, 3 or 4 indoor units.
- Pentasplit: outdoor unit MPG1250 can be combined with 2, 3, 4 or indoor units.

Main features:

- Fitted with a electrical anti-freeze heater (in unit base) to avoid the formation of ice and encourage the drainage of condensate during heating operation.
- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.

INDOOR UNIT VERSIONS AVAILABLE

Nominal cooling capacity in kBTU/h				Indoor units			
7	SPG200W						
9	SPG250W	CKG260FS	MLG250F			MPG250D	MPG250DH
12	SPG350W	CKG360FS	MLG350F	MPG350CS		MPG350D	MPG350DH
18	SPG500W	CKG500FS	MLG500F	MPG500CS		MPG500D	MPG500DH
24	SPG700W		MLG700F		MPG700C	MPG700D	MPG700DH

ALLOWED COMBINATIONS OF INDOOR UNITS

For trialsplit, quadrisplit, pentasplit it is mandatory to install at least 2 indoor units for correct functioning of the system.

For further information, please refer to the technical documentation on the website www.aermec.com $\,$

	MPG420 (14kBTU/h)		MPG520 (18kBTU/h)		G630 BTU/h)
		N° unit	à interne		
1	2	1	2	2	3
7	7+7	9	7+7	7+7	7+7+7
9	7+9	12	7+9	7+9	7+7+9
12	7+12		7+12	7+12	7+7+12
	9+9		9+9	7+18	7+9+9
	9+12		9+12	9+9	7+9+12
			12+12	9+12	7+12+12
				9+18	9+9+9
				12+12	9+9+12
				12+18	

	5730 PTU/h)		MPG840 (28kBTU/h)	
2	3	2	3	4
7+7	7+7+7	7+7	7+7+7	7+7+7+7
7+9	7+7+9	7+9	7+7+9	7+7+7+9
7+12	7+7+12	7+12	7+7+12	7+7+7+12
7+18	7+7+18	7+18	7+7+18	7+7+7+18
9+9	7+9+9	9+9	7+9+9	7+7+9+9
9+12	7+9+12	9+12	7+9+12	7+7+9+12
9+18	7+9+18	9+18	7+9+18	7+7+9+18
12+12	7+12+12	12+12	7+12+12	7+7+12+12
12+18	9+9+9	12+18	7+12+18	7+9+9+9
18+18	9+9+12	18+18	9+9+9	7+9+9+12
	9+9+18		9+9+12	7+9+12+12
	9+12+12		9+9+18	9+9+9+9
	12+12+12		9+12+12	9+9+9+12
			9+12+18	9+9+12+12
			12+12+12	
			12+12+18	

Any configuration outside of those listed in the above tables will cause errors on the external drives, resulting in system failure and/or damage.

	MPG1040 (36kBTU/h)					1250 BTU/h)		
2	3	4	2	3		4		5
7+12	7+7+7	7+7+7+7	7+18	7+7+7	7+7+7+7	7+12+12+12	7+7+7+7	7+9+9+9+9
7+18	7+7+9	7+7+7+9	7+21	7+7+9	7+7+7+9	7+12+12+21	7+7+7+9	7+9+9+9+12
7+21	7+7+12	7+7+7+12	7+24	7+7+12	7+7+7+12	7+12+12+24	7+7+7+7+12	7+9+9+9+18
7+24	7+7+18	7+7+7+18	9+12	7+7+18	7+7+7+18	7+12+18+18	7+7+7+7+18	7+9+9+9+21
9+9	7+7+21	7+7+7+21	9+18	7+7+21	7+7+7+21	7+12+18+21	7+7+7+7+21	7+9+9+9+24
9+12	7+7+24	7+7+7+24	9+21	7+7+24	7+7+7+24	7+12+18+24	7+7+7+74	7+9+9+12+12
9+18	7+9+9	7+7+9+9	9+24	7+9+9	7+7+9+9	7+12+21+21	7+7+7+9+9	7+9+9+12+18
9+21	7+9+12	7+7+9+12	12+12	7+9+12	7+7+9+12	7+18+18+18	7+7+7+9+12	7+9+9+12+21
9+24	7+9+18	7+7+9+18	12+18	7+9+18	7+7+9+18	9+9+9+9	7+7+7+9+18	7+9+9+12+24
12+12	7+9+21	7+7+9+21	12+21	7+9+21	7+7+9+21	9+9+9+12	7+7+7+9+21	7+9+9+18+18
12+18	7+9+24	7+7+9+24	12+24	7+9+24	7+7+9+24	9+9+9+18	7+7+7+9+24	7+9+12+12+12
12+21	7+12+12	7+7+12+12	18+18	7+12+12	7+7+12+12	9+9+9+21	7+7+7+12+12	7+9+12+12+18
12+24	7+12+18	7+7+12+18	18+21	7+12+18	7+7+12+18	9+9+9+24	7+7+7+12+18	7+9+12+12+21
18+18	7+12+21	7+7+12+21	18+24	7+12+21	7+7+12+21	9+9+12+12	7+7+7+12+21	7+12+12+12+12
18+21	7+12+24	7+7+12+24	21+21	7+12+24	7+7+12+24	9+9+12+18	7+7+7+12+24	7+12+12+12+18
18+24	7+18+18	7+7+18+18	21+24	7+18+18	7+7+18+18	9+9+12+21	7+7+7+18+18	9+9+ 9+9+9
21+21	7+18+21	7+7+18 +21	24+24	7+18+21	7+7+18 +21	9+9+12+24	7+7+7+18+21	9+9+ 9+9+12
21+21	7+18+24	7+9+9+9		7+18+24	7+7+18 +24	9+9+18+18	7+7+7+18+24	9+9+ 9+9+18
24+24	7+21+21	7+9+9+12		7+21+21	7+7+21 +21	9+9+18+21	7+7+7+21+21	9+9+ 9+9+21
	7+21+24	7+9+9+18		7+21+24	7+7+21 +24	9+9+18+24	7+7+9+9+9	9+9+ 9+9+24
	9+9+9	7+9+9+21		7+24+24	7+7+24 +24	9+9+21+21	7+7+9+9+12	9+9+9+12+12
	9+9+12	7+9+9+24		9+9+9	7+9+9+9	9+9+21+24	7+7+9+9+18	9+9+9+12+18
	9+9+18	7+9+12+12		9+9+12	7+9+9+12	9+12+12+12	7+7+9+9+21	9+9+9+12+21
	9+9+21	7+9+12+18		9+9+18	7+9+9+18	9+12+12+18	7+7+9+9+24	9+9+9+12+24
	9+9+24	7+9+12+21		9+9+21	7+9+9+21	9+12+12+21	7+7+9+12+12	9+9+9+18+18
	9+12+12	7+9+12+24		9+9+24	7+9+9+24	9+12+12+24	7+7+9+12+18	9+9+12+12+12
	9+12+18	7+9+18+18		9+12+12	7+9+12+12	9+12+18+18	7+7+9+12+21	9+9+12+12+18
	9+12+21	7+12+12+12		9+12+18	7+9+12+18	9+12+18+21	7+7+9+12+24	9+9+12+12+21
	9+12+24	7+12+12+18		9+12+21	7+9+12+21	9+12+18+24	7+7+9+18+18	9+12+12+12
	9+18+18	7+12+12+21		9+12+24	7+9+12+24	9+12+21+21	7+7+9+18+21	9+12+12+12+18
	9+18+21	9+9+9+9		9+18+18	7+9+18+18	9+18+18+18		12+12+12+12
	9+18+24	9+9+9+12		9+18+21	7+9+18+21	12+12+12+12	7+7+12+12+18	
	9+21+21	9+9+9+18		9+18+24	7+9+18+24	12+12+12+18	7+7+12+12+21	
	9+21+24	9+9+9+21		9+21+21	7+9+21+21	12+12+12+21 12+12+12+24	7+7+12+12+24	
	12+12+12	9+9+9+24		9+21+24	7+9+21+24	12+12+12+24	7+7+12+18+18	
	12+12+18	9+9+12+12		9+24+24				
	12+12+21 12+12+24	9+9+12+18 9+9+12+21		12+12+12 12+12+18		12+12+18+21		
	12+12+24	9+9+12+21		12+12+18				
	12+18+21	9+9+12+24 9+9+18+18		12+12+21				
	12+18+24	9+9+10+10		12+12+24				
	12+10+24	9+12+12+18		12+10+10				
	18+18+18	9+12+12+21		12+18+24				
	10110110	12+12+12+12		12+21+21				
		12+12+12+18		12+21+24				
				12+24+24				
				18+18+18				
				18+18+21				
				18+18+24				
				18+21+21				
				18+21+24				
				21+21+21				
-								

Any configuration outside of those listed in the above tables will cause errors on the external drives, resulting in system failure and/or damage.

ACCESSORIES

CC2: Centralised control with 7" touchscreen display for managing several indoor units within a number of multisplit systems. The centralised control has an integrated external contact. For more information, refer to the specific documentation. *

WRCA: Wired panel with liquid crystal display and soft-touch buttons. This accessory can be used to control not only the traditional system functions but also a weekly timer with a maximum of 8 daily time bands.

WRCB: Wired panel with liquid crystal display and soft-touch buttons, equipped with an integrated wi-fi module for remote control of the unit (via the dedicated EWPE Smart App).

* The CC2 centralised control can manage up to 36 MPG systems.

In order to use accessory CC2, for each indoor unit, the WRCA / WRCB wired panel (accessory) must be installed, with the IC-2P adapter accessory.

For more information about the accessories and their functions (such as the auto-restart function), refer to the specific documentation of the single accessory.

DCK: Remote Contact Kit. This accessory allows you to switch the system on and off using an external contact.

WIFIKITO1: Plug & Play module to be installed in the indoor unit for Wi-Fi control, equipped with Bluetooth® connection to ensure a better connection with smart devices. (Cable length 250 mm)

The accessories WRCA and WIFIKIT01 are compatible with one another and can therefore be connected to the same indoor unit simultaneously.

GLG405: Air supply and flow grid with dimensions (620x620 mm) for cassette internal unit.

GLG40: Air supply and flow grid with dimensions (950x950 mm) for cassette internal unit.

DTG1: Diagnostic tool for indoor and outdoor units of the entire series (tool reserved for service centres or installers).

ACCESSORIES COMPATIBILITY

SPG_W

Accessory	SPG500W SPG700W				V		
CC2 (1)		•		•			
WRCA (1)	,	•		•			
(1) Auto-restart function.							
Accessory	SP	PG500W		SPG700V	V		
IC-2P		•	,	•			
Accessory	SPG200W	SPG250W	SPG350W	SPG500W	SPG700W		
DCK		,		•	•		
WIFIKIT01	•	•	•	•	•		
CKG_FS							
Accessory	CKG260FS		CKG360FS		CKG500FS		
CC2 (1)	•		•		•		
WRCA (1)	•		•		•		
(1) Auto-restart function.							
Accessory	CKG260FS		CKG360FS		CKG500FS		
IC-2P	•		•		•		
MLG_F							
Accessory	MLG250F	MLG350F	'	MLG500F	MLG700F		
CC2 (1)	•	•		•	•		
WRCA (1)	•	•		•	•		
WRCB (1)	•	•		•	•		
(1) Auto-restart function.							
Accessory	MLG250F	MLG350F	,	MLG500F	MLG700F		
IC-2P	•	•	,	•	•		
Accessory	MLG250F	MLG350F		MLG500F	MLG700F		
DCK	•	•		•	•		
MPG_CS							
Accessory	MF	PG350CS		MPG5000	TS		
CC2 (1)		•		•			

⁽¹⁾ Auto-restart function.

WRCA (1) WRCB (1)

Accessory	MPG.	350CS	MI	PG500CS
IC-2P		•		•
Accessory	MPG.	350CS	MI	PG500CS
GLG40S (1)		•		•
(1) Mandatory accessory.				
Accessory	MPG:	350CS	MI	PG500CS
DCK		•		•
MPG_C				
Accessory		M	PG700C	
CC2 (1)			•	
WRCA (1)			•	
WRCB (1)			•	
(1) Auto-restart function.				
Accessory		M	PG700C	
IC-2P			•	
Accessory		M	PG700C	
GLG40 (1)			•	
(1) Mandatory accessory.				
Accessory		M	PG700C	
DCK			•	
MPG_D				
Accessory	MPG250D	MPG350D	MPG500D	MPG700D
CC2 (1)	•	•	•	•
WRCA (1)	•	•	•	•
WRCB (1)	•	•	•	•
(1) Auto-restart function. Wired panel WRCB standard supply.				
Accessory	MPG250D	MPG350D	MPG500D	MPG700D
IC-2P	•	•	•	•
Accessory	MPG250D	MPG350D	MPG500D	MPG700D
DCK	•	•	•	•
MPG_DH				
Accessory	MPG250DH	MPG350DH	MPG500DH	MPG700DH
CC2 (1)	•	•	•	•
WRCA (1)	•	•	•	•
WRCB (1)	•	•	•	•
(1) Auto-restart function. Wired panel WRCB standard supply.				
Accessory	MPG250DH	MPG350DH	MPG500DH	MPG700DH
IC-2P	•	•	•	•
Accessory	MPG250DH	MPG350DH	MPG500DH	MPG700DH
DCK	•	•	•	•

OUTDOOR UNIT PERFORMANCE DATA

lawinal cashing particular		MPG420	MPG520	MPG630	MPG730	MPG840	MPG1040	MPG1250
Nominal cooling performances	kW	4.10	5 20	6 10	7 10	0.00	10.60	12.10
Cooling capacity (1) Cooling input power (1)	kW	4,10 1,10	5,30 1,48	6,10 1,48	7,10 1,88	8,00 2,12	10,60 3,00	12,10 3,40
EER (2)	W/W		3,58		3,78		3,53	3,56
Minimum cooling performances	VV/VV	3,73	3,38	4,12	3,/8	3,77	3,33	3,30
	kW	2,05	2,14	2,20	2,30	2,30	2,60	2,60
Cooling capacity					•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Cooling input power	kW	0,20	0,30	0,40	0,60	0,80	0,60	0,60
Maximum cooling performances	LAM	F 00	F 00	0.30	0.20	11.00	12.00	15.20
Cooling capacity	kW kW	5,00	5,80	8,30	9,20	11,00	12,00	15,20
Cooling input power	KVV	2,20	2,50	2,90	3,40	3,60	4,60	4,60
Seasonal efficiency SEER	W/W	(70	([0	(00	([0	(10	([0	C 40
		6,70	6,50	6,90	6,50	6,10	6,50	6,48
Annual power consumption	kWh/annum	214	285	309	382	459	571	-
efficiency energy class (3)		A++	A++	A++	A++	A++	A++	-
Nominal heating performances	1111	4.40	5.45		0.60	0.50	42.00	43.00
Heating capacity (4)	kW	4,40	5,65	6,50	8,60	9,50	12,00	13,00
Heating input power (4)	kW	0,97	1,25	1,43	2,23	2,20	3,04	3,19
COP (2)	W/W	4,54	4,52	4,55	3,86	4,32	3,95	4,08
Minimum heating performances	147							
Heating capacity	kW	2,49	2,58	3,60	3,65	3,65	3,00	3,00
leating input power	kW	0,30	0,40	0,40	0,60	0,70	0,80	0,80
Maximum heating performances								
leating capacity	kW	5,40	6,50	8,50	9,20	10,25	14,00	15,50
Heating input power	kW	2,25	2,50	2,90	3,00	3,60	5,00	5,00
Seasonal efficiency (temperate climate)								
SCOP SCOP	W/W	4,00	4,00	3,80	3,80	4,00	3,80	3,80
Annual power consumption	kWh/annum	1295	1435	2247	2247	2345	3795	-
Efficiency energy class (3)		A+	A+	A	A	A+	A	-
Outdoor unit								
Type of fan	Type	Inverter axial	Inverter axial	Inverter axial				
Air flow rate								
Maximum	m³/h	2300	2300	3800	3800	3800	5800	5800
Sound power (5)								
Maximum	dB(A)	62,0	64,0	68,0	68,0	68,0	70,0	74,0
Sound pressure (1 m) (6)								
Maximum	dB(A)	52,0	54,0	58,0	58,0	58,0	60,0	60,0
Compressor			,	,		•	,	
	type	Inverter rotary	Inverter rotary	Inverter rotary				
Refrigerant	type	R32	R32	R32	R32	R32	R32	R32
Refrigerant charge	kg	0,75	0,90	1,60	1,70	1,80	2,40	2,40
Potential global heating	GWP	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq
Equivalent CO ₂	t	0,51	0,61	1,08	1,15	1,22	1,62	1,62
Electric data	•	2/21	5,51	.,	.,15	.,	.,02	1,02
Rated power input (7)	kW	2,30	2,50	2,90	3,40	3,60	5,00	5,00
Rated current input (7)	A	10,0	11,0	12,9	15,0	16,0	21,7	21,7
Refrigeration pipework	- Л	10,0	11,0	12,7	13,0	10,0	21,7	21,1
Maximum refrigerant tube length	m	40	40	60	60	70	80	100
Maximum reingerant tube length								
Naximum single cooling line length Aaximum unit (indoor/external) cooling line level	m	20,0	20,0	20,0	20,0	20,0	25,0	25,0
	m	15,0	15,0	15,0	15,0	15,0	25,0	25,0
difference in height	m	15 0	15 0	15.0	15.0	15 0	25.0	25.0
Maximum (indoor/outdoor) cooling line level difference	m g/m	15,0	15,0	15,0	15,0	15,0	25,0	25,0
)-f	a/m	20	20	20	20	20	20	20
		() [/4 /4 //]	C 3F (4 14/1)	C 35 /4 /4/1	C 3F (4 1411)	C 35 (4 (41))	C 3F /4 /4//	
Refrigerant to be added Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
		6,35 (1/4") 9,52 (3/8")	6,35 (1/4") 9,52 (3/8")	6,35 (1/4") 9,52 (3/8")				

⁽¹⁾ Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

(2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.

(3) Data in accordance with Delegated Regulation (EU) No. 626/2011.

(4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

(5) Sound power calculated in free field, in accordance with UNI EN ISO 3744.

(6) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.

(7) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

All technical data refer to the respective reference combinations of the indoor units.

INDOOR UNIT PERFORMANCE DATA

SPG_W

		SPG200W	SPG250W	SPG350W	SPG500W	SPG700W
Nominal cooling performances						
Cooling capacity (1)	kW	2,20	2,50	3,20	4,60	6,20
Moisture removed	l/h	0,6	0,6	1,4	1,8	1,8
Nominal heating performances						
Heating capacity (2)	kW	2,40	2,80	3,40	5,20	6,50
ndoor unit						
Type of fan	Туре			Inverter centrifugal		
nput power	W	13	13	23	38	38
Air flow rate						
Minimum	m³/h	250	270	320	600	650
Average	m³/h	420	390	400	700	750
Maximum	m³/h	470	470	520	800	950
Turbo	m³/h	500	500	590	850	1100
Sound power (3)						
Minimum	dB(A)	34,0	34,0	38,0	44,0	49,0
Average	dB(A)	45,0	44,0	45,0	48,0	52,0
Maximum	dB(A)	49,0	48,0	49,0	52,0	58,0
Turbo Turbo	dB(A)	55,0	55,0	56,0	54,0	61,0
Sound pressure (1 m) (4)						
Minimum	dB(A)	22,0	22,0	26,0	34,0	35,0
Average	dB(A)	33,0	32,0	33,0	38,0	38,0
Maximum	dB(A)	36,0	36,0	37,0	42,0	44,0
urbo	dB(A)	39,0	38,0	41,0	44,0	47,0
ndoor unit						
Condensate discharge diameter	mm	16,0	16,0	16,0	16,0	16,0
Power supply						
Indoor unit power supply				220-240V ~ 50Hz		

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 (4) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.
 Sound power calculated in free field, in accordance with UNI EN ISO 3744.

CKG_FS

		CKG260FS	CKG360FS	CKG500FS
Nominal cooling performances				
Cooling capacity (1)	kW	2,70	3,50	5,20
Moisture removed	I/h	0,8	1,2	1,8
Nominal heating performances				
Heating capacity (2)	kW	2,90	3,80	5,33
Indoor unit				
Type of fan	Туре		Inverter centrifugal	
Input power	W	35	40	50
Air flow rate				
Minimum	m³/h	280	360	410
Average	m³/h	370	440	520
Maximum	m³/h	430	520	650
Turbo	m³/h	500	600	700
Sound power (3)				
Minimum	dB(A)	38,0	39,0	47,0
Average	dB(A)	44,0	46,0	51,0
Maximum	dB(A)	48,0	50,0	55,0
Turbo	dB(A)	50,0	54,0	57,0
Sound pressure (4)				
Minimum	dB(A)	26,0	29,0	37,0
Average	dB(A)	31,0	36,0	41,0
Maximum	dB(A)	36,0	40,0	45,0
Turbo	dB(A)	39,0	44,0	47,0
Indoor unit		<u> </u>		
Condensate discharge diameter	mm	17,0	17,0	17,0
Power supply				
Indoor unit power supply		<u></u>	220-240V ~ 50Hz	

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 (4) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.
 Sound power calculated in free field, in accordance with UNI EN ISO 3744.

MLG_F

		MLG250F	MLG350F	MLG500F	MLG700F
Nominal cooling performances					
Cooling capacity (1)	kW	2,60	3,50	4,50	7,10
Moisture removed	l/h	0,8	1,4	1,8	2,5
Nominal heating performances					
Heating capacity (2)	kW	2,70	4,00	5,00	8,00
Electric data					
Rated power input (3)	W	38	38	38	60
Indoor unit					
Type of fan	Туре		Inverter o	entrifugal	
Input power	W	38	38	38	60
Air flow rate					
Minimum	m³/h	420	420	410	720
Average	m³/h	540	540	520	800
Maximum	m³/h	610	610	590	870
Turbo	m³/h	700	700	680	950
Sound power (4)					
Minimum	dB(A)	40,0	40,0	40,0	41,0
Average	dB(A)	44,0	44,0	44,0	45,0
Maximum	dB(A)	49,0	49,0	49,0	52,0
Turbo	dB(A)	52,0	52,0	52,0	52,0
Sound pressure (5)					
Minimum	dB(A)	26,0	26,0	26,0	27,0
Average	dB(A)	30,0	30,0	30,0	31,0
Maximum	dB(A)	35,0	35,0	35,0	35,0
Turbo	dB(A)	38,0	38,0	38,0	38,0
Indoor unit					
Condensate discharge diameter	mm	17,0	17,0	17,0	17,0
Power supply					
Indoor unit power supply			220-240	V ~ 50Hz	

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.
 Sound power calculated in free field, in accordance with UNI EN ISO 3744.

MPG CS

MPG_C3		MPG350CS	MPG500CS
Nominal cooling performances		ML G330C3	MFGJOOCS
Cooling capacity (1)	kW	3,50	5,00
Moisture removed	I/h	1,4	1,8
Nominal heating performances	1/11	1,4	1,0
Heating capacity (2)	kW	4,00	5,50
ndoor unit	KVV	7,00	3,30
Type of fan	Туре	Inverter	centrifugal
nput power	W	30	35
Air flow rate		30	
Minimum	m³/h	380	380
Average	m³/h	450	450
Maximum	m³/h	540	540
urbo	m³/h	560	650
Sound power (3)			
Minimum	dB(A)	46,0	46,0
lverage	dB(A)	50,0	50,0
Maximum	dB(A)	55,0	55,0
urbo	dB(A)	57,0	59,0
ound pressure (1 m) (4)			
urbo	dB(A)	41,0	43,0
Ainimum	dB(A)	30,0	30,0
lverage	dB(A)	34,0	34,0
Maximum	dB(A)	39,0	39,0
ndoor unit			
Condensate discharge diameter	mm	25,0	25,0
Power supply			
Indoor unit power supply		220-24	0V ~ 50Hz

⁽¹⁾ Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
(2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
(3) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
(4) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.
Sound power calculated in free field, in accordance with UNI EN ISO 3744.

MPG_C

		MPG700C	
Nominal cooling performances			
Cooling capacity (1)	kW	7,00	
Moisture removed	l/h	2,5	
Nominal heating performances			
Heating capacity (2)	kW	8,00	
Indoor unit			
Type of fan	Туре	Inverter centrifugal	
Input power	W	50	
Air flow rate			
Minimum	m³/h	830	
Average	m³/h	910	
Maximum	m³/h	1050	
Turbo	m³/h	1100	
Sound pressure (1 m) (3)			
Turbo	dB(A)	44,0	
Minimum	dB(A)	38,0	
Average	dB(A)	40,0	
Maximum	dB(A)	43,0	
Sound power (4)			
Minimum	dB(A)	57,0	
Average	dB(A)	59,0	
Maximum	dB(A)	61,0	
Turbo	dB(A)	62,0	
Indoor unit			
Condensate discharge diameter	mm	25,0	
Power supply			
Indoor unit power supply		220-240V ~ 50Hz	

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.
 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 Sound power calculated in free field, in accordance with UNI EN ISO 3744.

MPG_D

		MPG250D	MPG350D	MPG500D	MPG700D
Nominal cooling performances					
Cooling capacity (1)	kW	2,65	3,50	5,00	7,00
Moisture removed	l/h	0,8	1,4	1,8	2,5
Nominal heating performances					
Heating capacity (2)	kW	2,80	4,00	5,50	8,00
Indoor unit					
Type of fan	Туре		Inverter o	entrifugal	
Input power	W	70	80	80	200
Air flow rate					
Minimum	m³/h	220	300	420	900
Average	m³/h	340	420	610	1000
Maximum	m³/h	450	540	720	1200
Turbo	m³/h	560	600	800	1300
Sound pressure (1 m) (3)					
Turbo	dB(A)	32,0	36,0	36,0	46,0
Minimum	dB(A)	22,0	27,0	25,0	36,0
Average	dB(A)	22,0	27,0	25,0	36,0
Maximum	dB(A)	28,0	34,0	31,0	42,0
Sound power (4)					
Minimum	dB(A)	37,0	42,0	40,0	51,0
Average	dB(A)	40,0	46,0	43,0	55,0
Maximum	dB(A)	43,0	49,0	46,0	57,0
Turbo	dB(A)	47,0	51,0	51,0	61,0
Indoor unit					
Condensate discharge diameter	mm	26,0	26,0	26,0	26,0
Power supply					
Indoor unit power supply			220-240	V ~ 50Hz	

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.
 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 Sound power calculated in free field, in accordance with UNI EN ISO 3744.

MPG_DH

		MPG250DH	MPG350DH	MPG500DH	MPG700DH
Nominal cooling performances					
Cooling capacity (1)	kW	2,65	3,50	5,00	7,00
Moisture removed	l/h	0,8	1,4	1,8	2,5
Nominal heating performances					
Heating capacity (2)	kW	2,80	4,00	5,50	8,00
Indoor unit					
Type of fan	Туре		Inverter o	entrifugal	
nput power	W	50	50	75	80
High static pressure					
Maximum	Pa	60	60	60	125
Air flow rate					
Minimum	m³/h	550	410	750	900
Average	m³/h	610	480	790	1000
Maximum	m³/h	670	560	840	1200
Turbo	m³/h	700	650	880	1500
Sound pressure (1 m) (3)					
Turbo	dB(A)	41,0	39,0	41,0	45,0
Minimum	dB(A)	35,0	33,0	37,0	36,0
Average	dB(A)	37,0	35,0	38,0	38,0
Maximum	dB(A)	39,0	37,0	39,0	40,0
Sound power (4)					
Minimum	dB(A)	51,0	49,0	53,0	53,0
Average	dB(A)	53,0	51,0	54,0	55,0
Maximum	dB(A)	55,0	53,0	55,0	57,0
Turbo	dB(A)	57,0	55,0	57,0	62,0
Indoor unit					
Condensate discharge diameter	mm	26,0	26,0	26,0	26,0
Power supply					
Indoor unit power supply			220-240	V ~ 50Hz	

⁽¹⁾ Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

(2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

(3) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.

(4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.

Sound power calculated in free field, in accordance with UNI EN ISO 3744.

INDOOR UNIT COOLING FITTINGS

SPG_W

		SPG200W	SPG250W	SPG350W	SPG500W	SPG700W
Refrigeration pipework						
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")

CKG_FS

		CKG260FS	CKG360FS	CKG500FS	
Refrigeration pipework					
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")	

MLG_F

		MLG250F	MLG350F	MLG500F	MLG700F
Refrigeration pipework					
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4)	6,35 (1/4)	6,35 (1/4)	9,52 (3/8)
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8)	9,52 (3/8)	12,7 (1/2)	15,9 (5/8)

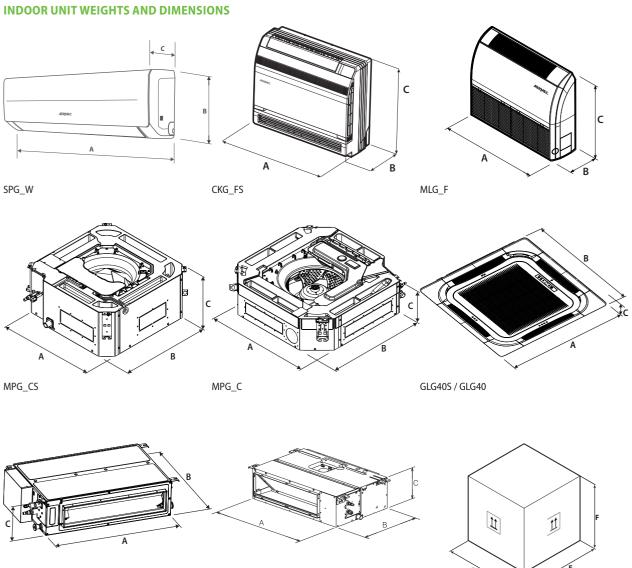
MPG_CS

		MPG350CS	MPG500CS
Refrigeration pipework			
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	12,7 (1/2")

MPG_C

		MPG700C
Refrigeration pipework		
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	15,9 (5/8")

MPG_D


		MPG250D	MPG350D	MPG500D	MPG700D
Refrigeration pipework					
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")	15,9 (5/8")

MPG_DH

		MPG250DH	MPG350DH	MPG500DH	MPG700DH
Refrigeration pipework					
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")	15,9 (5/8")

OUTDOOR UNIT COOLING FITTINGS

Models -			MPG420	MPG520	MPG630	MPG730	MPG840	MPG1040	MPG1250
Models			14kBtu/h	18kBtu/h	21kBtu/h	24kBtu/h	28kBtu/h	36kBtu/h	42kBtu/h
	A	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
	В	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
Liquid connections	(mm (inch)			9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
	D	mm (inch)					9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
	E	mm (inch)							9,52 (3/8")
Gas connections	A	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
	В	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
	(mm (inch)			6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
	D	mm (inch)					6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
	E	mm (inch)							6,35 (1/4")

SPG W

MPG_D

31 G_W						
		SPG200W	SPG250W	SPG350W	SPG500W	SPG700W
Indoor unit						
A	mm	696	696	770	972	1081
В	mm	251	251	251	300	325
(mm	190	190	190	225	248
D	mm	747	747	822	1022	1137
E	mm	324	324	324	374	407
F	mm	262	262	262	299	334
Net weight	kg	7,5	7,5	8,5	13,5	16,5
Weight for transport	kg	9,0	9,0	10,0	16,0	19,5

Carton Box Example

MGE_DH

CKG_FS

		CKG260FS	CKG360FS	CKG500FS
Indoor unit				
A	mm	700	700	700
В	mm	215	215	215
C	mm	600	600	600
D	mm	788	788	788
E	mm	283	283	283
F	mm	697	697	697
Net weight	kg	15,5	15,5	15,5
Weight for transport	ka	18.5	18.5	18.5

MLG_F

		MLG250F	MLG350F	MLG500F	MLG700F
Indoor unit					
A	mm	870	870	870	1200
В	mm	235	235	235	235
C	mm	665	665	665	665
D	mm	1033	1033	1033	1363
E	mm	300	300	300	300
F	mm	770	770	770	770
Net weight	kg	25,0	25,0	26,0	33,0
Weight for transport	kg	30,0	30,0	31,0	40,0

MPG_CS

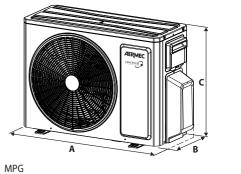
		MPG350CS	MPG500CS
Indoor unit			
A	mm	570	570
В	mm	570	570
C	mm	265	265
D	mm	698	698
E	mm	653	653
F	mm	295	295
Net weight	kg	17,0	17,0
Weight for transport	kg	22,0	22,0

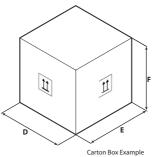
MPG_C

		MPG700C	
Indoor unit			
A	mm	840	
В	mm	840	
(mm	240	
D	mm	963	
E	mm	963	
F	mm	325	
Net weight	kg	29,0	
Weight for transport	kg	36,0	

GLG40S / GLG40

		GLG40S	GLG40
Indoor unit			
A	mm	620	950
В	mm	620	950
C	mm	48	52
D	mm	701	1033
E	mm	701	1038
F	mm	125	112
Net weight	kg	3,0	6,0
Weight for transport	kg	5,0	10,0


MPG_D


		MPG250D	MPG350D	MPG500D	MPG700D
Indoor unit					
A	mm	710	710	1010	900
В	mm	450	450	450	655
C	mm	200	200	200	260
D	mm	1008	1008	1308	1115
E	mm	568	568	568	772
F	mm	275	275	275	320
Net weight	kg	18,5	19,0	25,0	31,0
Weight for transport	kg	22,5	23,0	30,0	36,0

MPG_DH

		MPG250DH	MPG350DH	MPG500DH	MPG700DH
Indoor unit					
A	mm	710	710	1010	900
В	mm	450	450	450	655
C	mm	200	200	200	260
D	mm	1008	1008	1308	1115
E	mm	568	568	568	772
F	mm	275	275	275	320
Net weight	kg	18,5	19,0	25,0	31,0
Weight for transport	ka	22.5	23.0	30.0	36.0

OUTDOOR UNIT WEIGHTS AND DIMENSIONS

MPG

		MPG420	MPG520	MPG630	MPG730	MPG840	MPG1040	MPG1250
Outdoor unit	·							
A	mm	822	822	964	964	964	1020	1020
В	mm	352	352	402	402	402	427	427
(mm	555	555	660	660	660	826	826
D	mm	872	872	1032	1032	1032	1095	1095
E	mm	398	398	456	456	456	500	500
F	mm	620	620	737	737	737	955	955
Net weight	kg	30,0	32,0	47,5	47,5	51,0	72,0	73,0
Weight for transport	kg	32,5	34,5	52,0	52,0	55,5	85,0 (1)	86,0 (1)

⁽¹⁾ Packaging + pallet

MGE

Multisplit

MGF DH

Cooling capacity 4,1 ÷ 12,31 kW Heating capacity 4,4 ÷ 12,31 kW

- R32 ecological refrigerant gas.
- Wi-fi control using the relative accessory.
- Modern design to blend with all furnishing styles.
- Wide choice of indoor units available.
- Special golden fin coil.

DESCRIPTION

The multisplit air conditioners of the MGE range are combined with:

- SGE_W unit **wall**, for wall installation.
- MGE_C_CSunit Cassette for false ceiling installation.
- MGE_FS unit Console, for wall installation.
- MGE_DH unit **Duct**, for duct type horizontal installation.

TYPE OF OUTDOOR UNIT

Outdoor unit

Multisplit air conditioner.

Reversible air/air heat pump with DC inverter technology.

Types

- Dualsplit: outdoor units MGE420 and MGE520 can be combined with 2 indoor units.
- Trialsplit: outdoor units MGE630 and MGE830 can be combined with 2 or 3 indoor units.
- Quadrisplit: outdoor unit MGE840 and MGE1040 can be combined with 2, 3 or 4 indoor units.
- Pentasplit: outdoor unit MGE1250 can be combined with 2, 3, 4 or indoor units.

General features

- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.

Special golden fin coil

Unlike normal batteries, this special golden epoxy coating silicon free is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

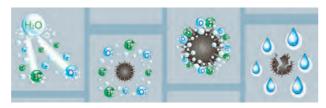
TYPE OF INDOOR UNIT

Indoor unit SGE_W

Wall indoor unit designed to be installed on indoor walls.

SGE_W has an elegant and essential design. Its curved lines emphasize a kind of structure with innovative and functional style. The display with working parameters is elegantly integrated in the satin-finish cover and visible only when the unit is on.

Features


- Remote control standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.

 Indeer unit front panel with LED display and indicator light.
- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- **Turbo** function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- followMe function for activating the ambient temperature probe inside the remote control, for improved comfort.

Air Purifiers (Cold Plasma)

Capable of reducing pollutants breaking down their molecules using electric discharges, causing the splitting of the water molecules in the air into positive and negative ions. These ions neutralise the molecules of the gaseous pollutants obtaining products that are normally present in clean air. The device can eliminate 90% of bacteria. The result is clean, ionised air that has no bad odours.

Not available for SGE200W

MGE CS - MGE C Indoor unit

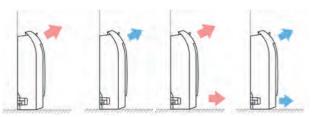
Indoor unit **Cassette** of dimensions 570x570 mm (MGE350CS - MGE500CS) and 830x830 mm (MGE700C) designed to be installed on suspended ceiling indoors.

Features

- Remote control standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 4-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function
- Louver angle memory function.
- **Sleep** night time function well-being program.
- Refrigerant Leak Detection System.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- followMe function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Dehumidification function that allows humidity control

MGE_FS Indoor unit

Console indoor unit designed to be installed on indoor floors.



Features

- Remote control standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- **4-speed** fan, to meet every possible need.
- Auto function for a continuous speed variation.
- **Turbo** function
- -- Louver angle memory function.
- Sleep night time function well-being program.
- Refrigerant Leak Detection System.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- followMe function for activating the ambient temperature probe inside the remote control, for improved comfort.

Single air delivery

Dual air delivery

MGE DH Indoor unit

Duct indoor unit designed for indoor duct type installation.

Features

- Remote control standard supply with each indoor unit.
- WRPE10 wired panel standard supply with each indoor unit.
- Fan with DC inverter technology.
- Timer for programming switch-off and switch-on.
- **4-speed** fan, to meet every possible need.
- Auto function for a continuous speed variation.
- **Turbo** function
- Sleep night time function well-being program.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- followMe function for activating the ambient temperature probe inside the remote control, for improved comfort.

General features

- R32 ecological refrigerant gas with low GWP.
- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Air filter easily removed and cleaned.
- Systems with multi-line refrigerant connections, where every indoor unit is connected directly to the outdoor unit via dedicated refrigerant lines.
- Easy installation and maintenance.

Low cooling function

cooling operation with outdoor temperatures down to -15 $^{\circ}\text{C}$

Low heating function

heating with external temperatures up to -15 °C.

Nethome Plus app

Using the specific **accessory**, the system offers wi-fi control thanks to the app for iOS and Android devices (available free on Apple Store and Google Play). The system can be controlled from a distance directly on your smartphone or tablet, or via Cloud with the aid of a wireless router connected to the Internet.

MGE_Y_UN50_04

971

ACCESSORIES

 $\mbox{\it WIFIKEY:}$ Plug & Play module to be installed in the indoor unit for Wi-Fi control.

WRPE10: Wired panel with liquid crystal display and soft-touch buttons. **WRPE10W:** Flush panel with LCD display and Soft-Touch keys. It is equipped with WiFi and Bluetooth® connection for better connection stability.

GLE105: Air supply and flow grid with dimensions (620x620 mm) for cassette internal unit. Mandatory accessory.

GLE10: Air supply and flow grid with dimensions (950x950 mm) for cassette internal unit. Mandatory accessory.

Accessories compatibility

SGE_W

Accessory	SGE200W	SGE250W	SGE350W	SGE500W	
WIFIKEY	•	•	•	•	
MGE_C / CS					
Accessory	MGE350CS	MGE	500CS	MGE700C	
VIFIKEY	•	'	•	•	
Accessory	MGE350CS	MGE	500CS	MGE700C	
VRPE10	•		•	•	
WRPE10W	•	1	•	•	
Accessory	MGE350CS	MGE	500CS	MGE700C	
iLE10 (1)				•	
iLE10S (1)	•	1	•		
1) Mandatory accessory.					
MGE_DH					
Accessory	MGE250DH	MGE350DH	MGE500DH	MGE700DH	
VRPE10W	•	•	•	•	
Vired panel WRPE10 standard supply.					
MGE_FS					
Accessory	MGE250FS	MGE	350FS	MGE500FS	
NIFIKEY	•		•	•	
Accessory	MGE250FS	MGE	350FS	MGE500FS	
WRPE10	•		•	•	
WRPE10W	•		•	•	

ALLOWED COMBINATIONS OF INDOOR UNITS

For trialsplit, quadrisplit or pentasplit MGE units, it is mandatory to install at least 2 indoor units for correct functioning of the system.

For further information, please refer to the technical documentation on the website www.aermec.com

MGE420	MGE520		MGE630	MGE			MGE840	
BI (1x2)	BI (1x2)	TRI (1x2)	TRI (1x3)	TRI (1x2)	TRI (1x3)	QUADRI (1x2)	QUADRI (1x3)	QUADRI (1x4
7+7	7+7	7+7	7+7+7	7+7	7+7+7	7+7	7+7+7	7+7+7+7
7+9	7+9	7+9	7+7+9	7+9	7+7+9	7+9	7+7+9	7+7+7+9
7+12	7+12	7+12	7+7+12	7+12	7+7+12	7+12	7+7+12	7+7+7+1
9+9	9+9	7+18	7+9+9	7+18	7+7+18	7+18	7+7+18	7+7+7+1
	9+12	9+9	7+9+12	9+9	7+9+9	7+24	7+7+24	7+7+9+9
	12+12	9+12	9+9+9	9+12	7+9+12	9+9	7+9+9	7+7+9+1
		9+18		9+18	7+9+18	9+12	7+9+12	7+7+9+1
		12+12		12+12	7+12+12	9+18	7+9+18	7+7+12+1
		12 (12		12+18	9+9+9	9+24	7+9+24	7+9+9+9
				12 1 10	9+9+12	12+12	7+12+12	7+9+9+1
					9+12+12	12+18	7+12+12	7+9+12+1
					12+12+12	12+24	9+9+9	9+9+9+9
							9+9+12	9+9+9+1
							9+9+18	9+9+12+1
							9+9+24	
							9+12+12	
							9+12+18	
							12+12+12	
							12+12+18	
	MGE1040					MGE1250		
OLIADDI (1v2)		-	OHADDI (1v4)	DENITA (142)	DENTA (102)		ENTA (1vA)	DENITA (155)
QUADRI (1x2)	QUADRI (1x3)		QUADRI (1x4)	PENTA (1x2)	PENTA (1x3)		ENTA (1x4)	PENTA (1x5)
7+12	7+7+7		7+7+7+7	7+18	7+7+7		7+7+7+7	7+7+7+7+7
7+18	7+7+9		7+7+7+9	7+24	7+7+9		7+7+7+9	7+7+7+7+9
7+24	7+7+12		7+7+7+12	9+12	7+7+12		+7+7+12	7+7+7+7+12
9+9	7+7+18		7+7+7+18	9+18	7+7+18		+7+7+18	7+7+7+7+18
9+12	7+7+24		7+7+7+24	9+24	7+7+24	7	+7+7+24	7+7+7+7+24
9+18	7+9+9		7+7+9+9	12+12	7+9+9		7+7+9+9	7+7+7+9+9
9+24	7+9+12		7+7+9+12	12+18	7+9+12	7	+7+9+12	7+7+7+9+12
12+12	7+9+18		7+7+9+18	12+24	7+9+18	7	+7+9+18	7+7+7+9+18
12+18	7+9+24		7+7+9+24		7+9+24		+7+9+24	7+7+7+9+24
12+24	7+12+12		7+7+12+12		7+12+12		+7+12+12	7+7+7+12+12
12121	7+12+18		7+7+12+18		7+12+18		+7+12+18	7+7+7+12+18
	7+12+16		7+9+9+9		7+12+16		+7+12+24	7+7+7+12+14
	9+9+9				9+9+9		7+9+9+9	
			7+9+9+12					7+7+9+9+9
	9+9+12		7+9+9+18		9+9+12		+9+9+12	7+7+9+9+12
	9+9+18		7+9+12+12		9+9+18		+9+9+18	7+7+9+9+18
	9+9+24		7+9+12+18		9+9+24		+9+9+24	7+7+9+9+24
	9+12+12		7+12+12+12		9+12+12	7-	+9+12+12	7+7+9+12+12
	9+12+18		9+9+9+9		9+12+18		+9+12+18	7+7+9+12+18
	9+12+24		9+9+9+12		9+12+24	7-	+9+12+24	7+7+9+12+24
	12+12+12		9+9+9+18		12+12+12	7-	+12+12+12	7+7+12+12+12
	12+12+18		9+9+12+12		12+12+18	7-	+12+12+18	7+7+12+12+18
	12+12+24		9+9+12+18		12+12+24		+12+12+24	7+7+12+12+24
			9+12+12+12				9+9+9+9	7+9+9+9+9
			12+12+12+12				+9+9+12	7+9+9+9+12
							+9+9+18	7+9+9+9+18
							+9+9+24	7+9+9+9+24
							+9+12+12	7+9+9+12+12
							+9+12+18	7+9+9+12+18
							+9+12+24	7+9+9+12+24
							+12+12+12	7+9+12+12+12
						+12+12+18	7+9+12+12+18	
							-12+12+24	7+9+12+12+24
						12	+12+12+12	7+12+12+12+12
						12	+12+12+18	7+12+12+12+18
						12	+12+12+24	9+9+9+9+9
								9+9+9+9+12
							9+9+9+9+18	
							9+9+9+9+24	
							9+9+9+12+12	
							9+9+9+12+18	
							9+9+9+12+24	
							9+9+12+12+12	
								9+9+12+12+18
								9+9+12+12+24
								9+12+12+12+12
								9+12+12+12+18
								12+12+12+12+1

OUTDOOR UNIT PERFORMANCE DATA

		MGE420	MGE520	MGE630	MGE830	MGE840	MGE1040	MGE1250
Nominal cooling performances								
Cooling capacity (1)	kW	4,10	5,30	6,15	7,90	8,20	10,55	12,31
Cooling input power (1)	kW	1,27	1,64	1,91	2,45	2,54	3,30	3,81
EER (2)	W/W	3,23	3,23	3,23	3,23	3,23	3,20	3,23
Minimum cooling performances								
Cooling capacity	kW	1,47	2,29	1,99	3,18	2,34	3,64	3,02
Cooling input power	kW	0,12	0,69	0,18	0,29	0,20	0,33	0,28
Maximum cooling performances								
Cooling capacity	kW	4,98	5,71	6,59	8,21	10,02	10,84	12,31
Cooling input power	kW	1,67	2,00	2,20	3,10	3,45	4,25	4,65
Seasonal efficiency								
SEER	W/W	5,60	6,10	6,10	6,10	6,10	6,20	6,10
Efficiency energy class (3)		A+	A++	A++	A++	A++	A++	A++
Annual power consumption	kWh/annum	258	309	350	453	470	598	714
Nominal heating performances								
Heating capacity (4)	kW	4,40	5,57	6,45	8,20	8,79	10,85	12,31
Heating input power (4)	kW	1,19	1,50	1,74	2,21	2,20	2,76	3,30
COP (2)	W/W	3,71	3,71	3,71	3,71	4,00	3,93	3,73
Minimum heating performances								
Heating capacity	kW	1,52	2,40	1,99	2,29	2,37	2,85	3,46
Heating input power	kW	0,12	0,60	0,35	0,37	0,43	0,47	0,65
Maximum heating performances								
Heating capacity	kW	4,98	5,74	6,68	8,50	10,49	12,02	12,31
Heating input power	kW	1,67	1,78	1,80	2,90	3,05	4,21	3,80
Seasonal efficiency (temperate climate)								
SCOP	W/W	3,80	3,80	4,00	4,00	3,80	3,80	3,50
Efficiency energy class (3)		Α	Α	A+	A+	А	Α	А
Annual power consumption	kWh/annum	1400	1768	1910	1960	2395	3316	3933
Power supply								
Outdoor unit power supply		220-240V ~ 50Hz						

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.
 (3) Data in accordance with Delegated Regulation (EU) No. 626/2011.
 (4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

Outdoor unit technical data

		MGE420	MGE520	MGE630	MGE830	MGE840	MGE1040	MGE1250
Outdoor unit								
Type of fan	Туре	Axial	Axial	Axial	Axial	Axial	Axial	Axial
Air flow rate								
Maximum	m³/h	2100	2100	3000	3000	3800	4000	3850
Sound power								
Maximum	dB(A)	64,0	65,0	65,0	67,0	67,0	67,0	69,0
Sound pressure (1 m)								
Maximum	dB(A)	56,0	54,0	58,0	58,0	61,5	61,0	64,0
Compressor								
Туре	type	Inverter rotary	Inverter rotary	Inverter rotary	Twin rotary inverter	Twin rotary inverter	Inverter rotary	Inverter rotary
Refrigerant	type	R32	R32	R32	R32	R32	R32	R32
Refrigerant charge	kg	1,10	1,25	1,50	1,85	2,10	2,10	2,90
Potential global heating	GWP	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq
Equivalent CO ₂	t	0,743	0,844	1,013	1,240	1,418	1,420	1,960
Outdoor unit								
Condensate discharge diameter	mm	16,0	16,0	16,0	16,0	16,0	16,0	16,0

- Sound pressure: measured in semi anechoic chamber at a distance of 1 m from the source. Sound Power: measured in reverberation room at a distance of 1,5 in accordance with EN12102.

Outdoor unit general technical data

		MGE420	MGE520	MGE630	MGE830	MGE840	MGE1040	MGE1250
Electric data								
Rated power input (1)	W	2750	3050	3910	4100	4150	4600	4700
Rated current input (1)	A	12,0	13,0	17,0	18,0	19,0	21,5	22,0
Refrigeration pipework								
Maximum refrigerant tube length	m	40	40	60	60	80	80	80
Maximum single cooling line length	m	25,0	25,0	30,0	30,0	35,0	35,0	35,0
Refrigerant to be added	g/m	12	12	12	12	12	12	12
Maximum unit (indoor/external) cooling line level difference in	m	10,0	10,0	10.0	10,0	10,0	10.0	10,0
height	m	10,0	10,0	10,0	10,0	10,0	10,0	10,0
Maximum (indoor/outdoor) cooling line level difference	m	15,0	15,0	15,0	15,0	15,0	15,0	15,0
Liquid cooling connections								
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
Number	no.	2	2	3	3	4	4	5
Refrigerant gas connections								
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52/12,7	9,52/12,7	9,52/12,7
Diameter of reinigerant gas connections	IIIII (IIICII)	9,32 (3/0)	9,32 (3/0)	7,32 (3/0)	(3/0) کورو (3/0) کورو	(3/8"-1/2")	(3/8"-1/2")	(3/8"-1/2")
Number	no.	2	2	3	3	3/1	3/1	4/1

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

INDOOR UNIT PERFORMANCE DATA

SGE W

<u> </u>						
		SGE200W	SGE250W	SGE350W	SGE500W	SGE700W
Nominal cooling performances						
Cooling capacity (1)	kW	2,05	2,77	3,46	5,27	5,27
Nominal heating performances						
Heating capacity (2)	kW	2,34	2,93	3,57	4,97	4,97
Indoor unit						
Type of fan	Туре	Tangential	Tangential	Tangential	Tangential	Tangential
Air flow rate						
Maximum	m³/h	460	466	540	840	980
Average	m³/h	360	360	430	680	817
Minimum	m³/h	325	325	314	540	662
Sound power (3)						
Maximum	dB(A)	54,0	54,0	55,0	56,0	59,0
Average	dB(A)	-	-	-	-	-
Minimum	dB(A)	-	-	-	-	-
Sound pressure (1 m) (4)						
Minimum	dB(A)	21,0	25,0	25,0	26,0	36,0
Maximum	dB(A)	40,0	38,5	40,5	42,5	45,0
Average	dB(A)	26,0	32,0	34,5	36,0	40,5
Refrigeration pipework						
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	12.7 (1/2")	15,9 (5/8")
Power supply						
Indoor unit power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50H

⁽¹⁾ Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

(2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

(3) Sound power calculated in free field, in accordance with UNI EN ISO 3744.

(4) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.

MGE_CS/MGE_C

		MGE350CS	MGE500CS	MGE700C
Nominal cooling performances				
Cooling capacity	kW	3,52	5,28	7,03
Nominal heating performances				
Heating capacity	kW	3,81	5,57	7,62
Indoor unit				
Type of fan	Туре	Tangential	Tangential	Tangential
Air flow rate				
Minimum	m³/h	330	300	992
Average	m³/h	520	540	1118
Maximum	m³/h	620	660	1247
Sound power				
Minimum	dB(A)	-	-	-
Average	dB(A)	-	-	-
Maximum	dB(A)	55,0	59,0	59,0
Sound pressure				
Minimum	dB(A)	31,5	31,5	37,0
Average	dB(A)	38,5	41,0	42,5
Maximum	dB(A)	42,0	44,0	45,0
Indoor unit				
Condensate discharge diameter	mm	25,0	25,0	25,0
Power supply				
Power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz

- Cooling (EN-14511 and EN-14825) Ambient air temperature 27°C D.B. / 19°C W.B.; Outside air temperature 35°C; Max speed; Length of Refrigerant Lines 5m.

 Heating (EN-14511 and EN-14825) Ambient air temperature 20°C D.B.; Outside air temperature 7°C D.B./6°C W.B.; Max speed; Length of Refrigerant Lines 5m.

 The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN-60335-1 and EN-60335-2-40. Sound pressure measured in semi anechoic chamber at a distance of 1,4 m from the source.

 Sound Power: measured in reverberation room at a distance of 1,5 in accordance with EN12102.

MGE_{FS}

		MGE250FS	MGE350FS	MGE500FS
Nominal cooling performances				
Cooling capacity	kW	2,64	3,52	4,98
Nominal heating performances				
Heating capacity	kW	2,93	3,81	5,28
Indoor unit				
Type of fan	Туре	Tangential	Tangential	Tangential
Air flow rate				
Minimum	m³/h	400	490	600
Average	m³/h	510	580	690
Maximum	m³/h	600	650	780
Sound power				
Minimum	dB(A)	-	-	-
Average	dB(A)	-	-	-
Maximum	dB(A)	54,0	54,0	55,0
Sound pressure				
Minimum	dB(A)	27,5	27,0	32,0
Average	dB(A)	33,5	34,0	38,0
Maximum	dB(A)	36,5	37,0	41,0
Indoor unit				
Condensate discharge diameter	mm	16,0	16,0	16,0
Power supply				
Power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz

- Cooling (EN-14511 and EN-14825) Ambient air temperature 27°C D.B. / 19°C W.B.; Outside air temperature 35°C; Max speed; Length of Refrigerant Lines 5m.

 Heating (EN-14511 and EN-14825) Ambient air temperature 20°C D.B.; Outside air temperature 7°C D.B./6°C W.B.; Max speed; Length of Refrigerant Lines 5m.

 The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN-60335-1 and EN-60335-2-40. Sound pressure: measured in semi anechoic chamber at a distance of 1,5 in accordance with EN12102.

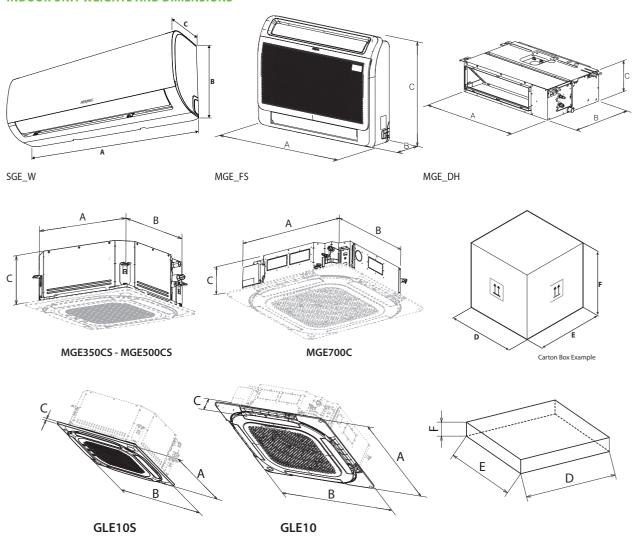
MGE_DH

		MGE250DH	MGE350DH	MGE500DH	MGE700DH
Nominal cooling performances					
Cooling capacity	kW	2,64	3,52	5,28	7,03
Nominal heating performances					
Heating capacity	kW	2,93	3,81	5,57	7,62
Electric data					
Rated power input	W	88	91	172	217
Indoor unit					
Type of fan	Туре	Tangential	Tangential	Tangential	Tangential
Air flow rate					
Minimum	m³/h	450	470	650	700
Average	m³/h	540	570	780	1000
Maximum	m³/h	620	660	900	1200
Sound power					
Minimum	dB(A)	-	-	-	-
Average	dB(A)	-	-	-	-
Maximum	dB(A)	54,0	52,0	53,0	56,0
Sound pressure					
Minimum	dB(A)	31,0	31,0	31,0	31,0
Average	dB(A)	33,0	33,0	34,0	32,5
Maximum	dB(A)	35,0	35,0	36,5	33,5
Indoor unit					
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0
Useful static pressure				·	
Range of static pressure	Pa	0 ÷ 80	0 ÷ 100	0 ÷ 160	0 ÷ 160
Nominal	Pa	25	25	25	25
Power supply					
Power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz

- Cooling (EN-14511 and EN-14825) Ambient air temperature 27°C D.B. / 19°C W.B.; Outside air temperature 35°C; Max speed; Length of Refrigerant Lines 5m.

 Heating (EN-14511 and EN-14825) Ambient air temperature 20°C D.B.; Outside air temperature 7°C D.B./6°C W.B.; Max speed; Length of Refrigerant Lines 5m.

 The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN-60335-1 and EN-60335-2-40. Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.


 Sound Power: measured in reverberation room at a distance of 1,5 in accordance with EN12102.

ADAPTERS SUPPLIED WITH THE OUTDOOR UNIT

		MGE420	MGE520	MGE630	MGE830	MGE840	MGE1040	MGE1250
Adapters from 9.52mm to 12.7mm								
Number	no.	0	0	1	1	-	-	1
Adapters from 12.7mm to 9.52mm								
Number	no.	-	-	-	-	1	1	1

 $For further information, please \ refer to \ the \ technical \ documentation \ on \ the \ website \ www.aermec.com$

INDOOR UNIT WEIGHTS AND DIMENSIONS

SGE_W

		SGE200W	SGE250W	SGE350W	SGE500W	SGE700W
Indoor unit						
A	mm	805	805	805	957	1040
В	mm	285	285	285	302	327
(mm	194	194	194	213	220
D	mm	870	870	870	1035	1120
E	mm	270	270	270	295	405
F	mm	360	365	365	385	315
Net weight	kg	7,9	7,6	7,6	10,0	12,3
Weight for transport	kg	9,7	9,7	9,8	13,0	15,8

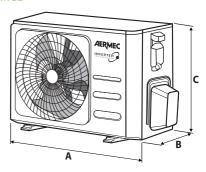
MGE_FS

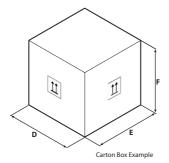
		MGE250FS	MGE350FS	MGE500FS
Indoor unit				
A	mm	794	794	794
В	mm	200	200	200
(mm	621	621	621
)	mm	865	865	865
	mm	280	280	280
-	mm	719	719	719
Net weight	kg	14,9	14,9	14,9
Weight for transport	kg	18,8	18,8	18,8

MGE_DH

		MGE250DH	MGE350DH	MGE500DH	MGE700DH
Indoor unit					
A	mm	700	700	700	1000
В	mm	506	506	750	750
C	mm	200	200	245	245
D	mm	860	860	925	1225
E	mm	540	540	850	860
F	mm	285	285	298	304
Net weight	kg	16,6	16,6	24,4	31,8
Weight for transport	kg	19,8	19,8	29,0	37,2

MGE_CS / MGE_C


		MGE350CS	MGE500CS	MGE700C
Indoor unit	'			_
A	mm	570	570	856
В	mm	570	570	831
C	mm	245	245	205
D	mm	715	715	910
E	mm	640	640	910
F	mm	295	295	235
Net weight	kg	16,1	16,2	21,6
Weight for transport	kg	18,8	19,0	25,4


Grids

		GLE10S	GLE10
Indoor unit			
A	mm	620	950
В	mm	620	950
C	mm	50	70
D	mm	697	1042
E	mm	712	1027
F	mm	115	95
Net weight	kg	2,6	6,0
Weight for transport	kg	4,2	9,0

OUTDOOR UNIT WEIGHTS AND DIMENSIONS

MGE

		MGE420	MGE520	MGE630	MGE830	MGE840	MGE1040	MGE1250
Outdoor unit								
A	mm	877	877	1003	1003	1034	1034	1034
В	mm	349	349	380	380	432	432	432
C	mm	554	554	673	673	810	810	810
D	mm	915	915	1030	1030	1090	1090	1090
E	mm	370	370	438	438	505	505	505
F	mm	615	615	750	750	845	845	845
Net weight	kg	31,6	35,0	43,3	48,0	62,1	68,8	74,1
Weight for transport	kg	34,7	38,0	47,1	51,8	78,3	86,2	90,1

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italy Tel. 0442633111 - Telefax 044293577 www.aermec.com

MGEHW

Multisplit

- R32 ecological refrigerant gas.
- Possibility of DHW storage tank Wi-Fi control.
- Possibility of AC indoor units Wi-Fi control via accessory.
- Achieve maximum energy savings with the new heat recovery multisplit system for domestic hot water.

DESCRIPTION

MGEHW it is a multi-split unit that allows effective heat recovery for DHW production using 3 reverse cycle valves.

The multi-split outdoor units of the series MGEHW are combined with indoor units:

- MGEWT Domestic hot water storage tank
- SGE_W unit Wall, for wall installation.
- MGE_C_CS unit Cassette for false ceiling installation.
- MGE_FS unit Console, for wall installation.
- MGE_DH unit Duct, for duct type horizontal installation.

TYPE OF OUTDOOR UNIT

MGEHW Outdoor unit

Multisplit air conditioner.

Reversible air/air heat pump with DC inverter technology.

Types

- Can be combined with 1, 2 or 3 indoor units.
- Can be combined with 1, 2 or 3 indoor units and MGEWT domestic hot water storage tank.

General features

- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.

Special golden fin coil

Unlike normal batteries, this special golden epoxy coating silicon free is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

TYPE OF INDOOR UNIT

MGEWT Indoor unit

MGEWT it is a domestic hot water storage tank intended for indoor installation with a room temperature between 5°C and 43°C.

979

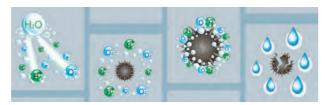
Features

- Unit front panel with LED display and indicator lights and touch screen keyboard.
- Timer for programming switch-off and switch-on.
- WiFi function integrated in the panel.
- Anti-corrosion magnesium anode.
- Supplementary electric resistance for DHW.
- Function quick water heating for a quick heating of domestic hot water
- Auto-restart function.
- When the anti-legionella cycle is activated (it's easily set via the control panel), the whole tank is heated once a week to a temperature (max. 70 °C) that weakens the bacteria responsible for the infection.
- Hybrid function allowing the electric heater and heat pump to work together in heating mode.
- Smart function that records users' hot water usage habits over the last 7 days and switches the heating on in advance based on the user's peak water usage hours.
- SG function (Smart Grid)

Indoor unit SGE_W

Wall indoor unit designed to be installed on indoor walls.

SGE_W has an elegant and essential design. Its curved lines emphasize a kind of structure with innovative and functional style. The display with working parameters is elegantly integrated in the satin-finish cover and visible only when the unit is on.



Features

- Remote control standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- **Turbo** function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- followMe function for activating the ambient temperature probe inside the remote control, for improved comfort.

Air Purifiers (Cold Plasma)

Capable of reducing pollutants breaking down their molecules using electric discharges, causing the splitting of the water molecules in the air into positive and negative ions. These ions neutralise the molecules of the gaseous pollutants obtaining products that are normally present in clean air. The device can eliminate 90% of bacteria. The result is clean, ionised air that has no bad odours.

MGE CS - MGE C Indoor unit

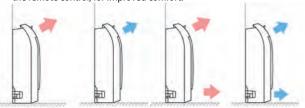
Indoor unit **Cassette** of dimensions 570x570 mm (MGE350CS - MGE500CS) and 830x830 mm (MGE700C) designed to be installed on suspended ceiling indoors

Features

- Remote control standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 4-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- **Turbo** function
- Louver angle memory function.
- Sleep night time function well-being program.
- Refrigerant Leak Detection System.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- followMe function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Dehumidification function that allows humidity control

MGE_FS Indoor unit

Console indoor unit designed to be installed on indoor floors.



Features

- Remote control standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 4-speed fan, to meet every possible need.
- Auto function for a continuous speed variation.
- Turbo function
- Louver angle memory function.
- **Sleep** night time function well-being program.
- Refrigerant Leak Detection System.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- followMe function for activating the ambient temperature probe inside the remote control, for improved comfort.

Single air delivery

Dual air delivery

MGE_DH Indoor unit

Duct indoor unit designed for indoor duct type installation.

Features

- Remote control standard supply with each indoor unit.
- WRPE10 wired panel standard supply with each indoor unit.
- Fan with DC inverter technology.
- Timer for programming switch-off and switch-on.
- 4-speed fan, to meet every possible need.
- Auto function for a continuous speed variation.
- **Turbo** function
- Sleep night time function well-being program.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- followMe function for activating the ambient temperature probe inside the remote control, for improved comfort.

General features

- R32 ecological refrigerant gas with low GWP.
- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Air filter easily removed and cleaned.
- Systems with multi-line refrigerant connections, where every indoor unit is connected directly to the outdoor unit via dedicated refrigerant lines
- Easy installation and maintenance.

Low cooling function

cooling operation with outdoor temperatures down to -15 $^{\circ}\text{C}$

Low heating function

heating with external temperatures up to -15 °C.

Nethome Plus app

The system offers wi-fi control thanks to the app for iOS and Android devices (available free on Apple Store and Google Play). The system can be controlled from a distance directly on your smartphone or tablet, or via Cloud with the aid of a wireless router connected to the Internet.

- The Wi-Fi module is supplied as per standard for the indoor unit MGEWT
- For indoor units SGE_W, MGE_C_CS, MGE_DH, MGE_FS Wi-Fi management can be supported via specific accessory.

ACCESSORIES

WIFIKEY: Plug & Play module to be installed in the indoor unit for Wi-Fi control

WRPE10: Wired panel with liquid crystal display and soft-touch buttons. WRPE10W: Flush panel with LCD display and Soft-Touch keys. It is equipped with WiFi and Bluetooth® connection for better connection stability.

GLE105: Air supply and flow grid with dimensions (620x620 mm) for cassette internal unit. Mandatory accessory.

GLE10: Air supply and flow grid with dimensions (950x950 mm) for cassette internal unit. Mandatory accessory.

Accessories compatibility

SGE W

Accessory	SGE200W	SGE250W	SGE350W	SGE500W	SGE700W
WIFIKEY	•	•	•	•	•
MGE_C / CS					
Accessory	MGE350CS		MGE500CS		MGE700C
WIFIKEY	•		•		•
Accessory	MGE350CS		MGE500CS		MGE700C
WRPE10	•		•		•
WRPE10W	•		•		•
Accessory	MGE350CS	,	MGE500CS		MGE700C
GLE10 (1)					•
GLE10S (1)	•		•		
(1) Mandatory accessory.					
MGE_DH					
Accessory	MGE250DH	MGE350D	Н	MGE500DH	MGE700DH
WRPE10W	•	•		•	•
Wired panel WRPE10 standard supply.					
MGE_FS					
Accessory	MGE250FS		MGE350FS		MGE500FS
WIFIKEY	•		•		•
Accessory	MGE250FS		MGE350FS		MGE500FS
WRPE10	•		•		•
WRPE10W	•		•		•

ALLOWED COMBINATIONS OF INDOOR UNITS

Combinations MGEHW - Direct expansion indoor units

Outdoor unit	Combination	Indoor units —	Indoor units Combinations (x1000 B			
Combination	Combination	Dillation indoor units	Unit A	Unit B	Unit C	
		7	7	-	-	
	(1x1)	9	9	-	-	
	(IXI)	12	12	-	-	
		18	18	-	-	
		7+7	7	7	-	
		7+9	7	9	-	
		7+12	7	12	-	
		7+18	7	18		
	(1x2)	9+9	9	9	-	
		9+12	9	12	-	
		9+18	9	18	-	
		12+12	12	12	-	
MCELIMO40		12+18	12	18	-	
MGEHW840 ———		7+7+7	7	7	7	
		7+7+9	7	7	9	
		7+7+12	7	7	12	
		7+7+18	7	7	18	
		7+9+9	7	9	9	
		7+9+12	7	9	12	
	(1x3)	7+9+18	7	9	18	
		7+12+12	7	12	12	
		7+12+18	7	12	18	
		9+9+9	9	9	9	
		9+9+12	9	9	12	
		9+12+12	9	12	12	
		12+12+12	12	12	12	

Combinations MGEHW - indoor units + MGEWT

Outdoor unit	Combination	Indoor units		Combina	ations (x1000 Bt	tu/h)	
Outdoor unit	Combination	indoor units	Unit A	Unit B	Unit C	D.H.W.	
	_	7 + MGEWT190	7	-	-		
		9 + MGEWT190	9	-	-		
	(1x1) + MGEWT190	12 + MGEWT190	12	-	-		
		18 + MGEWT190	18	-	-		
		24 + MGEWT190	24	-	-		
		7+12 + MGEWT190	7	12	-		
	_	7+18 + MGEWT190	7	18	-		
	_	7+24 + MGEWT190	7	24			
	(12) . MCFN/T100	9+9 + MGEWT190	9	9	-		
	(1x2) + MGEWT190 -	9+12 + MGEWT190	9	12	-		
	_	9+18 + MGEWT190	9	18	_		
	_	12+12 + MGEWT190	12	12	-		
	_	12+18 + MGEWT190	12	18	_		
MCELINA/0.40		7+7+7 + MGEWT190	7	7	7	MCFWT400	
MGEHW840	_	7+7+9 + MGEWT190	7	7	9	MGEWT190	
	_	7+7+12 + MGEWT190	7	7	12		
	_	7+7+18 + MGEWT190	7	7	18		
	_	7+9+9 + MGEWT190	7	9	9		
	_	7+9+12 + MGEWT190	7	9	12		
	_	7+9+18 + MGEWT190	7	9	18		
	(1x3) + MGEWT190	7+12+12 + MGEWT190	7	12	12		
	_	7+12+18 + MGEWT190	7	12	18		
	_	9+9+9 + MGEWT190	9	9	9		
	_	9+9+12 + MGEWT190	9	9	12		
	_	9+9+18 + MGEWT190	9	9	18		
	_	9+12+12 + MGEWT190	9	12	12		
	_	9+12+18 + MGEWT190	9	12	18		
	_	12+12+12 + MGEWT190	12	12	12		

OUTDOOR UNIT PERFORMANCE DATA MGEHW

		MGEHW840
Nominal cooling performances		
Cooling capacity (1)	kW	7,91
Cooling input power (1)	kW	2,45
EER (2)	W/W	3,23
Minimum cooling performances		
Cooling capacity	kW	2,70
Cooling input power	kW	0,25
Maximum cooling performances		
Cooling capacity	kW	8,21
Cooling input power	kW	2,90
Seasonal efficiency		
SEER	W/W	6,30
Efficiency energy class (3)		A++
Annual power consumption	kWh/annum	439
Nominal heating performances		
Heating capacity (4)	kW	8,21
Heating input power (4)	kW	2,21
COP (2)	W/W	3,71
Minimum heating performances		
Heating capacity	kW	2,11
Heating input power	kW	0,35
Maximum heating performances		
Heating capacity	kW	8,79
Heating input power	kW	3,00
Seasonal efficiency (temperate climat	e)	
SCOP	W/W	4,10
Efficiency energy class (3)		A+
Annual power consumption	kWh/annum	2151

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.
 (3) Data in accordance with Delegated Regulation (EU) No. 626/2011.
 (4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

MGEHW - MGEWT

Indoor unit		MGEWT190	•	
Outdoor unit		MGEHW840		
Indoor unit quantity		1		
Outdoor unit quantity		1		
Storage tank (DHW)				
Water heating power (A 15/12°C, W 15~45°C)	kW	4,0		
COP (A 15/12°C, W 15~45°C)	kW/kW	3,90		
Heating capacity DHW (1)	kW	3,90		
COP DHW (1)	kW/kW	3,40		
Setting Temperature for the performance mesaurement (1)	°C	52		
Reference hot water temperature (1)	°C	52,6		
Water heating energy efficient (1)	%	128		
Maximum volume of mixed water at 40°C (1)	L	240		
Declared load profile (1)		L		
Energy Efficiency Class (1)		A+		
Heating time (1)	hh:mm	02:30		
Energy input during Heat-up time (1)	kW	2,9		
Standby power input (1)	W	50		

⁽¹⁾ Data according to EN 16147:2017

OUTDOOR UNIT GENERAL TECHNICAL DATA

		MGEHW840
Electric data		
Rated power input (1)	W	5300
Rated current input (1)	Α	23,5
Liquid cooling connections		
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")
Number	no.	4
Gas cooling connections (AC)		
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8") / 12,7 (1/2")
Number	no.	2/1
Gas cooling connections (DHW)		
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")
Number	no.	1
Refrigerant lines		
Total maximum length of the refrigerant lines (AC)	m	80,0
Max. lenght for DHW	m	20,0
Maximum single cooling line length	m	35,0
Maximum height difference between ODU and IDU	m	15,0
Maximum height difference between IDU and ODU	m	10,0
Maximum length of refrigerant lines without addition	ı m	7,5
of refrigerant		ι,,
Refrigerant to be added	g/m	20
Power supply		
Power supply		220-240V ~ 50Hz
Cross section		
Section of the power cable	mm ²	2,5
Power supply cable		
Magnet circuit breaker	A	25

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

MGEHW - MGEWT

Indoor unit		MGEWT190	
Outdoor unit		MGEHW840	
Indoor unit quantity		1	
Outdoor unit quantity		1	
Liquid cooling connections			
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	
Number	no.	4	
Gas cooling connections (AC)			
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8") / 12,7 (1/2")	
Number	no.	2/1	
Gas cooling connections (DHW)			
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	
Number	no.	1	
Refrigerant lines			
Max. lenght for DHW	m	20,0	
Maximum height difference between ODU and WT	m	15,0	
Maximum height difference between IDU and WT	m	10,0	
Power supply			
Power supply		220-240V ~ 50Hz	
Electric heater			
Capacity	kW	2,0	
Maximum current	A	9,10	
Magnet circuit breaker			
Air Break Switch (electric heater)	A	16	
Cross section			
Section of the power cable	mm²	1,5	
Communication wires between the tank and the outdoor unit	mm ²	1	

OUTDOOR UNIT TECHNICAL DATA

		MGEHW840
Outdoor unit		
Type of fan	Туре	Axial
Air flow rate		
Maximum	m³/h	4000
Sound power		
Maximum	dB(A)	69,0
Sound pressure		
Maximum	dB(A)	61,0
Compressor		
Туре	type	Rotary
Refrigerant	type	R32
Refrigerant charge	kg	1,80
Equivalent CO ₂	t	1,22
Outdoor unit	<u>-</u>	
Condensate discharge diameter	mm	16,0

Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source. Sound Power: measured in reverberation room at a distance of 1,5 - in accordance with EN12102.

INDOOR UNIT PERFORMANCE DATA

SGE_W

		SGE200W	SGE250W	SGE350W	SGE500W	SGE700W
Nominal cooling performances						
Cooling capacity (1)	kW	2,05	2,77	3,46	5,27	5,27
Nominal heating performances						
Heating capacity (2)	kW	2,34	2,93	3,57	4,97	4,97
Indoor unit						
Type of fan	Туре	Tangential	Tangential	Tangential	Tangential	Tangential
Air flow rate				-		
Maximum	m³/h	460	466	540	840	980
Average	m³/h	360	360	430	680	817
Minimum	m³/h	325	325	314	540	662
Sound power (3)						
Maximum	dB(A)	54,0	54,0	55,0	56,0	59,0
Sound pressure (1 m) (4)						
Minimum	dB(A)	21,0	25,0	25,0	26,0	36,0
Maximum	dB(A)	40,0	38,5	40,5	42,5	45,0
Average	dB(A)	26,0	32,0	34,5	36,0	40,5
Refrigeration pipework						
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	12.7 (1/2")	15,9 (5/8")
Power supply						
Indoor unit power supply		220-240V ~ 50Hz				

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 (4) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.

MGEWT

		MGEWT190
Storage tank (DHW)		
Nominal volume of the tank	L	190
Rated pressure of the water tank	MPa	1
Material		Vitrified steel
Anode type		Magnesium bar
Electrical resistance type		Electric immersion heater

MGE_CS/MGE_C

		MGE350CS	MGE500CS	MGE700C
Nominal cooling performances				
Cooling capacity	kW	3,52	5,28	7,03
Nominal heating performances				
Heating capacity	kW	3,81	5,57	7,62
Indoor unit				
Type of fan	Туре	Tangential	Tangential	Tangential
Air flow rate				
Minimum	m³/h	330	300	992
Average	m³/h	520	540	1118
Maximum	m³/h	620	660	1247
Sound power				
Maximum	dB(A)	55,0	59,0	59,0
Sound pressure				
Minimum	dB(A)	31,5	31,5	37,0
Average	dB(A)	38,5	41,0	42,5
Maximum	dB(A)	42,0	44,0	45,0
Indoor unit				
Condensate discharge diameter	mm	25,0	25,0	25,0
Power supply				
Power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz

- Cooling (EN-14511 and EN-14825) Ambient air temperature 27°C D.B. / 19°C W.B.; Outside air temperature 35°C; Max speed; Length of Refrigerant Lines 5m.

 Heating (EN-14511 and EN-14825) Ambient air temperature 20°C D.B.; Outside air temperature 7°C D.B./6°C W.B.; Max speed; Length of Refrigerant Lines 5m.

 The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN-60335-1 and EN-60335-2-40.

 Sound Prower: measured in reverberation room at a distance of 1,5 in accordance with EN12102.

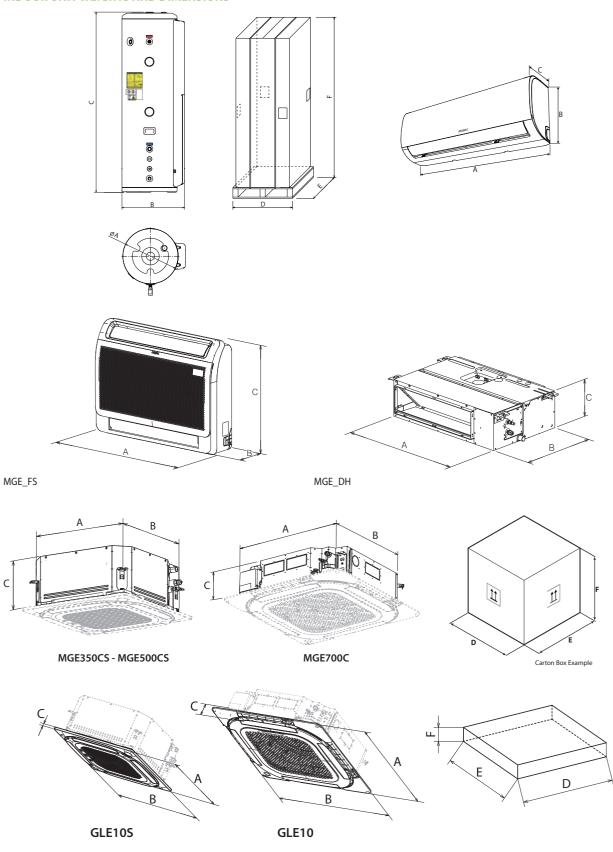
MGE FS

MGE_13				
		MGE250FS	MGE350FS	MGE500FS
Nominal cooling performances				
Cooling capacity	kW	2,64	3,52	4,98
Nominal heating performances				
Heating capacity	kW	2,93	3,81	5,28
Indoor unit				
Type of fan	Туре	Tangential	Tangential	Tangential
Air flow rate				
Minimum	m³/h	400	490	600
Average	m³/h	510	580	690
Maximum	m³/h	600	650	780
Sound power				
Maximum	dB(A)	54,0	54,0	55,0
Sound pressure				
Minimum	dB(A)	27,5	27,0	32,0
Average	dB(A)	33,5	34,0	38,0
Maximum	dB(A)	36,5	37,0	41,0
Indoor unit	•			
Condensate discharge diameter	mm	16,0	16,0	16,0
Power supply				
Power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz

- Cooling (EN-14511 and EN-14825) Ambient air temperature 27°C D.B. / 19°C W.B.; Outside air temperature 35°C; Max speed; Length of Refrigerant Lines 5m. Heating (EN-14511 and EN-14825) Ambient air temperature 20°C D.B.; Outside air temperature 7°C D.B./6°C W.B.; Max speed; Length of Refrigerant Lines 5m. The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN-60335-1 and EN-60335-2-40. Sound pressure: measured in semi anechoic chamber at a distance of 1 m from the source. Sound Power: measured in reverberation room at a distance of 1,5 in accordance with EN12102.

MGE_DH

		MGE250DH	MGE350DH	MGE500DH	MGE700DH
Nominal cooling performances					
Cooling capacity	kW	2,64	3,52	5,28	7,03
Nominal heating performances					
Heating capacity	kW	2,93	3,81	5,57	7,62
Electric data					
Rated power input	W	88	91	172	217
Indoor unit					
Type of fan	Туре	Tangential	Tangential	Tangential	Tangential
Air flow rate					
Minimum	m³/h	450	470	650	700
Average	m³/h	540	570	780	1000
Maximum	m³/h	620	660	900	1200
Sound power					
Maximum	dB(A)	54,0	52,0	53,0	56,0
Sound pressure					
Minimum	dB(A)	31,0	31,0	31,0	31,0
Average	dB(A)	33,0	33,0	34,0	32,5
Maximum	dB(A)	35,0	35,0	36,5	33,5
Indoor unit					
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0
Useful static pressure					
Range of static pressure	Pa	0 ÷ 80	0 ÷ 100	0 ÷ 160	0 ÷ 160
Nominal	Pa	25	25	25	25
Power supply					
Power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz


- Cooling (EN-14511 and EN-14825) Ambient air temperature 27°C D.B. / 19°C W.B.; Outside air temperature 35°C; Max speed; Length of Refrigerant Lines 5m.

 Heating (EN-14511 and EN-14825) Ambient air temperature 20°C D.B.; Outside air temperature 7°C D.B./6°C W.B.; Max speed; Length of Refrigerant Lines 5m.

 The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN-60335-1 and EN-60335-2-40. Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

 Sound Power: measured in reverberation room at a distance of 1,5 in accordance with EN12102.

INDOOR UNIT WEIGHTS AND DIMENSIONS

MGEWT190

		MGEWT190	
Indoor unit			
A	mm	504	
В	mm	574	
(mm	1660	
D	mm	690	
E	mm	690	
F	mm	1860	
Net weight	kg	70,0	
Weight for transport	kg	92,0	

SGE_W

		SGE200W	SGE250W	SGE350W	SGE500W	SGE700W
Indoor unit						
A	mm	805	805	805	957	1040
В	mm	285	285	285	302	327
C	mm	194	194	194	213	220
D	mm	870	870	870	1035	1120
E	mm	270	270	270	295	405
F	mm	360	365	365	385	315
Net weight	kg	7,9	7,6	7,6	10,0	12,3
Weight for transport	kg	9,7	9,7	9,8	13,0	15,8

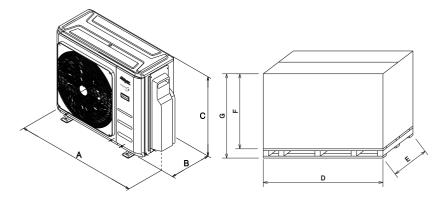
MGE_FS

		MGE250FS	MGE350FS	MGE500FS
Indoor unit				
A	mm	794	794	794
В	mm	200	200	200
C	mm	621	621	621
D	mm	865	865	865
E	mm	280	280	280
F	mm	719	719	719
Net weight	kg	14,9	14,9	14,9
Weight for transport	kg	18,8	18,8	18,8

MGE_DH

		MGE250DH	MGE350DH	MGE500DH	MGE700DH
Indoor unit					
A	mm	700	700	700	1000
В	mm	506	506	750	750
С	mm	200	200	245	245
D	mm	860	860	925	1225
E	mm	540	540	850	860
F	mm	285	285	298	304
Net weight	kg	16,6	16,6	24,4	31,8
Weight for transport	kg	19,8	19,8	29,0	37,2

MGE_CS / MGE_C


		MGE350CS	MGE500CS	MGE700C
Indoor unit				
A	mm	570	570	856
В	mm	570	570	831
C	mm	245	245	205
D	mm	715	715	910
E	mm	640	640	910
F	mm	295	295	235
Net weight	kg	16,1	16,2	21,6
Weight for transport	kg	18,8	19,0	25,4

Grids

		GLE10	GLE10S
Indoor unit			
A	mm	950	620
В	mm	950	620
(mm	70	50
D	mm	1042	697
E	mm	1027	712
F	mm	95	115
Net weight	kg	6,0	2,6
Weight for transport	kg	9,0	4,2

OUTDOOR UNIT WEIGHTS AND DIMENSIONS

MGEHW

		MGEHW840	
Outdoor unit			
A	mm	1050	
В	mm	433	
C	mm	810	
D	mm	1090	
E	mm	500	
F	mm	845	
G	mm	935	
Net weight	kg	64,3	
Weight for transport	kg	79,1	

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italy Tel. 0442633111 - Telefax 044293577 www.aermec.com

VRF SYSTEM

The VRFs are the direct expansion systems, with variable refrigerant flow.

Unlike the Multisplits, which are characterised by a set flow of refrigerant, these systems allow users to adjust the amount of refrigerant in circulation, according to the actual load required by the indoor units in use.

They range of 12kW to 276 kW thanks to their modular configuration, and are available in a heat pump version with heat recovery and domestic hot water production.

These systems guarantee excellent energy efficiency, avoiding wasting energy pointlessly, and are amazingly quiet during operation.

	VRF SYSTEM		Air flow rate (m3∕h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Page	
new	MVBM - MVAS - MVBHR	Direct expansion variable refrigerant flow system VRF		12.1-246.0	14.0-276.0	994	

MVBM - MVAS - MVBHR

Direct expansion variable refrigerant flow system VRF

Cooling capacity 12,1 ÷ 246,0 kW Heating capacity 14,0 ÷ 276,0 kW

- Units prepared for installations with two or three pipes.
- The correct balance between cost, efficiency and space.
- Wide choice of indoor units available.
- Up to 80 connectible indoor units.

DESCRIPTION

- MVA_WL Wall.
- MVA_D Horizontal duct.
- MVA_DH Horizontal duct, high head.
- MVA_DV Vertical duct.
- MVA_CS, MVA_C 8-way cassette .
- MVA_C1 1-way cassette.
- MVA_F Floor ceiling.
- MVA_FS Console.
- MVA_V Column.
- MVA_ERV Heat recovery unit.

TYPE OF INDOOR UNIT

MVA WL

Wall indoor unit designed to be installed on indoor walls.

- Modern design to blend with all furnishing styles.
- Distributed air jet: air outlet louvers with horizontal and vertical adjustment facility.
- Anti-freeze function that allows a minimum temperature of 8 °C to be maintained in the environment during the winter period.

MVA_D

Duct indoor unit designed for indoor duct type installation.

MVA_D - Horizontal duct.

- Wired panel standard supply.
- Low noise levels.
- Easy installation in small assembly spaces, thanks to the limited dimensions.
- Useful static pressure up to 80 Pa.

MVA_DH

Duct indoor unit designed for indoor duct type installation.

MVA_DH - Horizontal duct, high head.

- Wired panel standard supply.
- Unit without cover, designed for duct type horizontal installation.
- Useful static pressure up to 200 Pa.

MVA_DV

Duct indoor unit designed for indoor vertical installation.

MVA_DV - Vertical duct.

- Wired panel standard supply.
- Unit without cover, designed for installation in wall recesses.
- Useful static pressure up to 60 Pa.

MVA_CS / MVA_C

8-way cassette indoor unit designed to be installed on false ceilings indoors.

MVA_CS - Cassette 570x570.

Mandatory accessory GLG40S.

MVA_C - Cassette 840x840.

Mandatory accessory GLG40.

- Wired panel standard supply.
- Condensate discharge pump as standard.
- Guarantees even air distribution, for optimum comfort.

MVA_C1

 $\ensuremath{\mbox{1-way}}$ cassette indoor unit designed to be installed on false ceilings indoors.

MVA_C1 - Cassette 987x385.

Mandatory accessory GLC1.

- Wired panel standard supply.
- Condensate discharge pump as standard.
- Compact size and minimum dimensions.

MVA_F

Floor ceiling indoor unit to be installed on walls or ceiling.

- Low noise levels.
- Anti-freeze function.
- Flexible installation for any environment.

MVA FS

Console indoor unit designed to be installed on the floor.

- Anti-freeze function.
- 5-speed fan, to meet every possible need.
- Two delivery vents for optimal control of the air flow.

MVA V

Column indoor unit designed to be installed in large sized rooms.

- Easy installation and maintenance.
- Speed in reaching the defined set point in the shortest time possible.
- Ideal for installations in the service sector: hotels, restaurants, offices.

General features

- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Total capacity connected to the outdoor units between 50% and 135% of the rated capacity of the selected configuration.
- Indoor unit fitted standard with an electronic expansion valve.
- WRC wired panel standard supply with each indoor unit.
- Every indoor unit comes with a remote control and a remote control holder.
- Automatic unit adjustment function.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.— Self-diagnosis function.
- Easy installation and maintenance.

TYPE OF INDOOR UNIT - HEAT RECOVERY

MVA ERV

Heat recovery units designed for duct-type horizontal installation indoors. Fitted with a cross-flow enthalpic heat recovery unit with recovery efficiency higher than 70%. The heat exchanger allows energy to be transferred from the exhaust air to the fresh air, avoiding any direct mixing of the air flows. This range of heat recovery units ensures constantly clean and filtered fresh air, a constant air flow rate, and rooms with comfortable temperature and humidity levels, ensuring reduced energy consumption in every application. The device is also equipped with a direct expansion coil to allow the air flow delivered into the room to give off or absorb heat. This means that the unit not only guarantees correct air renewal, but also helps cool or heat the rooms and avoid air currents with a marked temperature difference in relation to the room temperature, to ensure optimum comfort for the occupants.

Operating mode

Every indoor unit comes with a wired panel. The wired panel can be used to set the standard cooling, heating, dehumidification and ventilation-only modes, plus the following operating modes.

 Bypass with free cooling and night-time free cooling operation: night-time free cooling operation reduces the thermal load in the rooms, taking advantage merely of the outside temperature difference

- and therefore boosting energy savings for the following day thanks to free night-time cooling.
- Control of different inlet and outlet air flow rates: known as "positive pressure operating mode" when the inlet air flow rate is higher than the recovery one, or "negative pressure operating mode" in the opposite situation.

Mixed connection indoor units + MVA_ERV

In case of mixed systems, i.e. consisting of indoor units of the VRF and units, MVA_ERV to guarantee the proper operation of the system, the nominal cooling powers of the indoor units is between 50% and 100% of the nominal cooling power of the system of external units and that the sum of the installed nominal power of the MVA_ERV units does not exceed 30% of the power of the external units system.

The MVA_ERV units are compatible with MVBHR systems.

Connections with MVA_ERV units only

In case of systems made up only by units, MVA_ERV to guarantee the proper operation of the system, check that the sum of the nominal cooling powers of the indoor units is between 50% and 100% of the nominal cooling power of the external units system.

General features

- Wired panel standard supply with each indoor unit.
- Particularly quiet operation.
- Centrifugal fans with 5-speed brushless DC motor.
- Units fitted with an electronic expansion valve as standard.
- Filters with G4 efficiency level on inlet and outlet air.
- Alarm signal for filter cleaning.
- Timer for programming unit switch-on and switch-off.
- Incorporated electrical panel with electronic card to control the ventilation and free cooling functions.
- Easy installation and maintenance.

TYPE OF OUTDOOR UNIT

MVAS

Standard multisplit VRF air conditioners.

Reversible air/air heat pump with DC inverter technology.

- From 1 to 16 connectible indoor units.
- Total maximum length of the refrigerant lines up to 300 m.
- The sizes MVAS 1201S MVAS 1401S MVAS 1601S e MVAS 1201T MVAS 1401T MVAS 1601T, are fitted with a base electric resistor to avoid possible formation of ice and encourage the disposal of the condensate during the heating operation.
- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.

MVRM

Module multisplit VRF ambient air conditioner for 2-pipe systems. Reversible air/air heat pump with DC inverter technology.

- From 1 to 80 connectible indoor units.
- Total maximum length of the refrigerant lines up to 1000 m.
- Modular system with base modules that can be combined together, up to a maximum of 4, for a total of 33 recommended combinations.
- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.
- Optimised management of the compressor operating time with partial loads.
- Emergency operation, in the event of problems with the compressors or fans, allows operation of the system with a reduced number of compressors and/or fans for a limited time.
- Channelled air delivery from 0 Pa (default) to 110 Pa of effective static head set via dip switches.
- For cooling line connections, refer to refinet joints in the accessories section.

MVBHR

Module multisplit VRF ambient air conditioner for 3-pipe systems.

Reversible air/air heat pump with DC inverter technology.

- From 1 to 80 connectible indoor units.
- $-\!\!\!-$ Total maximum length of the refrigerant lines up to 1000 m.
- Modular system with base modules that can be combined together, up to a maximum of 4, for a total of 33 recommended combinations.
- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.
- Channelled air delivery from 0 Pa (default) to 110 Pa of effective static head set via dip switches.
- A system that permits managing the heating and cooling modes in an independent and simultaneous manner.
- Possibility of managing hot or cold modes independently and simultaneously.
- MVBHR 3-pipe outdoor units must be interfaced with two dual pipe MVA_Indoor units using the exchange module (MEB) available with one, two, four or eight branches.

MEB: mandatory accessory for 3-pipe systems.

Special golden fin coil

Unlike normal batteries, this special golden epoxy coating silicon free is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

General features

- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Refrigerant connections with braze welded Y and F joints (mandatory accessories).
- Compressor and fan with DC inverter technology.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Easy installation and maintenance.
- Serial communication in CanBus protocol.

ACCESSORIES

CC2: Centralised control with 7" touchscreen display for managing several indoor units within a number of multisplit systems. The centralised control has an integrated external contact. For more information, refer to the specific documentation. *

MVASZC: Simplified centralised control (4,3" touch screen display), which can be used to manage up to 32 Indoor Units distributed across a maximum of 16 Systems.

WLRC: Remote control with liquid crystal display and soft-touch buttons.

WRC: Wired panel with liquid crystal display and soft-touch buttons.

WRC1: Simplified wired panel with liquid crystal display and soft-touch buttons with built-in external contact. This panel is particularly suitable for hotel applications.

* The CC2 centralised control can manage up to 255 indoor units distributed over a maximum of 16 VRF systems.

For more information about the accessories and their functions (such as the auto-restart function), refer to the specific documentation of the single accessory.

AHUKIT: Kit comprised of a box that contains the thermal expansion valve(s) complete with wiring and their control module, with pre-wired probes, a wall-mounted control panel with external contact. The kit is in-

tended to be combined with the direct expansion cooling and/or heating coil (using R410A) of an air treatment unit. The latter is not supplied as an MV_ component, but is functionally connected to an MV_ system and is suitably sized. AHUKIT, and the and the air treatment unit connected to it, treat the recirculated and/or fresh air that falls within the operating limits, regulating the recirculation/expulsion air temperature.

MINIMODBUS10: Thanks to its smaller size, this accessory can be easily installed in the outdoor unit. It allows you to manage up to 16 MV systems (with a maximum of 255 indoor units), with a ModBus RTU serial on RSA485 for supervision with an external BMS.

MVAGW: This accessory allows you to manage up to 16 MV systems (with a maximum of 255 total indoor units), making available a serial in ModBus RTU protocol on RS485, ModBus TCP or BACnet / IP for supervision with an external BMS.

USBDC / USBDC1: The kit includes a converter (from CanBus to ModBus) and the VRF debugger software. IT is designed to meet the requirements of after sales services and qualified technicians who need to carry out control and debugging procedures on the MV_ranges.

DTAC: Diagnostic tool for indoor and outdoor units of the entire series (tool reserved for service centres or installers).

Accessories mandatory

Air delivery and recovery grille for indoor Cassette type units.

Grille model -		Indoor unit model		8 WAY	4 WAY	1 WAV	Dimensions	Weight
drille illodel	MVA_CS	MVA_C	MVA_C MVA_C1 8 WAY 4 WAY I	1 WAY	LxHxW (mm)	Kg		
GLG40S	•	-	-	•	-	-	620x620x47,5	3,0
GLG40	-	•	-	•	-	-	950x950x52	6,0
GL40B	-	-	-	-	•	-	1040x1040x65	8,0
GLC1	-	-	•	-	-	•	1200x460x55	4,2

Joints refnet

Connection between modular outdoor units.

The modules are easy to install and link together from the cooling point of view, thanks to the connections with dedicated refnet joints. Modularity is the fundamental characteristic of these systems as it also allows high-capacity systems to be created in a quick, simple way.

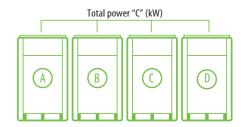
Y-joints for cooling connection between 2 Outdoor Units in Modular Systems. A modular system made up of n. base modules requires n-1 RNYMHR.-joints.

Mandatory accessory for modular systems.

MVBM 2-pipe system.	MVBHR 3-pipe system	MVBM 2-pipe system.	MVBHR 3-pipe system Indoor units	
Outdoor unit	Outdoor unit	Indoor units		
RNYM01	RNYMHR10	DMV11	DNIV11	
KNYMUI	RNYMHR20	- RNY11	RNY11	
AHUKIT	Outdoor units - MEB	RNY12	RNY12	
RNYAHU	RNYHR10	RNY21		
RNYAHU20	RNYHR20	RNY31		
	RNYHR30	RNY41		
	RNYHR40	RNF14		
	RNYHR50	RNF18		
	RNYHR60	RNF18B		
	RNYHR70			

MVBM 2-pipe system

RNYM01


Accessory comprising 2 Y-joints, one for the liquid line and one for the discharge line.

MVBHR 3-pipe system

RNYMHR

Accessory comprising 3 Y-joints - one for the liquid line and two for the gas lines (one high pressure and the other low pressure).

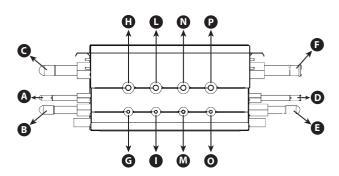
Code	e Ty	/pe
RNYMH	R10	Υ
RNYMH	R20	Υ

Connection between modular outdoor units and MEB - Exchange module

RNYHR

Accessory for connecting outdoor units with the MEB exchange module. Comprises three Y-joints one for the liquid line and two for the gas lines (one high pressure and the other low pressure).

Code	Туре
RNYHR10	Υ
RNYHR20	Υ
RNYHR30	Υ
RNYHR40	Υ
RNYHR50	Υ
RNYHR60	Υ
RNYHR70	Υ


MEB

Exchange module with one, two, four or eight branches (each single branch can manage heating or cooling mode independently of the others, but simultaneously) for interfacing MVBHR 3-pipe outdoor units with the MV 2-pipe indoor units.

Code	Branches	Maximum manageable cooling capacity (per single branch)	Total power managed by the MEB	Connectible indoor units (per single branch)	
	No.	(kW)	(kW)	No.	
MEB12	1	16,00	≤ 16,00	8	
MEB22	2	16,00	≤ 28,00	8	
MEB42	4	16,00	≤ 45,00	8	
MFB82	8	16.00	< 85.00	8	

In order to connect indoor units with a capacity higher than 16kW, two branches must be used that are joined into one using suitable DIP-switch settings on the distribution box.

MEB exchange module

Refrigerant connection	Description	
A	Liquid (left side)	
В	Gas high pressure (left side)	
(Gas low pressure (left side)	
D	Liquid (right side)	
E	Gas high pressure (right side)	
F	Gas low pressure (right side)	
G	Liquid (branch 1)	
Н	Gas (branch 1)	
I	Liquid (branch 2)	
L	Gas (branch 2)	
M	Liquid (branch 3)	
N	Gas (branch 3)	
0	Liquid (branch 4)	
P	Gas (branch 4)	

Connection between indoor units

Accessory comprising 2 Y-joints, one for the liquid line and one for the discharge line.

RNF

Accessory made up of two F-joints, one for the liquid line and one for the discharge line.

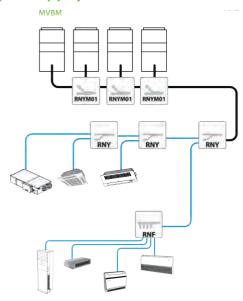
•					
Code	Syste	System type		Maximum 1-way connectible power	Connectible indoor units
coue	2-pipe	3-pipe	Type of joint	(kW)	No.
RNY11	•	•	Υ	-	-
RNY12	•	•	Υ	-	-
RNY21	•		Υ	-	-
RNY31	•		Υ	-	-
RNY41	•		Y	-	-
RNF14	•		F	16,00	from 2 to 4
RNF18	•		F	16,00	from 4 to 8
RNF18B	•		F	16,00	from 4 to 8

ADVANTAGES FOR VRF SYSTEMS: MVAS - MVBM - MVBHR

Compact designThanks to the reduced dimensions and compact design of these units, they are easy to move at the job site. All the models can in fact be transported easily right up to the roof, even using a lift.

VRF systems - 2-pipe heat pump

Customise your VRF system


To guarantee greater seasonal efficiency and maximum comfort with the variable refrigerant function.

Continuous comfort

Continuous heating or cooling of the rooms is what makes the VRF system a valid alternative to hydronic systems.

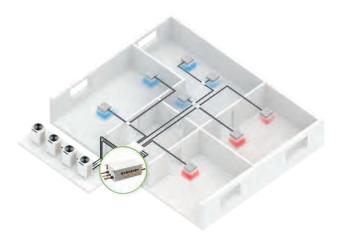
Example of a 2-pipe system

When dimensioning the cooling lines, exclusively refer to the technical manual.

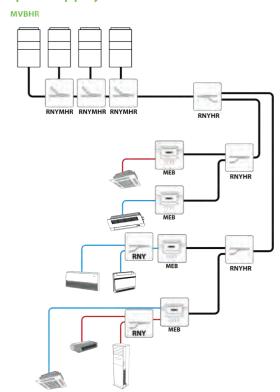
A modular system made up of n base modules requires n-1 Y-joints.

MVAS - MVBM

- 2-pipe system.
- Cooling or heating mode. (The image shows an example of a system in cooling mode)
- Total maximum length of the refrigerant lines: MVAS: 300 m, MVBM: 1000 m


VRF systems - 3-pipe heat pump

The VRF MVBHR heat recovery system heats and cools at the same time with one single circuit.


MVBHR recovers the heat produced during cooling and uses it to heat certain rooms cost-free, maximising energy efficiency and reducing energy costs.

Continuous comfort

Simultaneous heating and cooling of the rooms is what makes the VRF system a valid alternative to hydronic systems.

Example of a 3-pipe system

When dimensioning the cooling lines, exclusively refer to the technical manual.

A modular system made up of n base modules requires n-1 Y-joints.

MVBHR

- 3-pipe system.
- Simultaneous cold and hot operation.
- Total maximum length of the refrigerant lines: MVBHR: 1000 m

CONFIGURATIONS

MVAS combinations

MVAS connectable units

MVAS	Nominal cooling capacity (kW)	Min. no. of indoor units	Max. no. of indoor units
12015	12,10	2	7
14015	14,00	2	8
16015	16,00	2	9
1201T	12,10	2	7
1401T	14,00	2	8
1601T	16,00	2	9
2242T	22,40	1	13
2803T	28,00	1	17
3352T	33,50	2	20

MVAS outdoor unit with single duct type indoor unit

MVAS	Nominal cooling capacity (kW)	No. indoor units	Compatible indoor unit
2242T	22,40	1	MVA2240DH
2803T	28,00	1	MVA2800DH

MVBM recommended configurations

	Nominal cooling capacity-		MVBM cor		Connectible indoor units			
			Module			Number		
	(kW)	(A)	(B)	(C)	(D)	MINIMUM (1)	MAXIMUM (2)	
	22,40	2240T	-	-	-	1	13	
	28,00	2800T	-	-	-	1	16	
	33,50	3350T	-	-	-	1	19	
Base Module	40,00	4000T	-	-	-	1	23	
Dasc Module	45,00	4500T	_	-	-	1	26	
	50,40	5040T	-	-	-	1	29	
	56,00	5600T	-	-		1	33	
	61,50	6150T	-	-	-	2	36	
	68,00	2800T	4000T	-	-	2	39	
	73,00	2800T	4500T	-	-	2	43	
	78,40	2800T	5040T	-	-	2	46	
	84,00	2800T	5600T	-	-	2	50	
	89,50	2800T	6150T	-	-	2	53	
	95,00	3350T	6150T	-	-	2	56	
	101,50	4000T	6150T	-	-	2	59	
	106,50	4500T	6150T	-	-	2	63	
	111,90	5040T	6150T	-	-	3	64	
	117,50	5600T	6150T	-	-	3	64	
	123,00	6150T	6150T	-	-	3	64	
	129,00	2800T	4500T	5600T	-	3	64	
	134,50	2800T	4500T	6150T	-	3	64	
	140,00	3350T	4500T	6150T	-	3	66	
	145,50	2800T	5600T	6150T	-	3	69	
	151,00	2800T	6150T	6150T	-	3	71	
Combinations	156,50	3350T	6150T	6150T	-	3	74	
	163,00	4000T	6150T	6150T	-	3	77	
	168,00	4500T	6150T	6150T	-	4	80	
	173,40	5040T	6150T	6150T	-	4	80	
	179,00	5600T	6150T	6150T	-	4	80	
	184,50	6150T	6150T	6150T	-	4	80	
	190,50	2800T	4500T	5600T	6150T	4	80	
	195,90	2800T	5040T	5600T	6150T	4	80	
	201,50	2800T	5600T	5600T	6150T	4	80	
	207,00	2800T	5600T	6150T	6150T	4	80	
	212,50	2800T	6150T	6150T	6150T	4	80	
	218,00	3350T	6150T	6150T	6150T	4	80	
	224,50	4000T	6150T	6150T	6150T	5	80	
	229,50	4500T	6150T	6150T	6150T	5	80	
	234,90	5040T	6150T	6150T	6150T	5	80	
	240,50	5600T	6150T	6150T	6150T	5	80	
	246,00	6150T	6150T	6150T	6150T	5	80	

MVBHR recommended configurations

	Nominal cooling capacity			mbination 		Connectible indoor units		
			Module				umber	
	(kW)	(A)	(B)	(C)	(D)	MINIMUM (1)	MAXIMUM (2)	
	22,40	2240T	-	-	-	11	13	
	28,00	2800T	-	-	-	1	16	
	33,50	3350T	-	-	-	1	19	
Base Module	40,00	4000T	-	-	-	1	23	
Dusc Module	45,00	4500T	-	-	-	1	26	
	50,40	5040T	-	-	-	11	29	
	56,00	5600T	-	-	-	1	33	
	61,50	6150T	-	-	-	2	36	
	68,00	2800T	4000T	-	-	2	39	
	73,00	2800T	4500T	-	-	2	43	
	78,40	2800T	5040T	-	-	2	46	
	84,00	2800T	5600T	-	-	2	50	
	89,50	2800T	6150T	-	-	2	53	
	95,00	3350T	6150T	-	-	2	56	
	101,50	4000T	6150T	-	-	2	59	
	106,50	4500T	6150T	-	-	2	63	
	111,90	5040T	6150T	-	-	3	64	
	117,50	5600T	6150T	-	-	3	64	
	123,00	6150T	6150T	-	-	3	64	
	129,00	2800T	4500T	5600T	-	3	64	
	134,50	2800T	4500T	6150T	-	3	64	
	140,00	3350T	4500T	6150T	-	3	66	
	145,50	2800T	5600T	6150T	-	3	69	
	151,00	2800T	6150T	6150T	-	3	71	
Combinations	156,50	3350T	6150T	6150T	-	3	74	
	163,00	4000T	6150T	6150T	-	3	77	
	168,00	4500T	6150T	6150T	-	4	80	
	173,40	5040T	6150T	6150T	-	4	80	
	179,00	5600T	6150T	6150T	-	4	80	
	184,50	6150T	6150T	6150T	-	4	80	
	190,50	2800T	4500T	5600T	6150T	4	80	
	195,90	2800T	5040T	5600T	6150T	4	80	
	201,50	2800T	5600T	5600T	6150T	4	80	
	207,00	2800T	5600T	6150T	6150T	4	80	
	212,50	2800T	6150T	6150T	6150T	4	80	
	218,00	3350T	6150T	6150T	6150T	4	80	
	224,50	4000T	6150T	6150T	6150T	5	80	
	229,50	4500T	6150T	6150T	6150T	5	80	
	234,90	5040T	6150T	6150T	6150T	5	80	
	240,50	5600T	6150T	6150T	6150T	5	80	
	246,00	6150T	6150T	6150T	6150T	5	80	

INDOOR UNIT PERFORMANCE DATA

MVA_WL

		MVA220WL	MVA280WL	MVA360WL	MVA450WL	MVA500WL	MVA560WL	MVA630WL	MVA710WL
Nominal cooling performances									
Cooling capacity (1)	kW	2,20	2,80	3,60	4,50	5,00	5,60	6,30	7,10
Nominal heating performances									
Heating capacity (2)	kW	2,50	3,20	4,00	5,00	5,60	6,30	7,10	7,50
Electric data									
Rated power input (3)	W	20	20	25	35	35	50	50	65
Fan									
Туре	type	Inverter tangential	Inverter tangentia	Inverter tangential					
Air flow rate									
Minimum	m³/h	300	300	320	500	501	650	650	650
Average	m³/h	440	440	460	580	580	850	850	850
Maximum	m³/h	500	500	630	850	850	1100	1100	1200
Sound power (4)									
Minimum	dB(A)	40,0	41,0	41,0	47,0	47,0	47,0	48,0	47,0
Average	dB(A)	43,0	43,0	45,0	50,0	50,0	51,0	51,0	51,0
Maximum	dB(A)	45,0	45,0	48,0	53,0	53,0	53,0	53,0	54,0
Sound pressure (5)									
Minimum	dB(A)	30,0	30,0	31,0	37,0	37,0	37,0	37,0	37,0
Average	dB(A)	33,0	33,0	35,0	40,0	40,0	41,0	41,0	41,0
Maximum	dB(A)	35,0	35,0	38,0	43,0	43,0	43,0	43,0	44,0
Refrigeration pipework									
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")	12,7 (1/2")	12,7 (1/2")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")
Power supply									
Indoor unit power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz					
Indoor unit									
Condensate discharge diameter	mm	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.

 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA D

		MVA222D	MVA252D	MVA282D	MVA322D	MVA362D	MVA402I
Nominal cooling performances							
Cooling capacity (1)	kW	2,20	2,50	2,80	3,20	3,60	4,00
Nominal heating performances							
Heating capacity (2)	kW	2,50	2,80	3,20	3,60	4,00	4,50
Electric data							
Rated power input (3)	W	78	78	78	78	78	78
Refrigeration pipework							
Diameter of liquid refrigerant connections	mm (inch)			6,35	(1/4")		
Diameter of refrigerant gas connections	mm (inch)		9,52 (3/8")			12,7 (1/2")	
Power supply							
Indoor unit power supply				220-240	V ~ 50Hz		
Power supply 60Hz							
Indoor unit power supply				208-230	V ~ 60Hz		
Indoor unit							
Condensate discharge diameter	mm	25,0 x 2	25,0 x 2	25,0 x 2	25,0 x 2	25,0 x 2	25,0 x 2
Fan							
Туре	type			Inverter o	entrifugal		
Air flow rate							
Minimum	m³/h	200	200	200	300	300	400
Average	m³/h	350	350	350	400	400	550
Maximum	m³/h	450	450	450	550	550	750
Sound power							
Minimum	dB(A)	34,0	34,0	34,0	37,0	37,0	39,0
Average	dB(A)	37,0	37,0	37,0	39,0	39,0	41,0
Maximum	dB(A)	42,0	42,0	42,0	43,0	43,0	45,0
Sound pressure							
Minimum	dB(A)	22,0	22,0	22,0	25,0	25,0	27,0
Average	dB(A)	25,0	25,0	25,0	27,0	27,0	29,0
Maximum	dB(A)	30,0	30,0	30,0	31,0	31,0	33,0
Useful static pressure							
Nominal	Pa	15	15	15	15	15	15
Range of static pressure	Pa			0~	-30		

		MVA452D	MVA502D	MVA562D	MVA632D	MVA712D	MVA802D
Nominal cooling performances							
Cooling capacity (1)	kW	4,50	5,00	5,60	6,30	7,10	8,00
Nominal heating performances							
Heating capacity (2)	kW	5,00	5,60	6,30	7,10	8,00	9,00
Electric data							
Rated power input (3)	W	78	78	117	117	154	154
Refrigeration pipework							
Diameter of liquid refrigerant connections	mm (inch)	6,35	(1/4")		9,52 ((3/8")	
Diameter of refrigerant gas connections	mm (inch)	12,7	(1/2")		15,9 ((5/8")	
Power supply							
Indoor unit power supply				220-240	V ~ 50Hz		
Power supply 60Hz							
Indoor unit power supply				208-230	V ~ 60Hz		
Indoor unit							
Condensate discharge diameter	mm	25,0 x 2	25,0 x 2	25,0 x 2	25,0 x 2	25,0 x 2	25,0 x 2
Fan							
Туре	type			Inverter o	entrifugal		
Air flow rate							
Minimum	m³/h	400	400	550	550	650	700
Average	m³/h	550	550	700	700	850	950
Maximum	m³/h	750	750	850	850	1100	1200
Sound power							
Minimum	dB(A)	39,0	39,0	41,0	41,0	42,0	43,0
Average	dB(A)	41,0	41,0	43,0	43,0	44,0	47,0
Maximum	dB(A)	45,0	45,0	47,0	47,0	49,0	52,0
Sound pressure							
Minimum	dB(A)	27,0	27,0	29,0	29,0	30,0	31,0
Average	dB(A)	29,0	29,0	31,0	31,0	32,0	35,0
Maximum	dB(A)	33,0	33,0	35,0	35,0	37,0	40,0
Useful static pressure							
Nominal	Pa	15	15	15	15	15	15
Range of static pressure	Pa			0~30			0-30

⁽¹⁾ Cooling (EN-14511 and EN-14825) Ambient air temperature 27°C D.B. / 19°C W.B.; Outside air temperature 35°C; Max speed; Length of Refrigerant Lines 5m.
(2) Heating (EN-14511 and EN-14825) Ambient air temperature 20°C D.B.; Outside air temperature 7°C D.B./6°C W.B.; Max speed; Length of Refrigerant Lines 5m.
(3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40. Sound power measured in anechoic chamber at a distance of 1,0m from the source, according to EN 12102.
Sound pressure measured in semi anechoic chamber at a distance of 1,0m from the source, according to EN 12102.

	1	MVA901D	MVA1001D	MVA1121D	MVA1251D	MVA1401D
Nominal cooling performances						
Cooling capacity (1)	kW	9,00	10,00	11,20	12,50	14,00
Nominal heating performances						
Heating capacity (2)	kW	10,00	11,20	12,50	14,00	16,00
Electric data						
Rated power input (3)	W	130	130	130	170	170
Fan						
Туре	type	Inverter centrifugal				
Air flow rate						
Minimum	m³/h	900	1000	1100	1400	1400
Average	m³/h	1250	1350	1500	1700	1700
Maximum	m³/h	1500	1500	1700	2000	2000
High static pressure						
Nominal	Pa	50	50	50	50	50
Minimum	Pa	0	0	0	0	0
Maximum	Pa	80	80	80	80	80
Sound power (4)						
Minimum	dB(A)	47,0	47,0	47,0	52,0	52,0
Average	dB(A)	51,0	51,0	51,0	55,0	55,0
Maximum	dB(A)	55,0	55,0	55,0	57,0	57,0
Sound pressure (5)						
Minimum	dB(A)	32,0	32,0	32,0	37,0	37,0
Average	dB(A)	36,0	36,0	36,0	40,0	40,0
Maximum	dB(A)	40,0	40,0	40,0	42,0	42,0
Refrigeration pipework						
Diameter of liquid refrigerant connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")
Power supply						
Indoor unit power supply		220-240V ~ 50Hz				
Indoor unit						
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0	25,0

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.

 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA_DH										
		MVA222DH	MVA252DH	MVA282DH	MVA322DH	MVA362DH	MVA402DH	MVA452DH	MVA502DH	MVA562DH
Nominal cooling performances										
Cooling capacity (1)	kW	2,20	2,50	2,80	3,20	3,60	4,00	4,50	5,00	5,60
Nominal heating performances										
Heating capacity (2)	kW	2,50	2,80	3,20	3,60	4,00	4,50	5,00	5,60	6,30
Electric data										
Rated power input (3)	W	50	50	50	50	50	100	100	100	105
Refrigeration pipework										
Diameter of liquid refrigerant connections	mm (inch)				6,35	(1/4")				9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)		9,52 (3/8")				12,7 (1/2")			15,9 (5/8")
Power supply										
Indoor unit power supply						220-240V ~ 50Hz				
Power supply 60Hz										
Indoor unit power supply						208-230V ~ 60Hz				
Indoor unit										
Condensate discharge diameter	mm	25 x 2,5	25 x 2,5	25 x 2,5	25 x 2,5	25 x 2,5	25 x 2,5	25 x 2,5	25 x 2,5	25 x 2,5
Fan										
Туре	type					Inverter centrifuga				
Air flow rate	,									
Minimum	m³/h	400	400	400	420	420	600	600	600	700
Average	m³/h	480	480	480	500	500	700	700	700	800
Maximum	m³/h	550	550	550	600	600	850	850	850	1000
Sound power										
Minimum	dB(A)	39,0	39,0	39,0	40,0	40,0	42,0	42,0	42,0	42,0
Average	dB(A)	41,0	41,0	41,0	43,0	43,0	46,0	46,0	46,0	46,0
Maximum	dB(A)	45,0	45,0	45,0	46,0	46,0	50,0	50,0	50,0	50,0
Sound pressure										
Minimum	dB(A)	29,0	29,0	29,0	30,0	30,0	32,0	32,0	32,0	32,0
Average	dB(A)	31,0	31,0	31,0	33,0	33,0	36,0	36,0	36,0	36,0
Maximum	dB(A)	35,0	35,0	35,0	36,0	36,0	40,0	40,0	40,0	40,0
Useful static pressure										
Nominal	Pa	50	50	50	50	50	50	50	50	90
Range of static pressure	Pa				0~	~80				0~200

	1	MVA632DH	MVA712DH	MVA802DH	MVA902DH	MVA1002DH	MVA1122DH	MVA1252DH	MVA1402DH	MVA1602DH
Nominal cooling performances										
Cooling capacity (1)	kW	6,30	7,10	8,00	9,00	10,00	11,20	12,50	14,00	16,00
Nominal heating performances										
Heating capacity (2)	kW	7,10	8,00	9,00	10,00	11,20	12,50	14,00	16,00	18,00
Electric data										
Rated power input (3)	W	105	110	110	170	170	170	170	240	240
Refrigeration pipework										
Diameter of liquid refrigerant connections	mm (inch)					9,52 (3/8")				
Diameter of refrigerant gas connections	mm (inch)				15,9	(5/8")				19,05 (3/4")
Power supply										
Indoor unit power supply						220-240V ~ 50Hz				
Power supply 60Hz										
Indoor unit power supply						208-230V ~ 60Hz				
Indoor unit										
Condensate discharge diameter	mm	25 x 2,5	25 x 2,5	25 x 2,5	25 x 2,5	25 x 2,5				
Fan										
Туре	type					Inverter centrifuga				
Air flow rate										
Minimum	m³/h	700	950	950	1250	1250	1400	1400	1650	1650
Average	m³/h	800	1050	1050	1450	1450	1600	1600	1900	1900
Maximum	m³/h	1000	1250	1250	1800	1800	2000	2000	2350	2350
Sound power										
Minimum	dB(A)	42,0	42,0	42,0	44,0	44,0	46,0	47,0	48,0	50,0
Average	dB(A)	46,0	46,0	46,0	48,0	48,0	49,0	50,0	51,0	53,0
Maximum	dB(A)	50,0	50,0	50,0	52,0	52,0	53,0	54,0	54,0	55,0
Sound pressure										
Minimum	dB(A)	32,0	32,0	32,0	34,0	34,0	34,0	37,0	38,0	40,0
Average	dB(A)	36,0	36,0	36,0	38,0	38,0	38,0	40,0	41,0	43,0
Maximum	dB(A)	40,0	40,0	40,0	42,0	42,0	43,0	44,0	44,0	45,0
Useful static pressure										
Nominal	Pa	90	90	90	90	90	90	90	90	90
Range of static pressure	Pa		0~200		0-200			0~200		

(1) Cooling (EN-14511 and EN-14825) Ambient air temperature 27°C D.B. / 19°C W.B.; Outside air temperature 35°C; Max speed; Length of Refrigerant Lines 5m.
(2) Heating (EN-14511 and EN-14825) Ambient air temperature 20°C D.B.; Outside air temperature 7°C D.B./6°C W.B.; Max speed; Length of Refrigerant Lines 5m.
(3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40. Sound power measured in anechoic chamber at a distance of 1,0m from the source, according to EN 12102.
Sound pressure measured in semi anechoic chamber at a distance of 1,0m from the source, according to EN 12102.

		MVA 2240 DH	MVA 2800 DH
Nominal cooling performances			
Cooling capacity (1)	kW	22,40	28,00
Nominal heating performances			
Heating capacity (2)	kW	24,00	30,00
Electric data			
Rated power input (3)	W	960	1250
Air flow rate			
Minimum	m³/h	-	-
Average	m³/h	-	-
Maximum	m³/h	4000	4400
High static pressure			
Nominal	Pa	150	150
Minimum	Pa	-	-
Maximum	Pa	-	-
Sound power (4)			
Minimum	dB(A)	59,0	60,0
Average	dB(A)	62,0	62,0
Maximum	dB(A)	64,0	65,0
Sound pressure (5)			
Minimum	dB(A)	49,0	50,0
Average	dB(A)	52,0	52,0
Maximum	dB(A)	54,0	55,0
Refrigeration pipework			
Diameter of liquid refrigerant connections	mm (inch)	19,05 (3/4")	22,2 (7/8")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")
Power supply			
Indoor unit power supply		220-240V ~ 50Hz	220-240V ~ 50Hz
Indoor unit			
Condensate discharge diameter	mm	30,0	30,0

(1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
(2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
(3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
(4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
(5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA_DV

		MVA220DV	MVA280DV	MVA360DV	MVA450DV	MVA560DV	MVA630DV	MVA710DV
Nominal cooling performances								
Cooling capacity (1)	kW	2,20	2,80	3,60	4,50	5,60	6,30	7,10
Nominal heating performances								
Heating capacity (2)	kW	2,50	3,20	4,00	5,00	6,30	7,10	8,00
Electric data								
Rated power input (3)	W	35	35	43	45	80	80	90
Fan								
Туре	type	Inverter centrifugal						
Air flow rate								
Minimum	m³/h	250	250	350	400	600	600	700
Average	m³/h	350	350	450	500	750	750	900
Maximum	m³/h	450	450	550	650	900	900	1100
High static pressure								
Nominal	Pa	10	10	10	15	15	15	15
Minimum	Pa	0	0	0	0	0	0	0
Maximum	Pa	40	40	40	60	60	60	60
Sound power (4)								
Minimum	dB(A)	35,0	35,0	38,0	38,0	40,0	40,0	43,0
Average	dB(A)	38,0	38,0	41,0	41,0	43,0	43,0	45,0
Maximum	dB(A)	40,0	40,0	43,0	43,0	45,0	45,0	47,0
Sound pressure (5)								
Minimum	dB(A)	25,0	25,0	28,0	28,0	30,0	30,0	33,0
Average	dB(A)	28,0	28,0	31,0	31,0	33,0	33,0	35,0
Maximum	dB(A)	30,0	30,0	33,0	33,0	35,0	35,0	37,0
Refrigeration pipework								
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")	12,7 (1/2")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")
Power supply								
Indoor unit power supply		220-240V ~ 50Hz						
Indoor unit								
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0	25,0	25,0	25,0

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA CS

MVA_CS									
		MVA151CS	MVA181CS	MVA221CS	MVA281CS	MVA361CS	MVA451CS	MVA501CS	MVA561CS
Nominal cooling performances									
Cooling capacity (1)	kW	1,50	1,80	2,20	2,80	3,60	4,50	5,00	5,60
Nominal heating performances									
Heating capacity (2)	kW	1,80	2,20	2,50	3,20	4,00	5,00	5,60	6,30
Electric data									
Rated power input (3)	W	30	30	30	30	30	45	45	45
Fan									
Туре	type	Inverter centrifugal	Inverter centrifuga						
Air flow rate									
Minimum	m³/h	370	370	370	420	480	560	560	560
Average	m³/h	420	420	460	480	550	650	650	650
Maximum	m³/h	460	460	500	570	620	730	730	730
Sound power (4)									
Minimum	dB(A)	39,0	39,0	39,0	42,0	45,0	53,0	43,0	53,0
Average	dB(A)	44,0	44,0	45,0	47,0	49,0	55,0	55,0	55,0
Maximum	dB(A)	47,0	47,0	50,0	50,0	52,0	57,0	57,0	57,0
Sound pressure (5)									
Minimum	dB(A)	25,0	25,0	25,0	28,0	31,0	39,0	39,0	39,0
Average	dB(A)	30,0	30,0	31,0	33,0	35,0	41,0	41,0	41,0
Maximum	dB(A)	33,0	33,0	36,0	36,0	38,0	43,0	43,0	43,0
Refrigeration pipework									
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")	12,7 (1/2")	12,7 (1/2")	15,9 (5/8")
Power supply									
Indoor unit power supply		220-240V ~ 50Hz	220-240V ~ 50Hz						
Indoor unit									
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA_C

		MVA221C	MVA281C	MVA361C	MVA451C	MVA501C	MVA561C	MVA631C
Nominal cooling performances								
Cooling capacity (1)	kW	2,20	2,80	3,60	4,50	5,00	5,60	6,30
Nominal heating performances								
Heating capacity (2)	kW	2,50	3,20	4,00	5,00	5,60	6,30	7,10
Electric data								
Rated power input (3)	W	26	26	26	26	28	35	60
Fan								
Туре	type	Inverter centrifugal						
Air flow rate								
Minimum	m³/h	600	600	600	600	700	750	850
Average	m³/h	700	700	700	700	800	850	950
Maximum	m³/h	800	800	800	800	900	950	1150
Sound power (4)								
Minimum	dB(A)	42,0	42,0	42,0	42,0	43,0	44,0	45,0
Average	dB(A)	44,0	44,0	44,0	44,0	46,0	47,0	48,0
Maximum	dB(A)	47,0	47,0	47,0	48,0	49,0	51,0	51,0
Sound pressure (5)								
Minimum	dB(A)	28,0	28,0	28,0	28,0	29,0	30,0	31,0
Average	dB(A)	30,0	30,0	30,0	30,0	32,0	33,0	34,0
Maximum	dB(A)	33,0	33,0	33,0	34,0	35,0	37,0	37,0
Refrigeration pipework								
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")	12,7 (1/2")	12,7 (1/2")	15,9 (5/8")	15,9 (5/8")
Power supply								
Indoor unit power supply		220-240V ~ 50Hz						
Indoor unit								
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0	25,0	25,0	25,0

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

		MVA711C	MVA801C	MVA901C	MVA1001C	MVA1121C	MVA1251C	MVA1401C	MVA1601C
Nominal cooling performances									
Cooling capacity (1)	kW	7,10	8,00	9,00	10,00	11,20	12,50	14,00	16,00
Nominal heating performances									
Heating capacity (2)	kW	8,00	9,00	10,00	11,20	12,50	14,00	16,00	18,00
Electric data									
Rated power input (3)	W	60	85	85	85	115	115	115	170
Fan									
Туре	type	Inverter centrifugal							
Air flow rate									
Minimum	m³/h	850	900	900	900	1100	1100	1100	1430
Average	m³/h	950	1000	1000	1000	1300	1300	1300	1800
Maximum	m³/h	1150	1250	1250	1250	1650	1650	1650	2000
Sound power (4)									
Minimum	dB(A)	45,0	48,0	48,0	48,0	53,0	53,0	53,0	54,0
Average	dB(A)	48,0	51,0	51,0	51,0	55,0	55,0	55,0	60,0
Maximum	dB(A)	51,0	53,0	53,0	53,0	57,0	57,0	57,0	63,0
Sound pressure (5)									
Minimum	dB(A)	31,0	34,0	34,0	34,0	39,0	39,0	39,0	42,0
Average	dB(A)	34,0	37,0	37,0	37,0	41,0	41,0	41,0	48,0
Maximum	dB(A)	37,0	39,0	39,0	39,0	43,0	43,0	43,0	51,0
Refrigeration pipework									
Diameter of liquid refrigerant connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	19,05 (3/4")
Power supply									
Indoor unit power supply		220-240V ~ 50Hz							
Indoor unit									
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.

 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA_C1

		MVA220C1	MVA280C1	MVA360C1	MVA450C1	MVA500C1
Nominal cooling performances						
Cooling capacity (1)	kW	2,20	2,80	3,60	4,50	5,00
Nominal heating performances						
Heating capacity (2)	kW	2,50	3,20	4,00	5,00	5,60
Electric data						
Rated power input (3)	W	30	30	30	30	30
Fan						
Туре	type	Inverter tangential				
Air flow rate						
Minimum	m³/h	450	450	450	500	500
Average	m³/h	500	500	500	600	600
Maximum	m³/h	600	600	600	830	830
Sound power (4)						
Minimum	dB(A)	38,0	38,0	38,0	40,0	40,0
Average	dB(A)	42,0	42,0	42,0	45,0	45,0
Maximum	dB(A)	46,0	46,0	46,0	50,0	50,0
Sound pressure (5)						
Minimum	dB(A)	28,0	28,0	28,0	30,0	30,0
Average	dB(A)	32,0	32,0	32,0	35,0	35,0
Maximum	dB(A)	36,0	36,0	36,0	40,0	40,0
Refrigeration pipework						
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")	12,7 (1/2")	12,7 (1/2")
Power supply						
Indoor unit power supply		220-240V ~ 50Hz				
Indoor unit						
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0	25,0

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.

 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA F

WVA_F												
		MVA281F	MVA361F	MVA501F	MVA561F	MVA631F	MVA711F	MVA901F	MVA1121F	MVA1251F	MVA1401F	MVA1601F
Nominal cooling performances												
Cooling capacity (1)	kW	2,80	3,60	5,00	5,60	6,30	7,10	9,00	11,20	12,50	14,00	16,00
Nominal heating performances												
Heating capacity (2)	kW	3,20	4,00	5,60	6,30	7,10	8,00	10,00	12,50	14,00	16,00	18,00
Electric data												
Rated power input (3)	W	35	35	55	55	80	80	120	120	120	150	175
Fan												
Туре	type	Inverter centrifugal										
Air flow rate												
Minimum	m³/h	450	450	600	600	1050	1050	1250	1400	1400	1600	1650
Average	m³/h	500	500	650	650	1200	1200	1400	1600	1600	1750	1850
Maximum	m³/h	600	600	750	750	1350	1350	1550	1800	1800	2000	2150
Sound power (4)												
Minimum	dB(A)	45,0	45,0	48,0	48,0	54,0	54,0	54,0	54,0	54,0	55,0	57,0
Average	dB(A)	48,0	48,0	51,0	51,0	57,0	57,0	56,0	56,0	56,0	57,0	60,0
Maximum	dB(A)	52,0	52,0	54,0	54,0	60,0	60,0	59,0	59,0	59,0	61,0	64,0
Sound pressure (5)												
Minimum	dB(A)	29,0	29,0	36,0	36,0	38,0	38,0	41,0	42,0	42,0	43,0	45,0
Average	dB(A)	32,0	32,0	39,0	39,0	41,0	41,0	44,0	44,0	44,0	45,0	48,0
Maximum	dB(A)	36,0	36,0	42,0	42,0	44,0	44,0	47,0	47,0	47,0	49,0	52,0
Refrigeration pipework												
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	12,7 (1/2")	12,7 (1/2")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	19,05 (3/4")
Power supply												
		220-240V ~										
Indoor unit power supply		50Hz										
Indoor unit												
Condensate discharge diameter	mm	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.

 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA_FS

		MVA220FS	MVA280FS	MVA360FS	MVA450FS	MVA500FS
Nominal cooling performances						
Cooling capacity (1)	kW	2,20	2,80	3,60	4,50	5,00
Nominal heating performances						
Heating capacity (2)	kW	2,50	3,20	4,00	5,00	5,50
Electric data						
Rated power input (3)	W	15	15	20	40	40
Fan						
Туре	type	Inverter centrifugal				
Air flow rate						
Minimum	m³/h	270	270	310	500	500
Average	m³/h	320	320	400	600	600
Maximum	m³/h	400	400	480	680	680
Sound power (4)						
Minimum	dB(A)	37,0	37,0	42,0	49,0	49,0
Average	dB(A)	43,0	43,0	47,0	53,0	53,0
Maximum	dB(A)	48,0	48,0	50,0	56,0	56,0
Sound pressure (5)						
Minimum	dB(A)	27,0	27,0	32,0	39,0	39,0
Average	dB(A)	33,0	33,0	37,0	43,0	43,0
Maximum	dB(A)	38,0	38,0	40,0	46,0	46,0
Refrigeration pipework						
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")	12,7 (1/2")	12,7 (1/2")
Power supply						
Indoor unit power supply		220-240V ~ 50Hz				
Indoor unit						
Condensate discharge diameter	mm	17,2	17,2	17,2	17,2	17,2

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.

 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA_V

		MVA1000V	MVA1400V
Nominal cooling performances			
Cooling capacity (1)	kW	10,00	14,00
Nominal heating performances			
Heating capacity (2)	kW	11,00	15,00
Electric data			
Rated power input (3)	W	200	200
Fan			
Туре	type	Inverter centrifugal	Inverter centrifugal
Air flow rate		-	
Minimum	m³/h	1400	1400
Average	m³/h	1600	1600
Maximum	m³/h	1850	1850
Sound power (4)			
Minimum	dB(A)	56,0	56,0
Average	dB(A)	58,0	58,0
Maximum	dB(A)	60,0	60,0
Sound pressure (5)			
Minimum	dB(A)	46,0	46,0
Average	dB(A)	48,0	48,0
Maximum	dB(A)	50,0	50,0
Refrigeration pipework			
Diameter of liquid refrigerant connections	mm (inch)	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	15,9 (5/8")	15,9 (5/8")
Power supply			
Indoor unit power supply		220-240V ~ 50Hz	220-240V ~ 50Hz
Indoor unit			
Condensate discharge diameter	mm	31,0	31,0

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.

 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA_ERV

		MVA500ERV	MVA800ERV	MVA1000ERV
Nominal cooling performances				
Cooling capacity (1)	kW	8,50	12,00	14,50
Cooling capacity of finned pack heat exchanger (2)	kW	3,60	6,30	8,00
Nominal heating performances				
Heating capacity (3)	kW	4,00	10,60	12,00
Heating capacity of finned pack heat exchanger	kW	2,00	8,04	8,40
Heat recovery unit				
Unit type		UVNR	UVNR	UVNR
Thermal efficiency (4)	%	73	74	73
Fans				
Commissioning	type	Speed variator	Speed variator	Speed variator
SFP int	W/(m³/s)	1099,57	1118,00	1059,20
Nominal external pressure Δp (5)	Pa	150	150	150
Type of fan	Туре	Centrifugal	Centrifugal	Centrifugal
Nominal air flow rate	m³/h	500	800	1000
Sound data				
Sound power level	dB(A)	55,0	59,0	62,0
General data				
Rated power input	W	270	440	640
Diameter of liquid refrigerant connections	mm (inch)	7,89 (5/16")	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	12,7 (1/2")	15,9 (5/8")	15,9 (5/8")
Condensate discharge diameter	mm	26,0	26,0	26,0
Heat recovery unit				
Power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz

(1) Cooling: room air temperature 27 °C d.b. / 19.5 °C w.b.; outside air temperature 35 °C; turbo speed; cooling line length 5 m; indoor and outdoor units at the same height.
(2) Use the finned pack heat exchanger power (cooling) to make the calculation and select the unit.
(3) Heating: room air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; cooling line length 5 m; indoor and outdoor units at the same height.
(4) Thermal efficiency complying with European regulation EU 1253/2014.
(5) Performances referring to clean filters.
The air flow rate is calculated on the basis of the nominal high static pressure at high fan speed. It may vary according to the real installation conditions.
The nominal static pressure is the effective pressure value declared for a standard unit when it leaves the factory. The use of other filters may alter the unit performance values.

2-PIPE SYSTEM OUTDOOR UNIT PERFORMANCE DATA

		MVAS 1201S	MVAS 1201T	MVAS 1401S	MVAS 1401T	MVAS 1601S	MVAS 1601T
Nominal cooling performances							
Cooling capacity (1)	kW	12,10	12,10	14,00	14,00	16,00	16,00
Cooling input power (1)	kW	3,03	3,03	3,59	3,59	4,75	4,75
Nominal heating performances							
Heating capacity (2)	kW	14,00	14,00	16,50	16,50	18,00	18,00
Heating input power (2)	kW	3,27	3,27	3,95	3,95	4,65	4,65
Fan							
Туре	type	Inverter axial	Inverter axial	Inverter axial	Inverter axial	Inverter axial	Inverter axial
Number	no.	2	2	2	2	2	2
Air flow rate							
Nominal	m³/h	6000	6000	6300	6300	6600	6600
Sound pressure (3)							
Nominal	dB(A)	57,0	57,0	58,0	58,0	58,0	58,0
Compressor							
Туре	type	Scroll inverter	Scroll inverter	Scroll inverter	Scroll inverter	Scroll inverter	Scroll inverter
Number	no.	1	1	1	1	1	1
Refrigerant	type	R410A	R410A	R410A	R410A	R410A	R410A
Refrigerant charge	kg	3,3	3,3	3,3	3,3	3,3	3,3
Electric data							
Rated current input (4)	Α	30,4	11,1	33,7	12,0	36,3	12,5
Refrigeration pipework							
Maximum refrigerant tube length	m	300	300	300	300	300	300
Power supply							
Outdoor unit power supply		220-245V ~ 50Hz	380-415V ~ 3N 50Hz	220-245V ~ 50Hz	380-415V ~ 3N 50Hz	220-245V ~ 50Hz	380-415V ~ 3N 50Hz

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

 (3) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

 (4) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

		MVAS 2242T	MVAS 2803T	MVAS 3352T
Nominal cooling performances				
Cooling capacity (1)	kW	22,40	28,00	33,50
Cooling input power (1)	kW	6,12	13,02	12,88
Nominal heating performances				
Heating capacity (2)	kW	22,40	28,00	33,50
Heating input power (2)	kW	4,90	8,00	10,47
Fan				
Туре	type	Inverter axial	Inverter axial	Inverter axial
Number	no.	2	2	2
Air flow rate				
Nominal	m³/h	8000	11000	11000
Sound data calculated in coolin	g mode			
Maximum sound pressure level	dB(A)	58,0	62,0	62,0
Maximum sound power level	dB(A)	78,0	80,0	80,0
Sound data calculated in heatin	g mode			
Maximum sound pressure level	dB(A)	58,0	64,0	64,0
Maximum sound power level	dB(A)	79,0	82,0	82,0
Compressor				
Туре	type	Rotary	Rotary	Rotary
Number	no.	1	1	1
Refrigerant	type	R410A	R410A	R410A
Refrigerant charge	kg	5,5	7,1	8,5
Electric data				
Rated current input (3)	Α	17,2	22,5	24,5
Refrigeration pipework				
Maximum refrigerant tube length	m	300	300	300
Power supply		<u> </u>		
Outdoor unit power supply		380-415V ~ 3N 50Hz	380-415V ~ 3N 50Hz	380-415V ~ 3N 50Hz

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

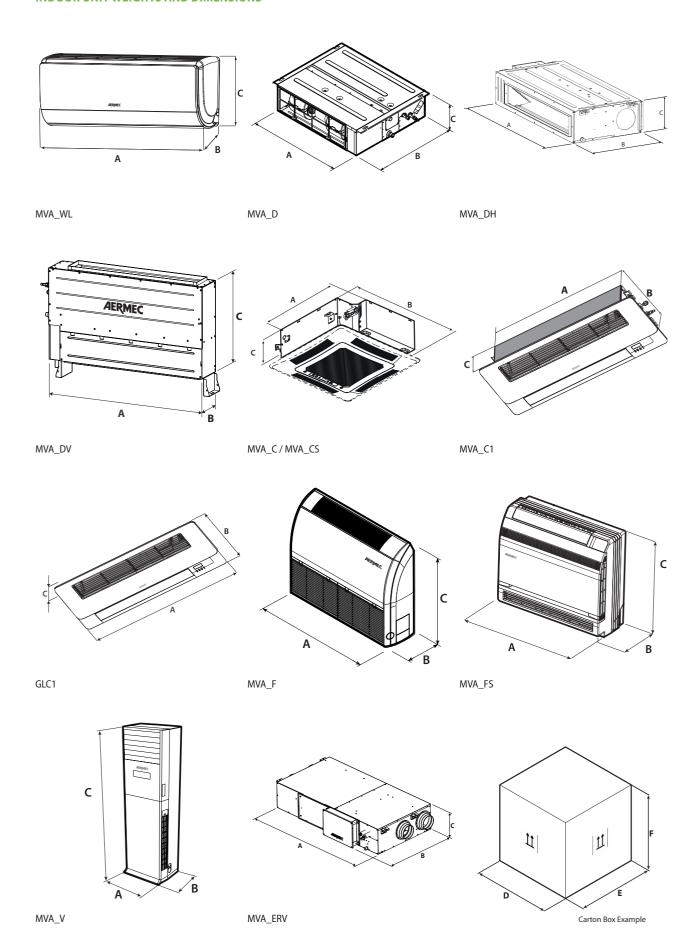
		MVBM 2240T	MVBM 2800T	MVBM 3350T	MVBM 4000T	MVBM 4500T	MVBM 5040T	MVBM 5600T	MVBM 6150T
Nominal cooling performances									
Cooling capacity (1)	kW	22,40 (2)	28,00 (2)	33,50 (2)	40,00 (2)	45,00 (2)	50,40 (2)	52,00 (2)	52,00 (2)
Maximum cooling performances									
Cooling capacity	kW	22,40	28,00	33,50	40,00	45,00	50,40	56,00	61,50
Nominal heating performances									
Heating capacity (3)	kW	22,40 (2)	28,00 (2)	33,50 (2)	40,00 (2)	45,00 (2)	50,40 (2)	56,00 (2)	56,00 (2)
Maximum heating performances									
Heating capacity	kW	25,00	31,50	37,50	45,00	50,00	56,50	63,00	69,00
Fan									
Туре	type	Inverter axial	Inverter axial						
Number	no.	1	1	1	2	2	2	2	2
Air flow rate									
Nominal	m³/h	9750	10500	11100	13500	15400	16000	16500	16500
Sound pressure (4)									
Nominal	dB(A)	56,0	57,0	59,0	59,0	60,0	61,0	62,0	63,0
Compressor									
Туре	type	Scroll inverter	Scroll inverter						
Number	no.	1	1	1	1	1	2	2	2
Refrigerant	type	R410A	R410A						
Refrigerant charge	kg	5,5	5,5	7,5	7,5	7,5	8,3	8,3	8,3
Electric data									
Rated current input (5)	Α	23,0	23,5	24,1	37,5	39,3	47,0	48,0	49,0
Refrigeration pipework									
Type refrigerant connections	Туре	To be soldered	To be soldered						
Diameter of liquid refrigerant connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")	12,7 (1/2")	12,7 (1/2")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")
Diameter of refrigerant gas connections	mm (inch)	19,05 (3/4")	22,2 (7/8")	25,4 (1")	25,4 (1")	28,6 (1"1/8)	28,6 (1"1/8)	28,6 (1"1/8)	28,6 (1" 1/8)
Maximum refrigerant tube length	m	1000	1000	1000	1000	1000	1000	1000	1000
Power supply									
Outdoor unit power supply		380-415V~3N 50Hz	380-415V~3N 50H						

(1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

(2) the cooling capacity of the system actually selected may be different from the value shown in the table; to determine the cooling performance data of each MVBM system refer to the selection software

(3) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

(4) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.


(5) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

3-PIPE SYSTEM OUTDOOR UNIT PERFORMANCE DATA

		MVBHR2240T	MVBHR2800T	MVBHR3350T	MVBHR4000T	MVBHR4500T	MVBHR5040T	MVBHR5600T	MVBHR6150T
Nominal cooling performances									
Cooling capacity (1)	kW	22,40	28,00	33,50	40,00	45,00	50,40	52,00	52,00
Maximum cooling performances									
Cooling capacity	kW	22,40	28,00	33,50	40,00	45,00	50,40	56,00	61,50
Nominal heating performances									
Heating capacity (2)	kW	22,40	28,00	33,50	40,00	45,00	50,40	56,00	56,00
Maximum heating performances									
Heating capacity	kW	25,00	31,50	37,50	45,00	50,00	56,50	63,00	69,00
Fan									
Туре	type	Inverter axial							
Number	no.	1	1	1	2	2	2	2	2
Air flow rate									
Maximum	m³/h	9750	10500	11100	13500	15400	16000	16500	16500
Compressor									
Туре	type	Scroll inverter							
Number	no.	1	1	1	1	1	2	2	2
Refrigerant charge	kg	8,2	8,5	9,6	11,1	11,6	12,8	12,8	13,3
Electric data									
Rated current input (3)	A	23,0	23,5	24,1	37,5	39,3	47,0	48,0	49,0
Refrigeration pipework									
Type refrigerant connections	Туре	To be soldered							
Diameter of liquid refrigerant connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")	12,7 (1/2")	12,7 (1/2")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")
Diameter of low pressure refrigerant gas connections	mm (inch)	19,05 (3/4")	22,2 (7/8")	25,4 (1")	25,4 (1")	28,6 (1 1/8")	28,6 (1 1/8")	28,6 (1 1/8")	28,6 (1 1/8")
Diameter of high pressure refrigerant gas connections	mm (inch)	15,9 (5/8")	19,05 (3/4")	19,05 (3/4")	22,2 (7/8")	22,2 (7/8")	25,4 (1")	25,4 (1")	25,4 (1")
Maximum refrigerant tube length	m	1000	1000	1000	1000	1000	1000	1000	1000
Power supply									
Outdoor unit power supply		380-415V ~ 3N							
Outdoor unit power suppry		50Hz							

(1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
(2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
(3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

INDOOR UNIT WEIGHTS AND DIMENSIONS

MVA_WL

		MVA220WL	MVA280WL	MVA360WL	MVA450WL	MVA500WL	MVA560WL	MVA630WL	MVA710WL
Indoor unit									
A	mm	845	845	845	970	970	1078	1078	1078
В	mm	209	209	209	224	224	246	246	246
C	mm	289	289	289	300	300	325	325	325
D	mm	976	976	976	1096	1096	1203	1203	1203
E	mm	281	281	281	320	320	350	350	350
F	mm	379	379	379	383	383	413	413	413
Net weight	kg	11,0	11,0	11,0	13,0	13,0	16,0	16,0	16,0
Weight for transport	kg	13,0	13,0	13,0	16,0	16,0	19,0	19,0	19,0

MVA_D

		MVA222D	MVA252D	MVA282D	MVA322D	MVA362D	MVA402D
Indoor unit	,						
A	mm	710	710	710	710	710	1010
В	mm	462	462	462	462	462	462
C	mm	200	200	200	200	200	200
D	mm	1008	1008	1008	1008	1008	1308
E	mm	568	568	568	568	568	568
F	mm	275	275	275	275	275	275
Net weight	kg	18,5	18,5	18,5	19,0	19,0	24,0
Weight for transport	kg	23,5	23,5	23,5	24,0	24,0	30,0

		MVA452D	MVA502D	MVA562D	MVA632D	MVA712D	MVA802D
Indoor unit							
A	mm	1010	1010	1010	1010	1310	1310
В	mm	462	462	462	462	462	462
(mm	200	200	200	200	200	200
D	mm	1308	1308	1308	1308	1608	1608
E	mm	568	568	568	568	568	568
F	mm	275	275	275	275	275	275
Net weight	kg	24,0	24,0	25,0	25,0	31,0	31,0
Weight for transport	kg	30,0	30,0	31,0	31,0	37,5	37,5

		MVA901D	MVA1001D	MVA1121D	MVA1251D	MVA1401D
Indoor unit	,					
A	mm	1340	1340	1340	1340	1340
В	mm	655	655	655	655	655
C	mm	260	260	260	260	260
D	mm	1588	1588	1588	1588	1588
E	mm	858	858	858	858	858
F	mm	315	315	315	315	315
Net weight	kg	46,0	46,0	46,0	47,0	47,0
Weight for transport	kg	55,0	55,0	55,0	56,0	56,0

MVA_DV

		MVA220DV	MVA280DV	MVA360DV	MVA450DV	MVA560DV	MVA630DV	MVA710DV
Indoor unit								
A	mm	700	700	700	900	1100	1100	1100
В	mm	200	200	200	200	200	200	200
С	mm	615	615	615	615	615	615	615
D	mm	893	893	893	1123	1323	1323	1323
E	mm	305	305	305	305	305	305	305
F	mm	743	743	743	743	743	743	743
Net weight	kg	23,0	23,0	23,0	27,0	32,0	32,0	32,0
Weight for transport	kg	30,0	30,0	30,0	36,0	41,0	41,0	41,0

MVA_DH

		MVA222DH	MVA252DH	MVA282DH	MVA322DH	MVA362DH	MVA402DH	MVA452DH	MVA502DH	MVA562DH
Indoor unit										
A	mm	700	700	700	700	700	700	700	700	1000
В	mm	700	700	700	700	700	700	700	700	700
С	mm	300	300	300	300	300	300	300	300	300
D	mm	897	897	897	897	897	897	897	897	1205
E	mm	808	808	808	808	808	808	808	808	813
F	mm	360	360	360	360	360	360	360	360	360
Net weight	kg	30,5	30,5	30,5	30,5	30,5	31,5	31,5	31,5	40,5
Weight for transport	ka	36.0	36.0	36.0	36.0	36.0	37.0	37.0	37.0	46.5

		MVA632DH	MVA712DH	MVA802DH	MVA902DH	MVA1002DH	MVA1122DH	MVA1252DH	MVA1402DH	MVA1602DH
Indoor unit										
A	mm	1000	1000	1000	1400	1400	1400	1400	1400	1400
В	mm	700	700	700	700	700	700	700	700	700
C	mm	300	300	300	300	300	300	300	300	300
D	mm	1205	1205	1205	1600	1600	1600	1600	1600	1600
E	mm	813	813	813	813	813	813	813	813	813
F	mm	360	360	360	365	365	365	365	365	365
Net weight	kg	40,5	41,0	41,0	54,0	54,0	54,0	54,0	54,5	54,5
Weight for transport	kg	46,5	47,0	47,0	61,0	61,0	61,0	61,0	61,5	61,5

		MVA2240DH	MVA2800DH
Indoor unit			
A	mm	1483	1686
В	mm	791	870
(mm	385	450
D	mm	1758	1788
E	mm	883	988
F	mm	470	580
Net weight	kg	82,0	105,0
Weight for transport	kg	104,0	140,0

MVA_CS

		MVA151CS	MVA181CS	MVA221CS	MVA281CS	MVA361CS	MVA451CS	MVA501CS	MVA561CS
Indoor unit									
A	mm	570	570	570	570	570	570	570	570
В	mm	570	570	570	570	570	570	570	570
C	mm	265	265	265	265	265	265	265	265
D	mm	698	698	698	698	698	698	698	698
E	mm	653	653	653	653	653	653	653	653
F	mm	295	295	295	295	295	295	295	295
Net weight	kg	18,0	18,0	18,0	18,0	18,0	18,0	18,0	18,0
Weight for transport	kg	23,0	23,0	23,0	23,0	23,0	23,0	23,0	23,0

MVA_C

		MVA221C	MVA281C	MVA361C	MVA451C	MVA501C	MVA561C	MVA631C	MVA711C
Indoor unit	'								
A	mm	840	840	840	840	840	840	840	840
В	mm	840	840	840	840	840	840	840	840
C	mm	240	240	240	240	240	240	240	240
D	mm	963	963	963	963	963	963	963	963
E	mm	963	963	963	963	963	963	963	963
F	mm	325	325	325	325	325	325	325	325
Net weight	kg	27,0	27,0	27,0	27,0	28,0	28,0	28,0	28,0
Weight for transport	kg	35,0	35,0	35,0	35,0	36,0	36,0	36,0	36,0

		MVA801C	MVA901C	MVA1001C	MVA1121C	MVA1251C	MVA1401C	MVA1601C
Indoor unit								
A	mm	840	840	840	840	840	840	840
В	mm	840	840	840	840	840	840	840
C	mm	240	240	240	290	290	290	290
D	mm	963	963	963	963	963	963	963
E	mm	963	963	963	963	963	963	963
F	mm	325	325	325	375	375	375	375
Net weight	kg	29,0	29,0	29,0	33,0	33,0	33,0	36,0
Weight for transport	kg	37,0	37,0	37,0	42,0	42,0	42,0	44,0

MVA_C1

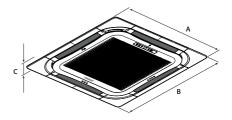
		MVA220C1	MVA280C1	MVA360C1	MVA450C1	MVA500C1
Indoor unit						
A	mm	987	987	987	987	987
В	mm	385	385	385	385	385
C	mm	178	178	178	178	178
D	mm	1307	1307	1307	1307	1307
E	mm	501	501	501	501	501
F	mm	310	310	310	310	310
Net weight	kg	20,0	20,0	20,0	21,0	21,0
Weight for transport	ka	27.0	27.0	27.0	29.0	29.0

MVA_F

		MVA280F	MVA281F	MVA360F	MVA361F	MVA500F	MVA501F	MVA561F	MVA630F	MVA631F	MVA710F
		MINZOUI	MINZOII	MYNJOOI	MYAJOH	minout	MINJOII	MINJOII	MYNOSOI	MITAUSTI	MVA/ IVI
A	mm	1220	870	1220	870	1220	870	870	1420	1200	1420
В	mm	225	235	225	235	225	235	235	245	235	245
C	mm	700	665	700	665	700	665	665	700	665	700
D	mm	1343	973	1343	973	1343	973	973	1548	1303	1548
E	mm	315	300	315	300	315	300	300	345	300	345
F	mm	823	770	823	770	823	770	770	828	770	828
Net weight	kg	40,0	24,0	40,0	24,0	40,0	25,0	25,0	50,0	32,0	50,0
Weight for transport	kg	49,0	29,0	49,0	29,0	49,0	30,0	30,0	58,0	38,0	58,0
		MVA711F	MVA900F	MVA901F	MVA1120F	MVA1121F	MVA1250F	MVA1251F	MVA1400F	MVA1401F	MVA1601F
Indoor unit		MVA711F	MVA900F	MVA901F	MVA1120F	MVA1121F	MVA1250F	MVA1251F	MVA1400F	MVA1401F	MVA1601F
Indoor unit	mm	MVA711F 1200	MVA900F 1420	MVA901F 1200	MVA1120F 1700	MVA1121F 1570	MVA1250F 1700	MVA1251F 1570	MVA1400F 1700	MVA1401F 1570	MVA1601F 1570
Indoor unit A B	mm mm										
Indoor unit A B C		1200	1420	1200	1700	1570	1700	1570	1700	1570	1570
Indoor unit A B C	mm	1200 235	1420 245	1200 235	1700 245	1570 235	1700 245	1570 235	1700 245	1570 235	1570 235
Indoor unit	mm mm	1200 235 665	1420 245 700	1200 235 665	1700 245 700	1570 235 665	1700 245 700	1570 235 665	1700 245 700	1570 235 665	1570 235 665
Indoor unit A B C D E	mm mm mm	1200 235 665 1303	1420 245 700 1548	1200 235 665 1303	1700 245 700 1828	1570 235 665 1669	1700 245 700 1828	1570 235 665 1669	1700 245 700 1828	1570 235 665 1669	1570 235 665 1669
Indoor unit A B C D E F Net weight	mm mm mm	1200 235 665 1303 300	1420 245 700 1548 345	1200 235 665 1303 300	1700 245 700 1828 345	1570 235 665 1669 300	1700 245 700 1828 345	1570 235 665 1669 300	1700 245 700 1828 345	1570 235 665 1669 300	1570 235 665 1669 300

MVA_FS

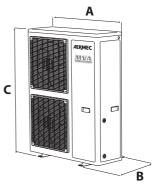
		MVA220FS	MVA280FS	MVA360FS	MVA450FS	MVA500FS
Indoor unit						
A	mm	700	700	700	700	700
В	mm	215	215	215	215	215
C	mm	600	600	600	600	600
D	mm	780	780	780	780	780
E	mm	285	285	285	285	285
F	mm	682	682	682	682	682
Net weight	kg	16,0	16,0	16,0	16,0	16,0
Weight for transport	kg	19,0	19,0	19,0	19,0	19,0


MVA_V

		MVA1000V	MVA1400V
Indoor unit			
A	mm	580	580
В	mm	400	400
C	mm	1870	1870
D	mm	738	738
E	mm	545	545
F	mm	2083	2083
Net weight	kg	54,0	57,0
Weight for transport	kg	74,0	77,0

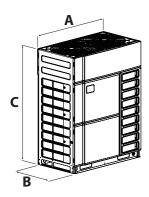
MVA_ERV

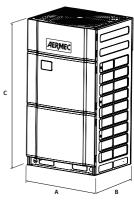
		MVA500ERV	MVA800ERV	MVA1000ERV
Dimensions and weights				
4	mm	1700	1800	1800
3	mm	880	1185	1185
	mm	340	390	390
)	mm	1988	2110	2110
	mm	1138	1440	1440
	mm	535	567	567
let weight	kg	120,0	158,0	158,0
Neight for transport	kg	175,0	225,0	225,0


GLC1 / GL40B / GLG40S / GLG40

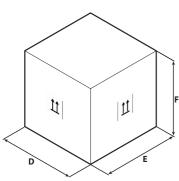
GLG40S / GLG40 / GL40B

		GLC1	GL40B	GLG40S	GLG40
Indoor unit					
A	mm	1200	1040	620	950
В	mm	460	1040	620	950
C	mm	55	65	48	52
D	mm	1265	1137	701	1033
E	mm	536	1137	701	1038
F	mm	118	140	125	112
Net weight	kg	4,0	8,0	3,0	6,0
Weight for transport	kg	6,0	12,0	5,0	10,0


OUTDOOR UNIT WEIGHTS AND DIMENSIONS


MVAS

MVBM2240T-2800T-3350T


MVBM4000T-4500T 5040T-5600T-6150T

MVBHR2240T-2800T-3350T

MVBHR4000T-4500T-5040T-5600T-6150T

Carton Box Example

MVAS

		MVAS 1201S	MVAS 1201T	MVAS 1401S	MVAS 1401T	MVAS 1601S	MVAS 1601T	MVAS 2242T	MVAS 2803T	MVAS 3352T
Outdoor unit										
A	mm	900	900	900	900	900	900	940	940	940
В	mm	340	340	340	340	340	340	320	460	460
C	mm	1345	1345	1345	1345	1345	1345	1430	1615	1615
D	mm	1408	1048	1408	1048	1408	1048	1038	1038	1038
E	mm	458	458	458	458	458	458	438	578	578
F	mm	1507	1507	1507	1507	1507	1507	1580	1765	1765
Net weight	kg	110,0	120,0	110,0	120,0	110,0	120,0	133,0	163,0	174,0
Weight for transport	kg	123,0	133,0	123,0	133,0	123,0	133,0	144,0	175,0	187,0

MVBM

		MVBM 2240T	MVBM 2800T	MVBM 3350T	MVBM 4000T	MVBM 4500T	MVBM 5040T	MVBM 5600T	MVBM 6150T
Outdoor unit	,								
A	mm	930	930	930	1340	1340	1340	1340	1340
В	mm	775	775	775	775	775	775	775	775
C	mm	1690	1690	1690	1690	1690	1690	1690	1690
D	mm	1000	1000	1000	1400	1400	1400	1400	1400
E	mm	830	830	830	830	830	830	830	830
F	mm	1855	1855	1855	1855	1855	1855	1855	1855
Net weight	kg	220,0	220,0	240,0	300,0	300,0	350,0	350,0	355,0
Weight for transport	kg	230,0	230,0	250,0	315,0	315,0	365,0	365,0	370,0

MVBHR

		MVBHR2240T	MVBHR2800T	MVBHR3350T	MVBHR4000T	MVBHR4500T	MVBHR5040T	MVBHR5600T	MVBHR6150T
Outdoor unit									
A	mm	930	930	930	1340	1340	1340	1340	1340
В	mm	775	775	775	775	775	775	775	775
C	mm	1690	1690	1690	1690	1690	1690	1690	1690
D	mm	1000	1000	1000	1400	1400	1400	1400	1400
E	mm	830	830	830	830	830	830	830	830
F	mm	1855	1855	1855	1855	1855	1855	1855	1855
Net weight	kg	243,0	243,0	256,0	325,0	325,0	385,0	385,0	385,0
Weight for transport	kg	253,0	253,0	266,0	340,0	340,0	400,0	400,0	400,0

rmec also offers a	EMEN a range of specific stallation under pa	solutions that me	et a whole host of	requirements, as well as

Ae th

	COMPLEMENTA	ARY PRODUCTS	Air flow rate (m3/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Page
	DHW Systems and solar ki	ts				
	GSA - KSA - CXS	DHW systems, solar kits with high efficiency panels and vacuum solar manifolds	;			1022
	Thermal Buffers tank					
	SAF	Thermal Buffer tank kit with instantaneous Domestic Hot Water production				1026
	SAP	Buffer tank with capacity from 75 to 3500 litres				1028
	Plug&Play hydronic kit					
	WST	Hydronic kit plug & play	-	80-1500	-	1031
	Cooling towers					
	TRA	Cooling towers	-	-	-	1034
	Remote condensers - Dry	coolers				
new	Remote condensers - Dry	Cooler	-	8-2200	-	1037
	Water cooled condensing	unit				
	FW-R	Water-cooled air conditioner	-	2,9-4,0	4,3-5,2	1043
	CWX-CWXM	Water motocondensing unit	-	2,7-7,1	-	1045
	Dehumidifier					
	DMT	Dehumidifier				1048
	DMH-DMV	Dehumidifier				1052

DHW SYSTEMS AND SOLAR KITS

- Solar systems complete with storage tank for combination with a heat pump
- Solar kits without storage tank for combination with third-party storage tanks
- Ultra-high efficiency vacuum solar manifolds
- Optional anti-stagnation shading device

DHW systems, solar kits with high efficiency panels and vacuum solar manifolds

DESCRIPTION

The Aermec GSA °-E series solar systems for domestic hot water are designed for easy interaction with heat pump systems and contain vacuum solar manifolds, a solar station equipped with a high efficiency electronic circulator, solar control unit and double coil storage tank.

The additional coil for the supplementary source is dimensioned with a larger exchange surface and is suitable for combination with heat pumps.

The Aermec GSA $^{\circ}$ -E series solar systems include ultra-high efficiency vacuum manifolds, which can be equipped with an optional anti-stagnation shading system. The solar manifolds are dimensioned based on the capacities of the storage tanks (300 litres or 500 litres) in order to guarantee a high share of renewable energy for the production of DHW and to optimise the system from an economic point of view.

Solar kits with the same dimensions of the complete systems but in a version without a storage tank are also available in order to combine them with third-party storage tanks (the suitability of the storage tanks must be checked by the designer in this case).

The complete systems and the kits without a storage tank must be completed with the necessary roof manifold clampings, which are available as accessories for the various types of roofs (pitched roof with shingles, with tiles, universal with screw connection and flat roof).

VERSIONS

The vacuum solar manifolds are also available individually, in two sizes with 15 pipes and 21 pipes. Each size is available in the standard $^\circ$ version and in the E version with the anti-stagnation shading device.

GSA complete solar system

The GSA °-E complete solar systems are available in two sizes - 300 litres combined with a 21-pipe solar manifold and 500 litres combined with two solar manifolds, each with 15 pipes. Each size is available in the ° version (standard) and in the E version (with the anti-stagnation shading system).

Field	Description
1,2,3	GSA
4,5,6	Size 300, 500
7	Version
	Vacuum solar manifolds

Field	Description
E	Complete solar system with vacuum collector with anti-stagnation

Solar kits without storage tank

The KSA solar kits are available in two sizes (size with a single 21-pipe manifold and size with two manifolds, each with 15 pipes). Each size is available in the standard ° version and in the E version with the anti-stagnation shading device.

Field	Description
1,2,3	KSA
4,5	Size
4,3	21, 30
6	Version
٥	Solar kit with vacuum collector
Е	Complete solar kit with vacuum collector with anti-stagnation darkening device

Vacuum solar manifolds

The vacuum solar manifolds are also available individually, in two sizes with 15 pipes and 21 pipes. Each size is available in the standard $^\circ$ version and in the E version with the anti-stagnation shading device.

Field	Description
1,2,3	CXS
4,5	Size 15, 21
6	Version
0	Vacuum solar manifolds
E	Complete vacuum solar collector with anti-stagnation shading device

ACCESSORIES

CSB: Basic set + cover.

CSP: Basic set + cover.

KSB: Basic set (for panel string termination; already included in the systems and kits).

KSP: Plus set (for panel connection; already included in the systems and kits).

MIX10: 10 liter tank of pre-mixed antifreeze solution for topping up and/or filling solar systems with vacuum collectors

MIX20: 20 liter tank of pre-mixed antifreeze solution for topping up and/or filling solar systems with vacuum collectors

STC (x1): Clamping for vacuum manifold (with or without Eclypse) on a pitched roof with tiles.

STC21: Clamping for 1 vacuum manifold with 21 pipes (with or without Eclypse) on a pitched roof with tiles.

STC30: Clamping for 2 vacuum manifold with 15 pipes each (with or without Eclypse) on a pitched roof with tiles.

STP (x1): Clamping for vacuum manifold (with or without Eclypse) on a flat roof.

STP21: Clamping for 1 vacuum manifold with 21 pipes (with or without Eclypse) on a flat roof.

STP30: Clamping for 2 vacuum manifold with 15 pipes (with or without Eclypse) on a flat roof.

STT (x1): Clamping for vacuum manifold (with or without Eclypse) on a pitched roof with shingles.

STT21: Clamping for 1 vacuum manifold with 21 pipes (with or without Eclypse) on a pitched roof with shingles.

STT30: Clamping for 12 vacuum manifolds with 15 pipes each (with or without Eclypse) on a pitched roof with shingles.

STV15: Clamping for 1 vacuum manifold with 15 pipes (with or without Eclypse) on a pitched roof with screw connection.

STV21: Clamping for 1 vacuum manifold with 21 pipes (with or without Eclypse) on a pitched roof with screw connection.

STV30: Clamping for vacuum manifold (with or without Eclypse) on a pitched roof with screw connection.

ACCESSORIES COMPATIBILITY

Clamping for a manifold on a pitched roof with shingles

Accessory	GSA300E	GSA300°	GSA500E	GSA500°
STT (x1)	•	•		
STT (x2)			•	•
Accessory	KSA21E	KSA21°	KSA30E	KSA30°
STT (x1)	_			
311 (X1)	·	<u> </u>		

Clamping for a manifold on a pitched roof with tiles

Accessory	GSA300E	GSA300°	GSA500E	GSA500°
STC (x1)	•	•		
STC (x2)			•	•
Accessory	KSA21E	KSA21°	KSA30E	KSA30°
STC (x1)	•	•		
STC (x2)			•	•

Clamping for a manifold on a pitched roof with screw connection

Accessory	GSA300E	GSA300°	GSA500E	GSA500°					
STV (x1)	•	•							
STV (x2)			•	•					
Accessory	KSA21E	KSA21°	KSA30E	KSA30°					
STV (x1)	•	•							
(Cx) VT2			•						

Clamping for a manifold on a flat roof

Accessory	GSA300E	GSA300°	GSA500E	GSA500°
STP (x1)	•	•		
STP (x2)			•	•
Accessory	KSA21E	KSA21°	KSA30E	KSA30°
Accessory STP (x1)	KSA21E •	KSA21°	KSA30E	KSA30°

Basic set (for panel string termination) and plus set (for the connection of two solar panels)

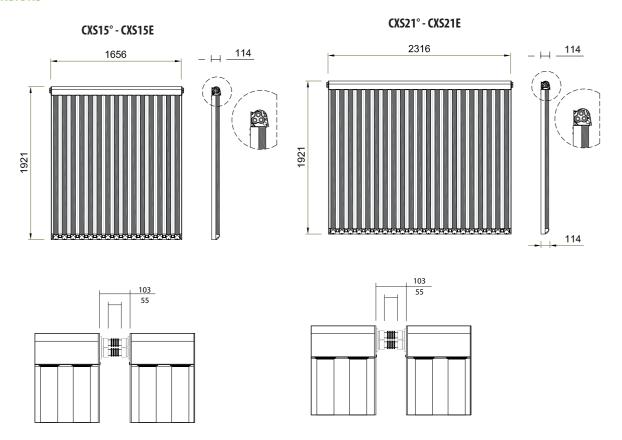
Accessory	CXS15E	CXS15°	CXS21E	CXS21°
CSB	•	•	•	•
CSP	•	•	•	•
KSB	•	•	•	•
KSP	•	•	•	•

The accessories are compatible with the solar manifolds, but are not compatible with the GSA solar systems or with the KSA solar kits because they are already included.

PERFORMANCE SPECIFICATIONS

GSA complete solar system

		GSA300°	GSA300E	GSA500°	GSA500E
Technical features	'				
Solar manifolds	no./type	1 x CXS21°	1 x CXS21E	2 x CXS15°	2 x CXS15E
Gross surface	m ²	4,45	4,45	6,36	6,36
Opening surface	m ²	4,02	4,02	5,74	5,74
Input current surface	m²	5,39	5,39	7,70	7,70
Hydraulic components					
Storage tank (DHW)	I	300	300	500	500
Expansion vessel number	no.	1	1	1	1
Expansion vessel capacity	I	24	24	40	40
Recommended dimension based on the number of people	no.	3-5	3-5	5-7	5-7


KSA solar system

		KSA21°	KSA21E	KSA30°	KSA30E
Technical features					
Solar manifolds	no./type	1 x CXS21°	1 x CXS21E	2 x CXS15°	2 x CXS15E
Gross surface	m²	4,45	4,45	6,36	6,36
Opening surface	m²	4,02	4,02	5,74	5,74
Input current surface	m²	5,39	5,39	7,70	7,70
Hydraulic components					
Expansion vessel number	no.	1	1	1	1
Expansion vessel capacity	I	24	24	40	40

Only the solar panel

		CXS15°	CXS15E	CXS21°	CXS21E
Technical features					
Vacuum pipes	no.	15	15	21	21
Maximum number of coil manifolds	no.	6	6	6	6
Connections	no.	6	6	6	6
Connection dimensions	Ø inch	3/4"M	3/4"M	3/4"M	3/4"M
Opening surface	m²	2,87	2,87	4,02	4,02
Input current surface	m²	3,85	3,85	5,39	5,39
Gross surface	m²	3,18	3,18	4,45	4,45
Head insulation thickness, aluminised glass wool covering	mm	47	47	30	30
Diameter - Vacuum pipe length	mm	58/47 - 1800	58/47 - 1800	58/47 - 1800	58/47 - 1800
Recommended tilt	۰	15 - 75°	15 - 75°	15 - 75°	15 - 75°
Conductor radiator fluid content	I	3,28	3,28	3,75	3,75
Performances					
η0 rendimento ottico (riferimento area lorda)		0,615	0,615	0,609	0,609
K1 transmission coefficient (gross area reference)	W/m ² K	0,850	0,850	0,690	0,690
K2 transmission coefficient (gross area reference)	W/m²K	0,009	0,009	0,005	0,005
Nominal Power	W	1956	1956	2710	2710
Angle of incidence correction factor	K50°	1.14T/0.9L	1.14T/0.9L	1.14T/0.9L	1.14T/0.9L
Heating capacity (opening ref.)	kJ/m²K	50,9	50,9	34,0	34,0
Energy produced annually ISO 9806:2013 – Wurzburg – Temperature 50°C	kWh	2371	2371	2884	2884
Energy produced annually ISO 9806:2013 – Wurzburg – Temperature 75°C	kWh	1929	1929	2499	2499
Test Report ISO 9806:2013		Kiwa	Kiwa	Kiwa	Kiwa
DIN CERTCO Registration number		16083 Rev.0	16083 Rev.0	16082 Rev.0	16082 Rev.0
Flow Rate	l/h	127	127	200	200
Stagnation temperature	°C	279	279	176	176
Maximum pressure	bar	10	10	10	10

DIMENSIONS

		CXS15°	CXS15E	CXS21°	CXS21E
Dimensions and weights					
A	mm	1656	1656	2316	2316
В	mm	1921	1921	1921	1921
С	mm	114	114	114	114
Empty weight	kg	72	72	80	80

SAF

- · Various versions that make optimum use of the different energy sources
- · Ease of installation, even in confined spaces
- · Installing the indoor unit

SAF are the new thermo-buffer for the instantaneous production of domestic hot water (DHW). They integrate both the energy storage element and the heat exchanger, along with the control functions, into a single unit.

The hot water is taken from the water main and heated instantaneously by means of a plate heat exchanger in stainless steel: the separation between the drinking water circuit and the water contained in the accumulator ensures maximum hygiene.

In this way, the benefits of instant production are combined with those associated with buffer production.

These devices are specifically designed and manufactured to be combined with heat pumps but also with traditional or biomass boilers, solar thermal systems and other renewable sources.

° Standard

S With supplementary energy source management

T Set up for use with supplementary energy source

In addition to these versions, an supplementary heater (accessory) is also provided to respond to increased heating requirements.

FFATURES

- The SAF system is available with a range of thermo-accumulators with different capacities, (200-300-500l), in order to meet a whole host of different DHW requirements;
- The high-efficiency insulation prevents energy losses, to the advantage of the heat exchanger, allowing for significant reductions in running
- The compactness and the new elegant and attractive design mean that it can be installed in restricted spaces, in indoor environments.

ACCESSORIES

KRX-SAF: Supplementary electric heater with thermostat control from 1200W 230V/1/50Hz with connexion of 1" 1/2.

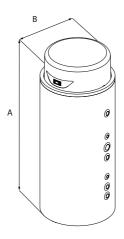
VT: Anti-vibration supports.

Accessories compatibility

Heat pump	Sizes	Version		Accessories mandatory				Recommended	
				SAF	MOD485K	MODU485-BL*	VMF-E5	VTV160	KRX-SAF
ANL	021-203	H°-HP		•	•	•	•	•	•
ANLI	101	H°-HP-HX	(1)	•	-	-	-	•	•
ANK	020-150	H°-HP		•	•	•	•	•	•
NRK	090-0150	00-P1-P3		•	•	•	•	•	•
CL	025-200	H°-HP		•	•	•	•	•	•
ANKI	020-080	H°-HX	(1)	•	-	-	-	•	•
WRL	026-161	Н°	(1)	•	-	-	-	•	

* To be installed on board of the heat pump.
(1) Units designed for the management domestic hot water: MOD485K and VMF-E5 accessories not required. It is recommended not to combine the SAF with units with storage tank.

CONFIGURATOR


Field	Description
1,2,3	SAF
4,5,6	Size 200, 300, 500
7	Version
•	Standard
S	With supplementary energy source management (1)
T	Set up for use with supplementary energy source (1)
8	Field for future development
•	

⁽¹⁾ Version "S-T" not available for size 200

PERFORMANCE SPECIFICATIONS

		SAF200	SAF300	SAF300T	SAF300S	SAF500	SAF500T	SAF500S
Power supply								
Power supply					230V~50Hz			
Accumulation inertial								
Storage tank capacity	I	199	290	27	79	480	4	65
Drinking water content	I	0,85	0,85	0,85	0,85	0,85	0,85	0,85
Coil water content	I	-	-	10	10	-	13	13
Maximum operating pressure	bar	6	6	6	6	6	6	6
Losses through dispersion	W	59		68			80	
Energy efficiency class (1)	type				В			
DHW minimum flow rate	l/min	2	2	2	2	2	2	2
DHW maximum flow rate	I/min	35	35	35	35	35	35	35
Maximum operating temperature	°C	95	95	95	95	95	95	95
Electric data								
Minimum input power	W	25	25	25	27	25	25	27
Maximum input power	W	75	75	75	127	75	75	127
Minimum input current (2)	A	0,14	0,14	0,14	0,18	0,14	0,14	0,18
Maximum input current	A	0,53	0,53	0,53	1,05	0,53	0,53	1,05

DIMENSIONS

		SAF200	SAF300	SAF300T	SAF300S	SAF500	SAF500T	SAF500S
Dimensions and	weights							
A	mm	1315	1690	1690	1690	1740	1740	1740
В	mm	710	710	710	710	850	850	850
Empty weight	kg	75	89	96	101	116	131	136
Weight functioning	kg	275	389	396	401	616	631	636

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. 0442633111 - Telefax 044293577 www.aermec.com

⁽¹⁾ In accordance with Standard UNI EN 16147-2011 and in accordance with Delegated Regulation 812/2013 and 814/2013 (2) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

SAP **Storage tank**

 Accumulation unit from 75 to 3500 litres

Accumulation unit - completely assembled pump to be used with a refrigerating unit with hydraulic connections to be made on site by the installer.

- The base the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.
- Pumps
- Pressure relief valve
- Completely insulated hydraulic circuit
- Pump magnet circuit-breaker protection

Pumps

SAP 0075 - 0150:

5 pump models with water capacity up to 18000 l/h and with prevalence up to 140 kPa are available (max. 2 internally installed pumps).

SAP 0300 - 0500 - 0501 - 0750 - 1000:

8 pump models with water capacity up to 60000 l/h and with prevalence up to 200 kPa are available.

Pumping units with a reserve pump can also be included in these units. SAP 1500 - 2000 - 3000:

10 pump models with water capacity up to 200000 l/h and with prevalence up to 300 kPa are available.

Pumping units with a reserve pump can also be included in these units.

ACCESSORIES

VT: Anti-vibration supports.

AVX: Spring anti-vibration supports.

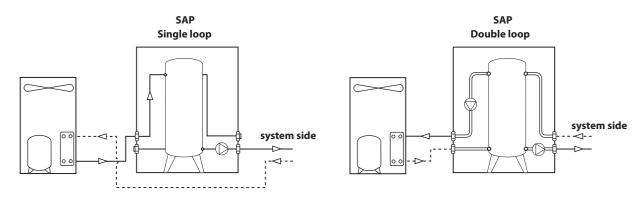
RX: 500 W armoured resistance, with thermostat and inserted in a dedicated fitting, it can be installed only at the factory.

RXV: 3kW armoured resistance, with thermostat and inserted in a dedicated fitting, it can be installed only at the factory.

Accessories compatibility

Antivibration

Accessory	SAP0075	SAP0150	SAP0300	SAP0500	SAP0501	SAP0750	SAP1000
VT2			•	•	•	•	•
VT8	•	•					


Antivibration

Ver	1500	2500	3500
IS, JS, KS	AVX206	AVX210	AVX214
IZ, JZ, KZ	AVX203	AVX208	AVX212
RS, WZ	AVX202	AVX208	AVX212
RZ, TZ	AVX201	AVX207	AVX211
TS	AVX204	AVX208	AVX212
US	AVX204	AVX208	AVX213
UZ, VZ, ZZ	AVX201	AVX207	AVX212
VS	AVX204	AVX209	AVX213
WS, XS, YS	AVX205	AVX209	AVX213
XZ, YZ	AVX202	AVX207	AVX212

Resistance

Accessory	SAP0075	SAP0150	SAP0300	SAP0500	SAP0501	SAP0750	SAP1000	SAP1500	SAP2500	SAP3500
RX	•	•	•	•		•	•			_
RXV								•	•	

EXAMPLE OF A HYDRAULIC CONNECTION

TECHNICAL DATA

		SAP0075	SAP0150	SAP0300	SAP0500	SAP0501	SAP0750	SAP1000	SAP1500	SAP2500	SAP3500
Accumulation inertial											
Storage tank capacity	I	75	150	300	500	500	750	1000	1500	2500	3500
Pressure relief valve	n°/bar	1/6	1/6	1/6	1/6	1/6	1/6	1/6	1/6	1/6	1/6
Expansion vessel											
Expansion vessel capacity	I	8	12	18	24	24	18	18	24	24	24
Expansion vessel number	no.	1	1	1	1	1	2	2	2	3	3
Hydraulic connections											
Connections (in/out)	Туре	F	F	F	F	F	F	F	-	-	-
Sizes (in/out)	Ø	1″1/4	1"1/2	2"	2"1/2	2"1/2	3"	3"	-	-	-

SAP pumps flanges diameter 1500 - 2500 - 3500

							Pu	mp				
SAP	Flange		R	Ţ	U	V	Х	γ	W	K	J	1
1500	PN16UNI2278	Ø	125	125	150	150	150	150	200	200	200	200
2500	PN16UNI2279	Ø	125	125	150	150	150	150	200	200	200	200
3500	PN16UNI2280	Ø	125	125	150	150	150	150	200	200	200	200

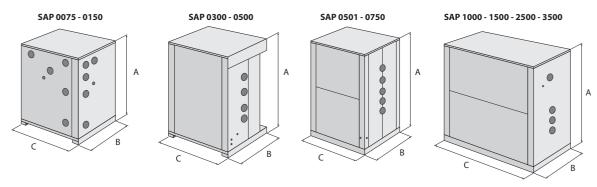
PUMP ELECTRIC DATA

						Pu	mp					
		A	В	(E	F	G	Н	I	J	K	L
Max absorbed power	W	275	330	614	895	1070	1550	2050	22000	17500	14500	3100
Max absorbed current	A	0,5	0,7	1,1	1,6	1,9	2,8	3,6	43,0	36,4	30,0	5,6
	<u> </u>	M	N	Р	Q	R	T	U	V	W	Х	Υ
Max absorbed power	W	4100	1470	2600	5200	4000	5200	5800	8000	11500	9000	11000
Max absorbed current	A	7,2	2,6	4,4	8,8	8,5	11,5	15,5	15,5	22,5	22,5	22,5

PUMP COMBINATIONS

						Pump con	nbinations					
SAP0075	AZ	AE	AF	AZ	ВС	BE	BF	BZ	ZC	ZE	ZF	ZZ
SAP0150	AC	AE	AF	AZ	ВС	BE	BF	BZ	CC	EC	CF	CZ
SAPUISU	AE	EE	EF	EZ	BF	FE	FF	FZ	ZC	ZE	ZF	ZZ
SAP0300						CS	CZ	ES	EZ	FS	FZ	ZZ
SAP0500				FS	FZ	GS	GZ	HS	HZ	PS	PZ	ZZ
SAP0501				FS	FZ	GS	GZ	HS	HZ	PS	PZ	ZZ
CADOTEO				FS	FZ	GS	GZ	HS	HZ	LS	LZ	MS
SAP0750					MZ	NS	NZ	PS	PZ	QS	QZ	ZZ
SAP1000				LS	LZ	MS	MZ	NS	NZ	QS	QZ	ZZ
CAD1EOO		IS	ΙZ	JS	JZ	KS	KZ	RS	RZ	TS	TZ	US
SAP1500			UZ	VS	VZ	WS	WZ	XS	XZ	YS	YZ	ZZ
SAP2500		IS	ΙZ	JS	JZ	KS	KZ	RS	RZ	TS	TZ	US
3AP2300			UZ	VS	VZ	WS	WZ	XS	XZ	YS	YZ	ZZ
CADSEON		IS	ΙZ	JS	JZ	KS	KZ	RS	RZ	TS	TZ	US
SAP3500			UZ	VS	VZ	WS	WZ	XS	XZ	YS	YZ	ZZ

The indicated combinations are the only ones foreseen, many capacity/prevalence combinations are available, we invite you to refer to the technical documentation.


- A B: Multi-speed circulators.
- L M Q: Twin pumping unit.
- **S**: Pumping unit with reserve pump.

Z: Pump not present.

The first letter of the combination indicates the pump on the primary circuit.

The second letter of the combination indicates the pump on the secondary circuit.

DIMENSIONS

		SAP0075	SAP0150	SAP0300	SAP0500	SAP0501	SAP0750	SAP1000	SAP1500	SAP2500	SAP3500
Dimensions and	weights										
A	mm	1000	1000	1650	1650	1968	1968	2049	2049	2049	2049
В	mm	1000	1000	1100	1100	1000	1000	1000	1750	2000	2300
C	mm	700	700	1100	1100	1550	1550	2200	2200	2200	2200
Empty weight	kg	120	135	190	230	310	400	445	510	655	730

The weight of the unit without ZZ pumps.

WST evo

Plug & play hydronic kit

Cooling capacity 80 ÷ 1500 kW Water flow rate 17000 ÷ 260000 l/h

- Easy installation
- ideal for industrial systems or data centres, where chilled water is required even during the winter
- Partial and total free cooling operation

DESCRIPTION

Plug & play hydronic kit that includes the main hydronic and regulation components of a hydraulic system.

The WST are designed to facilitate installation in systems where chilled water production is required throughout the year, in combination with a water/water chiller and a dry cooler.

Thanks to Aermec's 20-year experience in critical processes and the special software purposely developed, these units can manage all the components that make up the system:

- The water-cooled chiller;
- The pumps (including the reserve ones, if installed) for both the system side and the source side;
- The speed of the dry cooler fans (in both mechanical operation and free cooling mode);
- The modulating valve for controlling the chiller condensation.

OPERATION

Air-water chiller

When the outside air temperature is higher than the temperature of the system return water, the cooling capacity is provided by the chiller. The WST manages the dry cooler by modulating its fans on the basis of the chiller condensation pressure.

Free-cooling

When the outside air temperature is lower on the other hand, the WST commands free cooling mode which can be mixed (chiller + free cooling) or free cooling only (switching off the chiller) to exploit the water from the dry cooler to cool the system water in the dedicated heat exchanger.

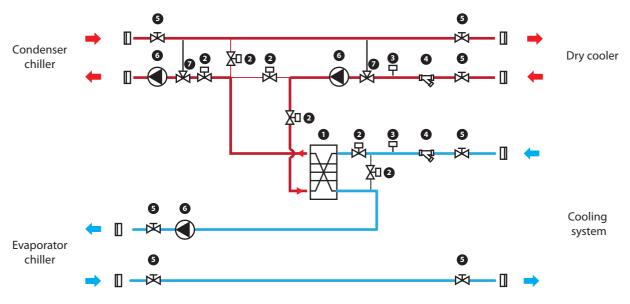
HYDRAULIC COMPONENTS OF THE DRY COOLER SIDE

- Water filter:
- Flow switches;
- Shut-off valve:
- Mixer valves;
- Bypass valve;
- Pumps;
- Butterfly valves (free cooling enabling);
- High-efficiency plate heat exchanger (free cooling);
- Water temperature probes.

HYDRAULIC COMPONENTS OF THE CHILLER SIDE

- Water filter:
- Flow switches;
- Shut-off valve;
- Pumps;
- Water temperature probes.

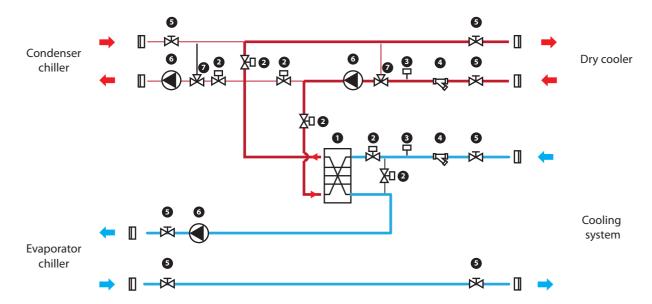
REGULATION


- Electronic microprocessor regulation with MODBUS protocol communication;
- The AER485P1 accessory is supplied as standard with the WST. This accessory must necessarily be fitted in the chiller, so the units can communicate with each other:
- Advanced electronics characterised by the continuous monitoring of various working and environmental parameters, so the operating mode (chiller/free cooling) can be switched as and when necessary. This limits the operating costs and ensures greater energy efficiency;
- Dry cooler fan management, to control the condensation pressure (chiller mode) or the recovered output (free cooling mode);
- Management of cold start-up via dry cooler fan modulation and the mixer valve;
- Structure and base in hot-dip galvanised sheet metal coated in epoxy powders RAL 9003.

OPERATING MODE

Mechanical operation (chiller)

Mixed operation (chiller + free cooling)



Key:

- Plate heat exchanger
- 2-way butterfly valve 2
- 3 Flow switch

- Water filter
- 5 Shut-off valve
- 6 7 Pump
- Mixing valve

Operation in free-cooling only

Key:

- 1
- Plate heat exchanger 2-way butterfly valve 2
- 3 Flow switch

- Water filter
- Shut-off valve 5
- 6 Pump
- Mixing valve

TRA

Cooling towers

Capacity from 49,53 up to 1084,88 kW

FEATURES

- Available in 17 different sizes;
- Entirely built of fibre-glass reinforced resin to avoid corrosion problems with surface treatment to withstand ultraviolet rays, heat changes and scuffing caused by bad weather;
- Limited to the three largest sizes (TRA850, TRA850L, TRA950, TRA950L, TRA1100L) the bearing structure is made of hot galvanised steel with 22 mm thick fibreglass reinforced resin sandwich panels, with support foam material inside. In this way, as well achieving good mechanical strength the sound of the water flowing is muffled. Surface treatment to withstand ultraviolet rays, heat changes and scuffing caused by bad weather;
- Self-bearing structure;
- Exchange pack and drip separator made of self-extinguishing PVC;
- PVC water distribution pipes with polypropylene nozzles;
- Hydrometer: when there is not water flow rate measuring device, this
 instrument makes possible to have an approximate indication of the
 flow rate of the water in circulation based on the nozzle load drop;
- Plastic bleed tap;
- Axial high efficiency fan with several blades;
- Water drip pan, waterproof and water resistant made of fibreglass reinforced polyester resin with multi layer glass material;
- **Personal protection grill** made of AISI 304 on the fan outlet.

PERFORMANCE SPECIFICATIONS

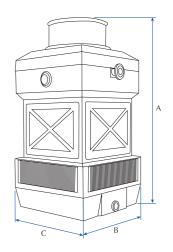
		TRA50	TRA70	TRA90	TRA110	TRA130	TRA170	TRA200	TRA240	TRA300	TRA400
Cooling towers performances (1)											
Capacity	kW	49,53	69,06	88,60	107,44	125,58	168,14	197,67	242,09	302,33	405,32
Air flow rate	m³/h	4500	4500	8100	8100	8100	12600	12600	18100	18100	28350
Water flow rate	l/h	7100	9900	12700	15400	18000	24100	28330	34700	43300	58100
Pressure drop	kPa	42	32	52	32	42	28	35	23	40	28
		TRA500	TRA550	TRA600	TRA750	TRA850	TRA850L	TRA950	TRA950L	TRA1100	TRA1100L
Cooling towers performances (1)											
Capacity	kW	488,37	574,19	604,88	767,44	856,74	856,74	941,86	941,86	1084,88	1084,88
Air flow rate	m³/h	28350	36000	45350	45350	58000	58000	58000	58000	67000	67000
Water flow rate	l/h	70000	82300	86700	110000	122800	122800	135000	135000	155500	155500
	1/11	70000	02300								

⁽¹⁾ Inlet air temperature 23,5 °C b.u., Inlet water temperature 35 °C, Outlet water temperature 29 °C

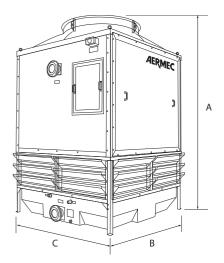
GENERAL DATA

	'	TRA50	TRA70	TRA90	TRA110	TRA130	TRA170	TRA200	TRA240	TRA300	TRA400
General data											
Motor power	kW	0,55	0,75	0,75	0,75	1,10	1,10	1,50	1,50	2,20	2,20
Motor poles	no.	4	4	4	4	6	6	6	6	6	6
Motor poles (double polarity)	no.	4/8	4/8	4/8	4/8	6/12	6/12	6/8	6/8	6/8	6/8
Nozzles	no.	1	1	1	1	1	1	1	4	4	4
Fans											
Number	no.	1	1	1	1	1	1	1	1	1	1
	1	TRA500	TRA550	TRA600	TRA750	TRA850	TRA850L	TRA950	TRA950L	TRA1100	TRA1100L
General data											
Motor power	kW	4,00	5,50	4,00	5,50	5,50	5,50	5,50	5,50	7,50	7,50
Motor poles	no.	6	6	6	6	8	8	8	8	8	8
Motor poles (double polarity)	no.	6/12	6/12	6/12	8/16	8/16	8/16	8/16	8/16	8/16	8/16
Nozzles	no.	4	4	9	9	16	16	16	16	16	16
Fans											
Number						1			1		

SOUND DATA


		TRA50	TRA70	TRA90	TRA110	TRA130	TRA170	TRA200	TRA240	TRA300	TRA400
Sound data (1)											
Sound pressure	dB(A)	52	52	54	54	54	54	54	55	55	57
-		TRA500	TRA550	TRA600	TRA750	TRA850	TRA850L	TRA950	TRA950L	TRA1100	TRA1100L
Sound data (1)		TRA500	TRA550	TRA600	TRA750	TRA850	TRA850L	TRA950	TRA950L	TRA1100	TRA1100L

⁽¹⁾ Sound pressure: Values refer to measurements in accordance with ISO 3744 standard, performed in free field and in absence of background noise, with average hydraulic load. Sound pressure level at a distance of 15 m from the tower, measured at 1.5 meters above the ground. Tolerance on values +/-2 dbA.


The size up 50 to 750 are only available in the silenced versions.

■ Power supply: 230V ~ 3 50Hz, 400V ~ 3N 50Hz.

DIMENSIONS

TRA 850-1100 TRA 850L-1100L

		TRA50	TRA70	TRA90	TRA110	TRA130	TRA170	TRA200	TRA240	TRA300	TRA400
Dimensions and weights	'										
A	mm	2110	2110	2595	2595	2595	2800	2800	2860	2860	3140
В	mm	800	800	1000	1000	1000	1200	1200	1400	1400	1740
C	mm	800	800	1000	1000	1000	1200	1200	1400	1400	1740
Empty weight	kg	75	75	85	95	95	170	170	210	210	410
	'	TRA500	TRA550	TRA600	TRA750	TRA850	TRA850L	TRA950	TRA950L	TRA1100	TRA1100L
Dimensions and weights											
A	mm	3140	3380	3450	3450	3650	3900	3650	3900	3650	3900
_	mm	1740	1900	2100	2100	2030	2030	2030	2030	2360	2360
В	111111										
С	mm	1740	2100	2300	2300	2360	2360	2360	2360	2360	2360

Remote condensers - Dry Cooler

Cooling capacity 8 ÷ 2200 kW

- · Simple to use and install
- · Wide range of powers
- Easy to handle and transport
- Can be installed both horizontally and vertically

DESCRIPTION

DryCoolers and Condensers are air-cooled units used in air conditioning, refrigeration and industrial applications. The are typically installed outdoors, in a remote location, e.g. on roofs, squares, etc. These units consist of one or more heat exchangers installed on two types of structures:

- Type V: generally consisting of two heat exchangers installed in a 'V' shape and fans positioned above them.
- Table type: generally consisting of a horizontally or vertically positioned heat exchanger and fans with a vertical axis of rotation relative to the finned pack.

The use of these units, in most cases, is necessary to control the temperature of the outlet fluid or to keep the condensing pressure of the refrigerant used under control. These units are generally equipped with air flow regulation systems, which allow the heat exchange to be adapted to changing environmental conditions (day, night, summer, winter, etc.).

Since the units are installed outdoors, they are subject to all environmental characteristics. There are several regulations that classify outdoor environments. The main categories are:

- Rural area
- Urban area
- Coastal area
- Industrial area
- Coastal-industrial area

These areas, in turn, can be further divided, as they can create specific micro-environments, which are the sum of one or more of the above-mentioned categories.

In addition to these classifications, there are also further severe situations due to the significant presence of pollutants such as, for example, sulphur oxides typical of climatic zones with intense acid rain (e.g. northern Europe) or areas near volcanoes, etc. All these pollutants can significantly change the pH of the environment, making deposits on the units extremely corrosive.

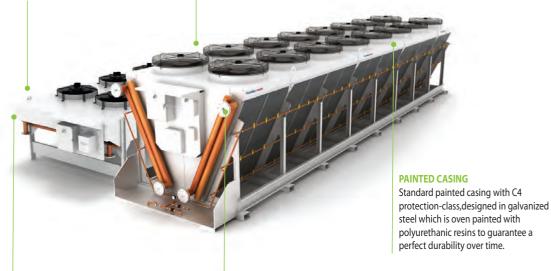
Another factor to consider is TOW (time of wetness), which is the amount of time that there is a constant presence of humidity above 80% with a temperature above 0 °C. These are just a few examples of environmental situations that require a thorough analysis of the installation before making a technical choice.

In addition, instructions on maintenance and cleaning methods should also be considered in the following cases:

- after a shipment of units by sea
- when operating the unit in particularly dirty places

The correct definition of the corrosive environment has a direct impact on the choice of heat exchanger materials, structure and fans to be used. Aermec it is able to offer specific technical solutions for each of these cases and to test new construction solutions in cases not previously mentioned.

We recommend using the Aercooler selection programme available on the website www.aermec.com.


EVERY DETAIL IS DESIGNED TO ENSURE THE BEST PERFORMANCE

LIFTING EYES

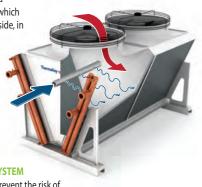
Aermec has designed the lifting eyes to ensure a correct and easy handling of the dry cooler in compliance with safety standards.

CROSS AND LONGITUDINAL SECTIONS OF EACH PART

Each fan module is separated from the other thanks to panels in order to avoid air by-pass and to optimize the e⁻cienc y of the heat exchanger. In this way the correct and proportional functioning of each module is granted.

COVERS ON HEADERS AND RETURN BEND SIDES

A protection cover on the headers side and a closing cover on the return bend side of the coil avoid any damage even to the most fragile parts.


NITROGEN FILLING WITH FLANGE AND COUNTERFLANGE

In order to verify the correct pressure of the circuit, the unit is supplied with a nitrogen charge, which can be checked on the manometer mounted in factory.

OPTIONS

(Optional) SPRAY J CLEANING SYSTEM

On V-type units Aermec has designed a Cleaning System with internal nozzles which sprays water from the inside to the outside, in order to clean the heat exchanger.

(Optional)
SELF-DRAINING AND DRAINABLE SYSTEM

automatic drain system designed to prevent the risk of freezing of the ÿnned coil during the winter.

(Optional) STAINLESS STEEL TUBES, FINS AND CASING

AERMEC can also produce **heat exchangers completely in 304 or 316L** stainless steel for special applications (particularly aggressive environments) or °uids ..

(Optional) ADIABATIC COOLING SYSTEMS: HIGH EFFICIENCY TO MEET THE MOST DEMANDING CONDITIONS

AFS - AIR FRESH SYSTEM

adiabatic cooling system equipped with special high-pressure nozzles which allows to compensate for the peaks of power to be dissipated, with minimum water consumption for maximum of 500 hours per year.

■ WFS - WET FIN SYSTEM

hybrid cooling system which allows a complete °e xibility of operation, working at low pressure (2-3 bars) and for a very high number of hours per year (up to 1000).

■ EPS - EVAPORATIVE PANEL SYSTEM

The evaporative panel system completes Aermec o_c er for adiabatic cooling. Thanks to an homogeneous and adjustable distribution of water on the panels this system allows to reach a high saturation level and therefore an e´cien t capacity increase with low water consumption (hours per year 8000).

WTE

Capacity from 8 to 890 kW

(ethylene glycol 35%, Tw1=40°C, Tw2=35°C, T1=25°C)

Diameter Ø 500, 630, 800, 900, 1000 mm, AC or EC motor

- **Beneÿts** High e^{*}cie ncy geometry
 - Modular design, 1-10 fans
 - 8 sound levels
 - Piping in copper or stainless steel AISI 304 or AISI 316L
 - Finned pack available in a wide range of materials
 - Complete range of accessories
 - Casing in galvanized steel, powder painted

WTE

Performance range:

Capacity from 45 to 1123 kW

(ethylene glycol 35%, Tw1=40°C, Tw2=35°C, T1=25°C)

Diameter Ø 500, 630, 800, 900, 1000 mm, AC or EC motor

Fans

Beneÿts ■ High e cie ncy geometry

- Modular design, 2-16 fans
- 8 sound levels
- Piping in copper or stainless steel AISI 304 or AISI 316L
- Finned pack available in a wide range of materials
- Complete range of accessories
- Casing in galvanized steel, powder painted

WTR

Capacity from 45 to 1123 kW

(ethylene glycol 35%, Tw1=40°C, Tw2=35°C, T1=25°C) Diameter Ø 500, 630, 800, 900, 1000 mm, AC or EC motor

- Beneÿts High e cie ncy geometry
 - Modular design, 2-16 fans
 - 8 sound levels
 - Piping in copper or stainless steel AISI 304 or AISI 316L
 - Finned pack available in a wide range of materials
 - Complete range of accessories
 - Casing in galvanized steel, powder painted

WDR

Capacity from 70 to 961 kW erformance range:

(ethylene glycol 35%, Tw1=40°C, Tw2=35°C, T1=25°C)

Diameter Ø 500, 630, 800, 900, 1000 mm, AC or EC motor

Beneÿts ■ High e^{*}cie ncy geometry

- Modular design, 2-16 fans
- 8 sound levels
- Piping in copper or stainless steel AISI 304 or AISI 316L
- Finned pack available in a wide range of materials
- Complete range of accessories
- Casing in galvanized steel, powder painted

WGA

Performance range:

Capacity from 290 to 2219 kW

Fans

Diameter Ø 800, 900, 1000 mm, AC or EC motor

- Beneÿts **EPS (Evaporative Panel System)**
 - Maximum performance, minimum footprint
 - High e^{*}cie ncy geometry
 - Modular design, 8-20 fans
 - 8 sound levels
 - Piping in copper or stainless steel AISI 304 or AISI 316L
 - Finned pack available in a wide range of materials
 - Complete range of accessories

REMOTE CONDENSERS

CSE

Capacity from 10 to 1200 kW

(ethylene glycol 35%, Tw1=40°C, Tw2=35°C, T1=25°C)

Diameter Ø 500, 630, 800 mm, AC or EC motor Fans

Beneÿts ■ High e^{*}cie ncy geometry

- Modular design, 1-16 fans
- 8 sound levels
- Piping in copper or stainless steel AISI 304
- Finned pack available in a wide range of materials ■ Complete range of accessories
- Casing in galvanized steel, powder painted

CSE

Performance range:

Capacity from 45 to 1123 kW

(ethylene glycol 35%, Tw1=40°C, Tw2=35°C, T1=25°C)

Fans

Diameter Ø 500, 630, 800, 900, 1000 mm, AC or EC motor

Beneÿts ■

- High e cie ncy geometry
- Modular design, 2-16 fans
- 8 sound levels
- Piping in copper or stainless steel AISI 304 or AISI 316L
- Finned pack available in a wide range of materials
- Complete range of accessories
- Casing in galvanized steel, powder painted

CVR

ormance range:

Capacity from 70 to 961 kW

(ethylene glycol 35%, Tw1=40°C, Tw2=35°C, T1=25°C)

Diameter Ø 500, 630, 800, 900, 1000 mm, AC or EC motor

- Beneÿts High e^{*}cie ncy geometry
 - Modular design, 2-16 fans
 - 8 sound levels
 - Piping in copper or stainless steel AISI 304 or AISI 316L
 - Finned pack available in a wide range of materials
 - Complete range of accessories
 - Casing in galvanized steel, powder painted

CDR

Capacity from 100 to 19515 kW

(ethylene glycol 35%, Tw1=40°C, Tw2=35°C, T1=25°C)

Diameter Ø 900 AC or EC motor

Fans

- Beneÿts High e cie ncy geometry
 - Modular design, 2-16 fans
 - 8 sound levels
 - Piping in copper or stainless steel AISI 304 or AISI 316L
 - Finned pack available in a wide range of materials
 - AFS (Air Fresh System), WFS (Wet Fin System) e EPS (Evaporative Panel System) disponibili su richiesta
 - Casing in galvanized steel, powder painted

CGA

Performance range: Capacity from 290 to 2219 kW

Diameter Ø 800, 900, 1000 mm, AC or EC motor

Beneÿts **= EPS (Evaporative Panel System)**

- Maximum performance, minimum footprint
- High e cie ncy geometry
- Modular design, 8-20 fans
- 8 sound levels
- Piping in copper or stainless steel AISI 304 or AISI 316L
- Finned pack available in a wide range of materials
- Complete range of accessories

MODULAR MICROCHANNEL

Capacity for each module up to 120 kW

Fans

Diameter Ø 800 mm, AC or EC motor

Modules

From 1 module on

- Beneÿts Compactness (maximum length of 2245 mm)
 - Low installation costs
 - Regulation or partialisation of the whole unit
 - Lower environmental impact
 - Less weight
 - Less "uid use
 - Easy-to-clean microchannel core
 - Core coating possibility in case of aggressive ambient

Performance range:

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.

Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

FW-R

Water-cooled air conditioners

Cooling capacity 2,9 kW Heating capacity 4,3 kW

- Silent operation
- Reduced water consumption
- Low electrical power consumption

DESCRIPTION

FW-R series integrated system air conditioners are independent appliances designed and built to create and maintain optimum room comfort conditions.

Discreetly and elegantly styled, these remarkably quiet units are ideal for installation in the home or commercial premises.

Equipped with a water-cooled condenser, the unit appliances perform all typical cooling, dehumidification, ventilation and air filtration functions while offering particular benefits in terms of ease of application and installation.

Suitable also for winter operation when equipped with an electric heater or hot water coil; console air conditioners are able to provide different microclimates within the same room because each appliance can be adjusted independently; low running costs are assured by fast arrival at the required room temperature because of the low thermal inertia of the system; quiet operation and thermal efficiency are also promoted by the heat and sound insulation of the compressor bay.

All appliances are factory assembled and individually tested.

Installation requires mandatory coupling with the TL3 Remote Control Kit accessory; the IR receiver can be installed either on-board or recessed in the wall.

FEATURES

- High efficiency rotary compressor
- Reduced dimensions
- Automatic temperature adjustment
- Reduced water consumption

- 1 IR on board receiver
- 2 IR wall-mounted receiver
- 3 TL3: Kit Mandatory accessory

ACCESSORIES

TL3: Mandatory accessory, remote control, essential for unit operation. The kit consists of a remote control, an I.R. signal receiver, the 8-metre long connection cable, a rectangular recessed Modulo 503 box (of which only one is engaged by the receiver, the other 2 modules are also available for other uses) and a white-coloured cover plate. The IR receiver can be installed: on board the unit (the IR receiver is housed under the grid, invisible from the outside); recessed in the wall and connected to the unit (with the dedicated 8-metre cable).

BR26: Armoured electric coil with safety thermostat.

BVR1: Single row hot water heat exchanger.

ACCESSORIES COMPATIBILITY

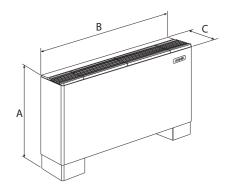
Remote controller (mandatory accessory)

Accessory	FW130R	FW160R
TL3	•	•
Electric coil		
Accessory	FW130R	FW160R
BR26	•	•

Hot water coil

Accessory	FW130R	FW160R
BVR1	•	•

PERFORMANCE SPECIFICATIONS


		FW130R	FW160R
Cooling (room air temperature 27 °C D.B.; 19 °C W.B., water temperature (in/out) 30 °C	/ 35 °C, maximum speed)		
Cooling capacity	W (max.)	2900	4000
Energy Efficiency Class		A	A
EER		4,08	4,65
Moisture removed	l/h	1,78	1,78
Total input electric power	W	710	860
Input current	A	3,55	4,02
Heating - BVR1 (room air temperature 20 °C, Entering water temperature 70°C, maximu	ım speed)		
Heating capacity with water coil (BVR1)	W	4350	5200
Heating capacity with water coil (BVR1)	l/h	600	600
Pressure drops (BVR1)	kPa	12,6	12,6
Heating capacity electric coil (BR26)	W	1200	1200
Fans data			
Number of fans	n.	2	2
	m3/h (max.)	470	690
Air flow rate	m3/h (med.)	390	525
	m3/h (min.)	270	375
	g/m (max.)	800	1140
Fans speed	g/m (med.)	660	885
	g/m (min.)	500	665
General technical data			
Sound pressure	dB(A)	44,0	47,5
Water consumption at 30-35°C	l/h	586	804
Condenser pressure drops	kPa	22	40
Refrigerant gas	Type/GWP	R410A / 2088kgCO ₂ eq	
Refrigerant gas charge	g	750	830
Nominal electric power *	W	1120	1500
Nominal input current *	A	4,97	6,65
Peak current	A	18	32
Hydraulic connections	Ø	1/2″F	1/2″F

Power supply = 230V ∼ 50Hz

Sound pressure measured in an $85\,\text{m}3$ semi-reverberant test chamber with reverberation time Tr=0.5s

* In accordance with EN-60335 Data declared in accordance with EN-14511

DIMENSIONS

		FW130R	FW160R
Dimensions and weights			
A	mm	723	723
В	mm	1121	1121
(mm	242	242
Empty weight	kg	63	67

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

CWX-CWXM

Water motocondensing unit

Cooling capacity 2,7 ÷ 7,1 kW

- Functioning only in cooling mode
- Internal installation

VERSIONS

CWX: condensing unit for cooling only MONOSPLIT **CWXM**: condensing unit cold only DUALSPLIT

DESCRIPTION

CWX power module

- Available in 4 versions with different potentiality
- The versions are realised using R410A refrigerant gas
- Only cold operation with water condensation
- Outdoor unit with rotary compressorRefrigerant lines with flared connections
- Refrigerant lines up to 15m

CWXM power module

- Available in 2 versions with different potentiality
- The versions are realised using R410A refrigerant gas
- Only cold operation with water condensation
- Outdoor unit with rotary compressor
- Refrigerant lines with flared connections

— Refrigerant lines up to 10m

Indoor unit CWX_W

- Wall indoor unit for wall installation with infrared ray remote control supplied;
- Air flow louvers adjustable horizontally and motorised deflecting louvers, which can be activated by remote control to direct the outlet air flow vertically, with fixed (LV) or floating (SW) positions
- Particularly quiet operation
- Microprocessor control
- Programmable switch-on/off timer
- Air filter that can be easily removed and regenerated
- Night time well-being (SLEEP) function
- Operating mode: cooling, dehumidification and fan only
- Autorestart function after interruption of electricity
- Tangential fan with 3 directly selectable speeds
- Energy saving (ECONO) and fast cooling (TURBO) mode
- Display on front panel showing the functioning modes and the temperature

PERFORMANCE SPECIFICATIONS

Indoor units			CWX250W	CWX350W	CWX500W	CWX700W	CWX350W+ CWX350W	CWX500W+ CWX500W
Power module			CWX250	CWX350	CWX500	CWX700	CWXM520	CWXM720
Cooling capacity		W	2750	3400	5200	6700	4826	7100
Total input power		W	637	778	1330	1860	1279	1780
Total input current		Α	2,86	3,56	6,02	9,28	5,80	9,00
EER		W/W	4,32	4,37	3,91	3,60	3,77	3,99
Water flow rate at (in/out) 30°C/35°C		l/h	572	705	1091	1446	1066	1510
Water pressure drop		kPa	21	32	74	125	68	127
Water flow rate at (in) 15°C		l/h	102	122	225	308	190	255
Refrigerant gas		Type/GWP			R410A / 20	87,5 kgCO₂eq		
Refrigerant gas charge		kg	0,65	0,75	0,85	0,97	0,90	1,10
Rated power input	(1)	W	1500	1500	2300	2650	2300	2650
Moisture removed		l/h	1,08	1,18	1,96	2,38	1,00	1,30
_	max	m3/h	445,00	537	882	1010	537	882
Air flow rate	average	m3/h	428,00	501	828	935	501	828
	min	m3/h	404,00	467	776	842	467	776
_	max	dB(A)	51,0	51,0	56,0	58,0	51,0	56,0
Sound power (indoor unit)	average	dB(A)	50,0	50,0	55,0	56,0	50,0	55,0
	min	dB(A)	49,0	48,0	53,0	54,0	48,0	53,0
Power module			CWX250	CWX350	CWX500	CWX700	CWXM520	CWXM720
Sound power		dB(A)	52,0	56,0	59,0	59,0	59,0	59,0
Compressor		type	Rotary	Rotary	Rotary	Rotary	Rotary	Rotary
Defrigerant connections	Φ liquid	inch	1/4"	1/4"	1/4"	1/4"	1/4"	1/4"
Refrigerant connections —	Φ gas	inch	3/8"	1/2"	1/2"	5/8"	1/2"	1/2"
	Φ liquid	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
Definement lines	Φ gas	mm (inch)	9,52 (3/8")	12,7 (1/2")	12,7 (1/2")	15,9 (5/8")	12,7 (1/2")	12,7 (1/2")
Refrigerant lines —								

15

3/4"

15

7

3/4"

15

7

3/4"

15

3/4"

220-240V ~ 50Hz

10 + 10

5

3/4"

10 + 10

3/4"

(1) The rated power input, is the maximum input electrical power from the system, in accordance with the Standards EN-60335-1 and EN-60335-2-40.

m

F

V ~ Hz

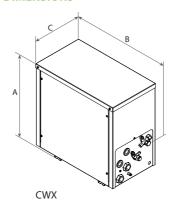
Max pipe length

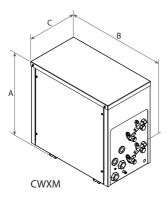
Max level difference

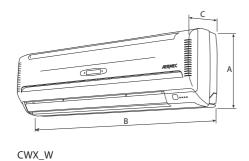
Rated conditions (Cooling EN-14511):

- room air temperature 27 °C D.B.; 19 °C W.B.
- water temperature (in/out) 30°C / 35 °C
- maximum speed

Refrigerant lines


Power supply


Hydraulic connections


- pipe length 5m

1047

DIMENSIONS

CWX

Dimensions and weights		CWX250	CWX350	CWX500	CWX700
A	mm	450	450	450	570
В	mm	470	470	470	470
(mm	260	260	260	260
Weight	kg	32	35	38	49

CWXM

Dimensions and weights		CWXM520	CWXM720
A	mm	585	585
В	mm	470	470
C	mm	260	260
Weight	kg	41	52

CWX_W

**** <u>*</u> **					
Dimensions and weights		CWX250W	CWX350W	CWX500W	CWX700W
A	mm	298	305	360	360
В	mm	880	990	1172	1172
C	mm	205	210	220	220
Weight	ka	11	12	18	20

www.aermec.com

DMT

Dehumidifier portable

Dehumidifying capacity 0,40 l/h ÷ 1,00 l/h

- New R290 natural refrigerant gas.
- · Compact, manoeuvrable and silent.
- Modern design to blend with all furnishing styles.
- Removes up to 24 litres of humidity in 24 hours.

DESCRIPTION

The portable dehumidifiers of the DMT range are ideal for dehumidifying domestic rooms, cellars, and places where clothes are hung out to dry, reducing the humidity to optimum levels to avoid any risk of physical discomfort and damage to the building due to the formation of mould.

They fit in with any type of furnishings thanks to their compact, elegant design, and even have wheels so they can easily be moved from one room to another and installed where needed (plug & play).

Equipped with a specific tray for collecting the humidity removed from the room during operation.

The on-board control panel with led display and indicator lights, allows you to set the required temperature set-point easily and accurately.

FEATURES

Operation

The dehumidifier takes in the excess humidity via the recovery grille and releases humidity-free air, thereby ensuring a healthier, more comfortable environment.

In addition, its functions enable easy control of the humidity level, keeping it constant over time.

Smart APP Ewpe

DMT160 model is equipped with the Wi-Fi module; using this module and the app for iOS and Android devices (available free on Apple Store and Google Play, the dehumidifier can be directly controlled from a distance on your smartphone or tablet and is possible via Cloud, using a wireless router connected to the Internet.

Special blue fin coil

Unlike normal batteries, this special blue epoxy coating is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

DMT160

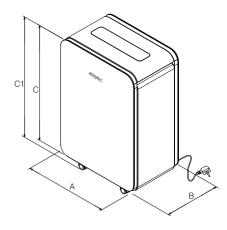
- New R290 natural refrigerant gas.
- On-board control panel with led display and indicator lights.
- Visual display of the humidity setting and that read in the room.
- Particularly quiet operation.
- Regenerable air filter easy to remove and clean.
- Alarm signal for filter cleaning.
- Alarm signal for condensate discharge tray full or badly positioned.
- Possibility to continuously drain off the condensate without using the tray supplied.
- Auto switch-off function: the unit stops operating when the condensate discharge tray is full or badly positioned, or when it has reached the defined work set-point.
- Auto-restart function.
- Timer for programming switch-off and switch-on.
- WiFi function

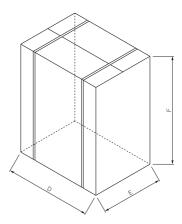
DMT240

- New R290 natural refrigerant gas.
- On-board control panel with led display and indicator lights.
- Visual display of the humidity setting and that read in the room.
- Particularly quiet operation.
- Regenerable air filter easy to remove and clean.
- Alarm signal for filter cleaning.
- Alarm signal for condensate discharge tray full or badly positioned.
- Possibility to continuously drain off the condensate without using the tray supplied.
- Auto switch-off function: the unit stops operating when the condensate discharge tray is full or badly positioned, or when it has reached the defined work set-point.
- Auto-restart function.
- Timer for programming switch-off and switch-on.
- Auto function: automatic drying mode. The unit automatically sets the most comfortable humidity.

ACCESSORIES AS STANDARD

DMT160-240


- Swivel wheels
- Power supply + Schuko plug
- Condensate discharge coupling


PERFORMANCE SPECIFICATIONS

		DMT160	DMT240
Nominal performance (1)			
Dehumidifying capacity	l/h	0,66	1,00
Input power	W	370	390
Nominal performance (Standard EN 810) (2)		
Dehumidifying capacity	I/h	0,40	0,48
Input power	W	315	325
Input current	A	1,7	1,8
Electric data			
Rated power input (3)	W	510	460
Rated current input (3)	A	3,0	3,0
Compressor			
Туре	type	R	eciprocating
Refrigerant	type		R290
Refrigerant charge	g	65	65
Potential global heating	GWP		3
Equivalent CO ₂	t	0,20	0,20
Fan			
Туре	type		Centrifugal
Air flow rate			
Maximum	m³/h	170	220
Minimum	m³/h	145	155
Sound power			
Maximum	dB(A)	53,0	56,0
Minimum	dB(A)	51,0	54,0
Sound pressure (4)			
Maximum	dB(A)	39,0	44,0
Minimum	dB(A)	37,0	42,0
Condensate drainage basin			
Capacity		2,6/3,0	2,6/3,0
Performances			
Application area	m ²	22~28	36~42
Power supply cable			
Type of power supply cable	Туре		Schuko
Power supply			
Power supply		220	-240V ~ 50Hz

⁽¹⁾ Indoor air temperature 30°C D.B. / 27°C W.B.
(2) Indoor air temperature 27°C b.s./21°C b.u. (Tested according to EN 810)
(3) Tested according to EN 60335.
(4) Sound pressure measured according to EN 12102 standard, in semi anechoic chamber at a distance of 1 m from the source.

DIMENSIONS AND WEIGHTS

Dimensions and weights

		DMT160	DMT240
Dimensions and weights			
A	mm	351	351
В	mm	240	240
C	mm	489	489
<u>C1</u>	mm	522	522
D	mm	392	392
E	mm	286	286
F	mm	525	525
Net weight	kg	15,5	15,5
Weight for transport	kg	16,5	16,5

DMH - DMV

- Better performance compared to traditional dehumidifiers
- Reduced consumption
- Prevents the formation of condensate on the surface of the pavement
- · Unit only for indoor installation

Dehumidifier for radiant airconditioning systems

Dehumidifying capacity 22 l/24h ÷ 36 l/24h

DESCRIPTION

Dehumidifiers are refrigerant cycle machines combined with radiant air-conditioning systems, from which they draw a certain water flow rate to increase the dehumidification efficiency and reduce electricity consumption.

The cooling systems employ chilled water at temperatures between 15°C and 20°C, which is enough to take the rooms to the desired temperature, but not suitable for dehumidification. To lower the latter, you would need water at 7°C, resulting in a reduction in the performance of the water chiller compared to when the water is produced at 15-20°C.

Water-cooled refrigerant cycle dehumidifiers are used to keep the air humidity at optimal values (55-65%) in rooms, with the following benefits compared to other systems:

- They employ the chilled water available in the radiant panel system;
- They are used to process the air without modifying its temperature and, therefore, without affecting the operation of the radiant panels and their adjustment system.
- They prevent the formation of condensation on the floor surface in radiant air conditioning systems.

FEATURES

Structure: galvanised sheet metal panels, lined on the inside with a sound-proofing polyethylene covering.

Filter section: 12 mm thick synthetic filtering baffle made with a galvanised sheet metal frame, efficiency class ISO 16890 COARSE 50% (G3 EN 779), can be removed from the front.

Cooling circuit: consisting of a R134a alternative refrigerant compressor, freon filter, expansion capillary, evaporator and condenser with copper pipes and continuous louvered fin louvers, with hydrophilic treatment and aluminium frame (for "-C" cooling versions, with "I" integration, water-freon condenser).

Hydraulic circuit: with pre-treatment and post-cooling coils featuring with copper pipes and continuous louvered fin louvers, with hydrophilic treatment and aluminium frame; for "-C" cooling versions, plate water condenser (no post-cooling); stainless steel condensate drip tray extended to the whole treatment.

Fan: double intake centrifugal fan with blades facing forwards, with multi-speed motor directly coupled; 3 different electrical connections available (H/M/L) for the functioning speed; the manufacturer's default setting is medium (M) speed.

ACCESSORIES

DMUM: Wall mounted environment humidistat.

DMWB: Outer casing for vertical model. Vertical installation.

DMFP: Front panel for outer casing. Vertical installation.

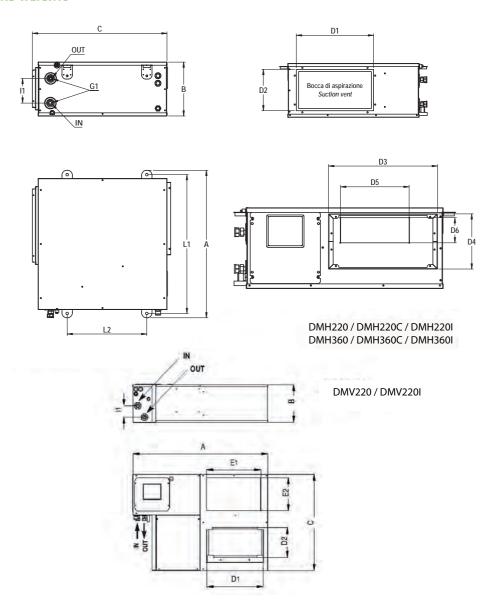
PERFORMANCE SPECIFICATIONS

		DMV220	DMV2201	DMH220	DMH220C	DMH220I	DMH360C	DMH360I	DMH360
Performances (1)									
Condensed humidity	l/24h	22	22	22	22	22	36	36	36
Power at the evaporator	W	1020	1020	1050	1050	1050	1480	1480	1480
Power dissipated with water	W	870	1820	870	1820	1820	2680	2680	1540
Nominal water flow rate	m³/h	240	240	240	240	240	390	390	390
Water pressure drop	kPa	3	3	3	3	3	10	10	10
Available sensitive power	W	-	840	-	840	840	1340	1340	-
Total input power	W	350	350	350	350	350	580	580	580
Input current	Α	2,0	2,0	2,0	2,0	2,0	3,2	3,2	3,2
Fan									
Туре	type				Centrifugo dop	pia aspirazione			
Available fan speeds					H/I	M/L			
Nominal fan setting				М				L	
Air flow rate	m³/h	220	220	220	220	220	360	360	360
High static pressure	Pa	0	0	20	20	20	20	20	20
Compressor									
Туре	type				Ermetico a	alternativo			
Refrigerant	type				R1:	34a			
Refrigerant charge	g	340	270	340	340	270	460	410	460
Operating limits									
Intake air temperature	°C				15 -	~ 32			
Water inlet temperature (dehumidifying mode)	$^{\circ}$				10 -	~ 21			
Sound data						•			
Sound pressure level (1 m)	dB(A)	39,0	39,0	42,0	42,0	42,0	47,0	47,0	47,0

⁽¹⁾ At nominal air flow rate at the following conditions: ambient air 26 °C BS, RH 65%; incoming water temperature 15 °C BS, RH 65%; incoming water 1

Condensed humidity with ambient temperature of 26°C

	DMV220	DMV2201	DMH220	DMH220C	DMH220I	DMH360C	DMH360I	DMH360
Hydraulic circuit water temperature 21°C - Relative humidity 55	i%							
Condensed humidity 1/24h	12	12	12	12	12	20	20	20
Hydraulic circuit water temperature 18°C - Relative humidity 55	i%							
Condensed humidity 1/24h	14	14	14	14	14	22	22	22
Hydraulic circuit water temperature 15°C - Relative humidity 55	i%							
Condensed humidity 1/24h	15	15	15	15	15	25	25	25
Hydraulic circuit water temperature 21°C - Relative humidity 65	i%							
Condensed humidity 1/24h	17	17	17	17	17	28	28	28
Hydraulic circuit water temperature 18°C - Relative humidity 65	i%							
Condensed humidity 1/24h	19	19	19	19	19	31	31	31
Hydraulic circuit water temperature 15°C - Relative humidity 65	i %							
Condensed humidity 1/24h	22	22	22	22	22	36	36	36


Condensed humidity with ambient temperature of 24°C

	DMV220	DMV2201	DMH220	DMH220C	DMH220I	DMH360C	DMH360I	DMH360
Hydraulic circuit water temperature 21°C - Relative humidity	55%							
Condensed humidity 1/24h	10	10	10	10	10	17	17	17
Hydraulic circuit water temperature 18°C - Relative humidity	55%							
Condensed humidity 1/24h	12	12	12	12	12	19	19	19
Hydraulic circuit water temperature 15°C - Relative humidity	55%							
Condensed humidity 1/24h	13	13	13	13	13	21	21	21
Hydraulic circuit water temperature 21°C - Relative humidity	65%							
Condensed humidity 1/24h	14	14	14	14	14	23	23	23
Hydraulic circuit water temperature 18°C - Relative humidity	65%							
Condensed humidity 1/24h	17	17	17	17	17	27	27	27
Hydraulic circuit water temperature 15°C - Relative humidity	65%							
Condensed humidity 1/24h	18	18	18	18	18	30	30	30

Operating limits

- Intake air temperature 15 ~ 30°C
- Hydraulic circuit water temperature 12 ~ 20°C

DIMENSIONS AND WEIGHTS

		DMH220	DMH220C	DMH220I	DMV220	DMV220I	DMH360	DMH360C	DMH360I
Dimensions and weights									
A	mm	680	680	680	850	850	775	775	775
В	mm	250	250	250	240	240	270	270	270
C	mm	623	623	623	615	615	623	623	623
D1	mm	337	337	337	337	337	437	437	437
D2	mm	172	172	172	172	172	192	192	192
D3	mm	335	335	335	-	-	435	435	435
D4	mm	170	170	170	-	-	195	195	195
D5	mm	210	210	210	-	-	250	250	250
D6	mm	77	77	77	-	-	95	95	95
E1	mm	-	-	-	350	350	-	-	-
E2	mm	-	-	-	215	215	-	-	-
11	mm	115	115	115	75 (1)	75 (1)	125	125	125
L1	mm	640	640	640	-	-	745	745	745
L2	mm	370	370	370	-	-	370	370	370
G1	Ø	1/2"F	1/2"F	1/2" F	1/2″F	1/2" F	1/2"F	1/2"F	1/2"F
Net weight	kg	35,0	35,0	35,0	40,0	40,0	40,0	40,0	40,0

⁽¹⁾ Pre-shearing for hydraulic and electrical connections on the side, rear and bottom panel

Aermec reserves the right to make any modiÿcations deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

ALBANIA

AERMEK ALBANIA SH.P.K. - BUL. Gjergj Fishta KULLA 4 - 1001 TIRANA Ph. +355 4 2224339 - Fax. +355 4 2224339 - info@aermekalbania.com

ALGERIA

AIRMEC ALGERIE - 312 Avenue Hamid Kebladi - Hammamet Ph. + 213 23 15 76 46 - Fax + 213 21 95 61 48 - airmec_algerie@yahoo.fr ANGOLA

CEST - COMÉRCIO E INDÚSTRIA, LDA - Rua do Ex. Matadouro, s/n -Morro BentoLuanda - Ph. +244 222 469 105 - Fax +244 222 469 024 geral.angola@cest.pt

ARGENTINA

TROX ARGENTINA SA. - Timbo 2610 - Parque Industrial Burzaco -Buenos Aires - Ph. +54 1142335676 - Fax +54 91155234803 fernando.cani@trox-latinamerica.com

ARMENIA

LLC LID MECH - Avan, Babajanyan 15/1 Yerevan - Ph. +374 99 19 31 99 info@santech.am

Renome LTD - M. Xorenatci str. 116/16 - Yerevan - Ph +374 60445310 Fax +374 60445310 - renomeclima@mail.ru

AUSTRALIA

COSAIR PRODUCTS PTY LTD - Unit 10, 35 Birch Street - Condell Park NSW 2200 - Ph. +61 297964668 - Fax +61 297964669 mcosgrove@cosair.com.au

AUSTRIA

AERSYS GMBH - Brown Boveri Strasse 8/Stg. 1/5 - 2351 Wiener Neudorf - Ph. +43 (0)2236 387 770- office@aersys.at

BANGLADESH

AERMEC SOUTH ASIA - 49, 3rd Cross GMR layout, Sanjaynagar 566094 Bangalore - Ph. +91-9620031789 - debasis@aermec.com AERMEC SOUTH ASIA - 13/A Choudhury Para Lane Ballavpur - 712201 Serampore Hooghly (West Bengal) - Ph. +91 9836030720 /+8801965583865 archan@aermec.com

BELGIUM

ENERWIN S.P.R.L. - Avenue Vésale 20 B - 1300 WAVRE - Ph. +32 10 232650 -Fax +32 10 812608 - bernard.mendel@enerwin-aermec.be

BELARUS

RiaBaltEngineering OÜ - Tuukri TN 19-3145 Kesklinna Linnaosa - 10152 Tallinn -Tel. +375 44 570 08 47 - pnv@rialbalt.com

BRASIL

TROX DO BRASIL - Rua Cyro Correia Pereira 300 - CIC - Curitiba -Ph. +55 413316-8418 - Fax +55 413316-8490 fernando.cani@trox-latinamerica.com

BOLIVIA

CONSULCAD INGENIERIA SRL - Av. Demetrio Canelas, Edif. Amistad PB Cochabamba - Ph. +591 4 4280012 - Mob. 591 70718670 h astulla@consulcadsrl.com

BOSNIA AND HERZEGOVINA

Taurus KGV d.o.o. - Ciglanska 12 - 71000 Sarajevo Ph. +387 33 942 142 - Fax: +387 33 942 142 - info@taurus.ba **BULGARIA**

ATARO CLIMA EOOD - 272 Vasil Levski str. - Plovdiv Ph. +359 32 906 906 - Fax +359 32 906 900 - ataro@ataro.bg

AERMEC SOUTH ASIA - 13/A Choudhury Para Lane Ballavpur 712201 Serampore Hooghly (West Bengal) - Ph. +91 9836030720 / +880 1965583865 - archan@aermec.com

AERMEC SOUTH ASIA - 149 3rd Cross GMR layout, Sanjaynagar 566094 Bangalore - Ph +91 -9620031789 - debasi@aermec.com

CANADA

AERMEC NORTH AMERICA - 8953 Woodbine Avenue - Markham ON CA L3R OJ9 - Ph. +1 833-4237632 - info@aermec-na.com

CHII F

AERMEC SOUTH AMERICA SPA - Calle Canal La Punta 8770 - TOP SPACE BODEGA 42 - RENCA - 8640000 SANTIAGO - Ph. 56 2 2943.3355 contacto@aermec.cl

COLOMBIA

Aermec Colombia - Cra 11 No 140-41 Torre 2 Apto 402 - Bogotà -Mob. +573108749386 - paul.arredondo@aermec.com

CROATIA

MARITERM d.o.o. - Dražice 123 d 51000 RIJEKA Ph +385 51 815 010 mariterm@mariterm.hr

MARITERM d.o.o. - Gjure Szaba 4 10000 ZAGREB Ph +385 01 377 4942 mariterm-zagreb@mariterm.hr

MARITERM d.o.o. - Divkovićeva 2b 52100 PULA Ph +385 52 556 864 mariterm-pula@mariterm.hr

CYPRUS

ROYAL ENGINEERING CO. LTD - 6 Trachona Str. - Dhali Industrial Area 1662 Nicosia - P.O. Box 20689 - Ph. +357 22612199 - Fax +357 22610272 royaleng@cytanet.com.cy

CZECH REPUBLIC

COMPLETE CZ spol. s.r.o. - V Rovinách 520/46 - 140 00 Praha 4 Ph. +420 273 132 520 - Fax +420 246 030032 - info@completecz.cz

DENMARK

H. JESSEN JURGENSEN A/S - Tempovej 18-22 - 2750 Ballerup Ph. +45 70 270607 - Fax +45 70 263405 - deh@hjj.dk

DOMINICAN REPUBLIC

AIRLAN (Sede Caribe) - P. Barcelona 30,10 - 505 Santo Domingo Ph. +34971706500

EGYPT

ROMA TRADING SERVICE - Borg El Arab, 4th Industrial Zone, Block (73) Alexandria - Ph. +20 1221118431 - yakob@romatradingservice.com ROMA TRADING SERVICE - Via G. D'Annunzio, 32 - 00042 ANZIO (RM) Ph. +39 3404749207 - yakob@romatradingservice.com

FSTONIA

RiaBaltEngineering OÜ - Tuukri TN 19-3145 Kesklinna Linnaosa - 10152 Tallinn - Tel. +375 44 570 08 47 - pnv@rialbalt.com

FINLAND

AERMEC SUOMI OY - Hautakorventie 9, 90620 Oulu - Ph. +358 40 149 3449 veli-matti.rasanen@aermec.fi

AERMEC SUOMI OY - Microkatu 1, 70210 Kuopio - Ph +358 40 674 2509 ilpolaitinen@aermec.fi

FRANCE

AERMEC SAS - PARC VISIONIS II - Rue du Developpement - 01090 GUEREINS - Ph. +33 04 74090038 - Fax +33 4 74090988 - info@aermec.fr AERMEC SAS - Ile de France - 80 Avenue du Général De Gaulle 91170 - Viry Chatillon - Ph. +33 1 60478348 - Fax +33 1 69436368 gianni.delfabbro@aermec.fr

DIMENA SARL - 88 Rue Du Moulineau - 33320 Eysines Ph. +33-5-57876429 - Fax +33-5-56798900 - contact@dimena.fr S.TE FRANCE CLIM - 41 rue Pierre Sémard - 57300 Hagondange Ph. +33 3 87517505 - Fax +33 3 87517514 - france.clim@laposte.net T.C.A. - Avenue des Maurettes - 06270 Villeneuve Loubet Ph. +33 4 92133666 - Fax +33 4 93208304 - tca06@tca.fr T.C.A. - 19 Rue M. Bastié Z.I. de la Lauze - 34430 St Jean De Vedas Ph. +33 4 67473690 - Fax +33 4 67479851 - tca34@tca.fr T.C.A. - 213 route de la Valentine aux 3 lucs -13011 Marseille Ph. +33 4 91191919 - Fax +33 467479851 - tca13@tca.fr

GEORGIA

THERMORUM Ltd. - Vazha-Pshavela Ave.20 - 0160 Tbilisi Ph. +995 591757550 - Sh.k@thermorum.com

AERMEC Deutschland GmbH - Am Gierath 4 - 40885 Ratingen Ph. +49 2102 91000 - Fax +49 2102 910010 - info@aermec-deutschland.de NOVATHERM KLIMAGERÄTE GmbH - Dieselstrasse 40 - 30827 Garbsen Berenbostel - Ph. +49 5131 49670 - Fax +49 5131 496767 hannover@novatherm.de

GHANA

Seepacs Engineering Limited - Private Mail Bag, 25 - Cantonment Post Office Accra - Ph. +233 (0302) 817180 - Fax +233 (0302) 813454 s.bruno@seepacseng.com

GREECE

CALDA ENERGY S.A.I.C. -100 Tatoiou Str, Metamorfossi -14452 Athens - Ph./Fax +30 210 28 43 - Fax + 30 210 28 43 - calda@otenet.gr **HOLLAND**

AERKOEL BV - Deltazijde 4K - 1261 ZM Blaricum Ph. +31 850 731 001 - y.mols@aerkoel.nl

HUNGARY

OKTOKLIMA - Királyok útja 27 - 1039 Budapest Ph. +36 1 4332360 - oktoklima@oktoklima.hu

HONG KONG

LUCKY E & M LIMITED - 11/F Thomson Commercial Building 8 Thomson Road - Wanchai - Ph. +2865 2088 - Fax +2529 7255 general@luckyem.hk

ICELAND

VÖRUKAUP - Lambhagavegi 5 - 113 Reykjavík - Ph. +354 516-2600 Mob. +354 823-4335 - www.vorukaup.is

INDIA

AERMEC SOUTH ASIA - 149, 3rd Cross GMR layout, Sanjaynagar 566094 Bangalore - Ph. +91-9620031789 - debasis@aermec.com AERMEC SOUTH ASIA - 13/A Choudhury Para Lane Ballavpur 712201 Serampore Hooghly (West Bengal) Ph. +91 9836030720 / +880 1965583865 - archan@aermec.com

IVORY COAST

CYBAT TECHNOLOGY - 27 BP 786 Abidjan 27 Ph. + 225 22 42 26 03 - cybat.direction@gmail.com

JORDAN

PIONEER ENGINEERING SYSTEMS - Otba Bin Ghazwan St. - Building No. 25 Amman-Khalda - Ph. +962-6-5518030 - Mob. +962-795550859 Fax +962-6-5518031 - m.shurafa@pes-jo.com

VERTRIEBSPARTNER / DISTRIBUIDORES

KAZAKHSTAN

AEPMEK KAZAKHSTAN - Samal-2, 59, Blok B, office 19 - 050040 Almaty - Ph. +77272668648 - info@aermek.kz

KFNYA

AERSA (PTY) Ltd. - 2 Square road, Stikland Industrial, Bellville, 7530 Ph. +27 21 9057979 - Fax +27 21 9057976 - sales@aersa.co.za

KOREA (Republic of)

M.T.E.S co. Ltd - Ori Gyung-gil, Pyeongtaek-si Gyeonggi-do - Pyeongtaek - Ph. 82 (0)31-655-1833/1843 - Fax 82-(0)2-6280-5946 jey.kim@ccmillsvc.com

KOSOVO

GREEN ENGINEERING SH.P.K. - Orizel nr. 6 - 50000 Gjakove Ph. +38349777148 - bardhzeka@gmail.com

ISRAEL

Tadiran Consumers and Technology Product Ltd. - 9 Ravnitski St. Petah Tikva, 697100 - Ph. +972-3-9283422 - Fax +972-3-5566188 Aermec@Tadiran-Group.co.il

LATVIA

ACQUA COOLING - Smaidu Street 1 - LV2130 Riga - Ph. +371 29554778 - info@acq.lv

LEBANON

GEM Sarl - Dora Highway, Makateb Hadissa Store, P.O. Box: 80106 Beirut Ph. +961-1-259577 - Fax +961-1-259577 - Mob. +961-3-655975 info@gemsarl.com

LIBYA

Almusanter Alawal CO. for Electro Mechanic Fitt. & Ventilation - Alsabaa Nearby Alqezany Mosque Tripoli - Ph. +218 918460524 malamontaser@qmail.com

LITHUANIA

NIT Ltd - Savanoriu av. 151- 03150 Vilnius - Ph. +370 5 2728552 Fax +370 5 2728559 - andrius@nit.lt

LUXEMBOURG

ENERWIN S.P.R.L. - Avenue Vésale 20 B - 1300 WAVRE Ph. +32 10 232650 - Fax +32 10 812608 bernard.mendel@enerwin-aermec.be

S.TE FRANCE CLIM - 41 rue Pierre Sémard - 57300 Hagondange Ph. +33 3 87517505 - Fax +33 3 87517514 - france.clim@laposte.net

MACEDONIA

D.O.O. EUROTERM - UL. Lece Koteski 50 - 7500 PRILEP Ph. +389 48 419 415 - info@euroterm.com.mk

MALTA

ENGENUITY LTD - Triq Is-Santwarju Tal-Hlas - Qormi QRM5011 Malta Ph. +356 21490957/8 - info@engenuity.com.mt

MOLDOVA

VSC"Lerai Grup"SRL - or.Chisinau, str.Varnita, nr.2/15 - MD-2001 Republica Moldova - Ph. +373 22 224238 - +373 22 928090 info@lerai.md

MONTENEGRO

Aering d.o.o. – PC Čelebić 1/2 - 81000 Podgorica Ph. +387 61 738 240 – marko.moldovan@taurus.ba

MOROCCO

ECOTHERM SARL - 67, Rue du Lieutenant MAHROUD ex Rue Chevalier BAYARD Casablanca 20300 - Ph. +212 522 243300 Fax +212 522 243302 - contact@ecotherm.ma

NEPAL

AERMEC SOUTH ASIA - 13/A Choudhury Para Lane Ballavpur - 712201 Serampore Hooghly (West Bengal) - Ph. +91 9836030720 / +880 1965583865 - archan@aermec.com

AERMEC SOUTH ASIA - 149 3rd Cross GMR layout, Sanjaynagar 566094 Bangalore - Ph +91 -9620031789 - debasi@aermec.com

NIGERIA

BHR Solutions - Building Hospitality Retail Solution - 1- 3 B Osbourne Road Ikoyi, Lagos - Ph. +2348148525053 - paulnig@bhrsolutions.co.za; sales@aersa.co.za

NORTHERN IRELAND

PowerTech Refrigeration Ltd - 94a Gosford Road - Markethill CO Armagh BT60 1RH - Belfast - Ph. +28 3755 2792 projects@powertechref.com

INSTALL ENGINEERING S.H.P.K. - Kroi I Bardhe, 12 - Prishtine Ph. +381 38 540 977 - info@install-ks.com

NORWAY

THERMO CONTROL AS (Oslo - Main office) - Snipetjernveien 7, 1405 Langhus - Ph. +47 23 16 95 00 - post@tco.as

THERMO CONTROL AS (Skedsmo office) - Marenlundveien 5, 2020 Skedsmokorset - Ph. +47 63 87 07 50 - post.skedsmo@tco.as

THERMO CONTROL AS (Fredrikstad office) - Pancoveien 22A, 1624 Gressvik - Ph. +47 69 14 56 00 - post@tco.as

THERMO CONTROL AS (Bergen office) - Sandbrekketoppen 30, 5224 Nesttun - Ph. +47 55 92 94 00 - post@tco.as THERMO CONTROL AS (Stavanger office) - Torneroseveien 8, 4315 Sandnes - Ph. +47 51 62 82 56 - firmapost-sorvest@tco.as THERMO CONTROL AS (Trondheim office) - avdeling Midt-Norge Østre Rosten 68B, 7075 Tiller - Ph. +47 73 02 10 60 - firmapost-midt@tco.as THERMO CONTROL AS (Tromsø office) - Skatterøvegen 78, 9018 Tromsø - Ph. +47 975 99 992 - firmapost-nord@tco.as THERMO CONTROL AS (Harstad office) - Stangnesterminalen 6, 9409 Harstad - Ph. +47 77 00 24 90 - firmapost-nord@tco.as THERMO CONTROL AS (Rognan-Bodø - office) - Håndverkeren 16, 8250 Rognan - Ph. +47 918 04 155 - firmapost-nord@tco.as THERMO CONTROL AS (Lager office) - Marenlundveien 5, 2020 Skedsmokorset - lager.skedsmo@tco.as

PAKISTAN

ASTRO POWER SYSTEMS - Suite 124, 1st Floor, Block B, Abu Dhabi Tower, F-11 Markaz - Islamabad

Ph. +92-51-2102688-89 - Fax +92-51 2102690

ASTRO POWER SYSTEMS - Suite 3 E, 3rd Floor, Kiran Plaza, 28/M Model Town Ext - Lahore

Ph. +92-42-35219051-52 - Fax +92-42-35219053

ASTRO POWER SYSTEMS - Descon Plaza, Suite D-14, 4TH Floor, 16-A, Block 6 P.E.C.H.S - Sharah-E-Faisal- Karachi

Ph. +92-21-34982027 - Fax +92-21-34982028

PERU'

AIRLAN - Calle 2 de Mayo 534 oficina 603 Miraflores, 18 - Lima - Ph. +51 14472681 - Fax +51 14 45 0833 - jchavarri@airlan.es

POLAND

Aermec Polska Sp. z o.o. - Krzysztofa Kolumba 31 - 02-288 Warszawa Ph. +48 22 463 43 43 - aermec@aemec.pl

PORTUGAL

CEST – COMÉRCIO E INDÚSTRIA, LDA – Av. Almirante Gago Coutinho Ouressa Parque Arm. 13, 2725-322 Mem Martins h. +351 219253330 - Fax +351 219253338 – geral@cest.pt

QATAF

ELEC QATAR W.L.L. - Office 1, Capital Complex, Bldg 446, Street 340, Salwa Road, Zone 55 - P.O. Box 31584 - DOHA Ph. +974 4431.9282 - Fax +974 4431.9282

ROMANIA

AVANT'SYS GREEN ENERGY - Strada Duzilor 24 - Bucharest 021472 Ph. +40 21 350 1359 - office@avantsys-promoterm.ro Clima Tech S.R.L. - Strada Vasile Voiculescu 14, Bucharest Ph. +40 21 323 2266 - office@clima-tech.ro

REPUBLIC OF IRELAND

European Industrial Chillers Limited - Unit 74 Dunboyne Business Park - Dunboyne Co. Meath - Dublin

Ph. +353 01 8255155 - Fax +353 01 8255188

RUSSIA

AERMEC Spa - 1st Lyusinovsky, 3B, office 408 - Ph. +7 (964) 722-21-90 - Moscow 119049 - Ph. +7 495 6638044 - m.l@aermec.com

SERBIA

AKTING DOO - Jurija Gagarina, 153/32 -11070 Novi Beograd Ph. +381 113187383 - akting@eunet.rs

SINGAPORE

Novus Technik Pte Ltd - Level 39, Marina Bay Financial Centre Tower 2, 10 Marina Boulevard - Singapore 018983

Ph +65 6225 3602 - Fax +65 6818 6316 - comm@novus.com.sg

SLOVAKIA

KLIMA TEAM s.r.o. - Trnavska 63 - 82101 Bratislava Ph. +421 2 43293969 - Fax +421 2 43420079 - mail@klimateam.sk

SLOVENIA

BOSSPLAST D.O.O. - Pod Jelsami 5 - 1290 GROSUPLJE Ph. +386 1 7810 550 - jernej.rode@bossplast.com

SOUTH AFRICA

AERSA (PTY) Ltd. - 2 Square Road - Stikland Industrial - Bellville 7530 Ph. +27 21 9057979 - Fax +27 21 9057976 - sales@aersa.co.za
AERSA Gauteng - Unit 9 Barbeque Corner, 27 - Dytchley Road, Barbeque downs Midrand - Ph. 021 905 7979 - sales@aersa.co.za

SOUTH AMERICA

AERMEC SOUTH AMERICA SPA - Calle Canal La Punta 8770 – TOP SPACE BODEGA 42 - RENCA – 8640000 SANTIAGO Ph. 56 2 2943.3355 - ramon.morales@aermec.cl

SPAIN

AIRLAN S.A. (Delegación Norte) - Ribera de Deusto 87 - 48014 Bilbao (Vizcaya) Ph. +34944760139 - Fax +3494752402 - rcoteron@airlan.es AIRLAN (Delegación Galicia) - Pol. Ind. Alvedro, Nave E-26 - 15180 Alvedro Culleredo (La Coruña) - Ph. +34 981 288209 - Fax +34 981286503 AIRLAN (Delegación Centro) - Calle Antonio López 249 (Edificio Vértice) 3B 28041 Madrid - Ph. +34914732765 - Fax +34914732581 AIRLAN (Delegación Cataluña) - Avda Meridiana 350- 4 A - 8027 Barcelona - Ph. +34664548540 - Fax +34932780224

DISTRIBUTORS / DISTRIBUTEURS

AIRLAN (Delegación Levante) - Avda Meridiana 350-4 A - 8027 Barcelona Ph. +34664548540 - Fax +34932780224

AIRLAN (Delegación Andalucía) - C/ Acueducto 24 Edif. Dos Hermanas Isla Edificio 2, Pl 1ª, Mod. 9 41703 Pol. Ind. Ctra. De la Isla, Sevilla (Sevilla) Ph. +34 955 5406 12 – Fax +34901706015

AIRLAN (Delegación Baleares) - c/Teixidors 6 - 7009 Pol Ind. Son Castelló - Palma (Mallorca) - Ph. +34971706500 - Fax +34971706372 AIRLAN (Delegación Canarias) - C/ Los Bimbaches 13 Local 2 A -38107 Santa Cruz de Tenerife (Tenerife)

Ph. +34922214563 - Fax +34922217985

SRI LANKA

AERMEC SOUTH ASIA - 13/A Choudhury Para Lane Ballavpur - 712201 Serampore Hooghly (West Bengal) - Ph. +91 9836030720 / +880 1965583865 - archan@aermec.com

AERMEC SOUTH ASIA - 149 3rd Cross GMR layout, Sanjaynagar 566094 Bangalore - Ph +91 -9620031789 - debasi@aermec.com

STATE OF PALESTINE

ENGINEERING CENTER FOR HEATING AND AIR CONDITIONING - Industrial Zone Ramallah - Ramallah - Ph. +970 2 2959975

Fax +970 2 2963439 - info@engineering-center.com

SYRIA

SINJAB TRADING EST - Murshe Khater st. PO BOX 5358 - 5073 Damascus - Ph. +963 11 4424541 - Fax 963-11-4412862 sinjabest@gmail.com

SWEDEN

KYLMA AB - Box 8213 -163 08 SPÅNGA - Ph. +46 8 59890805 Fax +46 8 59890891 - Mikael.Magnusson@kylma.se AIRCOIL AB - Angsvagen 22 - 67232 ARJÄNG

Ph. +46 573 711045 - Fax. +46 573 711811 - info@aircoil.se

SWITZERLAND

TCA THERMOCLIMA AG - Piccardstr. 13 - 9015 St. Gallo Ph. +41 71 313 99 22 - Fax +41 71 313 99 29 - info@tca.ch TCA THERMOCLIMA AG - Industriestrasse, 15- 4554 Etziken Ph. +41 71 313 99 22 - Fax +41 71 313 99 29 - info@tca.ch KATALTHERM SERVICE S.A. - Via alla Gerra, Cp 54 - 6930 Bedano Ph. +41 91 935 22 22 - Fax +41 91 935 22 24 - info@kataltherm.ch

THAILAND

TEAM TECHNOLOGY CONSULTANTS & SERVICE CO.,LTD

14 Soi Suanfarang. Prachacheng Rd. Bang Sue. - 10800 Bangkok Ph. +66 29133924 - Fax +66 814450862 - bamroongj@gmail.com

TUNISIA

CODIFET S.A.R.L. - 7 Rue de la Chimie Z.I. SIDI REZIG - 2033 Megrine Ph. +216 71 433035 - Fax +216 71 433239 - contact@codifet.com

TURKEY

AIR TRADE CENTER - Ibrahim Karaoglanoglu Caddesi No: 101 - 34418 Seyrantepe / Istanbul - Ph. 90(0)2122834510 - Fax 90(0)2122783964 atc.turkey@airtradecentre.com

UKRAINE

CLIMHOUSE LLC - 18th Sadovaya Street, building 1 - 04128 Kiev - Ph. +38 050 495 85 95 - sales@climhouse.com

URUGUAY

ASUAN SA - Alejandro Schroeder 6407- 11500 Montevideo - Ph. +598 26015947 - ventas@asuan.net

UNITED ARAB EMIRATES

QTM - 1202 Grosvenor Business Tower - Dubai - Ph. +971 4 453 1707 - aermec@qtmesco.com

UNITED KINGDOM

AERMEC UK LIMITED - Unit 11, The Quad - Airport Business Park Southend Cherry Orchard Way - Rochford-Essex Ph. +44 0203 008 5940 - Fax +44 0203 008 5941 uksales@aermec.co.uk

USA

AERMEC NORTH AMERICA - 49W 45th St New York - NY 10036 Ph. +1 833-4237632 - info@aermec-na.com

VIETNAM

BACH KHOA EQUIPMENT INTERNATIONAL JSC. - 790 Su Van Hanh St., Ward Dist.10 - Ho Chi Minh City - Ph. +84 903 999 357 - info@bkic.vn BACH KHOA EQUIPMENT INTERNATIONAL JSC. - No. 35, Lane 45, Tran Thai Tong St. Cau Giay Dist. - Hanoi - Ph. +84 915 141 176 - info@bkic.vn Please scan the QRcode to enter the updated list

Scanner le QR Code pour accéder à la liste mise à jour

Scannen Sie den QR-Code um auf die aktuelle Liste zuzugreifen

Encuentra a tu socio AERMEC

